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Preface

Although “microservices” is a new term, the concepts that it represents have been 
around for long time. In 2006, Werner Vogels (CTO at Amazon) gave a talk at the 
JAOO conference presenting the Amazon Cloud and Amazon’s partner model. In 
his talk he mentioned the CAP theorem, today the basis for NoSQL. In addition, he 
spoke about small teams that develop and run services with their own databases. 
Today this structure is called DevOps, and the architecture is known as micro 
services.

Later I was asked to develop a strategy for a client that would enable them to inte-
grate modern technologies into their existing application. After a few attempts to 
integrate the new technologies directly into the legacy code, we finally built a new 
application with a completely different modern technology stack alongside the old 
one. The old and the new application were only coupled via HTML links and via a 
shared database. Except for the shared database, this is in essence a microservices 
approach. That happened in 2008.

In 2009, I worked with another client who had divided his complete infrastructure 
into REST services, each being developed by individual teams. This would also be 
called microservices today. Many other companies with a web-based business model 
had already implemented similar architectures at that time. Lately, I have also real-
ized how continuous delivery influences software architecture. This is another area 
where microservices offer a number of advantages.

This is the reason for writing this book—a number of people have been pursuing 
a microservices approach for a long time, among them some very experienced archi-
tects. Like every other approach to architecture, microservices cannot solve every 
problem. However, this concept represents an interesting alternative to existing 
approaches.

Overview of the Book

This book provides a detailed introduction to microservices. Architecture and organ-
ization are the main topics. However, technical implementation strategies are not 
neglected. A complete example of a microservice-based system demonstrates a con-
crete technical implementation. The discussion of technologies for nanoservices 
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illustrates that modularization does not stop with microservices. The book provides 
all the necessary information for readers to start using microservices.

For Whom Is the Book Meant?

The book addresses managers, architects, and developers who want to introduce 
microservices as an architectural approach.

Managers

Microservices work best when a business is organized to support a microservices-
based architecture. In the introduction, managers understand the basic ideas behind 
microservices. Afterwards they can focus on the organizational impact of using 
microservices.

Developers

Developers are provided with a comprehensive introduction to the technical aspects 
and can acquire the necessary skills to use microservices. A detailed example of a 
technical implementation of microservices, as well as numerous additional technolo-
gies, for example for nanoservices, helps to convey the basic concepts.

Architects

Architects get to know microservices from an architectural perspective and can at the 
same time deepen their understanding of the associated technical and organizational 
issues.

The book highlights possible areas for experimentation and additional informa-
tion sources. These will help the interested reader to test their new knowledge 
 practically and delve deeper into subjects that are of relevance to them.

Structure and Coverage

The book is organized into four parts. 

Part I: Motivation and Basics

The first part of the book explains the motivation for using microservices and the 
foundation of the microservices architecture. Chapter 1, “Preliminaries,” presents 
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the basic properties as well as the advantages and disadvantages of microservices. 
Chapter 2, “Microservice Scenarios,” presents two scenarios for the use of microser-
vices: an e-commerce application and a system for signal processing. This section 
provides some initial insights into microservices and points out contexts for 
applications.

Part II: Microservices—What, Why, and Why Not?

Part II not only explains microservices in detail but also deals with their advantages 
and disadvantages:

• Chapter 3, “What Are Microservices,” investigates the definition of the term
“microservices” from three perspectives: the size of a microservice, Conway’s
Law (which states that organizations can only create specific software architec-
tures), and finally a technical perspective based on domain-driven Design and
Bounded Context.

• The reasons for using microservices are detailed in Chapter 4, “Reasons for
Using Microservices.” Microservices have not only technical but also organi-
zational advantages, and there are good reasons for turning to microservices
from a business perspective.

• The unique challenges posed by microservices are discussed in Chapter 5,
“Challenges.” Among these are technical challenges as well as problems related 
to architecture, infrastructure, and operation.

• Chapter 6, “Microservices and SOA,” aims at defining the differences between
microservices and SOA (service-oriented architecture). At first sight both concepts 
seem to be closely related. However, a closer look reveals plenty of differences.

Part III: Implementing Microservices

Part III deals with the application of microservices and demonstrates how the 
 advantages that were described in Part II can be obtained and how the associated 
challenges can be solved.

• Chapter 7, “Architecture of Microservice-Based Systems,” describes the archi-
tecture of microservices-based systems. In addition to domain architecture,
technical challenges are discussed.

• Chapter 8, “Integration and Communication,” presents the different approaches 
to the integration of and the communication between microservices. This
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includes not only communication via REST or messaging but also the integra-
tion of UIs and the replication of data.

• Chapter 9, “Architecture of Individual Microservices,” shows possible
 architectures for microservices such as CQRS, Event Sourcing, or hexagonal
architecture. Finally, suitable technologies for typical challenges are addressed.

• Testing is the main focus of Chapter 10, “Testing Microservices and
 Microservice-Based Systems.” Tests have to be as independent as possible to
enable the independent deployment of the different microservices. However,
the tests need to not only check the individual microservices, but also the sys-
tem in its entirety.

• Operation and Continuous Delivery are addressed in Chapter 11, “Operations
and Continuous Delivery of Microservices.” Microservices generate a huge
number of deployable artifacts and thus increase the demands on the infra-
structure. This is a substantial challenge when introducing microservices.

• Chapter 12, “Organizational Effects of a Microservices-Based Architecture,”
illustrates how microservices also influence the organization. After all, micro-
services are an architecture, which is supposed to influence and improve the
organization.

Part IV: Technologies

The last part of the book shows in detail and at the code level how microservices can 
be implemented technically:

• Chapter 13, “Example of a Microservices-Based Architecture,” contains an
exhaustive example for a microservices architecture based on Java, Spring
Boot, Docker, and Spring Cloud. This chapter aims at providing an applica-
tion, which can be easily run, that illustrates the concepts behind microser-
vices in practical terms and offers a starting point for the implementation of a
microservices system and experiments.

• Even smaller than microservices are nanoservices, which are presented in
Chapter 14, “Technologies for Nanoservices.” Nanoservices require specific
technologies and a number of compromises. The chapter discusses different
technologies and their related advantages and disadvantages.

• Chapter 15, “Getting Started with Microservices,” demonstrates how micro-
services can be adopted.



ptg18144917

xxixPaths through the Book

Essays

The book contains essays that were written by experts of various aspects of micro-
services. The experts were asked to record their main findings about microservices 
on approximately two pages. Sometimes these essays complement book chapters, 
sometimes they focus on other topics, and sometimes they contradict passages in the 
book. This illustrates that there is, in general, no single correct answer when it comes 
to software architectures, but rather a collection of different opinions and possibili-
ties. The essays offer the unique opportunity to get to know different viewpoints in 
order to subsequently develop an opinion.

Paths through the Book

The book offers content suitable for each type of audience. Of course, everybody 
can and should read the chapters that are primarily meant for people with a different 
type of job. However, the chapters focused on topics that are most relevant for a cer-
tain audience are indicated in Table P.1.

Table P.1  Paths through the Book

Chapter Developer Architect Manager

1 - Preliminaries X X X

2 - Microservice Scenarios X X X

3 - What Are Microservices? X X X

4 -  Reasons for Using Microservices X X X

5 - Challenges X X X

6 - Microservices and SOA  X X

7 -  Architecture of Microservice-Based 
Systems

X

8 -  Integration and Communication X X

9 -  Architecture of Individual 
Microservices

X X

10 -  Testing Microservices and 
Microservice-Based Systems

X X

11 -  Operations and Continuous 
Delivery of Microservices 

X X

(Continued)
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Chapter Developer Architect Manager

12 -  Organizational Effects of a 
Microservices-Based Architecture

X

13 -  Example of a Microservice-Based 
Architecture

X

14 - Technologies for Nanoservices X X

15 -  Getting Started with Microservices X X X

Readers who only want to obtain an overview are advised to concentrate on the 
summary section at the end of each chapter. People who want to gain practical 
knowledge should commence with Chapters 13 and 14, which deal with concrete 
technologies and code.

The instructions for experiments, which are given in the sections “Try and Experi-
ment,” help deepen your understanding by providing practical exercises. Whenever a 
chapter is of particular interest to you, you are encouraged to complete the related 
exercises to get a better grasp of the topics presented in that chapter.

Supplementary Materials

Errata, links to examples, and additional information can be found at http://
 micro services-book.com/. The example code is available at https://github.com/
ewolff/microservice/.

Register your copy of Microservices at informit.com for convenient access to 
downloads, updates, and corrections as they become available. To start the registra-
tion process, go to informit.com/register and log in or create an account. Enter the 
product ISBN 9780134602417 and click Submit. Once the process is complete, you 
will find any available bonus content under “Registered Products.”

Table P.1 Continued

https://www.github.com/ewolff/microservice/
https://www.github.com/ewolff/microservice/
http://www.microservices-book.com/
http://www.microservices-book.com/
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PART I

Motivation and Basics

Part I explains what microservices are, why they are interesting, and where they are 
useful. Practical examples demonstrate the impact of microservices in different 
 scenarios. 

Chapter 1, “Preliminaries,” start to define microservices. 
To illustrate the importance of microservices, Chapter 2, “Microservice Scenar-

ios,” contains detailed scenarios illustrating where microservices can be used.
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This chapter provides an overview of the concept of a microservice. The first section 
defines microservices. The second section answers the question “Why microservices?” 
Finally, the chapter ends by discussing the challenges associated with microservices.

1.1 Overview of Microservice

The focus of this book is microservices—an approach to the modularization of soft-
ware. Modularization in itself is nothing new. For quite some time, large systems 
have been divided into small modules to facilitate the implementation, understand-
ing, and further development of the software.

Microservices are a new approach to modularization. However, the term “micro-
service” is not really well defined, so the chapter starts with a definition of the term 
and describes how microservices are different from the usual deployment monoliths.

Microservice: Preliminary Definition

The new aspect is that microservices use modules that run as distinct processes. This 
approach is based on the philosophy of UNIX, which can be reduced to three aspects:

• One program should fulfill only one task, but it should perform this task really
well.

• Programs should be able to work together.

• A universal interface should be used. In UNIX this is provided by text streams.

Chapter 1

Preliminaries
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The term microservice is not firmly defined. Chapter 3, “What Are Microser-
vices,” provides a more detailed definition. However, the following criteria can serve 
as a first approximation:

• Microservices are a modularization concept. Their purpose is to divide large
software systems into smaller parts. Thus they influence the organization and
development of software systems.

• Microservices can be deployed independently of each other. Changes to one
microservice can be taken into production independently of changes to other
microservices.

• Microservices can be implemented in different technologies. There is no restric-
tion on the programming language or the platform for each microservice.

• Microservices possess their own data storage: a private database or a completely
separate schema in a shared database.

• Microservices can bring their own support services along, for example a search 
engine or a specific database. Of course, there is a common platform for all
microservices—for example virtual machines.

• Microservices are self-contained processes or virtual machines, e.g., to bring
the supporting services along.

• Microservices have to communicate via the network. To do so microservices
use protocols that support loose coupling, such as REST or messaging.

Deployment Monoliths

Microservices are the opposite of deployment monoliths. A deployment monolith is 
a large software system that can only be deployed in one piece. It has to pass, in its 
entirety, through all phases of the continuous delivery pipeline, such as development, 
the test stages, and release. Due to the size of deployment monoliths, these processes 
take longer than for smaller systems. This reduces flexibility and increases process 
costs. Internally, deployment monoliths can have a modular structure; however, all 
modules have to be brought into production simultaneously.

1.2 Why Microservices?

Microservices enable software to be divided into modules, making it easier to change 
the software.
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Microservices

Strong 
modularization Replaceability

Sustainable 
development

Legacy 
applications Time-to-market Free choice of 

technologies
Continuous 

delivery

Figure 1.1 Advantages of  Microservices

As illustrated in Figure 1.1, microservices offer a number of important advantages.

Strong Modularization

Microservices offer a strong modularization concept. Whenever a system is built 
from different software components, such as Ruby GEMs, Java JARs, .NET assem-
blies or Node.js NPMs, undesirable dependencies can easily creep in. For example, 
imagine that somebody references a class or function in a place where it is not sup-
posed to be used. This use creates a dependency that the developers of the class or 
function are not aware of. Any changes they make to their class or function could 
cause unexpected failures in another part of the system. After a short while, so many 
dependencies will have accumulated and the problem has worsened so much that the 
system can no longer be serviced or further developed.

Microservices, in contrast, communicate only via explicit interfaces, which are 
realized using mechanisms such as messages or REST. This makes the technical hur-
dles for the use of microservices higher, and thus unwanted dependencies are less 
likely to arise. In principle, it should be possible to achieve a high level of modulari-
zation in deployment monoliths. However, practical experience teaches us that the 
architecture of deployment monoliths deteriorates over time.

Easy Replaceability

Microservices can be replaced more easily than modules in a deployment monolith. 
Other components utilize a microservice via an explicit interface. If a new service 
offers the same interface, it can replace the existing microservice. The new microser-
vice can use a different code base and even different technologies as long as it presents 
the same interface. This can often be impossible or difficult to achieve in legacy 
systems.
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Small microservices further facilitate replacement. The need to replace code in 
the future is often neglected during the development of software systems. Who wants 
to consider how a newly built system can be replaced in the future? In addition, the 
easy replaceability of microservices reduces the costs of incorrect decisions. When 
the decision for a technology or approach is limited to a microservice, this microser-
vice can be completely rewritten if the need arises.

Sustainable Development

Strong modularization and easy replaceability enable sustainable software develop-
ment. Most of the time, working on a new project is straightforward, but over longer 
projects productivity decreases. One of the reasons is the erosion of architecture. 
Microservices counteract this erosion by enforcing strong modularization. Being 
bound to outdated technologies and the difficulties associated with the removal of 
old system modules constitute additional problems with deployment monoliths. 
Microservices, which are not linked to a specific technology, can be replaced one by 
one to overcome these problems.

Further Development of Legacy Applications

Starting with a microservices-based architecture is easy and provides immediate 
advantages when working with old systems: Instead of having to add to the old and 
hard to understand code base, the system can be enhanced with a microservice. The 
microservice can act on specific requests while leaving all others to the legacy system. 
It can also modify requests before they are processed by the legacy system. With this 
approach, it is not necessary to replace the legacy system completely. In addition, the 
microservice is not bound to the technology stack of the legacy system but can be 
developed using modern approaches.

Time-to-Market

Microservices enable shorter time-to-market. As mentioned previously, microser-
vices can be brought into production on a one-by-one basis. If teams working on a 
large system are responsible for one or more microservices and if features require 
changes only to these microservices, each team can develop and bring features into 
production without time-consuming coordination with other teams. This enables 
many teams to work on numerous features in parallel and bring more features into 
production in less time than would have been possible with a deployment monolith. 
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Microservices help with scaling agile processes to large teams by dividing the large 
team into small teams, each dealing with its own microservices.

Independent Scaling

Each microservice can be scaled independently of other services. This removes the 
need to scale the entire system when only a few pieces of functionality are used 
intensely. This will often be a significant simplification for the infrastructure and 
operations.

Free Choice of Technologies

When microservices are used in development, there are no restrictions with regards 
to the usage of technologies. This gives the ability to test a new technology within a 
single microservice without affecting other services. The risk associated with the 
introduction of new technologies and new versions of already used technologies is 
decreased, as these new technologies are introduced and tested in a confined environ-
ment keeping costs low. In addition, it is possible to use specific technologies for spe-
cific functions, for example a specific database. The risk is small, as the microservice 
can easily be replaced or removed if problems arise. The new technology is confined 
to one or a small number of microservices. This reduces the potential risk and ena-
bles independent technology decisions for different microservices. More importantly, 
it makes the decision to try out and evaluate new, highly innovative technologies eas-
ier. This increases the productivity of developers and prevents the technology plat-
form from becoming outdated. In addition, the use of modern technologies will 
attract well-qualified developers.

Continuous Delivery

Microservices are advantageous for continuous delivery. They are small and can be 
deployed independently of each other. Realizing a continuous delivery pipeline is 
simple due to the size of a microservice. The deployment of a single microservice is 
associated with less risk than the deployment of a large monolith. It is also easier to 
ensure the safe deployment of a microservice, for instance by running different ver-
sions in parallel. For many microservice users, continuous delivery is the main reason 
for the introduction of microservices.

All these points are strong arguments for the introduction of microservices. 
Which of these reasons is the most important will depend on the context. Scaling 
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agile processes and continuous delivery are often crucial from a business perspective. 
Chapter 4, “Reasons for Using Microservices,” describes the advantages of micro-
services in detail and also deals with prioritization.

1.3 Challenges

However, there is no light without shadow. Chapter 5, “Challenges,” discusses the 
challenges posed by the introduction of microservices and how to deal with them. In 
short, the main challenges are the following:

• Relationships are hidden—The architecture of the system consists of the
 relationships between the services. However, it is not evident which microser-
vice calls which other microservice. This can make working on the architecture
challenging.

• Refactoring is difficult—The strong modularization leads to some disadvan-
tages: refactoring, if it requires functionality to move between microservices, is
difficult to perform. And, once introduced, it is hard to change the microservices-
based modularization of a system. However, these problems can be reduced with
smart approaches.

• Domain architecture is important—The modularization into microservices for
different domains is important, as it determines how teams are divided. Prob-
lems at this level also affect the organization. Only a solid domain architecture
can ensure the independent development of microservices. As it is difficult to
change the modularization once established, mistakes can be hard to correct
later on.

• Running microservices is complex—A system composed of microservices
has many components that have to be deployed, controlled, and run. This
increases the complexity of operations and the number of runtime infrastruc-
tures used by the system. Microservices require that operations are automated
to make sure that operating the platform does not become laborious.

• Distributed systems are complex—Developers face increased complexity: a
microservice-based system is a distributed system. Calls between microservices 
can fail due to network problems. Calls via the network are slower and have a
smaller bandwidth than calls within a process.
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1.4 Conclusion

This chapter provided an overview of the concept of a microservice. It started with a 
definition of microservices. Then it answered the question “Why microservices?” 
Finally, the chapter ended with a discussion of the challenges associated with 
microservices.
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This chapter presents a number of scenarios in which microservices can be useful. 
Section 2.1 focuses on the modernization of a legacy web application. This is the 
most common use case for microservices. A very different scenario is discussed in 
section 2.2. A signaling system is being developed as a distributed system based on 
microservices. Section 2.3 draws some conclusions and invites the reader to judge 
the usefulness of microservices in the scenarios presented for themselves.

2.1  Modernizing an E-Commerce Legacy 
Application

Migrating from a legacy deployment monolith is the most common scenario for 
microservices. This section starts with a general description of such a scenario and 
then gets into the details of the legacy application and how to modularize it into 
microservices.

Scenario

Big Money Online Commerce Inc. runs an e-commerce shop, which is the main 
source of the company’s revenue. It’s a web application that offers many different 
functions, such as user registration and administration, product search, an overview 
of orders, and, of course, the ordering process, the central feature of any e-commerce 
application.

Chapter 2

Microservice Scenarios
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The application is a deployment monolith: it can only be deployed in its entirety. 
Whenever a feature is changed, the entire application needs to be deployed anew. The 
e-commerce shop works together with other systems—for example, with accounting
and logistics.

Reasons to Use Microservices

The deployment monolith started out as a well-structured application. However, 
over the years, more and more dependencies between the individual modules have 
crept in. This has led to the application becoming very difficult to maintain and 
update. In addition, the original architecture is no longer suited to the current 
requirements of the business. Product search, for instance, has been greatly modified 
as the Big Money Online Commerce Inc. attempts to outperform its competitors in 
this area. Also, clients have been given a number of self-service options that have 
helped the company to reduce costs. However, these two modules have become very 
large, with complex internal structures, and they have numerous dependencies on 
other modules that had not originally been intended.

Slow Continuous Delivery Pipeline

Big Money has decided to use continuous delivery and has established a continuous 
delivery pipeline. This pipeline is complicated and slow, as the entire deployment 
monolith needs to be tested and brought into production in one go. Some of the tests 
run for hours. A faster pipeline would be highly desirable.

Parallel Work Is Complicated

There are teams working on different new features. However, the parallel work is 
complicated: the software structure just doesn’t really support it. The individual 
modules are not separated well enough and have too many interdependencies. As 
everything can only be deployed together, the entire deployment monolith has to 
be tested. The deployment and testing phases are a bottleneck. Whenever a team 
has a problem in the deployment pipeline, all other teams have to wait until the 
problem has been fixed and the change has been successfully deployed. Also, 
access to the continuous delivery pipeline has to be coordinated. Only one team 
can be doing testing and deployment at a time. There has to be coordination 
between the teams to determine the order in which teams will bring their changes 
into production.



ptg18144917

132.1 Modernizing an E-Commerce Legacy Application 

Bottleneck During Testing

In addition to deployment, tests also have to be coordinated. When the deployment 
monolith runs an integration test, only the changes made by one team are allowed to 
be contained in the test. There were attempts to test several changes at once. This 
meant it was very hard to discern the origin of errors and led to error analyses that 
were long and complex.

One integration test requires approximately one hour. About six integration tests 
are feasible per working day, because errors have to be fixed and the environment 
has to be set up again for the next test. If there are ten teams, one team can bring 
one change into production every two days, on average. However, often a team also 
has to do error analysis, which lengthens integration. For that reason, some teams 
use feature branches in order to separate themselves from integration; they perform 
their changes on a separate branch in the version control system. Integrating these 
changes into the main branch later on often causes problems; changes are erroneously 
removed upon merging, or the software suddenly contains errors that are caused by 
the separated development process and that only show up after integration. These 
errors can only be eliminated in lengthy processes after integration.

Consequently, the teams slow each other down due to the testing (see Figure 2.1). 
Although each team develops its own modules, they all work on the same code base 
so that they impede each other. As a consequence of the shared continuous delivery 
pipeline and the ensuing need for coordination, the teams are unable to work either 
independently of each other or in parallel.

Team Product Search

Team Order Process

Team Customer

....

Monolith
Continuous 

Delivery 
Pipeline

Production

Figure 2.1 Teams Slow Each Other Down due to the Deployment Monolith



ptg18144917

Chapter 2 Microservice Scenarios14

Approach

Because of the many problems being experienced, Big Money Online Commerce 
Inc. decided to split off small microservices from the deployment monolith. The 
microservices each implement one feature, such as the product search, and are 
developed by individual teams. Each team has complete responsibility for an indi-
vidual microservice, starting from requirements engineering up to running the 
application in production. The microservices communicate with the monolith and 
other microservices via REST. The client GUI is also divided between the individual 
microservices based on use cases. Each microservice delivers the HTML pages for 
its use cases. Links are allowed between the HTML pages of the microservices. 
However, access to the database tables of other microservices or the deployment 
monolith is not allowed. Integration of services is exclusively done via REST or via 
links between the HTML pages.

The microservices can be deployed independently of each other. This enables 
changes in a microservice to be deployed without the need to coordinate with other 
microservices or teams. This greatly facilitates parallel work on features while reducing 
coordination efforts.

The deployment monolith is subject to far fewer changes due to the addition of 
microservices. For many features, changes to the monolith are no longer necessary. 
Thus, the deployment monolith is changed and deployed less often. Originally, 
the plan was to completely replace the deployment monolith at some point. How-
ever, in the meantime it seems more likely that the deployment monolith will just 
be deployed less and less frequently because most changes take place within the 
microservices. Thus the deployment monolith does not disturb work anymore. To 
replace it entirely is not necessary and also does not appear sensible in economic 
terms.

Challenges

Implementing microservices creates additional complexity at the start; all the 
microservices need their own infrastructure, and at the same time, the Monolith has 
to be supported.

The microservices require a lot more servers and therefore pose very different 
challenges. Monitoring and log file processing has to deal with the fact that data 
originates from different servers. As a result, information has to be centrally con-
solidated. A substantially larger number of servers must be handled, not only in 
production, but also in the different test stages and team environments. This is only 
possible with good infrastructure automation. It is necessary to support different 
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types of infrastructure for the monolith and the microservices, and this leads to 
substantially more servers overall.

Entire Migration Lengthy

The added complexity due to the two different software types will persist for a long 
time, as it is a very lengthy process to completely migrate away from the monolith. If 
the monolith is never entirely replaced, the additional infrastructure costs will 
remain as well.

Testing Remains a Challenge

Testing is an additional challenge; previously, the entire deployment monolith was 
tested in the deployment pipeline. These tests are complex and take a long time, as 
all the functions of the deployment monolith have to be tested. If every change to 
every microservice is sent through these tests, it will take a long time for each change 
to reach production. Additionally, the changes have to be coordinated, because each 
change should be tested in isolation so that errors can be easily linked back to the 
change that caused them. In that scenario, a microservices-based architecture does 
not seem to have major advantages over a deployment monolith; while microservices 
can in principle be deployed independently of each other, the test stages preceding 
deployment still have to be coordinated, and each change still has to pass through 
them individually.

Current Status of Migration

Figure 2.2 presents the current status; product search works as an independent 
microservice and is completely independent of the deployment monolith. Coordina-
tion with other teams is hardly ever necessary. Only in the last stage of the deploy-
ment do the deployment monolith and the microservices have to be tested together. 
Each change to the monolith or any microservice has to run through this step. This 
causes a bottleneck. The team “Customer” works together with the team “Order 
Process” on the deployment monolith. In spite of microservices, these teams still 
have to closely coordinate their work. For that reason, the team “Order Process” has 
implemented its own microservice, which forms part of the order process. In this 
part of the system, changes can be introduced faster than in the deployment mono-
lith, not only due to the younger code base, but also because it is no longer necessary 
to coordinate with the other teams.
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Figure 2.2 Independent Work through Microservices

Creating Teams

For the teams to be able to work independently on features, it is important to create 
teams that match to functionalities such as product search, customer processing, or 
order processing. If teams correspond to technical layers such as the UI, middle tier, 
or database instead, each feature requires the involvement of all the teams, because a 
feature normally comprises changes to the UI, middle tier, and database. Thus, to 
minimize coordination efforts between the teams, the best approach is to create 
teams that center around features like product search. Microservices support the 
independence of the teams by their own technical independence from each other. 
Consequently, teams need to coordinate less in respect to basic technologies and 
technical designs.

The tests also need to be modularized. Each test should ideally deal with a single 
microservice so that it is sufficient to perform the test when changes are made in the 
respective microservice. In addition, it might be possible to implement the test as 
unit test rather than as an integration test. This progressively shortens the test phase 
in which all microservices and the monolith have to be tested together. This reduces 
the coordination problems for the final test phase.

Migrating to a microservices-based architecture created a number of performance 
problems and also some problems due to network failures. However, these problems 
were solved over time.
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Advantages

Thanks to the new architecture, changes can be deployed much faster. A team can 
bring a change into production within 30 minutes. The deployment monolith, on the 
other hand, is deployed only weekly because the tests are not yet fully automated.

Deploying the microservices is not only much faster, but also much less risky: less 
coordination is required. Errors are more easily found and fixed because developers 
still know what they have been working on well, as it was only 30 minutes ago.

In summary, the goal was attained; the developers can introduce more changes 
to the e-commerce shop. This is possible because the teams need to coordinate their 
work less and because the deployment of a microservice can take place indepen-
dently of the other services.

The option of using different technologies was only sparingly used by the teams. 
The previously used technology stack proved sufficient, and the teams wanted to 
avoid the additional complexity caused by the use of different technologies. How-
ever, the long-needed search engine for the product search was introduced. The 
team responsible for product search was able to implement this change on its own. 
Previously, the introduction of this new technology had been prohibited because the 
associated risk had been considered too great. In addition, some teams have new 
versions of the libraries of the technology stack in production because they needed 
the bug fixes included in the more recent version. This did not require any coordina-
tion with the other teams.

Conclusion

Replacing a monolith via the implementation of microservices is a very common 
scenario for the introduction of microservices. It requires a lot of effort to keep 
developing a monolith and to add new features to it. The complexity of the mon-
olith and the associated problems caused by it progressively increase over time. It 
is often very difficult and risky to completely replace an existing system with a 
newly written one.

Rapid and Independent Development of New Features

In the case of companies like Big Money Online Commerce Inc., the rapid develop-
ment of new features and the ability to do parallel work on several features are vital 
for the success of the business. Only by providing state-of-the-art features can new 
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customers be won and existing customers be kept from switching to other compa-
nies. The promise of being able to develop more features faster makes microservices 
compelling in many use cases.

Influence on the Organization

The presented example illustrates the influence of microservices on the organiza-
tion. The teams work on their own microservices. As the microservices can be devel-
oped and deployed independently of each other, the work of the different teams is no 
longer linked. In order to keep it that way, a microservice should not be changed by 
more than one team at any time. The microservices architecture requires a team 
organization corresponding to the different microservices. Each team is responsible 
for one or several microservices, each of which implements an isolated piece of func-
tionality. This relationship between organization and architecture is especially 
important in the case of microservices-based architectures. Each team takes care of 
all issues concerning “its” microservices from requirements engineering up to opera-
tion monitoring. Of course, for operation, the teams can use common infrastructure 
services for logging and monitoring.

And finally, if the goal is to achieve a simple and fast deployment in production, 
just including microservices in the architecture will not be sufficient. The entire con-
tinuous delivery pipeline has to be checked for potential obstacles, and these have to 
be removed. This is illustrated by the tests in the presented example; the testing of all 
microservices together should be reduced to the essential minimum. Each change has 
to run through an integration test with the other microservices, but this test must run 
quickly to avoid a bottleneck in integration tests.

Amazon Has Been Doing It for a Long Time

The example scenario presented here is very similar to what Amazon has been doing 
for a very long time, and for the discussed reasons: Amazon wants to be able to 
quickly and easily implement new features on its website. In 2006, Amazon not only 
presented its Cloud platform, but also discussed how it develops software. Essential 
features are:

• The application is divided into different services.

• Each service provides a part of the website. For instance, there is a service for
searching, and another one for recommendations. In the end, the individual
services are presented together in the UI.
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• There is always one team responsible for one service. The team takes care of
developing new features as well as operating the service. The idea is: “You
build it—you run it!”

• The Cloud platform (i.e., virtual machines) acts as the common foundation of
all services. Apart from that, there are no other standards. As a result of this,
each team is very free in their choice of technologies.

By introducing this type of architecture, Amazon implemented the fundamen-
tal characteristics of microservices back in 2006. Moreover, Amazon introduced 
DevOps by having teams consisting of operation experts and developers. This 
approach means that deployments occur largely in an automated fashion, as the 
manual construction of servers is not feasible in Cloud environments. Therefore, 
Amazon also implemented at least one aspect of continuous delivery.

In conclusion, some companies have been using microservices for a number of 
years already—especially companies with an Internet-based business model. This 
approach has already proven its practical advantages in real life. In addition, micros-
ervices work well with other modern software practices such as continuous delivery, 
Cloud, and DevOps.

2.2 Developing a New Signaling System

Greenfield applications can also be built using microservices. In some cases, that is 
the much more natural approach. This section starts with a general description of a 
greenfield scenario and then gets into the details of the example—a new signaling 
system.

Scenario

Searching for airplanes and ships that have gone missing is a complex task. Rapid 
action can save lives. Therefore, different systems are required. Some provide signals 
such as radio or radar signals. These signals have to be recorded and processed. 
Radio signals, for example, can be used to obtain a bearing, which subsequently has 
to be checked against radar-based pictures. Finally, humans have to further analyze 
the information. The data analyses, as well as the raw data, have to be provided to 
the different rescue teams. Figure 2.3 provides an overview of the signaling system. 
Signal Inc. builds systems for exactly these use cases. The systems are individually 
assembled, configured, and adapted to the specific needs of the respective client.
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Figure 2.3 Overview of  the Signaling System

Reasons to Use Microservices

The system is composed of different components that run on different computers. 
The sensors are distributed all over the area to be monitored and are provided with 
their own servers. However, these computers are not supposed to handle the more 
detailed data processing or store the data. Their hardware is not sufficiently powerful 
for that. Data privacy considerations would also render such an approach very 
undesirable.

Distributed System

For these reasons, the system has to be a distributed system. The different pieces of 
functionality are distributed within the network. The system is potentially unrelia-
ble, as individual components and the communication between components can fail.

It would be possible to implement a large part of the system within a deployment 
monolith. However, upon closer consideration, the different parts of the system have 
to fulfil very different demands. Data processing requires a substantial CPU and an 
approach that enables numerous algorithms to process the data. For such purposes, 
there are solutions that read events out of a data or event stream and process them. 
Data storage requires a very different focus. Basically, the data has to be maintained 
within a data structure that is suitable for different data analyses. Modern NoSQL 
databases are well suited for this. Recent data is more important than old data. It 
has to be accessible faster, while old data can even be deleted at some point. For final 
analysis by experts, the data has to be read from the database and processed.
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Technology Stack per Team

Each of the discussed tasks poses different challenges. Consequently, each requires 
not only a well-adapted technology stack, but also a dedicated team consisting of 
technical experts on the respective task. Additionally, people are needed to decide 
which features Signal Inc. will bring to the market and to define new requirements 
for the systems. Systems for processing and sensors are individual products that can 
be positioned on the market independently of each other.

Integration of Other Systems

An additional reason for the use of microservices is the opportunity to easily integrate 
other systems. Sensors and computing units are also provided by other companies. 
The ability to integrate such solutions is a frequent requirement in client projects. 
Microservices enable the easy integration of other systems, as the integration of dif-
ferent distributed components is already a core feature of a microservices-based 
architecture.

For these reasons, the architects of Signal Inc. decided to implement a distributed 
system. Each team must implement its respective domain in several small microser-
vices. This approach should ensure that microservices can be easily exchanged, and 
the integration of other systems will be straightforward.

Only the communication infrastructure to be used by all services for their 
 communication is predetermined. The communication technology supports many 
programming languages and platforms so that there are no limitations as to which 
concrete technology is used. To make flawless communication possible, the interfaces 
between the microservices have to be clearly defined.

Challenges

A failure of communication between the different microservices presents an impor-
tant challenge. The system has to stay usable even if network failures occur. This 
requires the use of technologies that can handle such failures. However, technologies 
alone will not solve this problem. It has to be decided as part of the user require-
ments what should happen if a system fails. If, for instance, old data is sufficient, 
caches can be helpful. In addition, it may be possible to use a simpler algorithm that 
does not require calls to other systems.

High Technological Complexity

The technological complexity of the entire system is very high. Different technologies 
are employed to satisfy the demands of the different components. The teams working 
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on the individual systems can make largely independent technology decisions. This 
enables them to always implement the most suitable solution.

Unfortunately, this also means that developers can no longer easily switch between 
teams. For example, when there was a lot of work for the data storage team, develop-
ers from other teams could hardly help out, as they were not even proficient in the 
programming languages the data storage team was using and did not know the spe-
cific technologies, such as the used database.

It can be a challenge to run a system made up of so many technologies. For this 
reason, there is one standardization in this area: all microservices must be able to be 
run in a largely identical manner. They are virtual machines so that their installation 
is fairly simple. Furthermore, the monitoring is standardized, which determines data 
formats and technologies. This makes the central monitoring of the applications 
possible. In addition to the typical operational monitoring, there is also monitoring 
of application-specific values, and finally an analysis of log files.

Advantages

In this context, the main advantage offered by microservices is good support for the 
distributed nature of the system. The sensors are at different locations, so a centralized 
system is not sensible. The architecture has adapted to this fact by further dividing the 
system into small microservices that are distributed within the network. This enhances 
the exchangeability of the microservices. The microservices approach supports the 
technology diversity, which characterizes this system.

In this scenario, time-to-market is not as important as in the e-commerce sce-
nario. It would also be hard to implement, as the systems are installed for different 
clients and cannot be easily reinstalled. However, some ideas from the continuous 
delivery field are used: for instance, the largely uniform installation and the central 
monitoring.

Verdict

Microservices are a suitable architectural pattern for this scenario. The system can 
benefit from the fact that typical problems can be solved during implementation by 
established approaches from the microservices field: for example, technology com-
plexity and platform operation.

Still, this scenario wouldn’t be immediately associated with the term “microser-
vice.” This leads to the following conclusions:

• Microservices have a wider application than is apparent at first glance. Out-
side of web-based business models, microservices can solve many problems,
even if those issues are very different from the ones found in web companies.
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• Indeed, many projects from different fields have been using microservice-based
approaches for some time, even if they do not call them by this name or only
implement them partially.

• With the help of microservices, these projects can use technologies that are
currently being created in the microservice field. In addition, they can benefit
from the experiences of others who have worked in this field, for instance in
regards to architecture.

2.3 Conclusion

This chapter presented two very different scenarios from two completely distinct busi-
ness areas: a web system with a strong focus on rapid time-to-market, and a system for 
signal processing that is inherently distributed. The architectural principles are very 
similar for the two systems, although they originate from different reasons.

In addition, there are a number of common approaches, among those the crea-
tion of teams according to microservices and the demands in regards to infrastructure 
automatization, as well as other organizational topics. However, in other areas, there 
are also differences. For the signaling system, it is essential to have the option to use 
different technologies, as this system has to employ a number of different technologies. 
For the web system, this aspect is not as important. Here, the independent develop-
ment, the fast and easy deployment, and finally the better time-to-market are the criti-
cal factors.

Essential Points

• Microservices offer a significant number of advantages.

• In the case of web-based applications, continuous delivery and short time-to-
market can be important motivations for the use of microservices.

• However, there are also very different use cases for which microservices as
distributed systems are extremely well suited.
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 PART II

Microservices: What, Why, 
and Why Not?

Part II discusses the different facets of microservice-based architectures to present 
the diverse possibilities offered by microservices. Advantages as well as disadvan-
tages are addressed so that the reader can evaluate what can be gained by using 
microservices and which points require special attention and care during the imple-
mentation of microservice-based architectures.

Chapter 3, “What Are Microservices,” explains the term “microservice” in 
detail. The term is dissected from different perspectives, which is essential for an 
in-depth understanding of the microservice approach. Important issues are the size 
of a microservice, Conway’s Law as organizational influence, and domain-driven 
design particularly with respect to Bounded Context from a domain perspective. 
Furthermore, the chapter addresses the question of whether a microservice should 
contain a UI. 

Chapter 4, “Reasons for Using Microservices,”  focuses on the advantages of 
microservices, taking alternatingly technical, organizational, and business perspectives. 

Chapter 5, “Challenges,” deals with the associated challenges in the areas of 
technology, architecture, infrastructure, and operation. 

Chapter 6, “Microservices and SOA,” distinguishes microservices from service-
oriented architecture (SOA). By making this distinction microservices are viewed 
from a new perspective, which helps to further clarify the microservices approach. 
Besides, microservices have been  frequently compared to SOAs.
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Section 1.1 provided an initial definition of the term microservice. However, there 
are a number of different ways to define microservices. The different definitions 
are based on different aspects of microservices. They also show for which reasons 
the use of microservices is advantageous. At the end of the chapter the reader 
should have his or her own definition of the term microservice—depending on the 
individual project scenario.

The chapter discusses the term microservice from different perspectives:

• Section 3.1 focuses on the size of microservices.

• Section 3.2 explains the relationship between microservices, architecture, and
organization by using the Conway’s Law.

• Section 3.3 presents a domain architecture of microservices based on domain-
driven design (DDD) and bounded context.

• Section 3.5 explains why microservices should contain a user interface (UI).

3.1 Size of a Microservice

The name “microservices” conveys the fact that the size of the service matters; 
 obviously, microservices are supposed to be small.

Chapter 3

What Are Microservices?
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One way to define the size of a microservice is to count the lines of code (LOC).1 
However, such an approach has a number of problems:

• It depends on the programming language used. Some languages require more
code than others to express the same functionality—and microservices are
explicitly not supposed to predetermine the technology stack. Therefore,
defining microservices based on this metric is not very useful.

• Finally, microservices represent an architecture approach. Architectures,
 however, should follow the conditions in the domain rather than adhering to
technical metrics such as LOC. Also for this reason attempts to determine size
based on code lines should be viewed critically.

In spite of the voiced criticism, LOC can be an indicator for a microservice. 
Still, the question as to the ideal size of a microservice remains. How many LOC 
may a microservice have? Even if there are no absolute standard values, there are 
 nevertheless influencing factors, which may argue for larger or smaller microservices.

Modularization

One factor is modularization. Teams develop software in modules to be better able 
to deal with its complexity; instead of having to understand the entire software 
 package, developers only need to understand the module(s) they are working on as 
well as the interplay between the different modules. This is the only way for a team to 
work productively in spite of the enormous complexity of a typical software system. 
In daily life there are often problems as modules get larger than originally planned. 
This makes them hard to understand and hard to maintain, because changes require 
an understanding of the entire module. Thus it is very sensible to keep microservices 
as small as possible. On the other hand, microservices, unlike many other approaches 
to modularization, have an overhead.

Distributed Communication

Microservices run within independent processes. Therefore, communication 
between microservices is distributed communication via the network. For this type 
of system, the “First Rule of Distributed Object Design”2 applies. This rule states 
that systems should not be distributed if it can be avoided. The reason for this is that 

1. http://yobriefca.se/blog/2013/04/28/micro-service-architecture/

2. http://martinfowler.com/bliki/FirstLaw.html

http://www.yobriefca.se/blog/2013/04/28/micro-service-architecture/
http://www.martinfowler.com/bliki/FirstLaw.html
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a call on another system via the network is orders of magnitude slower than a direct 
call within the same process. In addition to the pure latency time, serialization and 
deserialization of parameters and results are time consuming. These processes not 
only take a long time, but also cost CPU capacity.

Moreover, distributed calls might fail because the network is temporarily 
 unavailable or the called server cannot be reached—for instance due to a crash. This 
increases complexity when implementing distributed systems, because the caller has 
to deal with these errors in a sensible manner.

Experience3 teaches us that microservice-based architectures work in spite of 
these problems. When microservices are designed to be especially small, the amount 
of distributed communication increases and the overall system gets slower. This is 
an argument for larger microservices. When a microservice contains a UI and fully 
implements a specific part of the domain, it can operate without calling on other 
microservices in most cases, because all components of this part of the domain are 
implemented within one microservice. The desire to limit distributed communica-
tion is another reason to build systems according to the domain.

Sustainable Architecture

Microservices also use distribution to design architecture in a sustainable manner 
through distribution into individual microservices: it is much more difficult to use a 
microservice than a class. The developer has to deal with the distribution technology 
and has to use the microservice interface. In addition, he or she might have to make 
preparations for tests to include the called microservice or replace it with a stub. 
Finally, he has to contact the team responsible for the respective microservice.

To use a class within a deployment monolith is much simpler—even if the class 
belongs to a completely different part of the monolith and falls within the responsi-
bility of another team. However, because it is so simple to implement a dependency 
between two classes, unintended dependencies tend to accumulate within deploy-
ment monoliths. In the case of microservices dependencies are harder to implement, 
which prevents the creation of unintended dependencies.

Refactoring

However, the boundaries between microservices also create challenges, for instance 
during refactoring. If it becomes apparent that a piece of functionality does not fit 
well within its present microservice, it has to be moved to another microservice. If 
the target microservice is written in a different programming language, this transfer 

3. http://martinfowler.com/articles/distributed-objects-microservices.html

http://www.martinfowler.com/articles/distributed-objects-microservices.html
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inevitably leads to a new implementation. Such problems do not arise when func-
tionalities are moved within a microservice. This consideration may argue for larger 
microservices, and this topic is the focus of section 7.3.

Team Size

The independent deployment of microservices and the division of the development 
effort into teams result in an upper limit for the size of an individual microservice. 
A team should be able to implement features within a microservice and deploy those 
features into production independently of other teams. By ensuring this, the archi-
tecture enables the scaling of development without requiring too much coordination 
effort between the teams.

A team has to be able to implement features independently of the other teams. 
Therefore, at first glance it seems like the microservice should be large enough to 
enable the implementation of different features. When microservices are smaller, 
a team can be responsible for several microservices, which together enable the 
 implementation of a domain. A lower limit for the microservice size does not result 
from the independent deployment and the division into teams.

However, an upper limit does result from it: when a microservice has reached a 
size that prevents its further development by a single team, it is too large. For that 
matter a team should have a size that is especially well suited for agile processes, 
which is  typically three to nine people. Thus a microservice should never grow so 
large that a team of three to nine people cannot develop it further by themselves. 
In addition to the sheer size, the number of features to be implemented in an indi-
vidual microservice plays an important role. Whenever a large number of changes is 
necessary within a short time, a team can rapidly become overloaded. Section 12.2 
highlights alternatives that enable several teams to work on the same microservice. 
However, in general a microservice should never grow so large that several teams are 
necessary to work on it.

Infrastructure

Another important factor influencing the size of a microservice is the infrastructure. 
Each microservice has to be able to be deployed independently. It must have a con-
tinuous delivery pipeline and an infrastructure for running the microservice, which 
has to be present not only in production but also during the different test stages. Also 
databases and application servers might belong to infrastructure. Moreover, there 
has to be a build system for the microservice. The code for the microservice has to be 
versioned independently of that for other microservices. Thus a project within 
 version control has to exist for the microservice.
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Depending on the effort that is necessary to provide the required infrastructure for 
a microservice, the sensible size for a microservice can vary. When a small microser-
vice size is chosen, the system is distributed into many microservices, thus requiring 
more infrastructure. In the case of larger microservices, the system overall contains 
fewer microservices and consequently requires less infrastructure.

Build and deployment of microservices should anyhow be automated. Never-
theless, it can be laborious to provide all necessary infrastructure components for a 
microservice. Once setting up the infrastructure for new microservices is automated, 
the expenditure for providing infrastructures for additional microservices decreases. 
This automation enables further reduction of the microservice size. Companies that 
have been working with microservices for some time usually simplify the creation 
of new microservices by providing the necessary infrastructure in an automated 
manner.

Additionally, some technologies enable reduction of the infrastructure overhead to 
such an extent that substantially smaller microservices are possible—however, with a 
number of limitations in such cases. Such nanoservices are discussed in  Chapter 14, 
“Technologies for Microservices.”

Replaceability

A microservice should be as easy to replace as possible. Replacing a microservice can 
be sensible when its technology becomes outdated or if the microservice code is of 
such bad quality that it cannot be developed any further. The replaceability of 
microservices is an advantage when compared to monolithic applications, which can 
hardly be replaced at all. When a monolith cannot be reasonably maintained any-
more, its development has either to be continued in spite of the associated high costs 
or a similarly cost-intensive migration has to take place. The smaller a microservice 
is, the easier it is to replace it with a new implementation. Above a certain size a 
microservice may be difficult to replace, for it then poses the same challenges as a 
monolith. Replaceability thus limits the size of a microservice.

Transactions and Consistency

Transactions possess the so-called ACID characteristics:

• Atomicity indicates that a given transaction is either executed completely or
not at all. In case of an error, all changes are reversed.

• Consistency means that data is consistent before and after the execution of a
transaction—database constraints, for instance, are not violated.
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• Isolation indicates that the operations of transactions are separated from
each other.

• Durability indicates permanence: changes to the data are stored and are still
available after a crash or other interruption of service.

Within a microservice, changes to a transaction can take place. Moreover, the 
consistency of data in a microservice can be guaranteed very easily. Beyond an indi-
vidual microservice, this gets difficult, and overall coordination is necessary. Upon 
the rollback of a transaction all changes made by all microservices would have to be 
reversed. This is laborious and hard to implement, for the delivery of the  decision 
that changes have to be reversed has to be guaranteed. However, communication 
within networks is unreliable. Until it is decided whether a change may take place, 
further changes to the data are barred. If additional changes have taken place, it 
might no longer be possible to reverse a certain change. However, when microser-
vices are kept from introducing data changes for some time, system throughput is 
reduced.

However, when communications occur via messaging systems, transactions are 
possible (see section 8.4). With this approach, transactions are also possible without 
a close link between the microservices.

Consistency

In addition to transactions, data consistency is important. An order, for instance, 
also has to be recorded as revenue. Only then will revenue and order data be 
 consistent. Data consistency can be achieved only through close coordination. Data 
consistency can hardly be guaranteed across microservices. This does not mean that 
the revenue for an order will not be recorded at all. However, it will likely not happen 
exactly at the same point of time and maybe not even within one minute of order 
processing because the communication occurs via the network—and is consequently 
slow and unreliable.

Data changes within a transaction and data consistency are only possible when 
all data being processed is part of the same microservice. Therefore, data changes 
determine the lower size limit for a microservice: when transactions are supposed 
to encompass several microservices and data consistency is required across several 
microservices, the microservices have been designed too small.

Compensation Transactions across Microservices

At least in the case of transactions there is an alternative: if a data change has to be 
rolled back in the end, compensation transactions can be used for that.
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A classic example for a distributed transaction is a travel booking, which consists 
of a hotel, a rental car, and a flight. Either everything has to be booked together or 
nothing at all. Within real systems and also within microservices, this functionality is 
divided into three microservices because the three tasks are very different. Inquiries 
are sent to the different systems whether the desired hotel room, rental car, and flight 
are available. If all are available, everything is reserved. If, for instance, the hotel room 
suddenly becomes unavailable, the reservations for the flight and the rental car have to 
be cancelled. However, in the real world the concerned companies will likely demand 
a fee for the booking cancellation. Due to that, the cancellation is not only a techni-
cal event happening in the background like a transaction rollback but also a business 
process. This is much easier to represent with a compensation transaction. With this 
approach, transactions across several elements in microservice environments can also 
be implemented without the presence of a close technical link. A compensation trans-
action is just a normal service call. Technical as well as business reasons can lead to 
the use of mechanisms such as compensation transactions for microservices.

Summary

In conclusion, the following factors influence the size of a microservice (see 
Figure 3.1):

• The team size sets an upper limit; a microservice should never be so large that
one very large team or several teams are required to work on it. Eventually, the
teams are supposed to work and bring software into production independently
of each other. This can only be achieved when each team works on a separate
deployment unit—that is,  a separate microservice. However, one team can
work on several microservices.

• Modularization further limits the size of a microservice: The microservice
should preferably be of a size that enables a developer to understand all its
aspects and further develop it. Even smaller is of course better. This limit
is below the team size: whatever one developer can still understand, a team
should still be able to develop further.

• Replaceability reduces with the size of the microservice. Therefore, replacea-
bility can influence the upper size limit for a microservice. This limit lies below
the one set by modularization: when somebody decides to replace a microser-
vice, this person has first of all to be able to understand the microservice.

• A lower limit is set by infrastructure: if it is too laborious to provide the neces-
sary infrastructure for a microservice, the number of microservices should be
kept rather small; consequently the size of each microservice will be larger.
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• Similarly, distributed communication overhead increases with the number of
microservices. For this reason, the size of microservices should not be set too small.

• Consistency of data and transactions can only be ensured within a micro-
service. Therefore, microservices should not be so small that consistency and
transactions must be ensured across several microservices.

These factors not only influence the size of microservices but also reflect a certain 
idea of microservices. According to this idea, the main advantages of microservices 
are independent deployment and the independent work of the different teams, along 
with the replaceability of microservices. The optimal size of a microservice can be 
deduced from these desired features.

However, there are also other reasons for microservices. When microservices are, 
for instance, introduced because of their independent scaling, a microservice size 
has to be chosen that ensures that each microservice is a unit, which has to scale 
independently.

How small or large a microservice can be, cannot be deduced solely from these 
 criteria. This also depends on the technology being used. Especially the effort 
 necessary for providing infrastructure for a microservice and the distributed commu-
nication depends on the utilized technology. Chapter 14 looks at technologies, which 
make the development of very small services possible—denoted as nanoservices. 
These nanoservices have different advantages and disadvantages to microservices, 
which, for instance, are implemented using technologies presented in Chapter 13, 
“Example of a Microservice-based Architecture.”

Ideal Size
of a 

Microservice

Distributed 
Communication

Team Size

Infrastructure

Modularization

Replaceability

Transactions and 
Consistency

Figure 3.1 Factors Influencing the Size of  a Microservice
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Thus, there is no ideal size. The actual microservice size will depend on the tech-
nology and the use case of an individual microservice.

Try and Experiment

How great is the effort required for the deployment of a microservice in your 
language, platform, and infrastructure? 

• Is it just a simple process? Or is it a complex infrastructure containing
application servers or other infrastructure elements?

• How can the effort for the deployment be reduced so that smaller microser-
vices become possible?

Based on this information you can define a lower limit for the size of a 
microservice. Upper limits depend on team size and modularization, so you 
should also think of appropriate limits in those terms.

3.2 Conway’s Law

Conway’s Law4 was coined by the American computer scientist Melvin Edward 
 Conway and indicates the following:

Any organization that designs a system (defined broadly) will produce a design whose 
structure is a copy of the organization’s communication structure.

It is important to know that this law is meant to apply not only to software 
but to any kind of design. The communication structures that Conway mentions, 
do not have to be identical to the organization chart. Often there are informal 
 communication structures, which also have to be considered in this context. In 
addition, the geographical distribution of teams can influence communication. 
After all it is much simpler to talk to a colleague who works in the same room or at 
least in the same office than with one working in a different city or even in a differ-
ent time zone.

4. http://www.melconway.com/research/committees.html

http://www.melconway.com/research/committees.html
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Reasons for the Law

Conway’s Law derives from the fact that each organizational unit designs a specific 
part of the architecture. If two architectural parts have an interface, coordination in 
regards to this interface is required—and, consequently, a communication relation-
ship between the organizational units that are responsible for the respective parts of 
the architecture.

From Conway’s Law it can also be deduced that design modularization is 
 sensible. Via such a design, it is possible to ensure that not every team member has 
to  constantly coordinate with every other team member. Instead the developers 
 working on the same module can closely coordinate their efforts, while team mem-
bers working on different modules only have to coordinate when they develop an 
interface—and even then only in regards to the specific design of the external fea-
tures of this interface.

However, the communication relationships extend beyond that. It is much  easier 
to collaborate with a team within the same building than with a team located in 
another city, another country, or even within a different time zone. Therefore, archi-
tectural parts having numerous communication relationships are better implemented 
by teams that are geographically close to each other, because it is easier for them 
to communicate with each other. In the end, the Conway’s Law focuses not on the 
organization chart but on the real communication relationships.

By the way, Conway postulated that a large organization has numerous commu-
nication relationships. Thus communication becomes more difficult or even impos-
sible in the end. As a consequence, the architecture can be increasingly affected and 
finally break down. In the end, having too many communication relationships is a 
real risk for a project.

The Law as Limitation

Normally Conway’s Law is viewed as a limitation, especially from the perspective of 
software development. Let us assume that a project is modularized according to 
technical aspects (see Figure 3.2). All developers with a UI focus are grouped into one 
team, the developers with backend focus are put into a second team, and data bank 
experts make up the third team. This distribution has the advantage that all three 
teams consist of experts for the respective technology. This makes it easy and trans-
parent to create this type of organization. Moreover, this distribution also appears 
logical. Team members can easily support each other, and technical exchange is also 
facilitated.
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Figure 3.2 Technical Project Distribution

According to Conway’s Law, it follows from such a distribution that the three 
teams will implement three technical layers: a UI, a backend, and a database. The 
chosen distribution corresponds to the organization, which is in fact sensibly built. 
However, this distribution has a decisive disadvantage: a typical feature requires 
changes to UI, backend, and database. The UI has to render the new features for 
the clients, the backend has to implement the logic, and the database has to  create 
structures for the storage of the respective data. This results in the following 
disadvantages:

• The person wishing to have a feature implemented has to talk to all three
teams.

• The teams have to coordinate their work and create new interfaces.

• The work of the different teams has to be coordinated in a manner that ensures 
that their efforts temporally fit together. The backend, for instance, cannot
really work without getting input from the database, and the UI cannot work
without input from the backend.

• When the teams work in sprints, these dependencies cause time delays: The
database team generates in its first sprint the necessary changes, within the
second sprint the backend team implements the logic, and in the third sprint
the UI is dealt with. Therefore, it takes three sprints to implement a single
feature.
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In the end this approach creates a large number of dependencies as well as a high 
communication and coordination overhead. Thus this type of organization does 
not make much sense if the main goal is to implement new features as rapidly as 
possible.

Many teams following this approach do not realize its impact on architecture 
and do not consider this aspect further. This type of organization focuses instead 
on the notion that developers with similar skills should be grouped together within 
the organization. This organization becomes an obstacle to a design driven by the 
domain like microservices, whose development is not compatible with the division 
of teams into technical layers.

The Law as Enabler

However, Conway’s Law can also be used to support approaches like microservices. 
If the goal is to develop individual components as independently of each other as 
possible, the system can be distributed into domain components. Based on these 
domain components, teams can be created. Figure 3.3 illustrates this principle: There 
are individual teams for product search, clients, and the order process. These teams 
work on their respective components, which can be technically divided into UI, back-
end, and database. By the way, the domain components are not explicitly named in 
the figure, for they are identical to the team names. Components and teams are syn-
onymous. This approach corresponds to the idea of so-called cross-functional teams, 
as proposed by methods such as Scrum. These teams should encompass different 
roles so that they can cover a large range of tasks. Only a team designed along such 
principles can be in charge of a component—from engineering requirements via 
implementation through to operation.

The division into technical artifacts and the interface between the artifacts can 
then be settled within the teams. In the easiest case, developers only have to talk 
to developers sitting next to them to do so. Between teams, coordination is more 
complex. However, inter-team coordination is not required very often, since features 
are ideally implemented by independent teams. Moreover, this approach creates thin 
interfaces between the components. This avoids laborious coordination across teams 
to define the interface.

Ultimately, the key message to be taken from Conway’s Law is that architecture 
and organization are just two sides of the same coin. When this insight is cleverly 
put to use, the system will have a clear and useful architecture for the project. Archi-
tecture and organization have the common goal to ensure that teams can work in an 
unobstructed manner and with as little coordination overhead as possible.

The clean separation of functionality into components also facilitates mainte-
nance. Since an individual team is responsible for individual functionality and com-
ponent, this distribution will have long-term stability, and consequently the system 
will remain maintainable.
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Figure 3.3 Project by Domains

The teams need requirements to work upon. This means that the teams need to 
contact people who define the requirements. This affects the organization beyond 
the projects, for the requirements come from the departments of the enterprise, and 
these also according to Conway’s Law have to correspond to the team structures 
within the project and the domain architecture. Conway’s Law can be expanded 
beyond software development to the communication structures of the entire organi-
zation, including the users. To put it the other way round: the team structure within 
the project and consequently the architecture of a microservice system can follow 
from the organization of the departments of the enterprise.

The Law and Microservices

The previous discussion highlighted the relationship between architecture and organi-
zation of a project only in a general manner. It would be perfectly conceivable to align 
the architecture along functionalities and devise teams, each of which are in charge for a 
separate functionality without using microservices. In this case the project would 
develop a deployment monolith within which all functionalities are implemented. How-
ever, microservices support this approach. Section 3.1 already discussed that microser-
vices offer technical independence. In conjunction with the division by domains, the 
teams become even more independent of each other and have even less need to coordi-
nate their work. The technical coordination as well as the coordination concerning the 
domains can be reduced to the absolute minimum. This makes it far easier to work in 
parallel on numerous features and also to bring the features in production.
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Microservices as a technical architecture are especially well suited to support the 
approach to devise a Conway’s Law–based distribution of functionalities. In fact, 
exactly this aspect is an essential characteristic of a microservices-based architecture.

However, orienting the architecture according to the communication structures 
entails that a change to the one also requires a change of the other. This makes archi-
tectural changes between microservices more difficult and makes the overall process 
less flexible. Whenever a piece of functionality is moved from one microservice to 
another, this might have the consequence that another team has to take care of this 
functionality from that point on. This type of organizational change renders soft-
ware changes more complex.

As a next step this chapter will address how the distribution by domain can best 
be implemented. Domain-driven design (DDD) is helpful for that.

Try and Experiment

Have a look at a project you know:

• What does the team structure look like?

• Is it technically motivated, or is it divided by domain?

• Would the structure have to be changed to implement a microservices-
based approach?

• How would it have to be changed?

• Is there a sensible way to distribute the architecture onto different teams?
Eventually each team should be in charge of independent domain compo-
nents and be able to implement features relating to them.

• Which architectural changes would be necessary?

• How laborious would the changes be?

3.3 Domain-Driven Design and Bounded Context

In his book of the same title, Eric Evans formulated domain-driven design (DDD)5 as 
pattern language. It is a collection of connected design patterns and supposed to 
support software development especially in complex domains. In the following text, 
the names of design patterns from Evan’s book are written in italics.

5. Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of  Software. Boston:
Addison-Wesley.
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Domain-driven design is important for understanding microservices, for it supports 
the structuring of larger systems according to domains. Exactly such a model is neces-
sary for the division of a system into microservices. Each microservice is meant to con-
stitute a domain, which is designed in such a way that only one microservice has to be 
changed in order to implement changes or to introduce new features. Only then is the 
maximal benefit to be derived from independent development in different teams, as sev-
eral features can be implemented in parallel without the need for extended coordination.

Ubiquitous Language

DDD defines a basis for how a model for a domain can be designed. An essential 
foundation of DDD is Ubiquitous Language. This expression denotes that the soft-
ware should use exactly the same terms as the domain experts. This applies on all 
levels: in regards to code and variable names as well as for database schemas. This 
practice ensures that the software really encompasses and implements the critical 
domain elements. Let us assume for instance that there are express orders in an 
e-commerce system. One possibility would be to generate a Boolean value with the
name “fast” in the order table. This creates the following problem: domain experts
have to translate the term “express order,” which they use on a daily basis, into
“order with a specific Boolean value.” They might not even know what Boolean
 values are. This renders any discussion of the model more difficult, for terms have to
be constantly explained and related to each other. The better approach is to call the
table within the database scheme “express order.” In that case it is completely trans-
parent how the domain terms are implemented in the system.

Building Blocks

To design a domain model, DDD identifies basic patterns:

• Entity is an object with an individual identity. In an e-commerce application,
the customer or the items could be examples for Entities. Entities are typically
stored in databases. However, this is only the technical implementation of the
concept Entity. An Entity belongs in essence to the domain modeling like the
other DDD concepts.

• Value Objects do not have their own identity. An address can be an example
of a Value Object, for it makes only sense in the context of a specific customer
and therefore does not have an independent identity.

• Aggregates are composite domain objects. They facilitate the handling of invari-
ants and other conditions. An order, for instance, can be an Aggregate of order
lines. This can be used to ensure that an order from a new customer does not
exceed a certain value. This is a condition that has to be fulfilled by calculating val-
ues from the order lines so that the order as Aggregate can  control these conditions.
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• Services contain business logic. DDD focuses on modeling business logic as
Entities, Value Objects, and Aggregates. However, logic accessing several such
objects cannot be sensibly modeled using these objects. For these cases there
are Services. The order process could be such a Service, for it needs access to
items and customers and requires the Entity order.

• Repositories serve to access all Entities of a type. Typically, there is a persis-
tency technology like a database behind a Repository.

• Factories are mostly useful to generate complex domain objects. This is espe-
cially the case when these contain for instance many associations.

Aggregates are of special importance in the context of microservices: within an 
Aggregate consistency can be enforced. Because consistency is necessary, parallel 
changes have to be coordinated in an Aggregate. Otherwise two parallel changes 
might endanger consistency. For instance, when two order positions are included in 
parallel into an order, consistency can be endangered. The order has already a value 
of €900 and is maximally allowed to reach €1000. If two order positions of €60 each 
are added in parallel, both might calculate a still acceptable total value of €960 based 
on the initial value of €900. Therefore, changes have to be serialized so that the final 
result of €1020 can be controlled. Accordingly, changes to Aggregates have to be seri-
alized. For this reason, an Aggregate cannot be distributed across two microservices. 
In such a scenario consistency cannot be ensured. Consequently, Aggregates cannot 
be divided between microservices.

Bounded Context

Building blocks such as Aggregate represent for many people the core of DDD. DDD 
describes, along with strategic design, how different domain models interact and 
how more complex systems can be built up this way. This aspect of DDD is probably 
even more important than the building blocks. In any case it is the concept of DDD, 
which influences microservices.

The central element of strategic designs is the Bounded Context. The underly-
ing reasoning is that each domain model is only sensible in certain limits within a 
system. In e-commerce, for instance, number, size, and weight of the ordered items 
are of interest in regards to delivery, for they influence delivery routes and costs. For 
accounting on the other hand prices and tax rates are relevant. A complex system 
consists of several Bounded Contexts. In this it resembles the way complex biological 
organisms are built out of individual cells, which are likewise separate entities with 
their own inner life.  
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Bounded Context: An Example

The customer from the e-commerce system shall serve as an example for a 
Bounded Context (see Figure 3.4). The different Bounded Contexts are Order, 
Delivery, and Billing. The component Order is responsible for the order pro-
cess. The component Delivery implements the delivery process. The compo-
nent Billing generates the bills. 

Delivery

Customer
Delivery 
address

Preferred 
delivery 
service

Billing

Customer

Billing 
address
Tax rate

Order

Customer

Bonus program #

Figure 3.4 Project by Domains

Each of these Bounded Contexts requires certain customer data: 

• Upon ordering the customer is supposed to be rewarded with points in a
bonus program. In this Bounded Context the number of the customer has
to be known to the bonus program.

• For Delivery the delivery address and the preferred delivery service of the
customer are relevant.

• Finally, for generating the bill the billing address and the tax rate of the
customer have to be known.

In this manner each Bounded Context has its own model of the customer. 
This renders it possible to independently change microservices. If for instance 
more information regarding the customer is necessary for generating bills, 
only changes to the Bounded Context billing are necessary. 

It might be sensible to store basic information concerning the customer in 
a separate Bounded Context. Such fundamental data is probably sensible in 
many Bounded Contexts. To this purpose the Bounded Contexts can cooper-
ate (see below). 

(continued)
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To illustrate the system setup in the different Bounded Contexts a Context Map 
can be used (see section 7.2). Each of the Bounded Contexts then can be imple-
mented within one or several microservices.

Collaboration between Bounded Contexts

How are the individual Bounded Contexts connected? There are different 
possibilities:

• In case of a Shared Kernel the domain models share some common elements;
however, in other areas they differ.

• Customer/Supplier means that a subsystem offers a domain model for the
caller. The caller in this case is the client who determines the exact setup of the
model.

• This is very different in the case of Conformist: The caller uses the same
model as the subsystem, and the other model is thereby forced upon him. This
approach is relatively easy, for there is no need for translation. One example
is a standard software for a certain domain. The developers of this software
likely know a lot about the domain since they have seen many different use
cases. The caller can use this model to profit from the knowledge from the
modeling.

• The Anticorruption Layer translates a domain model into another one so that
both are completely decoupled. This enables the integration of legacy systems
without having to take over the domain models. Often data modeling is not
very meaningful in legacy systems.

A universal model of the customer, however, is hardly sensible. It would be 
very complex since it would have to contain all information regarding the cus-
tomer. Moreover, each change to customer information, which is necessary in 
a certain context, would concern the universal model. This would render such 
changes very complicated and would probably result in permanent changes 
to the model.
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• Separate Ways means that the two systems are not integrated, but stay
 independent of each other.

• In the case of Open Host Service, the Bounded Context offers special services
everybody can use. In this way everybody can assemble their own integration.
This is especially useful when an integration with numerous other systems is
necessary and when the implementation of these integrations is too laborious.

• Published Language achieves similar things. It offers a certain domain mod-
eling as a common language between the Bounded Contexts. Since it is widely
used, this language can hardly be changed anymore afterwards.

Bounded Context and Microservices

Each microservice is meant to model one domain so that new features or changes 
have only to be implemented within one microservice. Such a model can be designed 
based on Bounded Context.

One team can work on one or several Bounded Contexts, which each serve as 
a foundation for one or several microservices. Changes and new features are sup-
posed to concern typically only one Bounded Context—and thus only one team. 
This ensures that teams can work largely independently of each other. A Bounded 
Context can be divided into multiple microservices if that seems sensible. There 
can be technical reasons for that. For example, a certain part of a Bounded Context 
might have to be scaled up to a larger extent than the others. This is simpler if this 
part is separated into its own microservice. However, designing microservices that 
contain multiple Bounded Contexts should be avoided, for this entails that several 
new features might have to be implemented in one microservice. This interferes with 
the goal to develop features independently.

Nevertheless, it is possible that a special requirement comprises many Bounded 
Contexts—in that case additional coordination and communication will be required.

The coordination between teams can be regulated via different collaboration 
possibilities. These influence the independence of the teams as well: Separate Ways, 
Anticorruption Layer or Open Host Service offer a lot of independence. Conformist 
or Customer/Supplier on the other hand tie the domain models very closely together. 
For Customer/Supplier the teams have to coordinate their efforts closely: the supplier 
needs to understand the requirements of the customer. For Conformist, however, the 
teams do not need to coordinate: one team defines the model that the other team just 
uses unchanged (see Figure 3.5).
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Figure 3.5 Communication Effort of  Different Collaborations

As  in the case of Conway’s Law from section 3.2, it becomes very apparent that 
organization and architecture are very closely linked. When the architecture enables 
a distribution of the domains in which the implementation of new features only 
requires changes to a defined part of the architecture, these parts can be distributed 
to different teams in such a way that these teams can work largely independently 
of each other. DDD and especially Bounded Context demonstrate what such a 
 distribution can look like and how the parts can work together and how they have to 
coordinate.

Large-Scale Structure

With large-scale structure, DDD also addresses the question how the system in its 
entirety can be viewed from the different Bounded Contexts with respect to  
microservices.

• A System Metaphor can serve to define the fundamental structure of the entire
system. For example, an e-commerce system can orient itself according to
the shopping process: the customer starts out looking for products, then he/
she will compare items, select one item, and order it. This can give rise to three
microservices: search, comparison, and order.

• A Responsibility Layer divides the system into layers with different respon-
sibilities. Layers can call other layers only if  those are located below them.
This does not refer to a technical division into database, UI and logic. In an
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 e-commerce system, domain layers might be (for example) the catalog, the
order process, and billing. The catalog can call on the order process, and
the order process can call on the generation of the bill. However, calls into
the other direction are not permitted.

• Evolving Order suggests it is best not to determine the overall structure too
rigidly. Instead, the order  should arise from the individual components in a
stepwise manner.

These approaches can provide an idea how the architecture of a system, which 
consists of different microservices, can be organized (see also Chapter 7, “Architec-
ture of Microservice-based Systems”).

Try and Experiment

Look at a project you know: 

• Which Bounded Contexts can you identify?

• Generate an overview of the Bounded Contexts in a Context Map. Com-
pare section 7.2.

• How do the Bounded Contexts cooperate? (Anticorruption Layer  Customer/
Supplier etc.). Add this information to the Context Map.

• Would other mechanisms have been better at certain places? Why?

• How could the Bounded Contexts be sensibly distributed to teams so that
features are implemented by independent teams?

These questions might be hard to answer because you need to get a new per-
spective on the system and how the domains are modeled in the system.

3.4  Why You Should Avoid a Canonical Data 
Model (Stefan Tilkov)

by Stefan Tilkov, innoQ

In recent times, I’ve been involved in a few architecture projects on the enterprise 
level again. If you’ve never been in that world, that is, if you’ve been focusing on 
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individual systems so far, let me give you the gist of what this kind of environment is 
like. There are lots of meetings, more meetings, and even more meetings; there’s an 
abundance of slide decks, packed with text and diagrams—none of that Presenta-
tion Zen nonsense, please. There are conceptual architecture frameworks, showing 
different perspectives; there are guidelines and reference architectures, enterprise-
wide layering approaches, a little bit of SOA and EAI and ESB and portals and 
(lately) API talk thrown in for good measure. Vendors and system integrators and (of 
course) consultants all see their chance to exert influence on strategic decisions, mak-
ing their products or themselves an integral part of the company’s future strategy. It 
can be a very frustrating but (at least sometimes) also very rewarding experience: 
those wheels are very big and really hard to turn, but if you manage to turn them, the 
effect is significant.

It’s also amazing to see how many of the things that cause problems when 
building large systems are repeated on the enterprise level. (We don’t often make 
mistakes … but if  we do, we make them big!) My favorite one is the idea of estab-
lishing a canonical data model (CDM) for all of your interfaces.

If you haven’t heard of this idea before, a quick summary is: Whatever kind of 
technology you’re using (an ESB, a BPM platform, or just some assembly of ser-
vices of some kind), you standardize the data models of the business objects you 
exchange. In its extreme (and very common) form, you end up with having just 
one kind of Person, Customer, Order, Product, etc., with a set of IDs, attributes, 
and associations everyone can agree on. It isn’t hard to understand why that might 
seem a very compelling thing to attempt. After all, even a nontechnical manager will 
understand that the conversion from one data model to another whenever systems 
need to talk to each other is a complete waste of time. It’s obviously a good idea 
to standardize. Then, anyone who happens to have a model that differs from the 
canonical one will have to implement a conversion to and from it just once, new 
systems can just use the CDM directly, and everyone will be able to communicate 
without further ado!

In fact, it’s a horrible, horrible idea. Don’t do it.
In his book on domain-driven design, Eric Evans gave a name to a concept that is 

obvious to anyone who has actually successfully built a larger system: the Bounded 
Context. This is a structuring mechanism that avoids having a single huge model 
for all of your application, simply because that (a) becomes unmanageable and 
(b) makes no sense to begin with. It recognizes that a Person or a Contract are differ-
ent things in different contexts on a conceptual level. This is not an implementation
problem—it’s reality.

If this is true for a large system—and trust me, it is—it’s infinitely more true for 
an enterprise-wide architecture. Of course you can argue that with a CDM, you’re 
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only standardizing the interface layer, but that doesn’t change a thing. You’re still try-
ing to make everyone agree what a concept means, and my point is that you should 
recognize that not every single system has the same needs.

But isn’t this all just pure theory? Who cares about this, anyway? The amazing 
thing is that organizations are excellent in generating a huge amount of work based 
on bad assumptions. The CDM (in the form I’ve described it here) requires coordi-
nation between all the parties that use a particular object in their interfaces (unless 
you trust that people will be able to just design the right thing from scratch on their 
own, which you should never do). You’ll have meetings with some enterprise archi-
tect and a few representatives for specific systems, trying to agree what a customer 
is. You’ll end up with something that has tons of optional attributes because all the 
participants insisted theirs need to be there, and with lots of things that are kind of 
weird because they reflect some system’s internal restrictions. Despite the fact that 
it’ll take you ages to agree on it, you’ll end up with a zombie interface model will be 
universally hated by everyone who has to work with it.

So is a CDM a universally bad idea? Yes, unless you approach it differently. In 
many cases, I doubt a CDM’s value in the first place and think you are better off with 
a different and less intrusive kind of specification. But if you want a CDM, here are a 
number of things you can do to address the problems you’ll run into:

• Allow independent parts to be specified independently. If only one system is
responsible for a particular part of your data model, leave it to the people to
specify what it looks like canonically. Don’t make them participate in meet-
ings. If you’re unsure whether the data model they create has a significant over-
lap with another group’s, it probably hasn’t.

• Standardize on formats and possibly fragments of data models. Don’t try to
come up with a consistent model of the world. Instead, create small buildings
blocks. What I’m thinking of are e.g. small XML or JSON fragments, akin to
microformats, that standardize small groups of attributes (I wouldn’t call them
business objects).

• Most importantly, don’t push your model from a central team downwards or
outwards to the individual teams. Instead, it should be the teams who decide
to “pull” them into their own context when they believe they provide value. It’s
not you who’s doing the really important stuff (even though that’s a common
delusion that’s attached to the mighty Enterprise Architect title). Collect the
data models the individual teams provide in a central location, if you must,
and make them easy to browse and search. (Think of providing a big elastic
search index as opposed to a central UML model.)



ptg18144917

Chapter 3 What Are Microservices?50

What you actually need to do as an enterprise architect is to get out of people’s 
way. In many cases, a crucial ingredient to achieve this is to create as little centrali-
zation as possible. It shouldn’t be your goal to make everyone do the same thing. It 
should be your goal to establish a minimal set of rules that enable people to work 
as independently as possible. A CDM of the kind I’ve described above is the exact 
opposite.

3.5 Microservices with a UI?

This book recommends that you equip microservices with a UI. The UI should offer 
the functionality of the microservice to the user. In this way, all changes in regards to 
one area of functionality can be implemented in one microservice—regardless of 
whether they concern the UI, the logic, or the database. However, microservice 
experts so far have different opinions in regards to the question of whether the inte-
gration of UI into microservices is really required. Ultimately, microservices should 
not be too large. And when logic is supposed to be used by multiple frontends, a 
microservice consisting of pure logic without a UI might be sensible. In addition, it is 
possible to implement the logic and the UI in two different microservices but to have 
them implemented by one team. This enables implementation of features without 
coordination across teams.

Focusing on microservices with a UI puts the main emphasis on the distribution 
of the domain logic instead of a distribution by technical aspects. Many architects 
are not familiar with the domain architecture, which is especially important for 
 microservices-based architectures. Therefore, a design where the microservices contain 
the UI is helpful as a first approach in order to focus the architecture on the domains.

Technical Alternatives

Technically the UI can be implemented as Web UI. When the microservices have a 
RESTful-HTTP interface, the Web-UI and the RESTful-HTTP interface are very 
similar—both use HTTP as a protocol. The RESTful-HTTP interface delivers JSON 
or XML, the Web UI HTML. If the UI is a Single-Page Application, the JavaScript 
code is likewise delivered via HTTP and communicates with the logic via RESTful 
HTTP. In case of mobile clients, the technical implementation is more complicated. 
Section 8.1 explains this in detail. Technically a deployable artifact can deliver via an 
HTTP interface, JSON/XML, and HTML. In this way it implements the UI and 
allows other microservices to access the logic.
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Self-Contained System

Instead of calling this approach “Microservice with UI” you can also call it “Self-
Contained System” (SCS).6 SCS define microservices as having about 100 lines of 
code, of which there might be more than one hundred in a complete project.

An SCS consists of many of those microservices and contains a UI. It should com-
municate with other SCSs asynchronously, if at all. Ideally each functionality should 
be implemented in just one SCS, and there should be no need for SCSs to communi-
cate with each other. An alternative approach might be to integrate the SCSs at the 
UI-level.

In an entire system, there are then only five to 25 of these SCS. An SCS is some-
thing one team can easily deal with. Internally the SCS can be divided into multiple 
microservices.

The following definitions result from this reasoning:

• SCS is something a team works on and which represents a unit in the domain
architecture. This can be an order process or a registration. It implements a
sensible functionality, and the team can supplement the SCS with new features.
An alternative name for a SCS is a vertical. The SCS distributes the architec-
ture by domain. This is a vertical design in contrast to a horizontal design. A
horizontal design would divide the system into layers, which are technically
motivated—for instance UI, logic, or persistence.

• A microservice is a part of a SCS. It is a technical unit and can be indepen-
dently deployed. This conforms with the microservice definition put forward
in this book. However,  the size given in the SCS world corresponds to what this 
book denotes as nanoservices (see Chapter 14).

• This book refers to nanoservices as units that are still individually deploya-
ble but make technical trade-offs in some areas to further reduce the size of
the deployment units. For that reason, nanoservices do not share all technical
characteristics of microservices.

SCS inspired the definition of microservices as put forward in this book. Still 
there is no reason not to separate the UI into a different artifact in case the microser-
vice gets otherwise too large. Of course, it is more important that the microservice is 
small and thus maintainable than to integrate the UI. But the UI and logic should at 
least be implemented by the same team.

6. http://scs-architecture.org

http://www.scs-architecture.org
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3.6 Conclusion

Microservices are a modularization approach. For a deeper understanding of micro-
services, the different perspectives discussed in this chapter are very helpful:

• Section 3.1 focuses on the size of microservices. But a closer look reveals that
the size of microservices itself is not that important, even though size is an
influencing factor. However, this perspective provides a first impression of
what a microservice should be. Team size, modularization, and replace-
ability of microservices each determine an upper size limit. The lower limit
is determined by transactions, consistency, infrastructure, and distributed
communication.

• Conway’s Law (section 3.2) shows that the architecture and organization of a
project are closely linked—in fact, they are nearly synonymous. Microservices
can further improve the independence of teams and thus ideally support archi-
tectural designs that aim at the independent development of functionalities.
Each team is responsible for a microservice and therefore for a certain part of
a domain, so that the teams are largely independent concerning the implemen-
tation of new functionalities. Thus, in regards to domain logic there is hardly
any need for coordination across teams. The requirement for technical coor-
dination can likewise be reduced to a minimum because of the possibility for
technical independence.

• In section 3.3 domain-driven design provides a very good impression as to
what the distribution of domains in a project can look like and how the indi-
vidual parts can be coordinated. Each microservice can represent a Bounded
Context. This is a self-contained piece of domain logic with an independent
domain model. Between the Bounded Contexts there are different possibilities
for collaboration.

• Finally, section 3.5 demonstrates that microservices should contain a UI to be
able to implement the changes for functionality within an individual microser-
vice. This does not necessarily have to be a deployment unit; however, the UI
and microservice should be in the responsibility of one team.

Together these different perspectives provide a balanced picture of what consti-
tutes microservices and how they can function.
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Essential Points

To put it differently: A successful project requires three components:

• an organization (This is supported by Conway’s Law.)

• a technical approach (This can be microservices.)

• a domain design as offered by DDD and Bounded Context

The domain design is especially important for the long-term maintainability of 
the system.

Try and Experiment

Look at the three approaches for defining microservices: size, Conway's Law, 
and domain-driven design.

• Section 1.2 showed the most important advantages of microservices. Which
of the goals to be achieved by microservices are best supported by the
three definitions? DDD and Conway's Law lead, for instance, to a better
time-to-market.

• Which of the three aspects is, in your opinion, the most important? Why?
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Microservices offer many benefits, and these are discussed in this chapter. A detailed 
understanding of the benefits enables a better evaluation of whether microservices 
represent a sensible approach in a given use case. The chapter continues the discus-
sion from section 1.2 and explains the benefits in more detail.

Section 4.1 explains the technical benefits of microservices. However, microservices 
also influence the organization. This is described in section 4.2. Finally, section 4.3 
addresses the benefits from a business perspective.

4.1 Technical Benefits

Microservices are an effective modularization technique. Calling one microservice 
from another requires the developer to consciously create code that communicates 
over the network. This does not happen by accident; a developer has to make that 
happen within the communication infrastructure. Consequently, dependencies 
between microservices do not creep in unintentionally; a developer has to generate 
them explicitly. Without microservices, it is easy for a developer to just use another 
class and unwittingly create a dependency that was not architecturally intended.

Let us assume, for instance, that in an e-commerce application the product search 
should be able to call the order process, but not the other way round. This ensures 
that the product search can be changed without influencing the order process, as 
the product search does not use the order process. Now a dependency between the 
product search and the order process is introduced, for example, because  devel-
opers found a piece of functionality there that was useful for them. Consequently, 
the product search and order processes now depend on each other and can only be 
changed together.

Chapter 4

Reasons for Using 
Microservices
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Once undesired dependencies have started to creep into the system, additional 
dependencies rapidly accrue. The application architecture erodes. This erosion can 
normally only be prevented with the use of architecture management tools. Such 
tools have a model of the desired architecture and can discover when a developer has 
introduced an undesired dependency. The developer can then immediately remove 
the dependency before any harm is done and the architecture suffers. Appropriate 
tools are presented in section 7.2.

In a microservices-based architecture, the product search and order processes 
would be separate microservices. To create a dependency, the developer would have 
to explicitly implement it within the communication mechanisms. This presents a 
relatively high barrier and consequently does not normally happen unnoticed, even 
without architecture management tools. This reduces the chances that the archi-
tecture erodes because of dependencies between microservices. The microservice 
boundaries act like firewalls, which prevent architectural erosion. Microservices 
offer strong modularization because it is difficult to overstep the boundaries between 
modules.

Replacing Microservices

Working with old software systems poses a significant challenge in that further 
development of the software may be difficult due to poor code quality. It is often 
risky to replace the software. It may be unclear exactly how the software works, and 
the system may be very large. The larger the software system, the more effort is 
required to replace it. If the software is supporting important business processes, it 
may be nearly impossible to change it. The failure of these business processes can 
have a significant negative impact, and each software change risks a failure.

Although this is a fundamental problem, most software architectures are never 
really aimed at replacing software. However, microservices do support this goal; they 
can be replaced individually, since they are separate and small deployment units. 
Therefore, the technical prerequisites for a replacement are better. Eventually it is not 
necessary to replace a large software system, but only a small microservice. When-
ever necessary, additional microservices can be replaced.

With the new microservices, the developers are not tied to the old technology 
stack, but free to use other technologies at will. If the microservice is also independ-
ent in a domain sense, the logic is easier to understand. The developer does not need 
to understand the entire system, just the functionality of an individual microservice. 
Knowledge regarding the domain is a prerequisite for the successful replacement of 
a microservice.

Moreover, microservices keep functioning when another microservice fails. 
Even if the replacement of a microservice leads to the temporary failure of one 
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microservice, the system as a whole can keep operating. This reduces the risk associ-
ated with a replacement.

Sustainable Software Development

Starting a new software project is simple because there is not much code, the code 
structure is clean, and developers can make rapid progress. Over time, however, the 
architecture can erode and development becomes more difficult as its complexity 
increases. At some point, the software turns into a legacy system. As previously dis-
cussed, microservices prevent architectural erosion. When a microservice has turned 
into a legacy system, it can be replaced. This means that microservices can make sus-
tainable software development possible and that a high level of productivity can be 
reached over the long term. However, in a microservice-based system, it can be the case 
that a lot of code has to be newly written. This will, of course, decrease productivity.

Handling Legacy

Replacing microservices is only possible if the system is already implemented in a 
microservice-based manner. However, the replacement and amendment of existing 
legacy applications can be made easier with microservices, too. The legacy applica-
tions only have to provide an interface that enables the microservice to communicate 
with the legacy application. Comprehensive code changes or the integration of new 
code components into the legacy system is not necessary. This can mean that code 
level integration can be avoided. Otherwise such integration is a big challenge in the 
case of legacy systems. Amending the system is particularly easy when a microser-
vice can intercept the processing of all calls and process them itself. Such calls can be 
HTTP requests for the creation of web sites or REST calls.

In this situation, the microservice can complement the legacy system. There are 
different ways for this to happen:

• The microservice can process certain requests by itself while leaving others to
the legacy system.

• Alternatively, the microservice can change the requests and then transfer them
to the actual application.

This approach is similar to the SOA approach (see Chapter 6, “Microservices and 
SOA”), which deals with the comprehensive integration of different applications. 
When the applications are split into services, these services be orchestrated anew, 
and it is also possible to replace individual services with microservices. 
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An Example of Microservices and Legacy

The goal of a project was to modernize an existing Java e-commerce appli-
cation. This involved the introduction of new technologies, for example new 
frameworks, to improve future software development productivity. After some 
time, it transpired that the effort required to integrate the new and old tech-
nologies would be huge. The new code had to be able to call the old one—and 
vice versa. This required technology integration in both directions. Transac-
tions and database connections had to be shared, and security mechanisms 
had to be integrated. This integration would render the development of the 
new software more complicated and endanger the entire project. 

Figure 4.1 shows the solution: the new system was developed completely 
independent of the old system. The only integration was provided by links 
that call certain behaviors in the old software—for instance, the addition of 
items to the shopping cart. The new system also had access to the same data-
base as the old system. In hindsight, a shared database is not a good idea, as 
the database is an internal representation of the data of the old system. When 
this representation is placed at the disposal of another application, the princi-
ple of encapsulationa is violated (see section 9.1). The data structures will be 
difficult to change now that both the old system and the new system depend 
on them.

Legacy
Application

New 
Application

Database

Link

Figure 4.1 Example of  Legacy Integration

The approach to develop the system separately solved the integration-
related problems to a large extent. Developers could use new technological 
approaches without having to consider the old code and the old approaches. 
This enabled much more elegant solutions.

a. https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

https://www.en.wikipedia.org/wiki/Encapsulation_(computer_programming)
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Continuous Delivery

Continuous delivery enables software to be brought into production regularly thanks 
to a simple, reproducible process. This is achieved via a continuous delivery pipeline 
(see Figure 4.2):

• In the commit phase, the software is compiled, the unit tests are run, and static
code analysis might be performed.

• The automated acceptance tests in the next phase ensure that the software
meets the business requirements and would be accepted by the customer.

• Capacity tests check that the software performs adequately to support the
expected number of users. These tests are automated as well.

• Explorative tests, on the other hand, are performed manually and serve to test
certain areas of the system such as new features or certain aspects like software
security.

• Finally, the software is brought into production. Ideally, this process is also
automated.

Software moves through the individual phases consecutively. For example, a build 
can successfully pass the acceptance tests. However, the capacity tests reveal that the 
software does not meet the requirements under the expected load. In this case, the soft-
ware is never promoted to the remaining phases such as explorative tests or production.

A fully automated continuous delivery pipeline is ideal. However, software needs 
to get into production, and it may be necessary to optimize the current process 
step-by-step.

Continuous delivery is particular easy to realize with microservices.1 Microservices 
are independent deployment units. Consequently, they can be brought into produc-
tion independently of other services. This has a significant impact on the continuous 
delivery pipeline:

• The pipeline is faster as only small microservices have to be tested and brought
into production at one time. This accelerates feedback. Rapid feedback is a

1. http://slideshare.net/ewolff/software-architecture-for-devops-andcontinuousdelivery

Commit Production
Explorative 

Tests
Acceptance 

Tests
Capacity 

Tests

Figure 4.2 Continuous Delivery Pipeline

http://www.slideshare.net/ewolff/software-architecture-for-devops-andcontinuousdelivery
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primary goal of continuous delivery. When it takes weeks for developers to 
know that their code has caused a problem in production, it will be difficult to 
become reacquainted with the code and to analyze the problem.

• The risk of deployment decreases. The deployed units are smaller and can
therefore be more easily rolled back. Also microservice-based systems are
designed to be resilient to failures in individual microservices. A failure in
the deployment of a single microservice shouldn’t impact the system as a
whole.

• Measures to further reduce risk are easier to implement with smaller
deployment units. For instance, in case of  blue/green deployment, a new
environment is built up with the new release. This is similar to canary
releasing: in this approach, a single server is provided with the new soft-
ware version. Only when this server runs successfully in production is the
new version rolled out to the other servers. For a deployment monolith, this
approach can be hard or nearly impossible to implement, as it requires a
lot of  resources for the large number of  environments. With microservices,
the required environments are much smaller, and the procedure is therefore
easier.

• Test environments pose additional challenges. For instance, when a third-party
system is used, the environment also has to contain a test version of this third-
party system. With smaller deployment units, the demands on the environ-
ments are lower. The environments for microservices only have to integrate
with the third-party systems that are necessary for the individual microservice.
It is also possible to test the systems using mocks of the third-party systems.
This helps with testing and is also an interesting method of testing microser-
vices independently of each other.

Continuous delivery is one of the most important arguments for microservices. 
Many projects invest in migrating to microservices in order to facilitate the creation 
of a continuous delivery pipeline.

However, continuous delivery is also a prerequisite for microservices. Quickly 
bringing numerous microservices into production manually becomes unfeasible, and 
an automated approach is required. So microservices profit from continuous delivery 
and vice versa.2

2. http://slideshare.net/ewolff/continuous-delivery-and-micro-services-a-symbiosis

http://www.slideshare.net/ewolff/continuous-delivery-and-micro-services-a-symbiosis
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Scaling

Microservices are offered over network-reachable interfaces, which can be accessed, 
for instance, via HTTP or via a message solution. Each microservice can run on one 
server or on several. When the service runs on several servers, the load can be 
 distributed across the different servers. It is also possible to install and run microser-
vices on  computers that perform differently. Each microservice can implement its 
own scaling.

In addition, caches can be placed in front of microservices. For REST-based 
microservices, it can be sufficient to use a generic HTTP cache. This significantly 
reduces the implementation effort for such a cache. The HTTP protocol contains 
comprehensive support for caching, which is very helpful in this context.

Furthermore, it might be possible to install microservices at different loca-
tions within the network in order to bring them closer to the caller. In the case of 
world-wide distributed cloud environments, it no longer matters in which comput-
ing center the microservices run. When the microservice infrastructure uses several 
computing centers and always processes calls in the nearest computing center, the 
architecture can significantly reduce the response times. Also, static content can 
be delivered by a CDN (content delivery network), whose servers are located even 
closer to the users.

However, improved scaling and support for caching cannot work miracles: micro-
services result in a distributed architecture. Calls via the network are a lot slower 
than local calls. From a pure performance perspective, it might be better to combine 
several microservices or to use technologies that focus on local calls (see Chapter 14, 
“Technologies for Nanoservices”).

Robustness

Theoretically, a microservices-based architecture should be less reliable than other 
architectural approaches. Microservices are, after all, distributed systems, so there is 
an inherent risk of network failures adding to the usual sources of errors. Also, 
microservices run on several servers, increasing the likelihood of hardware failures.

To ensure high availability, a microservices-based architecture has to be correctly 
designed. The communication between microservices has to form a kind of firewall: 
The failure of a microservice should not propagate. This prevents problems from 
arising in an individual microservice and leading to a failure of the entire system.

To achieve this, a microservice which is calling another microservice has to some-
how keep working when a failure occurs. One way to do this might be to assume 
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some default values. Alternatively, the failure might lead to a graceful degradation 
such as some sort of reduced service.

How a failure is dealt with technically can be critical: the operating-system–level 
timeout for TCP/IP connections is often set to five minutes, for example. If, due to 
the failure of a microservice, requests run into this timeout, the thread is blocked for 
five minutes. At some point, all threads will be blocked. If that happens, the calling 
system might fail, as it cannot do anything else apart from wait for timeouts. This 
can be avoided by specifying shorter timeouts for the calls.

These concepts have been around much longer than the concept of microservices. 
The book Release It3 describes, in detail, these sorts of challenges and approaches 
for solving them. When these approaches are implemented, microservice-based 
systems can tolerate the failure of entire microservices and therefore become more 
robust than a deployment monolith.

When compared to deployment monoliths, microservices have the additional ben-
efit that they distribute the system into multiple processes. These processes are better 
isolated from each other. A deployment monolith only starts one process, and there-
fore a memory leak or a piece of functionality using up a lot of computing resources 
can make the whole system fail. Often, these sorts of errors are simple programming 
mistakes or slips. The distribution into microservices prevents such situations, as 
only a single microservice would be failing in such a scenario.

Free Technology Choice

Microservices offer technological freedom. Since microservices only communicate 
via the network, they can be implemented in any language and platform as long as 
communication with other microservices is possible. This free technology choice can 
be used to test out new technologies without running big risks. As a test, one can use 
the new technology in a single microservice. If the technology does not perform 
according to expectations, only this one microservice has to be rewritten. In addi-
tion, problems arising from the failure will be limited.

The free technology choice means that developers really can use new technologies 
in production. This can have positive effects on both motivation and recruitment 
because developers typically enjoy using new technologies.

This choice also enables the most appropriate technology to be used for each 
problem. A different programming language or a certain framework can be used 
to implement specific parts of the system. It is even possible for an individual 

3. Michael T. Nygard. 2007. Release It!: Design and Deploy Production-Ready Software. Raleigh, N.C.:
Pragmatic Programmers.
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microservice to use a specific database or persistence technology, although in this 
situation, backup and disaster recovery mechanisms will need to be considered and 
implemented.

Free technology is an option—it does not have to be used. Technologies can also 
be imposed for all microservices in a project so that each microservice is bound to a 
specific technology stack. Compare this with a deployment monolith, which inher-
ently narrows the choices developers have. For example, in Java applications, only 
one version of each library can be used. This means that not only the libraries used 
but even the versions used have to be set in a deployment monolith. Microservices do 
not impose such technical limitations.

Independence

Decisions regarding technology and putting new versions into production only con-
cern individual microservices. This makes microservices very independent of each 
other, but there has to be some common technical basis. The installation of micro-
services should be automated, there should be a Continuous Delivery pipeline for 
each microservices, and microservices should adhere to the monitoring specifica-
tions. However, within these parameters microservices can implement a practically 
unlimited choice of technical approaches. Due to the greater technological freedom, 
less coordination between microservices is necessary.

4.2 Organizational Benefits

Microservices are an architectural approach, and you could be forgiven for thinking 
that they only benefit software development and structure. However, due to Con-
way’s Law (see section 3.2), architecture also affects team communication, and thus 
the organization.

Microservices can achieve a high level of technical independence, as the last 
section (4.1) discussed. When a team within an organization is in full charge of a 
microservice, the team can make full use of this technical independence. However, 
the team also has the full responsibility if a microservice malfunctions or fails in 
production.

So, microservices support team independence. The technical basis enables teams 
to work on the different microservices with little coordination. This provides the 
foundation for the independent work of the teams.

In other projects, technology or architecture have to be decided centrally, since the 
individual teams and modules are bound to these decisions due to technical restric-
tions. It might just be impossible to use two different libraries or even two different 
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versions of one library within one deployment monolith. Therefore, central coor-
dination is mandatory. For microservices, the situation is different, and this makes 
self-organization possible. However, a global coordination might still be sensible so 
that, for example, a company is able to perform an update including all components 
because of a security problem with a library.

Teams have more responsibilities: they decide the architecture of their microser-
vices. They cannot hand over this responsibility to a central function. This means 
they also have to take responsibility for the consequences, since they are responsible 
for the microservice.

The Scala Decision

In a project employing a microservice-based approach, the central architec-
ture group was tasked with deciding whether one of the teams could use the 
Scala programming language. The group would have to decide whether the 
team could solve its problems more efficiently by using Scala, or whether 
the use of Scala might create additional problems. Eventually, the decision 
was delegated to the team, since the team has to take responsibility for its 
microservice. They have to deal with the consequences if  Scala does not 
fulfill the demands of production or does not support efficient software 
development. They have the investment of getting familiar with Scala first 
and have to estimate whether this effort will pay off in the end. Likewise, 
they have a problem if  suddenly all the Scala developers leave the project or 
switch to another team. To have the responsibility for this decision lie with 
the central architecture group is, strictly speaking, not even possible, since 
the group is not directly affected by the consequences. Therefore, the team 
just has to decide by itself. The team has to include all team members in the 
decision, including the product owner, who will suffer if  the decision results 
in low productivity.

This approach represents a significant change to traditional forms of organiza-
tion where the central architecture group enforces the technology stack to be used 
by everybody. In this type of organization, the individual teams are not responsible 
for decisions or nonfunctional requirements like availability, performance, or scal-
ability. In a classical architecture, the nonfunctional properties can only be han-
dled centrally, since they can only be guaranteed by the common foundations of 
the entire system. When microservices do not force a common foundation anymore, 
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these decisions can be distributed to the teams, enabling greater self-reliance and 
independence.

Smaller Projects

Microservices enable large projects to be divided into a number of smaller projects. 
As the individual microservices are largely independent of each other, the need for 
central coordination is reduced. This reduces the need for a large, centralized project 
management function with its associated communication overhead. When microser-
vices enable the division of a large organization into several smaller ones, the need 
for communication reduces. This makes it possible for teams to focus more of their 
efforts on the implementation of requirements.

Large projects fail more frequently than smaller projects, so it is better when a 
large project can be divided into multiple smaller projects. The smaller scope of the 
individual projects enables more precise estimations. Better estimations improve 
planning and decrease risk. Even if the estimation is wrong, the impact is lower. 
Added to the greater flexibility that microservices offer, this can speed up and facili-
tate the process of decision making, particularly because the associated risk is so 
much lower.

4.3 Benefits from a Business Perspective

The previously discussed organizational benefits also lead to business advantages; 
the projects are less risky, and coordination between teams needs to be less intense so 
the teams can work more efficiently.

Parallel Work on Stories

The distribution into microservices enables work on different stories to occur in par-
allel (see Figure 4.3). Each team works on a story that only affects their own micro-
service. Consequently, the teams can work independently, and the system as a whole 
can be simultaneously expanded in different places. This eventually scales the agile 
process. However, scaling does not take place at the level of the development pro-
cesses, but is facilitated by the architecture and the independence of the teams. 
Changes and deployments of individual microservices are possible without complex 
coordination. Therefore, teams can work independently. When a team is slower or 
encounters obstacles, this does not negatively influence the other teams. Therefore, 
the risk associated with the project is further reduced.
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An unambiguous domain-based design and the assignment of one developer team 
per microservice can scale the development or project organization with the number 
of teams.

It is possible that certain changes will impact several microservices and therefore 
several teams. For example, only certain customers are allowed to order certain types 
of product—for instance, because of age restrictions. In case of the architecture 
depicted in Figure 4.3, changes to all microservices would be necessary to implement 
this feature. The Customer microservice would have to store the data about whether 
a customer is of legal age. Product search should hide or label the products prohib-
ited for underage customers. Finally, the order process has to prevent the ordering of 
prohibited products by underage customers. These changes have to be coordinated. 
Coordination is especially important when one microservice calls another. In that 
situation, the microservice being called has to be changed first so that the caller can 
use the new features.

This problem can certainly be solved, although one could argue that the outlined 
architecture is not optimal. If the architecture is geared to the business processes, 
the changes could be limited to just the order process. Eventually, only the ordering 
is to be prohibited, not searching. The information about whether a certain client 
is allowed to order or not should also be within the responsibility of the order pro-
cess. Which architecture, and consequently which team distribution, is the right one 
depends on the requirements, microservices, and teams in question.
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Figure 4.3 Example of  Legacy Integration
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If the architecture has been selected appropriately, microservices can support 
 agility well. This is certainly a good reason, from a business perspective, to use a 
microservice-based architecture.

4.4 Conclusion

In summary, microservices lead to the following technical benefits (section 4.1):

• Strong modularization ensures that dependencies between microservices can-
not easily creep in.

• Microservices can be easily replaced.

• The strong modularization and the replaceability of microservices leads to a
sustained speed of development: the architecture remains stable, and micro-
services that cannot be maintained any longer can be replaced. Thus, the
quality of the system remains high in the long run, so that the system stays
maintainable.

• Legacy systems can be supplemented with microservices without the need to
carry around all the ballast that has accumulated in the legacy system. There-
fore, microservices are good to use when dealing with legacy systems.

• Since microservices are small deployment units, a continuous delivery pipe-
line is much easier to set up.

• Microservices can be scaled independently.

• If microservices are implemented in line with established approaches, the sys-
tem will end up more robust.

• Each microservice can be implemented in a different programming language
and with a different technology.

• Therefore, microservices are largely independent of each other on a technical
level.

The technical independence affects the organization (section 4.2) in that the teams 
can work independently and on their own authority. There is less need for central 
coordination. This means that large projects can be replaced by a collection of small 
projects, which positively affects both risk and coordination.

From a business perspective, just the effects on risk are already positive (section 4.3). 
However, it is even more attractive that the microservice-based architecture enables the 
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scaling of agile processes without requiring an excessive amount of coordination and 
communication.

Essential Points

• There are a number of technical benefits that range from scalability and
robustness to sustainable development.

• Technical independence results in benefits at an organizational level. Teams
become independent.

• The technical and organizational benefits result in benefits at the business
level: lower risk and faster implementation of more features.

Try and Experiment

Look at a project you know:

• Why are microservices useful in this scenario? Evaluate each benefit by
assigning points (1 = no real benefit; 10 = significant benefit). The possible
benefits are listed in the conclusion of this chapter.

• What would the project look like with or without the use of microservices?

• Develop a discussion of the benefits of microservices from the perspective
of an architect, a developer, a project leader, and the customer for the pro-
ject. The technical benefits will be more of interest to the developers and
architects, while the organizational and business benefits matter more for
project leaders and customers. Which benefits do you emphasize most for
the different groups?

• Visualize the current domain design in your project or product.

• Which teams are responsible for which parts of the project? Where do
you see overlap?

• How should teams be allocated to product features and services to
ensure that they can operate largely independently?
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The separation of a system into microservices makes the system as a whole more 
complex. This leads to challenges at the technical level (see section 5.1)—for instance, 
high latency times in the network or the failure of individual services. There are also 
a number of things to consider at the software architecture level—for instance, it can 
be difficult to move functionality between different microservices (section 5.2). 
Finally, there are many more components to be independently delivered—making 
operations and infrastructure more complex (section 5.3). These challenges have to 
be dealt with when introducing microservices. The measures described in the follow-
ing chapters explain how to handle these challenges.

5.1 Technical Challenges

Microservices are distributed systems with calls between microservices going via the 
network. This can negatively impact both the response time and latency of microser-
vices. The previously mentioned first rule for distributed objects1 states that objects, 
where possible, should not be distributed (see section 3.1).

The reason for that is illustrated in Figure 5.1. A call has to go via the network 
to reach the server, is processed there, and has to then return to the caller. The 
latency just for network communication can be around 0.5 ms in a computing 

1. http://martinfowler.com/bliki/FirstLaw.html
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center (see here).2 Within this period of time a processor running at 3 Ghz can 
 process about 1.5 million instructions. When computation is redistributed to 
another node, it should be checked to find out whether local processing of the 
request might be faster. Latency can further increase because of parameter mar-
shaling and unmarshaling for the call and for the result of the call. Network 
optimizations or connecting nodes to the same network switch can improve the 
situation.

The first rule for distributed objects and the warning to be aware of regarding the 
latency within the network dates back to the time when CORBA (Common Object 
Request Broker Architecture) and EJB (Enterprise JavaBeans) were used in the 
early two-thousands. These technologies were often used for distributed three-tier 
architectures (see Figure 5.2). For every client request the web tier only supplies the 
HTML for rendering the page. The logic resides on another server, which is called 
via the network. Data is stored in the database, and this is typically done on another 
server. When only data is to be shown, there is little happening in the middle tier. 
The data is not processed, just forwarded. For performance and latency reasons, it 
would be much better to keep the logic on the same server as the web tier. Although 
splitting the tiers between servers enables the independent scaling of the middle tier, 
the system does not get faster by doing this for situations where the middle tier has 
little to do.

2. https://www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf

Time
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Figure 5.1 Latency for a Call via the Network
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Web Server
(UI)

Middle Tier
(EJB, CORBA)

Database

Figure 5.2 Three-Tier Architecture

For microservices the situation is different, as the UI is contained in the microser-
vice. Calls between microservices only take place when microservices need the func-
tionality offered by other microservices. If that is often the case, this might indicate 
that there are architectural problems, as microservices should be largely independent 
of each other.

In reality, microservice-based architectures function in spite3 of the challenges 
related to distribution. However, in order to improve performance and reduce latency, 
microservices should not communicate with each other too much.

Code Dependencies

A significant benefit of a microservice-based architecture is the ability to indepen-
dently deploy the individual services. However, this benefit can be undone by code 
dependencies. If a library is used by several microservices and a new version of this 
library is supposed to be rolled out, a coordinated deployment of several microser-
vices might be required—a situation that should be avoided. This scenario can easily 
occur because of binary dependencies where different versions are not compatible 
any more. The deployment has to be timed such that all microservices are rolled out 
in a certain time interval and in a defined order. The code dependency also has to be 
changed in all microservices, a process that has to be prioritized and coordinated 
across all the teams involved. A binary-level dependency is a very tight technical cou-
pling, which leads to a very tight organizational coupling.

3. http://martinfowler.com/articles/distributed-objects-microservices.html

http://www.martinfowler.com/articles/distributed-objects-microservices.html
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Therefore, microservices should adhere to a “shared nothing” approach where 
microservices do not possess shared code. Microservices should instead accept code 
redundancy and resist the urge to reuse code in order to avoid a close organizational 
link.

Code dependencies can be acceptable in certain situations. For instance, when a 
microservice offers a client library that supports callers using the microservice, this 
does not necessarily have negative consequences. The library will depend on the 
interface of the microservice. If the interface is changed in a backward-compatible 
manner, a caller having an old version of the client library can still use the micro-
service. The deployment remains uncoupled. However, the client library can be 
the starting point to a code dependency. For instance, if the client library contains 
domain objects, this can be a problem. In fact, if the client library contains the same 
code for the domain objects that is also used internally, then changes to the internal 
model will affect the clients. This might mean they have to be deployed again. If the 
domain object contains logic, this logic can only be modified when all clients are 
likewise deployed anew. This also violates the principle of independently deployable 
microservices. 

Consequences of Code Dependencies

Here is an example of the effects of code dependencies: User authentication is 
a centralized function, which all services use. A project has developed the ser-
vice implementing authentication. Nowadays there are open-source projects, 
which implement such things (section 7.14), so a home-grown implementa-
tion is rarely sensible any more. In that project each microservice could use 
a library that makes it easier to use the authentication service. This means 
that all microservices have a code dependency on the authentication service. 
Changes to the authentication service might require that the library be rolled 
out again. This in turn means that all microservices have to be modified and 
rolled out again as well. In addition, the deployments of the microservices 
and the authentication service have to be coordinated. This can easily cost 
a two-digit number of work days. It becomes very difficult to modify the 
authentication service due to the code dependency. If the authentication ser-
vice could be deployed quickly and if there were no code dependencies, which 
couple the deployment of the microservices and the authentication service, 
the problem would be solved.
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Unreliable Communication

Communication between microservices occurs over the network and is therefore 
unreliable. Additionally, individual microservices can fail. To ensure that a microser-
vice failure does not lead to a failure of the entire system, the remaining microser-
vices must compensate for the failure and enable the system to continue. However, to 
achieve this goal, the quality of the services may have to be degraded, for example, by 
using default or cached values or limiting the usable functionality (section 9.5).

This problem cannot be completely solved on a technical level. For instance, the 
availability of a microservice can be improved by using hardware with high avail-
ability. However, this increases costs and is not a complete solution; in some respects, 
it can even increase risk. If the microservice fails despite highly available hardware 
and the failure propagates across the entire system, a complete failure occurs. There-
fore, the microservices should still compensate for the failure of the highly available 
microservice.

In addition, the threshold between a technical and a domain problem is crossed. 
Take an automated teller machine (ATM) as an example: When the ATM can-
not retrieve a customer’s account balance, there are two ways to handle the situa-
tion. The ATM could refuse the withdrawal. Although this is a safe option, it will 
annoy the customer and reduce revenue. Alternatively, the ATM could hand out the 
money—maybe up to a certain upper limit. Which option should be implemented is 
a business decision. Somebody has to decide whether it is preferable to play it safe, 
even if it means foregoing some revenue and annoying customers, or to run a certain 
risk and possibly pay out too much money.

Technology Pluralism

The technology freedom of microservices can result in a project using many different 
technologies. The microservices do not need to have shared technology; however, the 
lack of common technology can lead to increasingly complexity in the system as a 
whole. Each team masters the technologies that are used in their own microservice. 
However, the large number of technologies and approaches used can cause the sys-
tem to reach a level of complexity such that no individual developer or team can 
understand all of it any more. Often such a general understanding is not necessary 
since each team only needs to understand its own microservice. However, when it 
becomes necessary to look at the entire system—for example, from a certain limited 
perspective such as operations—this complexity might pose a problem. In this situa-
tion, unification can be a sensible countermeasure. This does not mean that the 
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technology stack has to be completely uniform but that certain parts should be 
 uniform or that the individual microservices should behave in a uniform manner. For 
instance, a uniform logging framework might be defined. The alternative is to define 
just a uniform format for logging. Then different logging frameworks could be used 
that implement the uniform format differently. Also a common technical basis like 
the JVM (Java Virtual Machine) can be decided upon for operational reasons with-
out setting the programming languages.

5.2 Architecture

The architecture of a microservice-based system divides the domain-based pieces of 
functionality among the microservices. To understand the architecture at this level, 
dependencies and communication relationships between the microservices have to 
be known. Analyzing communication relationships is difficult. For large deploy-
ment monoliths there are tools that read source code or even executables and can 
generate diagrams visualizing modules and relationships. This makes it possible to 
verify the implemented architecture, adjust it towards the planned architecture, and 
follow the evolution of the architecture over time. Such overviews are central for 
architectural work; however, they are difficult to generate when using microservices 
as the respective tools are lacking—but there are solutions. Section 7.2 discusses 
these in detail.

Architecture = Organization

A key concept that microservices are based on is that organization and architecture 
are the same. Microservices exploit this situation to implement the architecture. The 
organization is structured in a way that makes the architecture implementation easy. 
However, the downside of this is that an architecture refactoring can require changes 
to the organization. This makes architectural changes more difficult. This is not only 
a problem of microservices; Conway’s Law (section 3.2) applies to all projects. How-
ever, other projects are often not aware of the law and its implications. Therefore, 
they do not use the law productively and cannot estimate the organizational prob-
lems caused by architectural changes.

Architecture and Requirements

The architecture also influences the independent development of individual micro-
services and the independent streams of stories. When the domain-based distribu-
tion of microservices is not optimal, requirements might influence more than one 
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microservice and therefore more than one team. This increases the coordination 
required between the different teams and microservices. This negatively influences 
productivity and undoes one of the primary reasons for the introduction of 
microservices.

With microservices the architecture influences not only software quality, but also 
the organization and the ability of teams to work independently and therefore pro-
ductivity. Designing an optimal architecture is even more important since mistakes 
have far-reaching consequences.

Many projects do not pay sufficient attention to domain architecture, often much 
less than they pay to technical architecture. Most architects are not as experienced 
with domain architecture as with technical architecture. This situation can cause 
significant problems in the implementation of microservice-based approaches. The 
splitting of functionality into different microservices and therefore into the areas 
of responsibility for the different teams has to be performed according to domain 
criteria.

Refactoring

Refactoring a single microservice is straightforward since microservices are small. 
They can also be easily replaced and reimplemented.

Between microservices the situation is different. Transferring functionality from 
one microservice to another is difficult. The functionality has to be moved into a 
different deployment unit. This is always more difficult than moving functionality 
within the same unit. Technologies can be different between different microservices. 
Microservices can use different libraries and even different programming languages. 
In such cases, the functionality must be newly implemented in the technology of the 
other microservice and subsequently transferred into this microservice. However, 
this is far more complex than moving code within a microservice.

Agile Architecture

Microservices enable new product features to be rapidly delivered to end users and 
for development teams to reach a sustainable development speed. This is a particular 
benefit when there are numerous and hard-to-predict requirements. This is exactly 
the environment where microservices are at home. Changes to a microservice are 
also very simple. However, adjusting the architecture of the system, for instance, by 
moving around functionality, is not so simple.

Often the first attempt at the architecture of a system in not optimal. During 
implementation the team learns a lot about the domain. In a second attempt, it 
will be much more capable of designing an appropriate architecture. Most projects 
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suffering from bad architecture had a good architecture at the outset based on the 
state of knowledge at that time. However, as the project progressed, it became clear 
that requirements were misunderstood, and new requirements arose to the point 
where the initial architecture stopped fitting. Problems arise when this does not 
lead to changes. If the project just continues with a more and more inappropriate 
architecture, at some point the architecture will not fit at all. This can be avoided by 
adjusting the architecture step by step, adapting to the changed requirements based 
on the current state of knowledge. The ability to change and adjust architecture in 
line with new requirements is central to this. However, the ability to change the archi-
tecture at the level of the entire system is a weakness of microservices while changes 
within microservices are very simple.

Summary

When using microservices, architecture is even more important than in other systems 
as it also influences the organization and the ability to independently work on 
requirements. At the same time, microservices offer many benefits in situations 
where requirements are unclear and architecture therefore has to be changeable. 
Unfortunately, the interplay between microservices is hard to modify since the distri-
bution into microservices is quite rigid because of the distributed communication 
between them. Besides, as microservices can be implemented with different technol-
ogies, it gets difficult to move functionality around. On the other hand, changes to 
individual microservices or their replacement are very simple.

5.3 Infrastructure and Operations

Microservices are supposed to be brought into production independently of each 
other and should be able to use their own technology stacks. For these reasons each 
microservice usually resides on its own server. This is the only way to ensure com-
plete technological independence. It is not possible to handle the number of sys-
tems required for this approach using hardware servers. Even with virtualization 
the management of such an environment remains difficult. The number of virtual 
machines required can be higher than might otherwise be used by the entire IT 
function of a business. When there are hundreds of microservices, there are also 
hundreds of virtual machines required, and for some of them, load balancing to 
distributed work across multiple instances. This requires automation and appro-
priate infrastructure that is capable of generating a large number of virtual 
machines.
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Continuous Delivery Pipelines

Beyond what is required in production each microservice requires additional infra-
structure; it needs its own continuous delivery pipeline so that it can be brought into 
production independently of other microservices. This means that appropriate test 
environments and automation scripts are necessary. The large number of pipelines 
brings about additional challenges: The pipelines have to be built up and maintained. 
To reduce expense, they also need to be largely standardized.

Monitoring

Each microservice also needs to be monitored. This is the only way to diagnose prob-
lems with the service at runtime. With a deployment monolith it is relatively straight-
forward to monitor the system. When problems arise, the administrator can log into 
the system and use specific tools to analyze errors. Microservice-based systems con-
tain so many systems that this approach is no longer feasible. Consequently, there 
has to be a monitoring system that brings monitoring information from all the ser-
vices together. This information should include not only the typical information 
from the operating system and the I/O to the hard disc and to the network, but also a 
view into the application should be possible based on application metrics. This is the 
only way for developers to find out where the application has to be optimized and 
where problems exist currently.

Version Control

Finally, every microservice has to be stored under version control independent of 
other microservices. Only software that is separately versioned can be brought into 
production individually. When two software modules are versioned together, they 
should always be brought into production together. If they are not, then a change 
might have affected both modules—meaning that both services should be newly 
delivered. Moreover, if an old version of one of the services is in production, it is not 
clear whether an update is necessary or whether the new version does not contain 
changes; after all, the new version might only have contained changes in the other 
microservice.

For deployment monoliths a lower number of servers, environments, and pro-
jects in version control would be necessary. This reduces complexity. Operation 
and infrastructure requirements are much higher in a microservices environ-
ment. Dealing with this complexity is the biggest challenge when introducing 
microservices.
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5.4 Conclusion

This chapter discussed the different challenges associated with microservice-based 
architectures. At a technical level (section 5.1) the challenges mostly revolve around 
the fact that microservices are distributed systems, which makes ensuring good sys-
tem performance and reliability more difficult. Technical complexity also increases 
because of the variety of technologies used. Furthermore, code dependencies can 
render the independent deployment of microservices impossible.

The architecture of a microservice-based system (section 5.2) is extremely 
important because of its impact on the organization and the ability to have paral-
lel implementation of multiple stories. At the same time, changes to the interplay 
of microservices is difficult. Functionality cannot easily be transferred from one 
microservice to another. Classes within a project can often be moved with support 
from development tools, but in the case of microservices manual work is necessary. 
The interface to the code changes—from local calls to communication between 
microservices—and this increases the effort required. Finally, microservices can be 
written in different programming languages—in such situations moving code means 
that it has to be rewritten.

Changes to system architecture are often necessary because of unclear require-
ments. Even with clear requirements, the team continuously improves its knowledge 
about the system and its domain. In circumstances where the use of microservices is 
particularly beneficial because of rapid and independent deployments, architecture 
should be made especially easy to change. Within microservices changes are indeed 
easy to implement; however, between microservices they are very laborious.

Finally, infrastructure complexity increases because of the larger number of ser-
vices (section 5.3) since more servers, more projects in version control, and more 
continuous delivery pipelines are required. This is a primary challenge encountered 
with microservice-based architectures.

Part III of the book will show solutions to these challenges.

Essential Points

• Microservices are distributed systems. This makes them technically complex.

• A good architecture is very important because of its impact on the organiza-
tion. While the architecture is easy to modify within microservices, the inter-
play between microservices is hard to change.

• Due to the number of microservices, more infrastructure is required—for
example, in terms of server environments, continuous delivery pipelines, and
projects in version control.
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Try and Experiment

• Choose one of the scenarios from Chapter 2, “Microservices Scenarios,” or
a project you know:

• What are the likely challenges? Evaluate these challenges. The conclusion
of this chapter highlights the different challenges in a compressed manner.

• Which of the challenges poses the biggest risk? Why?

• Are there ways to use microservices in a manner which maximizes the
benefits and minimizes the downsides? For example, can heterogeneous
technology stacks be avoided?
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At first glance microservices and SOA (service-oriented architecture) seem to have a 
lot in common, for both approaches focus on the modularization of large systems 
into services. Are SOA and microservices actually the same or are there differences? 
Answering this question helps us to get an in-depth understanding of microservices, 
and some of the concepts from the SOA field are interesting for microservice-based 
architectures. An SOA approach can be advantageous when migrating to microser-
vices. It separates the functionality of the old applications into services that can then 
be replaced or supplemented by microservices.

Section 6.1 defines the term “SOA” as well as the term “service” within the con-
text of SOA. Section 6.2 extends this topic by highlighting the differences between 
SOA and microservices.

6.1 What Is SOA?

SOA and microservices have one thing in common: neither has a clear definition. 
This section looks only at one possible definition. Some definitions would suggest 
that SOA and microservices are identical. In the end, both approaches are based on 
services and the distribution of applications into services.

The term “service” is central to SOA.
An SOA service should have the following characteristics:

• It should implement an individual piece of the domain.

• It should be possible to use it independently.

Chapter 6

Microservices and SOA
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• It should be available over the network.

• Each service has an interface. Knowledge about the interface is sufficient to use 
the service.

• The service can be used by different programming languages and platforms.

• To make it easy to use, the service is registered in a directory. To locate and use
the service, clients search this directory at run time.

• The service should be coarse grained in order to reduce dependencies. Small
services can only implement useful functionality when used in conjunction
with other services. Therefore, SOA focuses on larger services.

SOA services do not need to be newly implemented; they may already be present 
in company applications. Introducing SOA requires these services to be made availa-
ble outside of those applications. Splitting applications into services means they can 
be used in different ways. This is supposed to improve the flexibility of the overall 
IT and is the goal of SOA. By splitting applications into individual services it is pos-
sible to reuse services during the implementation of business processes. This simply 
requires the orchestration of the individual services.

Figure 6.1 shows a possible SOA landscape. Like the previous examples this 
one comes from the field of e-commerce. There are different systems in the SOA 
landscape:

• The CRM (customer relationship management) is an application that
stores essential information about customers. This information includes
not only contact details but also the history of all transactions with the
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customer—telephone calls as well as emails and orders. The CRM exposes ser-
vices that, for instance, support the creation of a new customer, provide infor-
mation about a customer, or generate reports for all customers.

• The order system is responsible for order processing. It can receive new orders,
provide information about the status of an order, and cancel an order. This
system provides access to the different pieces of functionality via individual
services. These services may have been added as additional interfaces to the
system after the first version was put into production.

• In the diagram the CRM and order system are the only systems. In reality there
would certainly be additional systems that would, for example, provide the
product catalog. However, to illustrate an SOA landscape these two systems
will suffice.

• For the systems to be able to call each other there is an integration platform.
This platform enables communication between the services. It can compose
the services through orchestration. The orchestration can be controlled by a
technology that models business processes and calls the individual services to
execute the different processes.

• Therefore, orchestration is responsible for coordinating the different services.
The infrastructure is intelligent and can react appropriately to different mes-
sages. It contains the model of the business processes and is therefore an
important part of the business logic.

• The SOA system can be used via a portal. The portal is responsible for provid-
ing users with an interface for using the services. There can be different portals: 
one for the customers, one for the support, and one for internal employees, for
instance. Also, the system can be called via rich client applications or mobile
apps. From an architectural perspective this makes no difference: All such sys-
tems access the different services and make them usable for a user. They are
effectively a universal UI—able to use all services in the SOA.

Each of these systems could be operated and developed by individual teams. In 
this example there could be one team for the CRM and another for the order system. 
Additional teams could be allocated for each portal, and finally one team could take 
care of integration and orchestration.

Figure 6.2 shows how communication is structured in an SOA architecture. Users 
typically work with the SOA via the portal. From here business processes can be ini-
tiated that are then implemented in the orchestration layer. These processes use the 
services. When migrating from a monolith to an SOA, users might still use a mono-
lith through its own user interface. However, SOA usually aims to have a portal as 
the central user interface and an orchestration layer for implementing processes.
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Figure 6.2 Communication in an SOA Architecture

Introducing SOA

Introducing SOA into a business is a strategic initiative involving different teams. 
The end game is to distribute the company’s entire IT into separate services. Once 
separated, the services are easier to compose in new and different ways to create new 
functionality and processes. However, this is only possible when all systems in the 
entire organization have been modified. Only when enough services are available can 
business processes actually be implemented by simple orchestration. This is when 
SOA's advantages are really evident. Therefore, the integration and orchestration 
technology has to be used across the entire IT to enable service communication and 
integration. This involves high investment costs as the entire IT landscape has to be 
changed. This is one of the main points of criticism1 of SOA.

The services can also be offered to other companies and users via the Internet 
or over private networks. This makes SOA well suited to support business concepts 
that are based on the outsourcing of services or the inclusion of external services. 
In an e-commerce application an external provider could, for instance, offer simple 
 services like address validation or complex services like a credit check.

Services in an SOA

When introducing SOA based on old systems, the SOA services are simply interfaces 
of large deployment monoliths. One monolith offers several services. The services 
are built upon the existing applications. Often it is not even necessary to adjust the 
internals of a system in order to offer the services. Such a service typically does not 
have a UI; instead, it just offers an interface for other applications. A UI exists for all 
systems. It is not part of a service, but independent—for instance, in the portal.

1. http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html

http://www.apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html
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In addition, it is possible to implement smaller deployment units in an SOA. The 
definition of an SOA service does not limit the size of the deployment units, which is 
quite different from microservices where the size of the deployment units is a defin-
ing feature.

Interfaces and Versioning

Service versioning in SOA is a particular challenge. Service changes have to be 
 coordinated with the users of the respective service. Because of this coordination 
requirement, changes to the interface of the services can be laborious. Service users 
are unlikely to adjust their own software if they do not benefit from the new inter-
face. Therefore, old interface versions frequently have to be supported as well. This 
means that numerous interface versions probably have to be supported if a service is 
used by many clients. This increases software complexity and makes changes more 
difficult. The correct functioning of the old interfaces has to be ensured with each 
new software release. If data is added, challenges arise because the old interfaces do 
not support this new data. This is not a problem during reading. However, when 
writing, it can be difficult to create new data sets without the additional data.

External Interfaces

If there are external users outside the company using the service, interface changes 
get even more difficult. In a worst case the provider of the service may not even know 
who is using it if it is available to anonymous users on the Internet. In that situation 
it is very difficult to coordinate changes. Consequently, switching off an old service 
version can be unfeasible. This leads to a growing number of interface versions, and 
service changes get more and more difficult. This problem can occur with microser-
vices as well (see section 8.6).

The interface users also face challenges: If they need an interface modification, 
they have to coordinate this with the team offering the service. Then the changes 
have to be prioritized in relation to all the other changes and wishes of other teams. 
As discussed previously, an interface change is no easy task. This can lead to it tak-
ing a long time before changes are, in fact, implemented. This further hampers the 
development of the system.

Interfaces Enforce a Coordination of Deployments

After a change to the interface the deployment of the services has to be coordinated. 
First the service has to be deployed to offer the new version of the interface. Only 
then can the service that uses the new interface be deployed. Since applications are 
mostly deployment monoliths in the case of SOA, several services can sometimes 
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only be deployed together. This makes the coordination of services more difficult. In 
addition, the deployment risk increases as the release of a monolith takes a long time 
and is hard to undo—just because the changes are so extensive.

Coordination and Orchestration

Coordinating an SOA system via orchestration in the integration layer poses a 
 number of challenges. In a way, a monolith is generated: All business processes are 
reflected in this orchestration. This monolith is often even worse than the usual mon-
oliths as it is using all the systems within the enterprise IT. In extreme cases it can end 
up that the services only perform data administration while all the logic is found in 
the orchestration. In such situations the entire SOA can deteriorate to being nothing 
other than a monolith that has its entire logic in the orchestration.

However, even in other settings, changes to SOA are not easy. Domains are divided 
into services in the different systems and into business processes in orchestration. 
When a change to functionality also concerns services or the user interface, things 
get difficult. Changing the business processes is relatively simple, but changing the 
service is only possible by writing code and by deploying a new version of the appli-
cation providing the service. The necessary code changes and the deployment can be 
very laborious. Thus, the flexibility of SOA, which was meant to arise from a simple 
orchestration of services, is lost. Modifications of the user interface cause changes to 
the portal or to the other user interface systems and also require a new deployment.

Technologies

SOA is an architectural approach and is independent of concrete technology. How-
ever, an SOA has to enforce common technology for communication between the 
services, like microservices do. In addition, a concrete technology needs to be 
enforced for the orchestration of services. Often, introducing an SOA leads to the 
introduction of complex technologies to enable the integration and orchestration of 
services. There are special products that support all aspects of SOA. However, they 
are typically complex, and their features are rarely ever used to full capacity.

This technology can rapidly turn into a bottleneck. Many problems with these 
technologies are attributed to SOA although SOA could be implemented with other 
technologies as well. One of the problems is the complexity of the web services pro-
tocols. SOA on its own is quite simple; however, in conjunction with the extensions 
from the WS-* environment, a complex protocol stack arises. WS-* is necessary 
for transactions, security, and other extensions. Complex protocols exacerbate the 
 interoperability—however, interoperability is a prerequisite for an SOA.
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An action on the user interface has to be processed by the orchestration and the 
different services. These are distributed calls within the network with associated 
overhead and latency. Worse still, this communication runs via the central integra-
tion and orchestration technology, which therefore has to cope with numerous calls.

6.2 Differences between SOA and Microservices

SOA and microservices are related: both aim at splitting applications into services. It 
is not easy to distinguish between SOA and microservices by just considering what is 
happening on the network. Both architectural approaches have services exchanging 
information over the network.

Communication

Like microservices, SOA can be based on asynchronous communication or synchro-
nous communication. SOAs can be uncoupled by merely sending events such as “new 
order.” In these situations, every SOA service can react to the event with different 
logic. One service can write a bill and another can initiate delivery. The services are 
strongly uncoupled since they only react to events without knowing the trigger for 
the events. New services can easily be integrated into the system by also reacting to 
such events.

Orchestration

However, at the integration level the differences between SOA and microservices 
appear. In SOA the integration solution is also responsible for orchestrating the 
 services. A business process is built up from services. In a microservice-based archi-
tecture the integration solution does not possess any intelligence. The microservices 
are responsible for communicating with other services. SOA attempts to use orches-
tration to gain additional flexibility for the implementation of business processes. 
This will only work out when services and user interface are stable and do not have 
to be modified frequently.

Flexibility

For achieving the necessary flexibility microservices, on the other hand, exploit the 
fact that each microservice can be easily changed and brought into production. 
When the flexible business processes of SOA are not sufficient, SOA forces the change 
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of services into deployment monolith or user interfaces in an additional deployment 
monolith.

Microservices place emphasis on isolation: Ideally a user interaction is 
 completely processed within one microservice without the need to call another 
microservice. Therefore, changes required for new features are limited to individual 
microservices. SOA distributes the logic to the portal, the orchestration, and the 
individual services.

Microservices: Project Level

However, the most important difference between SOA and microservices is the level 
at which the architecture aims. SOA considers the entire enterprise. It defines how a 
multitude of systems interact within the enterprise IT. Microservices, on the 
other hand, represent an architecture for an individual system. They are an alterna-
tive to other modularization technologies. It would be possible to implement a 
 microservice-based system with another modularization technology and then to 
bring the system into production as a deployment monolith without distributed ser-
vices. An entire SOA spans the entire enterprise IT. It has to look at different systems. 
An alternative to a distributed approach is not possible. Therefore, the decision to 
use a microservice-based architecture can be limited to an individual project while 
the introduction and implementation of SOA relates to the entire enterprise.

The SOA scenario depicted in Figure 6.1 results in a fundamentally different 
architecture (see Figure 6.3) if implemented2 using microservices:3

Integration

Forecast

Reports

EMail- 
Marketing

Web 
TrackingTeam Tracking

Team Marketing

Team Reports

Team Forecast

Figure 6.3 CRM as a Collection of  Microservices

2. http://slideshare.net/ewolff/micro-services-neither-micro-nor-service

3. https://blogs.oracle.com/soacommunity/entry/podcast_show_notes_microservices_roundtable

http://www.slideshare.net/ewolff/micro-services-neither-micro-nor-service
https://www.blogs.oracle.com/soacommunity/entry/podcast_show_notes_microservices_roundtable
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• Since microservices refer to a single system, the architecture does not need to
involve the entire IT with its different systems but can be limited to an individ-
ual system. In Figure 6.3 this system is the CRM. Thus, implementing micro-
ser vices is relatively easy and not very costly as it is sufficient to implement one
individual project rather than change the entire IT landscape of the enterprise.

• Accordingly, a microservice-based architecture does not require an integration
technology to be introduced and used throughout the company. The use of
a specific integration and communication technology is limited to the micro-
service system—it is even possible to use several approaches. For instance,
high-performance access to large data sets can be implemented by replicating
the data in the database. For access to other systems, again, other technolo-
gies can be used. In the case of SOA all services in the entire company need
to be accessible via a uniform technology. This requires a uniform technology
stack. Microservices focus on simpler technologies, which do not have to fulfill
requirements as complex as those in SOA suites.

• In addition, communication between microservices is different: Microservices
employ simple communication systems without any intelligence. Microser-
vices call each other or send messages. The integration technology does not
perform any orchestration. A microservice can call several other microservices
and implement an orchestration on its own. In that situation, the logic for the
orchestration resides in the microservice and not in an integration layer. In the
case of microservices the integration solution contains no logic, because it
would originate from different domains. This conflicts with the distribution
according to domains, which microservice-based architectures aim at.

• The use of integration is also entirely different. Microservices avoid communi-
cation with other microservices by having the UI integrated into the microser-
vice due to their domain-based distribution. SOA focuses on communication.
SOA obtains its flexibility by orchestration—this is accompanied by communi-
cation between services. In the case of microservices the communication does
not necessarily have to be implemented via messaging or REST: An integration
at the UI level or via data replication is also possible.

• CRM as a complete system is not really present anymore in a microservice-
based architecture. Instead there is a collection of microservices, each covering
specific functionality like reports or forecasting transaction volume.

• While in SOA all functionality of the CRM system is collected in a single
deployment unit, each service is an independent deployment unit and can be
brought into production independently of the other services in the case of
microservice-based approaches. Depending on the concrete technical infra-
structure the services can be even smaller than the ones depicted in Figure 6.3.
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• Finally, the handling of UI is different: For microservices the UI is part of the
microservice, while SOA typically offers only services, which then can be used
by a portal.

• The division into UI and service in SOA has far-reaching consequences: To
implement a new piece of functionality including the UI in SOA, at mini-
mum the service has to be changed and the UI adjusted. This means that at
least two teams have to be coordinated. When other services in other applica-
tions are used, even more teams are involved, resulting in even greater coor-
dination efforts. In addition, there are also orchestration changes, which are
implemented by a separate team. Microservices, on the other hand, try to
ensure that an individual team can bring new functionality into production
with as little need for coordination with other teams as possible. Due to the
 microservice-based architecture, interfaces between layers, which are normally
between teams, are now within a team. This facilitates the implementation
of changes. The changes can be processed in one team. If another team were
involved, the changes have to be prioritized in relation to other requirements.

• Each microservice can be developed and operated by one individual team. This
team is responsible for a specific domain and can implement new requirements
or changes to the domain completely independently of other teams.

• Also, the approach is different between SOA and microservices: SOA  introduces 
only one new layer above the existing services in order to combine applications
in new ways. It aims at a flexible integration of existing applications. Micro-
services serve to change the structure of the applications themselves—in pur-
suit of the goal of making changes to applications easier.

The communication relationships of microservices are depicted in Figure 6.4. The 
user interacts with the UI, which is implemented by the different microservices. In 
addition, the microservices communicate with each other. There is no central UI or 
orchestration.

Service Service

Service

Figure 6.4 Communication in the Case of  Microservices
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Synergies

There are definitely areas where microservices and SOA have synergies. In the end 
both approaches pursue the goal of separating applications into services. Such a step 
can be helpful when migrating an application to microservices: When the applica-
tion is split into SOA services, individual services can be replaced or supplemented 
by microservices. Certain calls can be processed by a microservice while other calls 
are still processed by the application. This enables the migration of applications and 
the implementation of microservices in a step-by-step manner.

Figure 6.5 shows an example: The uppermost service of CRM is supplemented 
by a microservice. This microservice now takes all calls and can, if necessary, call the 
CRM. The second CRM service is completely replaced by a microservice. Using this 
approach, new functionality can be added to the CRM. At the same time, it is not 
necessary to reimplement the entire CRM; instead, microservices can complement it 
at selected places. Section 7.6 presents additional approaches to how legacy applica-
tions can be replaced by microservices.

6.3 Conclusion

Table 6.1 summarizes the differences between SOA and microservices.
At an organizational level the approaches are very different: SOAs place 

emphasis on the structure of the entire enterprise IT whereas microservices can 
be utilized in an individual project. SOAs focus on an organization where some 
teams develop backend services, while a different team implements the UI. In a 
microservice-based approach one team should implement everything in order to 
facilitate communication and speed up the implementation of features. That is 
not a goal of SOA. In SOA a new feature can involve changes to numerous services 
and therefore requires communication between a large number of teams. Micro-
services try to avoid this.

Service

Service

Service

Service

Service

CRM

Micro-
service

Micro-
service

Figure 6.5 SOA for Migrating to Microservices
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Table 6.1 Differences between SOA and Microservices

SOA Microservices

Scope Enterprise-wide 
architecture

Architecture for one project

Flexibility Flexibility by 
orchestration

Flexibility by fast deployment and 
rapid, independent development of 
Microservices

Organization Services are 
implemented by 
different organizational 
units

Services are implemented by 
different organizational by teams 
in the same project

Deployment Monolithic deployment 
of several services

Each microservice can be deployed 
individually

UI Portal as universal UI 
for all services

Service contains UI

At a technical level there are similarities: Both concepts are based on services. The 
service granularity can be similar. Because of these technical similarities, it can be 
difficult to distinguish between SOA and microservices. However, from conceptual, 
architectural, and organizational viewpoints both approaches have very different 
features.

Essential Points

• SOA and microservices split applications into services that are available on the
network. Similar technologies can be employed to this end.

• SOA aims at flexibility at the enterprise IT level through the orchestration of
services. This is a complex undertaking and only works when the services don't 
need to be modified.

• Microservices focus on individual projects and aim at facilitating deployment
and parallel work on different services.
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Try and Experiment

• A new product feature is to be incorporated into the SOA landscape shown
in Figure 6.1. The CRM does not have support for email campaigns. There-
fore, a system for email campaigns has to be implemented. It is suggested
that two services are created—one for the creation and execution of cam-
paigns and a second service for evaluating the results of a campaign.

An architect has to answer the following questions:

• Is the SOA infrastructure needed to integrate the two new services? The
service for campaign evaluation needs to handle a large amount of data.

• Would it be better to use data replication, UI-level integration, or service
calls for accessing large amounts of data?

• Which of these integration options is typically offered by SOA?

• Should the service integrate into the existing portal or have its own user
interface? What are the arguments in favor of each option?

• Should the new functionality be implemented by the CRM team?



ptg18144917

This page intentionally left blank 



ptg18144917

95

Part III demonstrates how microservices can be implemented. After studying the 
chapters in this part the reader should be able to not only design microservice-based 
architectures but also implement them and evaluate effects the microservices 
approach may have on his or her organization.

Chapter 7, “Architecture of Microservice-Based Systems,” describes the archi-
tecture of microservice-based systems. It focuses on the interplay between individual 
microservices.

The domain architecture deals with domain-driven design as the basis of 
 microservice-based architectures and shows metrics that allow you to measure the 
quality of the architecture. Architecture management is a challenge: It can be  difficult 
to keep the overview of the numerous microservices. However, often it is  sufficient to 
understand how a certain use case is implemented and which microservices interact 
in a specific scenario.

Practically all IT systems are subject to more or less profound change. There-
fore, the architecture of a microservice system has to evolve, and the system has 
to undergo continuous development. To achieve this, several challenges have to be 
addressed, which do not arise in this form in the case of deployment monoliths—for 
instance, the overall distribution into microservices is difficult to change. However, 
changes to individual microservices are simple.

In addition, microservice systems need to integrate legacy systems. This is quite 
simple as microservices can treat legacy systems as a black box. A replacement of 
a deployment monolith by microservices can progressively transfer more function-
alities into microservices without having to adjust the inner structure of the legacy 
system or having to understand the code in detail.

PART III

Implementing Microservices
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The technical architecture comprises typical challenges for the implementation 
of microservices. In most cases there is a central configuration and coordination 
for all microservices. Furthermore, a load balancer distributes the load between the 
individual instances of the microservices. The security architecture has to leave each 
microservice the freedom to implement its own authorizations in the system but 
also ensure that a user needs to log in only once. Finally, microservices should return 
information concerning themselves as documentation and as metadata.

Chapter 8, “Integration and Communication,” shows the different possibili-
ties for the integration and communication between microservices. There are three 
 possible levels for integration:

• Microservices can integrate at the web level. In that case each microservice
delivers a part of the web UI.

• At the logic level microservices can communicate via REST or messaging.

• Data replication is also possible.

Via these technologies the microservices have internal interfaces for other 
microservices. The complete system can have one interface to the outside. Changes 
to the different interfaces create different challenges. Accordingly, this chapter also 
deals with versioning of interfaces and the effects thereof.

Chapter 9, “Architecture of Individual Microservices,” describes possibilities 
for the architecture of an individual microservice. There are different approaches for 
an individual microservice:

• CQRS divides read and write access into two separate services. This allows for
smaller services and an independent scaling of both parts.

• Event Sourcing administrates the state of a microservice via a stream of events
from which the current state can be deduced.

• In a hexagonal architecture the microservice possesses a core, which can be
accessed via different adaptors and which communicates also via such  adaptors 
with other microservices or the infrastructure.

Each Microservice can follow an independent architecture.
In the end all microservices have to handle technical challenges like resilience and 

stability—these issues have to be solved by their technical architecture.
Testing is the focus of Chapter 10, “Testing Microservices and Microservice-

Based Systems.” Also tests have to take the special challenges associated with 
microservices into consideration.
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The chapter starts off by explaining why tests are necessary at all and how a 
 system can be tested in principle.

Microservices are small deployment units. This decreases the risk associated with 
deployments. Accordingly, besides tests, optimization of deployment can also help 
to decrease the risk.

Testing the entire system represents a special problem in case of microservices 
since only one microservice at a time can pass through this phase. If the tests last 
one hour, only eight deployments will be feasible per working day. In the case of 50 
microservices that is by far too few. Therefore, it is necessary to limit these tests as 
much as possible.

Often microservices replace legacy systems. The microservices and the legacy 
system both have to be tested—along with their interplay. Tests for the individual 
microservices differ in some respects greatly from tests for other software systems.

Consumer-driven contract tests are an essential component of microser-
vice tests—They test the expectations of a microservice in regard to an interface. 
Thereby the correct interplay of microservices can be ensured without having to test 
the microservices together in an integration test. Instead a microservice defines its 
requirements for the interface in a test that the used microservice can execute.

Microservices have to adhere to certain standards in regard to monitoring or log-
ging. The adherence to these standards can also be checked by tests.

Operation and continuous delivery are the focus of Chapter 11, “Operation and 
Continuous Delivery of Microservices.” The infrastructure is especially an essen-
tial challenge when introducing microservices. Logging and monitoring have to be 
uniformly implemented across all microservices; otherwise, the associated expendi-
ture gets too large. In addition, there should be a uniform deployment. Finally, start-
ing and stopping of microservices should be possible in a uniform manner—in other 
words, via a simple control. For these areas the chapter introduces concrete technolo-
gies and approaches. Additionally, the chapter presents infrastructures that  especially 
facilitate the operation of a microservices environment.

Finally, Chapter 12, “Organizational Effects of a Microservice-Based Archi-
tecture,” discusses how microservices influence the organization. Microservices ena-
ble a simpler distribution of tasks to independent teams and thus for parallel work 
on different features. To that end the tasks have to be distributed to the teams, which 
subsequently introduce the appropriate changes into their microservices. However, 
new features can also comprise several microservices. In that case one team has to 
put requirements to another team—this requires a lot of coordination and delays the 
implementation of new features. Therefore, it can be better that teams also change 
microservices of other teams.

Microservices divide the architecture into micro and macro architecture: In 
regards to micro architecture the teams can make their own decisions while the 
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macro architecture has to be defined for and coordinated across all microservices. In 
areas like operation, architecture, and testing individual aspects can be assigned to 
micro or macro architecture.

DevOps as organizational form fits well with microservices since close coop-
eration between operation and development is very useful, especially for the 
 infrastructure-intensive microservices.

The independent teams each need their own independent requirements, which in 
the end have to be derived from the domain. Consequently, microservices also have 
effects in these areas.

Code recycling is likewise an organizational problem: How do the teams coordi-
nate the different requirements for shared components? A model that is inspired by 
open-source projects can help.

However, there is of course the question whether microservices are possible at all 
without organizational changes—after all, the independent teams constitute one of 
the essential reasons for introducing microservices.
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This chapter discusses how microservices should behave when viewed from the 
 outside and how an entire microservice system can be developed. Chapter 8, 
 “Integration and Communication,” covers possible communication technologies 
that are an important technology component. Chapter 9, “Architecture of Individual 
Microservices,” focuses on the architecture of individual microservices.

Section 7.1 describes what the domain architecture of a microservice system 
should look like. Section 7.2 presents appropriate tools to visualize and manage the 
architecture. Section 7.3 shows how the architecture can be adapted in a  stepwise 
manner. Only a constant evolution of the software architecture will ensure that 
the system remains maintainable in the long run and can be developed further. 
 Section 7.4 discusses the goals and approaches that are important to enable further 
development.

Next, a number of approaches for the architecture of a microservice-based system 
are explained. Section 7.6 discusses the special challenges that arise when a legacy 
application is to be enhanced or replaced by microservices. Section 7.8 introduces 
event-driven architecture. This approach makes possible architectures that are very 
loosely coupled.

Finally, Section 7.9 deals with the technical aspects relevant to the architecture 
of a microservice-based system. Some of these aspects are presented in depth in the 
 following sections: mechanisms for coordination and configuration (section 7.10), 
Service Discovery (section 7.11), Load Balancing (section 7.12), scalability (section 
7.13), security (section 7.14), and finally documentation and metadata (section 7.15).

Chapter 7

Architecture of 
Microservice-Based Systems
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7.1 Domain Architecture

The domain architecture of a microservice-based system determines which microser-
vices within the system should implement which domain. It defines how the entire 
domain is split into different areas, each of which are implemented by one 
 microservice and thus one team. Designing such an architecture is one of the pri-
mary challenges when introducing microservices. It is, after all, an important moti-
vation for the use of microservices that changes to the domain can be implemented, 
ideally, by just one team changing just one microservice—minimizing coordination 
and communication across teams. Done correctly this ensures that microservices can 
support the scaling of software development since even large teams need little com-
munication and therefore can work productively.

To achieve this, it is important that the design of the domain architecture for 
the microservices makes it possible for changes to be limited to single microser-
vices and thus individual teams. When the distribution into microservices does 
not  support this, changes will require additional coordination and communica-
tion, and the advantages that a microservice-based approach can bring will not 
be achieved.

Strategic Design and Domain-Driven Design

Section 3.3 discussed the distribution of microservices based on strategic design, a 
concept taken from domain-driven design. A key element is that the microservices 
are distributed into contexts—that is, areas that represent separate functionality.

Often architects develop a microservice architecture based on entities from a 
domain model. A certain microservice implements the logic for a certain type of 
entity. Using this approach might give, for instance, one microservice for custom-
ers, one for items, and one for deliveries. However, this approach conflicts with 
the idea of Bounded Context, which stipulates that uniform modeling of data 
is impossible. Furthermore, this approach isolates changes very badly. When a 
process is to be modified and entities have to be adapted, the change is distrib-
uted across different microservices. As a result, changing the order process will 
impact the entity modeling for customers, items, and deliveries. When that is the 
case, the three microservices for the different entities have to be changed in addi-
tion to the microservice for the order process. To avoid this, it can be sensible to 
keep certain parts of the data for customers, items, and deliveries in the microser-
vice for the order process. With this approach when changes to the order process 
require the data model to be modified, then this change can be limited to a single 
microservice.
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However, this does not prevent a system from having services dedicated to the 
administration of certain entities. It may be necessary to manage the most fun-
damental data of a certain business entity in a service. For example, a service can 
certainly administrate the client data but leave specific client data, such as a bonus 
program number, to other microservices—for example to the microservice for the 
order process, which likely has to know this number.

Example Otto Shop

An example—the architecture of the Otto shop1—illustrates this concept. Otto 
GmbH is one of the biggest e-commerce companies. In the architecture there are, 
on the one hand, services like user, order, and product, which are oriented toward 
data, and on the other hand, areas like tracking, search and navigation, and per-
sonalization, which are not geared to data but to functionality. This is exactly the 
type of domain design that should be aimed for in a microservice-based system.

A domain architecture requires a precise understanding of  the domain. It 
comprises not only the division of  the system into microservices but also the 
dependencies. A dependency arises when a dependent microservice uses another 
one—for instance, by calling the microservice, by using elements from the UI 
of  the microservice, or by replicating its data. Such a dependency means that 
changes to a microservice can also influence the microservice that is depend-
ent on it. If, for example, the microservice modifies its interface, the dependent 
microservice has to be adapted to these changes. Also new requirements affect-
ing the dependent microservice might mean that the other microservice has to 
modify its interface. If  the dependent microservice needs more data to imple-
ment the requirements, the other microservice has to offer this data and adjust 
its interface accordingly.

For microservices such dependencies cause problems beyond just software archi-
tecture: If the microservices involved in a change are implemented by different teams, 
then the change will require collaboration between those teams; this overhead can be 
time consuming and laborious.

Managing Dependencies

Managing dependencies between microservices is central to the architecture of a 
system. Having too many dependencies will prevent microservices from being 
changed in isolation—which goes against the objective of developing microservices 

1. https://dev.otto.de/2016/03/20/why-microservices/

https://www.dev.otto.de/2016/03/20/why-microservices/
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independently of each other. Here are two fundamental rules to apply for good 
architecture:

• There should be a loose coupling between components such as microservices.
This means that each microservice should have few dependencies on other
microservices. This makes it easier to modify them since changes will only
affect individual microservices.

• Within a component such as a microservice, the constituent parts should work
closely together. This is referred to as having high cohesion. This ensures that
all constituent parts within a microservice really belong together.

When these two prerequisites are not met, it will be difficult to change an indi-
vidual microservice in an isolated manner, and changes will have to be coordinated 
across multiple teams and microservices, which is just what microservice-based 
architectures are supposed to avoid. However, this is often a symptom: the funda-
mental problem is how the domain-based split of the functionality between the 
microservices was done. Obviously pieces of functionality that should have been 
placed together in one microservice have been distributed across different microser-
vices. An order process, for instance, also needs to generate a bill. These two pieces 
of functionality are so different that they have to be distributed into at least two 
microservices. However, when each modification of the order process also affects the 
microservice that creates the bills, the domain-based modeling is not optimal and 
should be adjusted. The pieces of functionality have to be distributed differently to 
the microservices, as we will see.

Unintended Domain-Based Dependencies

It is not only the number of dependencies that can pose a problem. Certain 
 domain-based dependencies can simply be nonsensical. For instance, it would be 
surprising in an e-commerce system if the team responsible for product search 
 suddenly has an interface with the microservice for billing, because that should not 
be the case from a domain-based point of view. However, when it comes to domain 
modeling, there are always surprises for the unaware. When a dependency is not 
meaningful from a domain-based point of view, something regarding the functional-
ity of the microservices has to be wrong. Maybe the microservice implements fea-
tures that belong in other microservices from a domain-based perspective. Perhaps in 
the context of product search a scoring of the customer is required, which is imple-
mented as part of billing. In that case one should consider whether this functionality 
is really implemented in the right microservice. To keep the system maintainable over 
the long term, such dependencies have to be questioned and, if necessary, removed 
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from the system. For instance, the scoring could be moved into a new, independent 
microservice or transferred into another existing microservice.

Cyclic Dependencies

Cyclic dependencies can present additional problems for a comprehensive architec-
ture. Let us assume that the microservice for the order process calls the microservice 
for billing (see Figure 7.1). The microservice for billing fetches data from the order 
process microservice. When the microservice for the order process is changed, modi-
fications to the microservice for billing might be necessary since this microservice 
fetches data from the microservice for the order process. Conversely, changes to the 
billing microservice require changes to the order microservice as this microservice 
calls the billing microservice. Cyclic dependencies are problematic: the components 
can no longer be changed in isolation, contrary to the underlying aim for a split into 
separate components. For microservices great emphasis is placed on independence, 
which is violated in this case. In addition to the coordination of changes that is 
needed, it may also be that the deployment has to be coordinated. When a new ver-
sion of the one microservice is rolled out, a new version of the other microservice 
might have to be rolled out as well if they have a cyclic dependency. 

The remainder of the chapter shows approaches to building microservice-based 
architectures in such a way that they have a sound structure from a domain-based 
perspective. Metrics like cohesion and loose coupling can verify that the architec-
ture is really appropriate. In the context of approaches like event-driven architecture 
 (section 7.8) microservices have hardly any direct technical dependencies since they 
only send messages. Who is sending the messages and who is processing them is diffi-
cult to determine from the code, meaning that the metrics may look very good. How-
ever, from a domain-based perspective the system can still be far too complicated, 
since the domain-based dependencies are not examined by the metrics. Domain-
based dependencies arise when two microservices exchange messages. However, this 
is difficult to ascertain by code analysis, meaning that the metrics will always look 
quite good. Thus metrics can only suggest problems. By just optimizing the metrics, 
the symptoms are optimized, but the underlying problems remain unsolved. Even 
worse, even systems with good metrics can have architectural weaknesses. Therefore, 
the metric loses its value in determining the quality of a software system.

Order Process Billing

Call

Fetch Data

Figure 7.1 Cyclic Dependency
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A special problem in the case of microservices is that dependencies between 
microservices can also influence their independent deployment. If a microservice 
requires a new version of another microservice because it uses, for instance, a new 
version of an interface, the deployment will also be dependent: The microservice 
has to be deployed before the dependent microservice can be deployed. In extreme 
cases this can result in a large number of microservices that have to be deployed in 
a coordinated manner—this is just what was supposed to be avoided. Microservices 
should be deployed independently of each other. Therefore, dependencies between 
microservices can present an even greater problem than would be the case for mod-
ules within a deployment monolith.

7.2 Architecture Management

For a domain architecture it is critical which microservices exist and what the commu-
nication relationships between the microservices look like. This is true in other systems 
as well where the relationships between the components are very important. When 
domain-based components are mapped on modules, classes, Java packages, JAR files, 
or DLLs, specific tools can determine the relationships between the components and 
control the adherence to certain rules. This is achieved by static code analysis.

Tools for Architecture Management

If an architecture is not properly managed, then unintended dependencies will 
quickly creep in. The architecture will get more and more complex and hard to 
understand. Only with the help of architecture management tools can developers 
and architects keep track of the system. Within a development environment develop-
ers view only individual classes. The dependencies between classes can only be found 
in the source code and are not readily discernible. 

Figure 7.2 depicts the analysis of a Java project by the architecture manage-
ment tool Structure 101. The image shows classes and Java packages, which con-
tain classes. A levelized structure map (LSM) presents an overview of them. Classes 
and packages that are higher up the LSM use classes and packages that are depicted 
lower down the LSM. To simplify the diagram, these relationships are not indicated.

Cycle-Free Software

Architectures should be free of cycles. Cyclic dependencies mean that two artifacts 
are using each other reciprocally. In the screenshot such cycles are presented by 
dashed lines. They always run from bottom to top. The reciprocal relationship in the 
cycle would be running from top to bottom and is not depicted.
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In addition to cycles, packages that are located in the wrong position are also 
relevant. There is, for instance, a package util whose name suggests it is sup-
posed to contain helper classes. However, it is not located at the very bottom of 
the diagram. Thus, it has to have dependencies to packages or classes that are 
further down—which should not be the case. Helper classes should be independent 
from other system components and should therefore appear at the very bottom 
of an LSM.

Architecture management tools like Structure 101 don’t just analyze architectures; 
they can also enable architects to define prohibited relationships between packages 
and classes. Developers who violate these rules will receive an error message and can 
modify the code.

With the help of tools like Structure 101 the architecture of a system can be easily 
visualized. The compiled code only has to be loaded into the tool for analysis.

Figure 7.2 Screenshot of  the Architecture Management Tool Structure 101
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Microservices and Architecture Management

For microservices the problem is much larger: relationships between microser-
vices are not as easy to determine as the relationships between code components. 
After all, the microservices could even be implemented in different technologies. 
They communicate only via the network. Their relationships prevent manage-
ment at a code level, because they appear only indirectly in the code. However, if 
the relationships between microservices are not known, architecture management 
becomes impossible.

There are different ways to visualize and manage the architecture:

• Each microservice can have associated documentation (see section 7.15) that
lists all used microservices. This documentation has to adhere to a predeter-
mined format, which enables visualization.

• The communication infrastructure can deliver the necessary data. If Service
Discovery (section 7.11) is used, it will be aware of all microservices and will
know which microservices have access to which other microservices. This
information can then be used for the visualization of the relationships between
the microservices.

• If  access between microservices is safeguarded by a firewall, the rules of the
firewall will at least detail which microservice can communicate with which
other microservice. This can also be used as a basis for the visualization of
relationships.

• Traffic within the network also reveals which microservices communicate with
which other microservices. Tools like Packetbeat (see section 11.3) can be very
helpful here. They visualize the relationships between microservices based on
the recorded network traffic.

• The distribution into microservices should correspond to the distribu-
tion into teams. If  two teams cannot work independently of  each other
 anymore, this is likely due to a problem in the architecture: The microser-
vices of  the two teams depend so strongly on each other that they can now
only be modified together. The teams involved probably know already
which microservices are problematic due to the increased communication
requirement. To verify the problem, an architecture management tool or a
visualization can be used. However, manually collected information might
be sufficient.
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Tools

Different tools are useful to evaluate data about dependencies:

• There are versions of Structure 1012 that can use custom data structures as
input. One still has to write an appropriate importer. Structure 101 will then
recognize cyclic dependencies and can depict the dependencies graphically.

• Gephi3 can generate complex graphs, which are helpful for visualizing the
dependencies between microservices. Again, a custom importer has to be writ-
ten for importing the dependencies between the microservices from an appro-
priate source into Gephi.

• jQAssistant4 is based on the graph database neo4j. It can be extended by a cus-
tom importer. Then the data model can be checked according to rules.

For all these tools custom development is necessary. It is not possible to analyze 
a microservice-based architecture immediately; there is always some extra effort 
required. Since communication between microservices cannot be standardized, it is 
likely that custom development will always be required.

Is Architecture Management Important?

The architecture management of microservices is important, as it is the only way to 
prevent chaos in the relationships between the microservices. Microservices are a 
special challenge in this respect: With modern tools, a deployment monolith can be 
quite easily and rapidly analyzed. For microservice-based architectures, there are no 
tools that can analyze the entire structure in a simple manner. The teams first have to 
create the necessary prerequisites for an analysis. Changing the relationships between 
microservices is difficult, as the next section will show. Therefore, it is even more 
important to continually review the architecture of the microservices in order to cor-
rect problems that arise as early as possible. It is a benefit of microservice-based 
architectures that the architecture is also reflected in the organization. Problems with 
communication will therefore point towards architectural problems. Even without 
formal architecture management, architectural problems often become obvious.

2. http://structure101.com

3. http://gephi.github.io/

4. http://jqassistant.org/

http://www.structure101.com
http://www.gephi.github.io/4
http://www.jqassistant.org/
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On the other hand, experiences with complex microservice-based systems teach 
us that in such systems, nobody understands the entire architecture. However, this 
is also not necessary since most changes are limited to individual microservices. If 
a certain use case involving multiple microservices is to be changed, it is sufficient 
to understand this interaction and the involved microservices. A global understand-
ing is not absolutely necessary. This is a consequence of the independence of the 
 individual microservices.

Context Map

Context Maps are a way to get an overview of the architecture of a microservice-
based system.5 They illustrate which domain models are used by which 
 microservices and therefore visualize the different Bounded Contexts (see section 
3.3). The Bounded Contexts not only influence the internal data presentation in 
the microservices but also impact the calls between microservices where data is 
exchanged. They have to be in line with some type of model. However, the data 
models underlying communication can be distinct from the internal representa-
tions. For example, if  a microservice is supposed to identify recommendations for 
customers of an  e-commerce shop, complex models can be employed internally for 
this that contain a lot of information about customers, products, and orders and 
correlate them in complex ways. On the outside, however, these models can be 
much simpler. 

Figure 7.3 shows an example of a Context Map:

• The registration registers the basic data of each customer. The order process
also uses this data format to communicate with registration.

• In the order process the customer’s basic data is supplemented by data such as
billing and delivery addresses to obtain the customer order data. This corre-
sponds to a Shared Kernel (see section 3.3). The order process shares the kernel 
of the customer data with the registration process.

• The delivery and the billing microservices use customer order data for commu-
nication, and the delivery microservice uses it for the internal representation of
the customer. This model is a kind of standard model for the communication
of customer data.

5. Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of  Software. Boston:
Addison-Wesley.
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• Billing uses an old mainframe data model. Therefore, customer order data for
outside communication is decoupled from the internal representation by an
anti-corruption layer. The data model represents a very bad abstraction, which 
should not be allowed to affect other microservices.

In this model it is clear that the internal data representation in registration propa-
gates to the order process. There, it serves as the basis for the customer order data. 
This model is used in delivery as an internal data model as well as in the communica-
tion with billing and delivery. This leads to the model being hard to change since it 
is used by so many services. If this model was to be changed, all these services would 
have to be modified.

However, there are also advantages associated with this. If all these services had to 
implement the same change to the data model, only a single change would be neces-
sary to update all microservices at once. Nevertheless, this goes against the principle 
that changes should always only affect a single microservice. If the change remains 
limited to the model, the shared model is advantageous since all microservices auto-
matically use the current modeling. However, when the change requires changes in 
the microservices, now multiple microservices have to be modified—and brought into 
production together. This conflicts with an independent deployment of microservices.  

Registration

Basic
customer

data 

Order process

Delivery

Billing

Basic
customer

data

Mainframe
data model

Anticorruption
Layer

Customer
order data 

Customer
order data

Customer
order data 

Customer
order data

Figure 7.3 An Example of  a Context Map
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7.3 Techniques to Adjust the Architecture

Microservices are useful in situations where the software is subject to numerous 
changes. Due to the distribution into microservices the system separates into deploy-
ment units, which can be developed independently of each other. This means that each 
microservice can implement its own stream of stories or requirements. Consequently, 
multiple changes can be worked on in parallel without much need for coordination.

Experience teaches us that the architecture of a system is subject to change. A cer-
tain distribution into domain-based components might seem sensible at first. However, 
once architects get to know the domain better, they might come to the conclusion that 
another distribution would be better. New requirements are hard to implement with 
the old architecture since it was devised based on different premises. This is especially 
common for agile processes, which demand less planning and more flexibility.

Where Does Bad Architecture Come From?

A system with a bad architecture does not normally arise because the wrong archi-
tecture has been chosen at the outset. Based on the information available at the start 
of the project, the architecture is often good and consistent. The problem is fre-
quently that the architecture is not modified when there are new insights that 
 suggest changes to the architecture. The symptom of this was mentioned in the last 

Try and Experiment

• Download a tool for the analysis of architectures. Candidates are Structure
101,6 Gephi,7 or jQAssistant.8 Use the tool to get an overview of an existing
code base. What options are there to insert your own dependency graphs
into the tool? This would enable you to analyze the dependencies within a
microservice-based architecture with this tool.

• spigo9 is a simulation for the communication between microservices.
It can be used to get an overview of more complex microservice-based
architectures.

6. http://structure101.com

7. http://gephi.github.io/

8. http://jqassistant.org

9. https://github.com/adrianco/spigo

http://www.structure101.com
http://www.gephi.github.io/
http://www.jqassistant.org
https://www.github.com/adrianco/spigo
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section: New requirements cannot be rapidly and easily implemented anymore. To 
that end the architecture would have to be changed. When this pressure to introduce 
changes is ignored for too long, the architecture will, at some point, not fit at all. 
The continuous adjustment and modification of the architecture is essential in 
keeping the architecture in a really sustainable state.

This section describes some techniques that enable the interplay between 
 microservices to be changed in order to adapt the overall system architecture.

Changes in Microservices

Within a microservice adjustments are easy. The microservices are small and 
 manageable. It is no big deal to adjust structures. If the architecture of an individual 
microservice is completely insufficient, it can be rewritten since it is not very large. 
Within a microservice it is also easy to move components or to restructure the code in 
other ways. The term “refactoring”10 describes techniques that serve to improve the 
structure of code. Many of these techniques can be automated using development 
tools. This enables an easy adjustment of the code of an individual microservice.

Changes to the Overall Architecture

However, when the division of functionality between the microservices is no longer 
in line with the requirements, changing just one microservice will not be sufficient. 
To achieve the necessary adjustment of the complete architecture, functionality has 
to be moved between microservices. There can be different reasons for this:

• The microservice is too large and has to be divided. Indications for this can be
that the microservice is no longer intelligible anymore or so large that a single
team is not sufficient to develop it further. Another indication can be that the
microservice contains more than one Bounded Context.

• A piece of functionality really belongs in another microservice. An indication
for that can be that certain parts of a microservice communicate a lot with
another microservice. In this situation the microservices no longer have a loose
coupling. Such intense communication can imply that the component belongs
in another microservice. Likewise, a low cohesion in a microservice can sug-
gest that the microservice should be divided. In that case there are areas in a
microservice that depend little on each other. Consequently, they do not really
have to be in one microservice.

 10. Martin Fowler. 1999. Refactoring: Improving the Design of  Existing Code, Boston: Addison-Wesley.
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• A piece of functionality should be used by multiple microservices. For instance, 
this can become necessary when a microservice has to use logic from another
microservice because of some new piece of functionality.

There are three main challenges: microservices have to be split, code has to be 
moved from one microservice into another, and multiple microservices are supposed 
to use the same code.

Shared Libraries

If two microservices are supposed to use code together, the code can be transferred 
into a shared library (see Figure 7.4). The code is removed from the microservice and 
packaged in a way that enables it to be used by the other microservices. A prerequi-
site for this is that the microservices are written in technologies that enable the use of 
a shared library. This is the case when they are written in the same language or at 
least use the same platform, such as JVM (Java Virtual Machine) or .NET Common 
Language Runtime (CLR). 

A shared library means that the microservices become dependent on each other. 
Work on the library has to be coordinated. Features for both microservices have to 
be implemented in the library. Via the backdoor each microservice is affected by 
changes meant for the other microservice. This can result in errors, meaning that the 
teams have to coordinate the development of the library. Under certain conditions 
changes to a library can mean that a microservice has to be newly deployed—for 
instance because a security gap has been closed in the library.

It is also possible that through the shared library the microservices might 
obtain additional code dependencies to third-party libraries. In a Java JVM, 
third-party libraries can only be present in one version. If  the shared library 
requires a certain version of a third-party library, the microservice also has to use 
this specific version and cannot use a different one. Additionally, libraries often 
have a certain programming model. In that way libraries can provide code, which 

Microservice Microservice

LibraryTransfer
code

Figure 7.4 Shared Library
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can be called, or a framework into which custom code can be integrated, which is 
then called by the framework. The library might pursue an asynchronous model 
or a synchronous model. Such approaches can fit more or less well to a respective 
microservice.

Microservices do not focus on the reuse of code since this leads to new dependen-
cies between the microservices. An important aim of microservices is  independence—
so code reuse often causes more problems than it solves. This is a rejection of the 
ideal of code recycling. Developers in the nineties still pinned their hopes on code 
reuse in order to increase productivity. Moving code into a library also has advan-
tages. Errors and security gaps have to be corrected only once. The microservices use 
always the current library version and thus automatically get fixes for errors.

Another problem associated with code reuse is that it requires a detailed under-
standing of the code—especially in the case of frameworks into which the custom 
code has to embed itself. This kind of reuse is known as white-box reuse: The inter-
nal code structures have to be known, not only the interface. This type of reuse 
requires a detailed understanding of the code that is to be reused, which sets a high 
hurdle for the reuse.

An example would be a library that makes it easier to generate metrics for sys-
tem monitoring. It will be used in the billing microservice. Other teams also want 
to use the code. Therefore, the code is extracted into a library. Since it is technical 
code, it does not need to modified if domain-based changes are made. Therefore, 
the library does not influence the independent deployment and the independent 
development of domain-based features. The library was supposed to be turned into 
an internal open-source project (see section 12.8).

However, to transfer domain code into a shared library is problematic, as it might 
introduce deployment dependencies into microservices. When, for instance, the 
modeling of a customer is implemented in a library, then each change to the data 
structure has to be passed on to all microservices, and they all have to be newly 
deployed. Besides, a uniform modeling of a data structure like customer is difficult 
due to Bounded Context.

Transfer Code

Another way to change the architecture is to transfer code from one microservice to 
another (see Figure 7.5). This is sensible when doing so ensures a loose coupling and 
a high cohesion of the entire system. When two microservices communicate a lot, 
they are not loosely coupled. When the part of the microservice that communicates a 
lot with the other microservice is transferred, this problem can be solved.

This approach is similar to the removal into a shared library. However, the code 
is not a common dependency, which solves the problem of coupling between the 
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microservices. However, it is possible that the microservices have to have a common 
interface in order to be able to use the functionality after the code transfer. This is 
a black-box dependency: Only the interface has to be known, not the internal code 
structures.

In addition, it is possible to transfer the code into another microservice while 
keeping it in the original microservice. This causes redundancy. Errors will then have 
to be corrected in both versions, and the two versions can develop in different direc-
tions. However, this will ensure that the microservices are independent, especially 
with regard to deployment.

The technological limitations are the same as for a shared library—the two 
microservices have to use similar technologies; otherwise, the code cannot be trans-
ferred. However, in a pinch the code can also be rewritten in a new programming 
language or with a different programming model. Microservices are not very large. 
The code that has to be rewritten is only a part of a microservice. Consequently, the 
required effort is manageable.

However, there is the problem that the size of that microservice into which the 
code is transferred increases. Thus, the danger increases that the microservice turns 
into a monolith over time.

One example: The microservice for the order process frequently calls the billing 
microservice in order to calculate the price for the delivery. Both services are written in 
the same programming language. The code is transferred from one microservice into 
the other. From a domain perspective it turns out that the calculation of delivery costs 
belongs in the order-process microservice. The code transfer is only possible when 
both services use the same platform and programming language. This also means that 
the communication between microservices has been replaced by local communication. 

Reuse or Redundancy?

Instead of attributing shared code to one or the other microservices, the code can 
also be maintained in both microservices. At first this sounds dangerous—after all, 
the code will then be redundant in two places, and bug fixes will have to be per-
formed in both places. Most of the time developers try to avoid such situations. An 
established best practice is “Don’t Repeat Yourself” (DRY). Each decision and conse-
quently all code should only be stored at exactly one place in the system. In a 
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Figure 7.5 Transferring Code
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microservice-based architectures redundancy has a key advantage: the two microser-
vices stay independent of each other and can be independently deployed and inde-
pendently developed further. In this way the central characteristic of microservices is 
preserved.

It is questionable whether a system can be built without any redundancies at all. 
Especially in the beginning of object-orientation, many projects invested significant 
effort to transfer shared code into shared frameworks and libraries. This was meant 
to reduce the expenditure associated with the creation of the individual projects. In 
reality the code to be reused was often difficult to understand and thus hard to use. 
A redundant implementation in the different projects might have been a better alter-
native. It can be easier to implement code several times than to design it in a reusable 
manner and then to actually reuse it.

There are, of course, cases of successful reuse of code: hardly any project can get 
along nowadays without open-source libraries. At this level code reuse is taking place 
all the time. This approach can be a good template for the reuse of code between 
microservices. However, this has effects on the organization. Section 12.8 discusses 
organization and also code reuse using an open-source model.

Shared Service

Instead of transferring the code into a library, it can also be moved into a new micro-
service (see Figure 7.6). Here the typical benefits of a microservice-based architecture 
can be achieved; the technology of the new microservice does not matter, as long as it 
uses the universally defined communication technologies and can be operated like 
the other microservices. Its internal structure can be arbitrary, even to the point of 
programming language. 

The use of a microservice is simpler than the use of a library. Only the interface 
of the microservice has to be known—the internal structure does not matter. Mov-
ing code into a new service reduces the average size of a microservice and there-
fore improves the intelligibility and replaceability of the microservices. However, the 
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Figure 7.6 Shared Microservice
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transfer replaces local calls with calls via the network, and changes for new features 
might no longer be limited to one microservice.

In software development big modules are often a problem. Therefore, transferring 
code into new microservices can be a good option for keeping modules small. The 
new microservice can be developed further by the team that was already responsible 
for the original microservice. This will facilitate the close coordination of new and 
old microservices since the required communication happens within only one team.

The split into two microservices also has the consequence that a call to the 
 microservice-based system is not processed by just one single microservice but 
by  several microservices. These microservices call each other. Some of those 
 microservices will not have a UI but are pure backend services.

To illustrate this, let us turn again to the order process, which frequently calls 
the billing microservice for calculating the delivery costs. The calculation of delivery 
costs can be separated into a microservice by itself. This is even possible when the 
billing service and the order process microservice use different platforms and tech-
nologies. However, a new interface will have to be established that enables the new 
delivery cost microservice to communicate with the remainder of the billing service.

Spawn a New Microservice

In addition, it is possible to use part of the code of a certain microservice to generate 
a new microservice (see Figure 7.7). The advantages and disadvantages are identical 
to the scenario in which code is transferred into a shared microservice. However, the 
motivation is different in this case: The size of the microservices is meant to be 
reduced to increase their maintainability or maybe to transfer the responsibility for a 
certain functionality to another team. Here, the new microservice is not supposed to 
be shared by multiple other microservices. 

For instance, the service for registration might have become too complex. 
 Therefore, it is split into multiple services, each handling certain user groups. A sepa-
ration along technical lines would also be possible—for instance according to CQRS 
(see section 9.2), event sourcing (section 9.3) or hexagonal architecture (section 9.4).

Microservice

MicroserviceTransferred
code

Figure 7.7 Spawning a New Microservice
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Rewriting

Finally, an additional way to handle microservices whose structure does not fit any-
more is to rewrite them. This is more easily done with microservices-based architec-
tures than with other architectural approaches due to the small size of microservices 
and their use via defined interfaces. This means that the entire system does not have 
be rewritten—just a part. It is also possible to implement the new microservice in a 
different programming language, which may be better suited for this purpose. 
Rewriting microservices can also be beneficial since new insights about the domain 
can leave their mark on the new implementation.

A Growing Number of Microservices

Experience with microservice-based systems teaches us that during the time a project 
is running, new microservices will be generated continuously. This involves greater 
effort around infrastructure and the operation of the system. The number of deployed 
services will increase all the time. For more traditional projects, such a development is 
unusual and may therefore appear problematic. However, as this section demon-
strates, the generation of new microservices is the best alternative for the shared use 
of logic and for the ongoing development of a system. In any case the growing num-
ber of microservices ensures that the average size of individual microservices stays 
constant. Consequently, the positive characteristics of microservices are preserved.

Generating new microservices should be made as easy as possible as this enables 
the properties of the microservice system to be preserved. Potential for optimization 
is mainly present when it comes to establishing continuous delivery pipelines and 
build infrastructure and the required server for the new microservice. Once these 
things are automated, new microservices can be generated comparably easily.

Microservice-Based Systems Are Hard to Modify

This section has shown that it is difficult to adjust the overall architecture of a 
microservice-based system. New microservices have to be generated. This entails 
changes to the infrastructure and the need for additional continuous delivery 
 pipelines. Shared code in libraries is rarely a sensible option.

In a deployment monolith such changes would be easy to introduce: Often the 
integrated development environments automate the transfer of code or other struc-
tural changes. Due to automation the changes are easier and less prone to errors. 
There are no effects whatsoever on the infrastructure or continuous delivery pipe-
lines in the case of deployment monoliths.

Thus, changes are difficult at the level of the entire system—because it is hard to 
transfer functionality between different microservices. Ultimately, this is exactly the 
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effect that was termed “strong modularization” and listed as an advantage in section 
1.2: To cross the boundaries between microservices is difficult so that the architec-
ture at the level between the microservices will remain intact in the long run. How-
ever, this means that the architecture is hard to adjust at this level.

Try and Experiment

• A developer has written a helper class, which facilitates the interaction with
a logging framework that is also used by other teams. It is not very large and 
complex.

• Should it be used by other teams?

• Should the helper class be turned into a library or an independent
microservice, or should the code simply be copied?

7.4 Growing Microservice-Based Systems

The benefits of microservices are seen most clearly in very dynamic environments. 
Due to the independent deployment of individual microservices, teams can work 
in parallel on different features without the need for significant coordination. 
This is especially advantageous when it is unclear which features are really 
 meaningful and experiments on the market are necessary to identify promising 
approaches.

Planning Architecture?

In this sort of environment, it is difficult to plan a good split of the domain logic into 
microservices right from the start. The architecture has to adjust to the evidence.

• The separation of a system into its domain aspects is even more important for
microservices than in the context of a traditional architectural approach. This
is because the domain-based distribution also influences the distribution into
teams and therefore the independent working of the teams—the primary ben-
efit of microservices (section 7.1).

• Section 7.2 demonstrated that tools for architecture management cannot
 readily be used in microservice-based architectures.
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• As section 7.3 discussed, it is difficult to modify the architecture of
microservices—especially in comparison to deployment monoliths.

• Microservices are especially beneficial in dynamic environments—where it is
even more difficult to determine a meaningful architecture right from the start.

The architecture has to be changeable; however, this is difficult due to the tech-
nical limitations. This section shows how the architecture of a microservice-based 
system can nevertheless be modified and developed further in a step-by-step manner.

Start Big

One way to handle this inherent problem is to start out with several big systems that 
are subsequently split step by step into microservices (see Figure 7.8). Section 3.1 
defined an upper limit for the size of a microservice as the amount of code that an 
individual team can still handle. At the start of a project it is hard to violate this 
upper limit. The same is true for the other upper limits: modularization and 
replaceability.

When the entire project consists of only one or a few microservices, pieces of 
functionality are still easy to move, because the transfer will mostly occur within one 
service rather than between services. Step by step, more people can be moved into 
the project so that additional teams can be assembled. In parallel, the system can be 
divided into progressively more microservices to enable the teams to work indepen-
dently of each other. Such a ramp-up is also a good approach from an organizational 
perspective since the teams can be assembled in a stepwise manner.

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Microservice

Figure 7.8  Start Big: A Few Microservices Develop into Progressively More Microservices
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Of course, it would also be possible to start off with a deployment monolith. 
However, starting with a monolith has a key disadvantage: There is the danger that 
dependencies and problems creep into the architecture, which make a later separa-
tion into microservices difficult. Also there will be only one continuous delivery 
pipeline. When the monolith gets distributed into microservices, the teams will have 
to generate new continuous delivery pipelines. This can be very onerous, especially 
when the continuous delivery pipeline for the deployment monolith had been gen-
erated manually. In that situation all the additional continuous delivery pipelines 
would most likely have to be manually generated in a laborious manner.

When projects start out with multiple microservices, this problem is avoided. 
There is no monolith that later would have to be divided, and there has to be 
an approach for the generation of new continuous delivery pipelines. Thus the 
teams can work independently from the start on their own microservices. Over 
the course of the project the initial microservices are split into additional smaller 
microservices.

“Start big” assumes that the number of microservices will increase over the 
course of the project. It is therefore sensible to start with a few big microservices 
and spawn new microservices in a stepwise manner. The most recent insights can 
always be  integrated into the distribution of microservices. It is just not possible to 
define the perfect architecture right from the start. Instead, the teams should adapt 
the  architecture step by step to new circumstances and insights and have the courage 
to implement the necessary changes. 

This approach results in a uniform technology stack—this will facilitate opera-
tion and deployment. For developers it is also easier to work on other microservices.

Start Small?

It is also possible to start with a system split into a large number of microservices 
and use this structure as the basis for further development. However, the distribu-
tion of the services is very difficult. Building Microservices 11 provides an example 
where a team was tasked with developing a tool to support continuous delivery of 
a microservice-based system. The team was very familiar with the domain, had 
already created products in this area, and thus chose an architecture that distrib-
uted the system early on into numerous microservices. However, as the new prod-
uct was supposed to be offered in the cloud, the architecture was, for subtle 
reasons, not suitable in some respects. To implement changes got difficult because 
modifications to features had to be introduced in multiple microservices. To solve 

 11. Sam Newman. 2015. Building Microservices: Designing Fine-Grained Systems. Sebastopol, CA:
O’Reilly Media.
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this problem and make it easier to change the software, the microservices were 
united again into a monolith. One year later the team decided on the final architec-
ture and split the monolith back into microservices. This example demonstrates 
that a splitting into microservices too early can be problematic—even if  a team 
knows the domain very well.

Limits of Technology

However, this is in the end a limitation of the technology. If it were easier to move 
functionality between microservices (see section 7.4), the split into microservices 
could be corrected. In that case it would be much less risky to start off with a split 
into small microservices. When all microservices use the same technology, it is easier 
to transfer functionality between them. Chapter 14, “Technologies for  Nanoservices,” 
discusses technologies for nanoservices, which are based on a number of compro-
mises but in exchange enable smaller services and an easier transfer of functionality.

Replaceability as a Quality Criterion

An advantage of the microservice approach is the replaceability of the microservices. 
This is only possible when the microservices do not grow beyond a certain size and 
internal complexity. One objective during the continued development of microser-
vices is to maintain the replaceability of microservices. Then a microservice can be 
replaced by a different implementation—for instance, if its further development is 
no longer feasible due to bad structure. In addition, replaceability is a meaningful 
aim to preserve the intelligibility and maintainability of the microservice. If the 
microservice is not replaceable anymore, it is probably also not intelligible anymore 
and therefore hard to develop any further.

The Gravity of Monoliths

One problem is that large microservices attract modifications and new features. 
They already cover several features; therefore, it seems a good idea to also implement 
new features in this service. This is true in the case of microservices that are too large 
but even more so for deployment monoliths. A microservices-based architecture can 
be aimed at replacing a monolith. However, in that case the monolith contains so 
much functionality that care is needed not to introduce too many changes into the 
monolith. For this purpose, microservices can be created, even if they contain hardly 
any functionality at the beginning. To introduce changes and extensions to the mon-
olith is exactly the course of action that has rendered the maintenance of the deploy-
ment monolith impossible and led to its replacement by microservices.



ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 122

Keep Splitting

As mentioned, most architectures do not have the problem that they were originally 
planned in a way that did not fit the task. In most cases the problem is more that the 
architecture did not keep up with the changes in the environment. A microservice-
based architecture also has to be continuously adjusted; otherwise, at some point it 
will no longer be able to support the requirements. These adjustments include the 
management of the domain-based split as well as of the size of the individual 
microservices. This is the only way to ensure that the benefits of the microservice-
based architecture are maintained over time. Since the amount of code in a system 
usually increases, the number of microservices should also grow in order to keep the 
average size constant. Thus an increase in the number of microservices is not a prob-
lem but rather a good sign.

Global Architecture?

However, the size of microservices is not the only problem. The dependencies of the 
microservices can also cause problems (see section 7.1). Such problems can be 
solved most of the time by adjusting a number of microservices—that is, those that 
have problematic dependencies. This requires contributions only from the teams 
that work on these microservices. These teams are also the ones to spot the prob-
lems, because they will be affected by the bad architecture and the greater need for 
coordination. By modifying the architecture, they are able to solve these issues. In 
that case there is no need for a global management of dependencies.  Metrics like a 
high  number of dependencies or cyclic dependencies are only an indication of a 
problem. Whether such metrics actually show a problem can only be solved by eval-
uating them together with the involved teams. If the problematic components are, 
for instance, not going to be developed any further in the future, it does not matter 
if the metrics indicate a problem. Even if there is global architecture management, it 
can only work effectively in close cooperation with the different teams.

7.5  Don’t Miss the Exit Point or How to Avoid the 
Erosion of a Microservice (Lars Gentsch)

by Lars Gentsch, E-Post Development GmbH

Practically, it is not too difficult to develop a microservice. But how can you ensure 
that the microservice remains a microservice and does not secretly become a mono-
lith? An example shall illustrate at which point a service starts to develop in the 
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wrong direction and which measures are necessary to ensure that the microservice 
remains a microservice.

Let’s envision a small web application for customer registration. This scenario 
can be found in nearly every web application. A customer wants to buy a product in 
an Internet shop (Amazon, Otto, etc.) or to register for a video-on-demand portal 
(Amazon Prime, Netflix, etc.). As a first step the customer is led through a small 
registration workflow. He/she is asked for his/her username, a password, the email 
address, and the street address. This is a small self-contained functionality, which is 
very well suited for a microservice.

Technologically this service has probably a very simple structure. It consists of 
two or three HTML pages or an AngularJS-Single Page App, a bit of CSS, some 
Spring Boot and a MySQL database. Maven is used to build the application.

When data are entered, they are concomitantly validated, transferred into the 
domain model, and put into the database for persistence. How can the microservice 
grow step by step into a monolith?

Incorporation of New Functionality

Via the shop or the video-on-demand, portal items and content are supposed to be 
delivered, which are only allowed to be accessed by people who are of age. For this 
purpose, the age of the customer has to be verified. One possibility to do this is to 
store the birth date of the client together with other data and to incorporate an 
external service for the age verification.

Thus, the data model of our service has to be extended by the birth date. More 
interesting is the incorporation of the external service. To achieve this, a client for an 
external API has to be written, which should also be able to handle error situations 
like the nonavailability of the provider.

It is highly probable that the initiation of the age verification is an asynchronous 
process so that our service might be forced to implement a callback interface. So the 
microservice must store data about the state of the process. When was the age veri-
fication process initiated? Is it necessary to remind the customer via email? Was the 
verification process successfully completed?

What Is Happening to the Microservice Here?

The following things are going on:

1. The customer data is extended by the birthdate. That is not problematic.

2. In addition to customer data, there is now process data. Attention: here process 
data is mixed with domain data.
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3. In addition to the original CRUD functionality of the service, some kind of
workflow is now required. Synchronous processing is mixed with asynchronous 
processing.

4. An external system is incorporated. The testing effort for the registration
microservice increases. An additional system and its behavior have to be
simulated during test.

5. The asynchronous communication with the external system has other
demands with regard to scaling. While the registration microservice requires
an estimated ten instances due to load and failover, the incorporation of the
age verification can be operated in a fail-safe and stable manner with just two
instances. Thus, different run time requirements are mixed here.

As the example demonstrates, an apparently small requirement like the 
 incorporation of age verification can have tremendous consequences for the size of 
the microservice.

Criteria Arguing for a New Microservice Instead 
of Extending an Existing One

The criteria for deciding on when to start a new microservice include the following:

1. Introduction of different data models and data (domain versus process data)

2. Mixing of synchronous and asynchronous data processing

3. Incorporation of additional services

4. Different load scenarios for different aspects within one service

The example of the registration service could be further extended: the verification 
of the customer’s street address could also be performed by an external provider. 
This is common in order to ensure the existence of the denoted address. Another 
scenario is the manual clearance of a customer in case of double registration. The 
incorporation of a solvency check or customer scoring upon registration likewise are 
frequent scenarios.

All these domain-based aspects belong in principle to the customer registration 
and tempt developers and architects to integrate the corresponding requirements 
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into the existing microservice. As a result the microservice grows into more than just 
one microservice.

How to Recognize Whether the Creation of a New 
Microservice Should Have Occurred Already

If your situation exhibits the following characteristics, then you probably already 
needed another microservice:

• The service can only be sensibly developed further as a Maven multimodule
project or a Gradle multimodule project.

• Tests have to be divided into test groups and have to be parallelized for execu-
tion since the runtime of the tests surpasses five minutes (a violation of the
“fast feedback” principle).

• The configuration of the service is grouped by domain within the configuration 
file, or the file is divided into single configuration files to improve the overview.

• A complete build of the service takes long enough to have a coffee break. Fast
feedback cycles are not possible anymore (a violation of the “fast feedback”
principle).

Conclusion

As the example of the registration microservice illustrates, it is a significant challenge to 
let a microservice remain a microservice and not give in to the temptation of integrating 
new functionality into an existing microservice due to time pressure. This holds true 
even when the functionality clearly belongs, as in the example, to the same domain.

What defensive steps can be taken to prevent the erosion of a microservice? In 
principle, it has to be as simple as possible to create new services, including their 
own data storage. Frameworks like Spring Boot, Grails, and Play make a relevant 
contribution to this. The allocation of project templates like Maven archetypes and 
the use of container deployments with Docker are additional measures to simplify 
the generation and configuration of new microservices as well as their passage into 
the production environment as much as possible. By reducing the “expenditure” 
required to set up of a new service, the barriers to introducing a new microservice 
clearly decrease as does the temptation to implement new functionality into exist-
ing services.

7.5  How to Avoid the Erosion of a Microservice (Lars Gentsch)
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7.6 Microservices and Legacy Applications

The transformation of a legacy application into a microservice-based architecture is 
a scenario that is frequently met with in practice. Completely new developments are 
rather rare, and microservices, first of all, promise advantages for long-term mainte-
nance. This is especially interesting for applications that are already on the brink of 
not being maintainable anymore. Besides, the distribution into microservices makes 
possible easier handling of continuous delivery: Instead of deploying and testing a 
monolith in an automated fashion, small microservices can be deployed and tested. 
The expenditure for this is by far lower. A continuous delivery pipeline for a micro-
service is not very complex; however, for a deployment monolith the expenditure can 
be very large. This advantage is sufficient for many companies to justify the effort of 
migrating to microservices.

In comparison to building up completely new systems, there are some important 
differences when migrating from a deployment monolith to microservices:

• For a legacy system the functionality is clear from the domain perspective.
This can be a good basis for generating a clean domain architecture for the
microservices. Such a clean domain-based division is especially important for
microservices.

• However, there is already a large amount of code in existence. The code is often 
of bad quality. There are few tests for the code, and deployment times are often 
much too long. Microservices should remove these problems. Accordingly, the
challenges in this area are often significant.

• Likewise, it is well possible that the module boundaries in the legacy
 application do not answer to the Bounded Context idea (see section 3.3). In
that case migrating to a microservice-based architecture is a challenge because
the domain-based design of the application has to be changed.

Breaking Up Code?

In a simple approach the code of the legacy application can be split into several 
microservices. This can be problematic when the legacy application does not have a 
good domain architecture, which is often the case. The code can be easily split into 
microservices when the microservices are geared to the existing modules of the 
 legacy application. However, when those have a bad domain-based split, this bad 
division will be passed on to the microservice-based architecture. Additionally, 
the consequences of a bad domain-based design are even more profound in a micros-
ervice-based architecture: The design also influences the communication between 
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teams. Besides, the initial design is hard to change later on in a  microservice-based 
architecture.

Supplementing Legacy Applications

However, it is also possible to get by without a division of the legacy application. An 
essential advantage of microservices is that the modules are distributed systems. Because 
of that, the module boundaries are at the same time the boundaries of processes that 
communicate via the network. This has advantages for the distribution of a legacy 
application: It is not at all necessary to know the internal structures of the legacy appli-
cation or, based on that, to perform a split into microservices. Instead microservices can 
supplement or modify the legacy application at the interface. For this it is very helpful 
when the system to be replaced is already built in an SOA (section 6.2). If there are indi-
vidual services, they can be supplemented by microservices.

Enterprise Integration Patterns

Enterprise Integration Patterns 12, 13 offer an inspiration for possible integrations of 
legacy applications and microservices:

• Message Router describes that certain messages go to another service. For
example, a microservice can select some messages that are processed then
by the microservice instead of by the legacy application. In this way, the
 microservice-based architecture does not have to newly implement the entire
logic at once but can at first select some parts.

• A special router is the Content Based Router. It determines based on the
 content of a message where the message is supposed to be sent. This enables
the sending of specific messages to a specific microservice—even if the  message 
differs only in one field.

• The Message Filter avoids uninteresting messages that a microservice receives.
For that it just filters out all messages the microservice is not supposed to get.

• A Message Translator translates a message into another format. Therefore, the
microservices architecture can use other data formats and does not necessarily
have to employ the formats used by the legacy application.

 12. http://www.eaipatterns.com/toc.html

 13. Gregor Hohpe, Bobby Woolf. 2003. Enterprise Integration Patterns: Designing, Building, and
 Deploying Messaging Solutions. Boston: Addison-Wesley.

http://www.eaipatterns.com/toc.html
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• The Content Enricher can supplement data in the messages. If a microser-
vice requires supplementary information in addition to the data of the legacy
application, the Content Enricher can add this information without the legacy
application or the microservice noticing anything.

• The Content Filter achieves the opposite: Certain data are removed from the
messages so that the microservice obtains only the information relevant for it.

Figure 7.9 shows a simple example. A Message Router takes calls and sends them 
to a microservice or the legacy system. This enables implementation of certain func-
tionalities in microservices. These functionalities are also still present in the legacy 
system but are not used there anymore. In this way the microservices are largely inde-
pendent of the structures within the legacy system. For instance, microservices can 
start off with processing orders for certain customers or certain items. Because their 
scope is limited, they do not have to implement all special cases.

The patterns can serve as inspiration for how a legacy application can be supple-
mented by microservices. There are numerous additional patterns—the list provides 
only a glimpse of the entire catalog. As in other cases the patterns can be imple-
mented in different ways: actually, they focus on messaging systems. However, it is 
possible to implement them with synchronous communication mechanisms, though 
less elegant. For instance, a REST service can take a POST message, supplement it 
with additional data, and finally send it to another microservice. That would then be 
a Content Enricher.

To implement such patterns, the sender has to be uncoupled from the recipi-
ent. This enables the integration of additional steps into the processing of requests 
 without the sender noticing anything. In case of a messaging approach, this is  easily 
possible, as the sender knows only one queue in which he/she places the  messages. 
The sender does not know who fetches the messages. However, in the case of syn-
chronous communication via REST or SOAP, the message is sent directly to the 

Microservice

Microservice

Legacy System

Message
Router

Figure 7.9 Supplementing Legacy Applications by a Message Router
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recipient. Only by Service Discovery (see section 7.11) the sender gets uncoupled 
from the recipient. Then one service can be replaced by another service without 
need to change the senders. This enables an easier implementation of the patterns. 
When the legacy application is supplemented by a Content Enricher, this Content 
Enricher, instead of the legacy application, is registered in the Service Discovery, 
but no sender has to be modified. To introduce Service Discovery can therefore be 
a first step towards a microservices architecture since it enables supplementation or 
replacement of individual services of the legacy application without having to mod-
ify the users of the legacy application.

Limiting Integration

Especially for legacy applications, it is important that the microservices are not too 
dependent on the legacy application. Often the bad structure of the old application 
is the specific reason why the application is supposed to be replaced in the first place. 
Therefore, certain dependencies should not be allowed at all. When microservices 
directly access the database of the legacy application, the microservices are depend-
ent on the internal data representation of the legacy application. Besides neither the 
legacy application nor the microservices can still change the schema, because such 
changes have to be implemented in microservices and legacy application. The shared 
use of a database in legacy application and microservices has to be avoided on all 
accounts. However, to replicate the data of the legacy application into a separate 
database schema is, of course, still an option.

Advantages

It is an essential advantage of such an approach that the microservices are largely 
independent of the architecture of the legacy application. And the replacement of a 
legacy application is mostly initiated because its architecture is not sustainable any 
more. This also enables supplementation of systems by microservices that are actu-
ally not at all meant to be extended. Though, for instance, standard solutions in the 
area of CRM, e-commerce, or ERP are internally extensible, their extension by 
external interfaces can be a welcome alternative since such a supplement is often 
easier. Moreover, such systems often attract functionalities that do not really belong 
there. A distribution into a different deployment unit via a microservice ensures a 
permanent and clear delimitation.

Integration via UI and Data Replication

However, this approach only tackles the problem on the level of logic integration. 
Chapter 8 describes another level of integration, namely data replication. This 
allows a microservice to access comprehensive datasets of a legacy application also 
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with good performance. It is important that the replication does not happen based 
on the data model of the legacy application. In that case the data model of the legacy 
application would practically not be changeable anymore since it is also used by the 
microservice. An integration based on the use of the same database would be even 
worse. Also at the level of UI integrations are possible. Links in web applications are 
especially attractive since they cause only few changes in the legacy application.

Content Management Systems

In this manner content management systems (CMS), for instance, which often con-
tain many functionalities, can be supplemented by microservices. CMS contain the 
data of a website and administrate the content so that editors can modify it. The 
microservices take over the handling of certain URLs. Similar to a Message Router, 
an HTTP request can be sent to a microservice instead of to the CMS. Or the micro-
service changes elements of the CMS as in the case of a Content Enricher or modifies 
the request as in the case of a Message Translator. Last, the microservices could store 
data in the CMS and thereby use it as a kind of database. Besides JavaScript repre-
senting the UI of a microservice can be delivered into the CMS. In that case the CMS 
turns into a tool for the delivery of code in a browser.

Some examples could be:

• A microservice can import content from certain sources. Each source can have
its own microservice.

• The functionality that enables a visitor of the web page—for example, to
 follow an author—can be implemented in a separate microservice. The micro-
service can either have its own URL and be integrated via links, or it modifies
the pages that the CMS delivers.

• While an author is still known in the CMS, there is other logic that is completely 
separate from the CMS. This could be vouchers or e-commerce functionalities.
Also in this case a microservice can appropriately supplement the system.

Especially in the case of CMS systems, which create static HTML, microservices-
based approaches can be useful for dynamic content. The CMS moves into the back-
ground and is only necessary for certain content. There is a monolithic deployment 
of the CMS content, while the microservices can be deployed much more rapidly and 
in an independent manner. In this context the CMS is like a legacy application.

Conclusion

The integrations all have the advantage that the microservices are not bound to the 
architecture or the technology decisions of the legacy application. This provides 
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the microservices with a decisive advantage compared to a modifications of the leg-
acy application. However, the migration away from the legacy application using this 
approach poses a challenge at the level of architecture; in effect, microservice-based 
systems have to have a well-structured domain-based design to enable the implemen-
tation of features within one microservice and by an individual team. In case of a 
migration, which follows the outlined approach, this cannot always be put into effect 
since the migration is influenced by the interfaces of the legacy application. There-
fore, the design cannot always be as clear-cut as desirable. Besides, domain-based 
features will still be also implemented in the legacy application until a large part of 
the migration has been completed. During this time the legacy application cannot be 
finally removed. When the microservices confine themselves to transforming the 
messages, the migration can take a very long time.

No Big Bang

The outlined approaches suggest that the existing legacy application is supple-
mented in a stepwise manner by microservices or that individual parts of the legacy 
application are replaced by microservices. This type of approach has the advantage 
that the risk is minimized. Replacing the entire legacy application in one single step 
entails high risk due to the size of the legacy application. In the end, all functionali-
ties have to be represented in the microservices. In this process numerous mistakes 
can creep in. In addition, the deployment of microservices is complex as they all have 
to be brought into production in a concerted manner in order to replace the legacy 
application in one step. A stepwise replacement nearly imposes itself in the case of 
microservices since they can be deployed independently and supplement the legacy 
application. Therefore, the legacy application can be replaced by microservices in a 
stepwise manner.

Legacy = Infrastructure

Part of a legacy application can also simply be continued to be used as infrastructure for 
the microservices. For example, the database of the legacy application can also be used 
for the microservices. It is important that the schemas of the microservices are separate 
from each other and also from the legacy application. After all, the microservices should 
not be closely coupled.

The use of the database of the legacy application does not have to be mandatory 
for the microservices. Microservices can definitely also use other solutions. However, 
the existing database is established with regard to operation or backup. Using this 
database can also present an advantage for the microservices. The same is true for 
other infrastructure components. A CMS, for instance, can likewise serve as  common 
infrastructure, to which functionalities are added from the different  microservices 
and into which the microservices can also deliver content.
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Other Qualities

The migration approaches introduced so far focus on enabling the domain-based 
division into microservices in order to facilitate the long-term maintenance and 
 continued development of the system. However, microservices have many additional 
advantages. When migrating it is important to understand which advantage motivates 
the migration to microservices because, depending on this motivation, an entirely dif-
ferent strategy might be adopted. Microservices also offer, for instance, increased 
robustness and resilience since the communication with other services is taken care of 
accordingly (see section 9.5). If the legacy application currently has a deficit in this 
area or a distributed architecture already exists that has to be  optimized with respect 
to these points, appropriate technology and architecture approaches can be defined 
without necessarily requiring that the application be divided into microservices.

Try and Experiment

• Do research on the remaining Enterprise Integration Patterns:

• Can they be meaningfully employed when dealing with microservices? In 
which context?

• Can they really only be implemented with messaging systems?

7.7 Hidden Dependencies (Oliver Wehrens)

by Oliver Wehrens, E-Post Development GmbH

In the beginning there is the monolith. Often it is sensible and happens naturally that 
software is created as a monolith. The code is clearly arranged, and the business 
domain is just coming into being. In that case it is better when everything has a com-
mon base. There is a UI, business logic, and a database. Refactoring is simple, 
deployment is easy, and everybody can still understand the entire code.

Over time the amount of code grows, and it gets hard to see through. Not every-
body knows all parts of the code anymore. The compiling takes longer, and the unit 
and integration tests invite developers to take a coffee break. In case of a relatively 
stable business domain and a very large code basis, many projects will consider at 
this point the option to distribute the functionality into multiple microservices.
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Depending on the status of the business and the understanding of the business/
product owners, the necessary tasks will be completed. Source code is distributed, 
continuous delivery pipelines are created, and server provisioned. During this step no 
new features are developed. The not-negligible effort is justified just by the hope that 
in the future, features will be faster and more independently created by other teams. 
While developers are going to be very assured of this, other stakeholders often have 
to be convinced first.

In principle everything has been done to reach a better architecture. There are 
 different teams that have independent source code. They can bring their software at 
any time into production and independent of other teams.

Almost.

The Database

Every developer has a more or less pronounced affinity to the database. In my experi-
ence many developers view the database as necessary evil that is somewhat cumber-
some to refactor. Often tools are being used that generate the database structure for 
the developers (e.g., Liquibase or Flyway in the JVM area). Tools and libraries 
(Object-relation mapping) renders it very easy to make objects persistent. A few 
annotations later and the domain is saved in the database.

All these tools remove the database from the typical developers, who “only” want 
to write their code. This has sometimes the consequence that there is not much atten-
tion given to the database during the development process. For instance, indices that 
were not created will slow down searches on the database. This will not show up in a 
typical test, which does not work with large data amounts, and thus go like that into 
production.

Let’s take the fictional case of an online shoe shop. The company requires a 
 service that enables users to log in. A user service is created containing the typical 
fields like ID, first name, family name, address, and password. To now offer fitting 
shoes to the users, only a selection of shoes in their actual size is supposed to be 
displayed. The size is registered in the welcome mask. What could be more sensible 
than to store this data in the already existing user service? Everybody is sure this 
is the right decision: these are user-associated data, and this is the right location.

Now the shoe shop expands and starts to sell additional types of clothing. Dress 
size, collar size, and all other related data are now also stored in the user service.

Several teams are employed in the company. The code gets progressively more 
complex. It is this point in time where the monolith is split into domain-based 
 services. The refactoring in the source code works well, and a soon the monolith is 
split apart into many microservices.
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Unfortunately, it turns out that it is still not easy to introduce changes. The 
team in charge of shoes wants to accept different currencies because of interna-
tional expansion and has to modify the structure of the billing data to include the 
address format. During the upgrade the database is blocked. Meanwhile no dress 
size or favorite color can be changed. Moreover, the address data are used in different 
 standard forms of other services and thus cannot be changed without coordination 
and effort. Therefore, the feature cannot be implemented promptly.

Even though the code is well separated, the teams are indirectly coupled via the 
database. To rename columns in the user service database is nearly impossible because 
nobody knows anymore in detail who is using which columns. Consequently, the teams 
do workarounds. Either fields with the name ‘Userattribute1’ are created, which then 
are mapped onto the right description in the code, or separations are introduced into 
the data like ‘#Color: Blue#Size:10.’ Nobody except the involved team knows what is 
meant by ‘Userattribute1,’ and it is difficult to generate an index on ‘#Color: #Size.’ 
Database structure and code are progressively harder to read and maintain.

It has to be essential for every software developer to think about how to make the 
data persistent, not only about the database structures but also about where which 
data is stored. Is the table respective database the place where these data should be 
located? From a business domain perspective, does this data have connections to 
other data? In order to remain flexible in the long term, it is worthwhile to carefully 
consider these questions every time. Typically, databases and tables are not created 
very often. However, they are a component that is very hard to modify later. Besides, 
databases and tables are often the origin of a hidden interdependence between ser-
vices. In general, it has to be that data can only be used by exactly one service via 
direct database access. All other services that want to use the data may only access it 
via the public interfaces of the service.

7.8 Event-Driven Architecture

Microservices can call each other in order to implement shared logic. For example, at 
the end of the order process the microservice for billing as well as the microservice 
for the order execution can be called to create the bill and make sure that the ordered 
items are indeed delivered (see Figure 7.10). 

This requires that the order process knows the service for the billing and for the 
delivery. If a completed orders necessitates additional steps, the order service also has 
to call the services responsible for these steps.

Event-driven architecture (EDA) enables a different modeling: When the order 
processing has been successfully finished, the order process will send an event. It is 
an event emitter. This event signals all interested microservices (event consumers) 
that there is a new successful order. Thus, one microservice can now print a bill, and 
another microservice can initiate a delivery (see Figure 7.11). 
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This procedure has a number of advantages:

• When other microservices are also interested in orders, they can easily register.
Modifying the order process is not necessary anymore.

• Likewise, it is imaginable that other microservices also trigger identical
events—again without changes to the order process.

• The processing of events is temporally unlinked. It can be linked later on.

At the architectural level, event-driven architectures have the advantage that they 
enable a very loose coupling and thus facilitate changes. The microservices need to 
know very little about each other. However, the coupling requires that logic is inte-
grated and therefore implemented in different microservices. Thereby a split into 
microservice with UI and microservices with logic can arise. That is not desirable. 
Changes to the business logic entail often changes to logic and UI. These are then 
separate microservices. The change cannot readily take place in only one microser-
vice anymore and thus gets more complex.

Technically, such architectures can be implemented without a lot of effort via 
messaging (see section 8.4). Microservices within such an architecture can very easily 
implement CQRS (section 9.2) or event sourcing (section 9.3).

Order Process

Billing
Microservice

Delivery
Microservice

Figure 7.10 Calls between Microservices

Order Process
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Microservice
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Microservice

Order
Event

Order
Event

Figure 7.11 Event-Driven Architecture
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7.9 Technical Architecture

To define a technology stack with which the system can be built is one of the main 
parts of an architecture. For individual microservices this is likewise a very impor-
tant task. However, the focus of this chapter is the microservice-based system in its 
entirety. Of course, a certain technology can bindingly be defined for all microser-
vices. This has advantages: In that case the teams can exchange knowledge about the 
technology. Refactorings are simpler because members of one team can easily help 
out on other teams.

However, defining standard technologies is not mandatory: if they are not defined, 
there will be a plethora of different technologies and frameworks. However, since 
typically only one team is in contact with each technology, such an approach can 
be acceptable. Generally, microservice-based architectures aim for the largest possi-
ble independence. With respect to the technology stack, this independence translates 
into the ability to use different technology stacks and to independently make tech-
nology decisions. However, this freedom can also be restricted.

Technical Decisions for the Entire System

Nevertheless, at the level of the entire system there are some technical decisions to 
make. However, other aspects are more important for the technical architecture of 
the microservice-based system than the technology stack for the implementation:

• As discussed in the last section, there might be technologies that can be used
by all microservices—for instance, databases for data storage. Using these
 technologies does not necessarily have to be mandatory. However, especially
in the case of persistence technologies, like databases, backups, and disaster
recovery concepts have to exist so that at least these technical solutions have
to be obligatory. The same is true for other basic systems such as CMS, for
instance, which likewise have to be used by all microservices.

• The microservices have to adhere to certain standards with respect to
 monitoring, logging and deployment. Thereby, it can be ensured that the
 plethora of microservices can still be operated in a uniform manner. Without
such standards this is hardly possible anymore in the case of a larger number
of microservices.

• Additional aspects relate to configuration (section 7.10), Service Discovery
 (section 7.11) and security (section 7.14).
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• Resilience (section 9.5) and Load Balancing (section 7.12) are concepts that
have to be implemented in a microservice. Still, the overall architecture can
demand that each microservice takes precautions in this area.

• An additional aspect is the communication of the microservices with each other 
(see Chapter 8). For the system in its entirety a communication  infrastructure
has to be defined which the microservices adhere to also.

The overall architecture does not necessarily restrict the choice of technologies. 
For logging, monitoring, and deployment an interface could be defined so there can 
be a standard according to which all microservices log messages in the same manner 
and hand them over to a common log infrastructure. However, the microservices do 
not necessarily have to use the same technologies for this. Similarly, how data can 
be handed to the monitoring system and which data are relevant for the monitoring 
can be defined. A microservice has to hand over the data to the monitoring, but a 
technology does not necessarily have to be prescribed. For deployment a completely 
automated continuous delivery pipeline can be demanded that deploys software or 
deposits it into a repository in a certain manner. Which specific technology is used is, 
again, a question for the developers of the respective microservice to decide. Practi-
cally, there are advantages when all microservices employ the same technology. This 
reduces complexity, and there will also be more experience in how to deal with the 
employed technology. However, in case of specific requirements, it is still possible to 
use a different technical solution when, for this special case, the advantages of such 
a solution predominate. This is an essential advantage of the technology freedom of 
microservice-based architectures.

Sidecar

Even if  certain technologies for implementing the demands on microservices are 
 rigidly defined, it will still be possible to integrate other technologies. Therefore, 
the concept of a sidecar can be very useful. This is a process that integrates into 
the microservices-based architecture via standard technologies and offers an 
interface that enables another process to use these features. This process can be imple-
mented in an entirely different technology so that the technology freedom is  preserved. 
 Figure 7.12 illustrates this concept: The sidecar uses standard technologies and ren-
ders them accessible for another microservice in an optional technology. The sidecar 
is an independent process and therefore can be called for instance via REST so that 
microservices in arbitrary technologies can use the sidecar. Section 13.12 shows a con-
crete example for a sidecar. 
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Also, with this approach such microservices can be integrated into the architec-
ture whose technological approach otherwise would exclude the use of the general 
technical basis for configuration, Service Discovery and security, as the client compo-
nent is not available for the entire technology.

In some regards the definition of the technology stack also affects other fields. 
The definition of technologies across all microservices also affects the organization 
or can be the product of a certain organization (see Chapter 12, “Organizational 
Effects of a Microservices-Based Architecture”).

Try and Experiment

• A microservices-based architecture is supposed to be defined.

• Which technical aspects could it comprise?

• Which aspects would you prescribe to the teams? Why?

• Which aspects should the teams decide on their own? Why?

In the end, the question is how much freedom you allow the teams to 
have. There are numerous possibilities, ranging from complete freedom 
up to the prescription of practically all aspects. However, some areas can 
only be  centrally defined—the communication protocols, for example. 
 Section 12.3 discusses in more detail who should make which decisions in a 
 microservice-based project.

Microservice

Sidecar

Standard
logging 

Standard
monitoring 

Standard
configuration 

Standard
Service

Discovery 

Standard
security 

Microservices
Infrastructure 

Figure 7.12 A Sidecar Renders All Standard Technologies Accessible via a Simple Interface
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7.10 Configuration and Coordination

Configuring microservice-based systems is laborious. They comprise a plethora of 
microservices, which all have to be provided with the appropriate configuration 
parameters.

Some tools can store the configuration values and make them available to all 
microservices. Ultimately, these are solutions in key/value stores, which save a certain 
value under a certain key:

• Zookeeper14 is a simple hierarchical system that can be replicated onto multi-
ple servers in a cluster. Updates arrive in an orderly fashion at the clients. This
can also be used in a distributed environment, for instance for synchronization. 
Zookeeper has a consistent data model: all nodes have always the same data.
The project is implemented in Java and is available under the Apache license.

• etcd15 originates from the Docker/CoreOS environment. It offers an HTTP
interface with JSON as data format. etcd is implemented in Go and also is
available under the Apache license. Similar to Zookeeper, etcd also has a con-
sistent data model and can be used for distributed coordination. For instance,
etcd enables implementation of locking in a distributed system.

• Spring Cloud Config16 likewise has a REST-API. The configuration data can
be provided by a Git backend. Therefore Spring Cloud Config directly sup-
ports data versioning. The data can also be encrypted to protect passwords.
The system is well integrated into the Java framework Spring and can be used
without additional effort in Spring systems for Spring itself provides already
configuration mechanisms. Spring Cloud Config is written in Java and is avail-
able under the Apache license. Spring Cloud Config does not offer support for
synchronizing different distributed components.

Consistency as Problem

Some of the configuration solutions offer consistent data. This means that all nodes 
return the same data in case of a call. This is in a sense an advantage. However, 
according to the CAP theorem a node can only return an inconsistent response in 
case of a network failure—or none at all. In the end, without a network connection 
the node cannot know whether other nodes have already received other values. If the 
system allows only consistent responses, there can be no response at all in this situa-
tion. For certain scenarios this is highly sensible.

 14. https://zookeeper.apache.org/

15. https://github.com/coreos/etcd

16. http://cloud.spring.io/spring-cloud-config/

https://www.zookeeper.apache.org/
https://www.github.com/coreos/etcd
http://www.cloud.spring.io/spring-cloud-config/
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For instance, only one client should execute a certain code at a given time—for 
example, to initiate a payment exactly once. The necessary locking can be done by 
the configuration system: within the configuration system there is a variable that, 
upon entering this code, has to be set. Only in that case may the code be executed. 
In the end, it is better when the configuration system does not return a response two 
clients will not execute the code in parallel by chance.

However, for configurations such strict requirements regarding consistency are 
often not necessary. Maybe it is better when a system gets an old value rather than 
when it does not get any value at all. However, in the case of CAP different compro-
mises are possible. For instance, etcd returns an incorrect response rather than no 
response at all under certain conditions.

Immutable Server

Another problem associated with the centralized storage of configuration data is 
that the microservices do not only depend on the state of their own file system and 
the contained files but also on the state of the configuration server. Therefore, a 
microservice now cannot be exactly replicated anymore—for this the state of the 
configuration server is relevant also. This makes the reproduction of errors and the 
search for errors in general more difficult.

In addition, the configuration server is in opposition to the concept of an immu-
table server. In this approach every software change leads to a new installation of the 
software. Ultimately, the old server is terminated upon an update, and a new server 
with an entirely new installation of the software is started. However, in case of an 
external configuration server, a part of the configuration will not be present on the 
server, and therefore the server is after all changeable in the end by adjusting the con-
figuration. However, this is exactly what is not supposed to happen. To prevent it, a 
configuration can be made in the server itself instead of the configuration server. In 
that case configuration changes can only be implemented by rolling out a new server.

Alternative: Installation Tools

The installation tools (discussed in section 11.4) represent a completely different 
approach for the configuration of individual microservices. These tools support not 
only the installation of software, but also the configuration. The configuration files, 
for instance, can be generated, which can subsequently be read by microservices. The 
microservice itself does not notice the central configuration since it reads only a con-
figuration file. Still, these approaches support all scenarios, which typically occur in a 
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microservices-based architecture. Thus, this approach allows a central configuration 
and is not in opposition to the immutable server as the configuration is completely 
transferred to the server.

7.11 Service Discovery

Service Discovery ensures that microservices can find each other. This is, in a sense, a 
very simple task: For instance, a configuration file detailing the IP address and the port 
of the microservice can be delivered on all computers. Typical configuration manage-
ment systems enable the rollout of such files. However, this approach is not sufficient:

• Microservices can come and go. This does not only happen due to server fail-
ures but also because of new deployments or the scaling of the environment by
the start of new servers. Service Discovery has to be dynamic. A fixed configu-
ration is not sufficient.

• Due to Service Discovery, the calling microservices are not so closely coupled
anymore to the called microservice. This has positive effects for scaling: A cli-
ent is not bound to a concrete server, instance, anymore but can contact differ-
ent instances—depending on the current load of the different servers.

• When all microservices have a common approach for Service Discovery, a central
registry of all microservices arises. This can be helpful for an architecture over-
view (see section 7.2). Or monitoring information can be retrieved by all systems.

In systems that employ messaging, Service Discovery can be dispensable. Messag-
ing systems already decouple sender and recipient. Both know only the shared chan-
nel by which they communicate. However, they do not know the identity of their 
communication partner. The flexibility that Service Discovery offers is then provided 
by the decoupling via the channels.

Service Discovery = Configuration?

In principle it is conceivable to implement Service Discovery by configuration solutions 
(see section 7.10). In the end, only the information that service is reachable at which 
location is supposed to be transferred. However, configuration mechanisms are, in 
effect, the wrong tools for this. For Service Discovery, high availability is more impor-
tant than for a configuration server. In the worst case a failure of Service Discovery can 



ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 142

have the consequence that communication between microservices becomes impossible. 
Consequently, the trade-off between consistency and availability is different compared 
to configuration systems. Therefore, configuration systems should be used for Service 
Discovery only when they offer an appropriate availability. This can have consequences 
for the necessary architecture of the Service Discovery system.

Technologies

There are many different technologies for Service Discovery:

• One example is DNS17 (Domain Name System). This protocol ensures that
a host name like www.ewolff.com can be resolved to an IP address. DNS is
an essential component of the Internet and has clearly proven its scalability
and availability. DNS is hierarchically organized: There is a DNS server that
 administrates the .com domain. This DNS server knows which DNS server
administrates the subdomain ewolff.com, and the DNS server of this subdomain
finally knows the IP address of www.ewolff.com. In this way a namespace can be
hierarchically organized, and different organizations can administrate different
parts of the namespace. If a server named server.ewolff.com is supposed to be
created, this can be easily done by a change in the DNS server of the domain
ewolff.com. This independence fits well to the concept of microservices, which
especially focus on independence with regard to their architecture. To ensure
reliability there are always several servers, which administrate a domain. In order
to reach scalability DNS supports caching so that calls do not have to implement
the entire resolution of a name via multiple DNS servers, but can be served by a
cache. This does not only promote performance, but also reliability.

• For Service Discovery it is not sufficient to resolve the name of a server into
an IP address. In addition, there has to be a network port for each service.
Therefore, the DNS has SRV records. These contain the information on which
computer and port the service is reachable. In addition, a priority and a weight
can be set for a certain server. These values can be used to select one of the
servers and thereby to prefer powerful servers. Via this approach, DNS offers
reliability and Load Balancing onto multiple servers. Advantages of DNS are
apart from scalability also the availability of many different implementations
and the broad support in different programming languages.

• A frequently used implementation for a DNS server is BIND (Berkeley Internet
Name Domain Server).18 BIND runs on different operating systems (Linux,

 17. http://www.zytrax.com/books/dns/

 18. https://www.isc.org/downloads/bind/

http://www.zytrax.com/books/dns/
https://www.isc.org/downloads/bind/
http://www.ewolff.com
http://www.ewolff.com
http://www.ewolff.com
http://www.ewolff.com
http://www.server.ewolff.com
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BSD, Windows, Mac OS X), is written in the programming language C and is 
under an open-source license.

• Eureka19 is part of the Netflix stack. It is written in Java and is available under
the Apache license. The example application in this book uses Eureka for
 Service Discovery (see section 13.8). For every service Eureka stores under the
service name a host and a port, under which the service is available. Eureka
can replicate the information about the services onto multiple Eureka servers
in order to increase the availability. Eureka is a REST service. A Java library for 
the clients belongs to Eureka. Via the sidecar concept (section 7.9) this library
can also be used by systems, which are not written in Java. The sidecar takes
over the communication with the Eureka server, which then offers Service
 Discovery to the microservice. On the clients the information from the server
can be held in a cache so that calls are possible without communication with
the server. The server regularly contacts the registered services to determine
which services failed. Eureka can be used as basis for Load Balancing since
several instances can be registered for one service. The load can then be
 distributed onto these instances. Eureka was originally designed for the
Amazon Cloud.

• Consul20 is a key/value store and therefore fits also into the area of configu-
ration servers (section 7.10). Apart from consistency it can also optimize
availability.21 Clients can register with the server and react to certain events. In
addition to a DNS interface it also has a HTTP/JSON interface. It can check
whether services are still available by executing health checks. Consul is written 
in Go and is available under the Mozilla open-source license. Besides, Consul
can create configuration files from templates. Therefore, a system expecting
services in a configuration file can likewise be configured by Consul.

Every microservice-based architecture should use a Service Discovery system. It 
forms the basis for the administration of a large number of microservices and for 
additional features like Load Balancing. If there is only a small number of microser-
vices, it is still imaginable to get along without Service Discovery. However, for a 
large system Service Discovery is indispensable. Since the number of microservices 
increases over time, Service Discovery should be integrated into the architecture right 
from the start. Besides, practically each system uses at least the name resolution of 
hosts, which is already a simple Service Discovery.

19. https://github.com/Netflix/eureka

20. http://www.consul.io

21. https://aphyr.com/posts/316-call-me-maybe-etcd-and-consul

https://www.github.com/Netflix/eureka
http://www.consul.io
https://www.aphyr.com/posts/316-call-me-maybe-etcd-and-consul
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7.12 Load Balancing

It is one of the advantages of microservices that each individual service can be 
 independently scaled. To distribute the load between the instances, multiple 
instances, which share the load, can simply be registered in a messaging solution (see 
section 8.4). The actual distribution of the individual messages is then performed by 
the messaging solution. Messages can either be distributed to one of the receivers 
(point-to-point) or to all receivers (publish/subscribe).

REST/HTTP

In case of REST and HTTP a load balancer has to be used. The load balancer has 
the function to behave to the outside like a single instance, but to distribute requests 
to multiple instances. Besides, a load balancer can be useful during deployment: 
Instances of the new version of the microservice can initially start without getting a 
lot of load. Afterwards the load balancer can be reconfigured in a way that the new 
microservices are put into operation. In doing so the load can also be increased in a 
stepwise manner. This decreases the risk of a system failure.

Figure 7.13 illustrates the principle of a proxy-based load balancer: the client 
sends its requests to a load balancer running on another server. This load balancer 
is responsible for sending each request to one of the known instances. There the 
request is processed. 

This approach is common for websites and relatively easy to implement. The load 
balancer retrieves information from the service instances to determine the load of 
the different instances. In addition, the load balancer can remove a server from the 
Load Balancing when the node does not react to requests anymore.

On the other hand, this approach has the disadvantage that the entire traffic 
for one kind of service has to be directed via a load balancer. Therefore, the load 
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Figure 7.13 Proxy-Based Load Balancer
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balancer can turn into a bottleneck. Besides, a failure of the load balancer results in 
the failure of a microservice.

Central Load Balancer

A central load balancer for all microservices is not only not recommended for these 
reasons but also because of the configuration. The configuration of the load balancer 
gets very complex when only one load balancer is responsible for many microservices. 
Besides, the configuration has to be coordinated between all microservices. Especially 
when a new version of a microservice is being deployed, a modification of the load 
balancer can be sensible in order to put the new microservice only after a 
comprehensive test under load. The need for coordination between microservices 
should especially be avoided with regard to deployment to ensure the independent 
deployment of microservices. In case of such a reconfiguration, one has to make sure 
that the load balancer supports a dynamic reconfiguration and, for instance, does not 
lose information regarding sessions if the microservice uses sessions. Also for this 
reason it is not recommended that stateful microservices should be implemented.

A Load Balancer per Microservice

There should be one load balancer per microservice, which distributes the load 
between the instances of the microservice. This enables the individual microservices 
to independently distribute load, and different configurations per microservice are 
possible. Likewise, it is simple to appropriately reconfigure the load balancer upon 
the deployment of a new version. However, in case of a failure of the load balancers, 
the microservice will not be available anymore.

Technologies

For Load Balancing there are different approaches:

• The Apache httpd web server supports Load Balancing with the extension
mod_proxy_balancer.22

• The web server nginx23 can likewise be configured in a way that it supports
Load Balancing. To use a web server as load balancer has the advantage that it
can also deliver static websites, CSS, and images. Besides, the number of tech-
nologies will be reduced.

22. http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

23. http://nginx.org/en/docs/http/load_balancing.html

http://www.httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html
http://www.nginx.org/en/docs/http/load_balancing.html
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• HAProxy24 is a solution for Load Balancing and high availability. It does not
support HTTP, but all TCP-based protocols.

• Cloud providers frequently also offer Load Balancing. Amazon, for instance,
offers Elastic Load Balancing.25 This can be combined with auto scaling so
that higher loads automatically trigger the start of new instances, and thereby
the application automatically scales with load.

Service Discovery

Another possibility for Load Balancing is Service Discovery (see Figure 7.14; see 
 section 7.11). When the Service Discovery returns different nodes for a service, the 
load can be distributed across several nodes. However, this approach allows redi-
recting to another node only in the case that a new Service Discovery is performed. 
This makes it difficult to achieve a fine granular Load Balancing. For a new node 
it will therefore take some time until it gets a sufficient share of load. Finally, the 
failure of a node is hard to correct because a new Service Discovery would be nec-
essary for that. It is useful that in case of DNS it can be stated for a set of data 
how long the data is valid (time-to-live). Afterwards the Service Discovery has to 
be run again. This enables a simple Load Balancing via DNS solutions and also 
with Consul. However, unfortunately this time-to-live is often not completely 
 correctly implemented. 

Load Balancing with Service Discovery is simple because Service Discovery has 
to be present in a microservice-based system anyhow. Therefore, the Load Balancing 

24. http://www.haproxy.org/

25. http://aws.amazon.com/de/elasticloadbalancing/
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Figure 7.14 Load Balancing with Service Discovery
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does not introduce additional software components. Besides, avoiding a central load 
balancer has the positive effect that there is no bottle neck and no central component 
whose failure would have tremendous consequences.

Client-Based Load Balancing

The client itself can also use a load balancer (see Figure 7.15). The load balancer can 
be implemented as a part of the code of the microservice or it can come as a proxy-
based load balancer such as nginx or Apache httpd, which runs on the same com-
puter as the microservice. In that case there is no bottleneck because each client has 
its own load balancer, and the failure of an individual load balancer has hardly any 
consequences. However, configuration changes have to be passed on to all load bal-
ancers, which can cause quite a lot of network traffic and load. 

Ribbon26 is an implementation of client-based Load Balancing. It is a library that 
is written in Java and can use Eureka to find service instances. Alternately, a list of 
servers can be handed over to Ribbon. Ribbon implements different algorithms for 
Load Balancing. Especially when using it in combination with Eureka, the individual 
load balancer does not need to be configured anymore. Because of the sidecar con-
cept Ribbon can also be used by microservices that are not implemented in Java. The 
example system uses Ribbon (see section 13.11).

Consul offers the possibility to define a template for configuration files of load 
balancers. This enables feeding the load balancer configuration with data from Ser-
vice Discovery. Client-based Load Balancing can be implemented by defining a tem-
plate for each client, into which Consul writes all service instances. This process can 

26. https://github.com/Netflix/ribbon
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be regularly repeated. In this manner a central system configuration is again  possible, 
and client-based Load Balancing is relatively simple to implement.

Load Balancing and Architecture

It is hardly sensible to use more than one kind of Load Balancing within a single 
microservice-based system. Therefore, this decision should be made once for the 
entire system. Load Balancing and Service Discovery have a number of contact 
points. Service Discovery knows all service instances; Load Balancing distributes the 
loads between the instances. Both technologies have to work together. Thus, the 
technology decisions in this area will influence each other.

7.13 Scalability

To be able to cope with high loads, microservices have to scale. Scalability means 
that a system can process more load when it gets more resources.

There are two different kinds of scalability as represented in Figure 7.16:

• Horizontal scalability—This means that more resources are used, which each
process part of the load, that is, the number of resources increases.

• Vertical scalability—This means that more powerful resources are employed
to handle a higher load. Here, an individual resource will process more load,
while the number of resources stays constant.

Horizontal scalability is often the better choice since the limit for the possible 
number of resources and therefore the limit for the scalability is very high. Besides, 

Microservice Microservice Microservice Microservice

Horizontal Scaling

Vertical
Scaling

Figure 7.16 Horizontal and Vertical Scaling
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it is cheaper to buy more resources than more powerful ones. One fast computer is 
often more expensive than many slow ones.

Scaling, Microservices, and Load Balancing

Microservices employ mostly horizontal scaling, where the load is distributed across 
several microservice instances via Load Balancing. The microservices themselves 
have to be stateless for this. More precisely, they should not have any state, which is 
specific for an individual user, because then the load can only be distributed to nodes, 
which have the respective state. The state for a user can be stored in a database or 
alternatively be put into an external storage (for example, In-Memory-Store), which 
can be accessed by all microservices.

Dynamic Scaling

Scalability means only that the load can be distributed to multiple nodes. How the 
system really reacts to the load is not defined. In the end it is more important that the 
system really adapts to an increasing load. For that it is necessary that, depending on 
the load, a microservice starts new instances onto which the load can be distributed. 
This enables the microservice to also cope with high loads. This process has to be 
automated, as manual processes would be too laborious.

There are different places in the continuous deployment pipeline (Chapter 11, 
“Operations and Continuous Delivery of Microservices”) where it is necessary to 
start a microservice to test the services. For that a suitable deployment system such 
as Chef or Puppet can be used. Alternatively, a new virtual machine or a new Docker 
container with the microservice is simply started. This mechanism can also be used 
for dynamic scaling. It only has to additionally register the new instances with the 
Load Balancing. However, the instance should be able to handle the production load 
right from the start. Therefore, the caches should, for instance, already be filled 
with data.

Dynamic scaling is especially simple with Service Discovery: The microservice has 
to register with the Service Discovery. The Service Discovery can configure the load 
balancer in a way that it distributes load to the new instance.

The dynamic scaling has to be performed based on a metric. When the response 
time of a microservice is too long or the number of requests is very high, new 
instances have to be started. The dynamic scaling can be part of a monitoring (see 
section 11.3) since the monitoring should enable the reaction to extraordinary metric 
values. Most monitoring infrastructures offer the possibility to react to metric values 
by calling a script. The script can start additional instances of the microservice. This 
is fairly easy to do with most cloud and virtualization environments. Environments 
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like the Amazon Cloud offer suitable solutions for automatic scaling, which work in 
a similar manner. However, a home-grown solution is not very complicated since the 
scripts run anyhow, only every few minutes, so that failures are tolerable, at least for 
a limited time. Since the scripts are part of the monitoring, they will have a similar 
availability like the monitoring and should therefore be sufficiently available.

Especially in the case of cloud infrastructures, it is important to shut the instances 
down again in case of low load because every running instance costs money in a 
cloud. Also in this case scripts can be used to provide automated responses when 
values reach predefined levels.

Microservices: Advantages for Scaling

With regard to scaling, microservices have, first of all, the advantage that they can be 
scaled independently of each other. In case of a deployment monolith, starting each 
instance requires starting the entire monolith. The fine granular scaling does not 
appear to be an especially striking advantage at first glance. However, to run an 
entire e-commerce shop, in many instances just to speed up the search, causes high 
expenditures: A lot of hardware is needed, a complex infrastructure has to be built 
up, and system parts are held available, not all of which are used. These system parts 
render the deployment and monitoring more complex. The possibilities for dynamic 
scaling depend critically on the size of the services and on the speed with which new 
instances can be started. In this area microservices possess clear advantages.

In most cases microservices have already an automated deployment, which is also 
very easy to implement. In addition, there is already monitoring. Without automated 
deployment and monitoring, a microservice-based system can hardly be operated. If 
there is in addition Load Balancing, then it is only a script that is still missing for auto-
mated scaling. Therefore, microservices represent an excellent basis for dynamic scaling.

Sharding

Sharding means that the administrated data amount is divided and that each instance 
gets the responsibility for part of the data. For example, an instance can be responsi-
ble for the customers A–E or for all customers whose customer number ends with the 
number 9. Sharding is a variation of horizontal scaling: more servers are used. How-
ever, not all servers are equal, but every server is responsible for a different subset of 
the dataset. In case of microservices this type of scaling is easy to implement since 
the domain is anyhow distributed across multiple microservices. Every microservice 
can then shard its data and scale horizontally via this sharding. A deployment mono-
lith is hardly scalable in this manner because it handles all the data. When the 



ptg18144917

1517.14 Security

deployment monolith administrates customers and items, it can hardly be sharded 
for both types of data. In order to really implement sharding, the load balancer has 
to distribute the load appropriately to the shards, of course.

Scalability, Throughput, and Response Times

Scalability means that more load can be processed by more resources. The throughput 
increases—that is, the number of processed requests per unit of time increase. However, 
the response time stays constant in the best case—depending on circumstances it might 
rise, but not to such an extent that the system causes errors or gets too slow for the user.

When faster response times are required, horizontal scaling does not help. How-
ever, there are some approaches to optimize the response time of microservices:

• The microservices can be deployed on faster computers. This is vertical scal-
ing. Then the microservices can process the individual requests more rapidly.
Because of the automated deployment, vertical scaling is relatively simple to
implement. The service has only to be deployed on faster hardware.

• Calls via the network have a long latency. Therefore, a possible optimization
can be to avoid such calls. Instead caches can be used, or the data can be repli-
cated. Caches can often very easily be integrated into the existing communica-
tion. For REST, for instance, a simple HTTP cache is sufficient.

• If the domain architecture of microservices is well designed, a request should
only be processed in one microservice so that no communication via the net-
work is necessary. In case of a good domain architecture the logic for process-
ing a request is implemented in one microservice so that changes to the logic
only require changes to one microservice. In that case microservices do not
have longer response times than deployment monoliths. With regard to an
optimization of response times microservices have the disadvantage that their
communication via the network causes rather longer response times. However,
there are means to counteract this effect.

7.14 Security

In a microservice-based architecture, each microservice has to know which user 
triggered the current call and wants to use the system. Therefore, a uniform security 
architecture has to exist: After all, microservices can work together for a request, 
and for each part of the processing of the request, another microservice might be 
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responsible. Thus, the security structure has to be defined at the level of the entire 
system. This is the only way to ensure that the access of a user is uniformly treated 
in the entire system with regard to security.

Security comprises two essential aspects: authentication and authorization. Authen-
tication is the process that validates the identity of the user. Authorization denotes the 
decision whether a certain user is allowed to execute a certain action. Both processes 
are independent of each other: The validation of the user identity in the context of 
authentication is not directly related to authorization.

Security and Microservices

In a microservice-based architecture the individual microservices should not perform 
authentication. It does not make much sense for each microservice to validate user 
name and password. For authentication a central server has to be used. For authori-
zation an interplay is necessary: often there are user groups or roles that have to be 
centrally administered. However, whether a certain user group or role is allowed to 
use certain features of a microservice should be decided by the concerned microser-
vice. Therefore changes to the authorization of a certain microservice can be limited 
to the implementation of this microservice.

OAuth2

One possible solution for this challenge is OAuth2. This protocol is also widely used 
in the Internet. Google, Microsoft, Twitter, XING, and Yahoo all offer support for 
this protocol. 

Figure 7.17 shows the workflow of the OAuth2 protocol as defined by the 
standard:27

1. The client inquires of the resource owner whether it might execute a certain
action. For example, the application can request access to the profile or certain
data in a social network that the resource owner stored there. The resource
owner is usually the user of the system.

2. If the resource owner grants the client access, the client receives a respective
response from the resource owner.

3. The client uses the response of the resource owner to put a request to the
authorization server. In the example the authorization server would be located
in the social network.

27. http://tools.ietf.org/html/rfc6749

http://tools.ietf.org/html/rfc6749
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4. The authorization server returns an access token.

5. With this access token the client can now call a Resource Server and there
obtain the necessary information. For the call the token can for instance be put
into an HTTP header.

6. The resource server answers the requests.

Possible Authorization Grants

The interaction with the authorization server can work in different ways:

• In case of the password grant the client shows an HTML form to the user in
step 1. The resource owner can enter user name and password. In step 3 this
information is used by the client to obtain the access token from the authoriza-
tion server via an HTTP POST. This approach has the disadvantage that the

Client

1 - Authorization
Request

2 - Grant
Authorization

Resource
Owner

Authorization Server

3 - Authorization

4 - Access Token

Resource Server

5 - Access
Token

6 - Successful
Access

Figure 7.17 The OAuth2 Protocol
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client processes user name and password. The client can be insecurely imple-
mented, and then these data are endangered.

• In case of the authorization grant the client directs the user in step 1 to a web page 
that the authorization server displays. There the user can choose whether he/she
permits the access. If that is the case, in step 2 the client will obtain an authoriza-
tion code via an HTTP-URL. In this way the authorization server can be sure
that the correct client obtains the code since the server chooses the URL. In step 3
the client can then generate the access token with this authorization code via an
HTTP POST. The approach is mainly implemented by the authorization server
and thus very easy to use by a client. In this scenario the client would be a web
application on the server: It will obtain the code from the authorization server
and is the only one able to turn it via the HTTP POST into an access token.

• In case of an implicit grant, the procedure resembles the authorization grant.
After the redirect to the authorization server in step 1 the client directly gets an
access token via an HTTP redirect. This enables the browser or a mobile appli-
cation to immediately read out the access token. Steps 3 and 4 are omitted.
However, here the access token is not as well protected against attacks since
the authorization server does not directly send it to the client. This approach is
sensible when JavaScript code on the client or a mobile application is supposed
to use the access token.

• In case of client credentials, the client uses a credential in step 1 that the client
knows to obtain the access token from the authorization server. Therefore, the
client can access the data without additional information from the resource
owner. For example, a statistics software could read out and analyze customer
data in this manner.

Via the access token the client can access resources. The access token has to be 
protected: When unauthorized people obtain access to the access token, they can 
thereby trigger all actions that the resource owner can also trigger. Within the token 
itself some information can be encoded. For instance, in addition to the real name of 
the resource owner the token can also contain information that assigns certain rights 
to the user or the membership to certain user groups.

JSON Web Token (JWT)

JSON Web Token (JWT) is a standard for the information that is contained in an access 
token. JSON serves as data structure. For the validation of the access token a digital 
signature with JWS (JSON Web Signature) can be used. Likewise, the access token can 
be encrypted with JSON Web Encryption (JWE). The access token can contain 
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information about the issuer of the access token, the resource owner, the validity inter-
val, or the addressee of the access token. Individual data can also be contained in the 
access token. The access token is optimized for use as HTTP header by an encoding of 
the JSON with BASE64. These headers are normally subject to size restrictions.

OAuth2, JWT, and Microservices

In a microservice-based architecture the user can initially authenticate via one of the 
OAuth2 approaches. Afterwards the user can use the web page of a microservice or 
call a microservice via REST. With each further call every microservice can hand over 
the access token to other microservices. Based on the access token the microservices 
can decide whether a certain access is granted or not. For that the validity of the token 
can first be checked. In case of JWT the token only has to be decrypted, and the 
 signature of the authorization server has to be checked. Subsequently, whether the 
user may use the microservice as he/she intends can be decided based on the informa-
tion of the token. Information from the token can be used for that. For instance, it is 
possible to store the affiliation with certain user groups directly in the token.

It is important that it is not defined in the access token which access to which 
microservice is allowed. The access token is issued by the authorization server. If the 
information about the access was available in the authorization server, every modifi-
cation of the access rights would have to occur in the authorization server—and not 
in the microservices. This limits the changeability of the microservices since modi-
fications to the access rights would require changes of the authorization server as 
central component. The authorization server should only administer the assignment 
to user groups, and the microservices should then allow or prohibit access based on 
such information from the token.

Technologies

In principle, other technical approaches than OAuth2 could also be used as long as 
they employ a central server for authorization and use a token for regulating the 
access to individual microservices. One example is Kerberos,28 which has a relatively 
long history. However, it is not well tuned to REST like OAuth2. Other alternatives 
are SAML and SAML 2.0.29 They define a protocol that uses XML and HTTP to 
perform authorization and authentication.

Finally, signed cookies can be created by a home-grown security service. Via a 
cryptographic signature, it can be determined whether the cookie has really been 

28. http://tools.ietf.org/html/rfc4556

29. https://www.oasis-open.org/committees/security/

http://www.tools.ietf.org/html/rfc4556
https://www.oasis-open.org/committees/security/


ptg18144917

Chapter 7 Architecture of Microservice-Based Systems 156

issued by the system. The cookie can then contain the rights or groups of the user. 
Microservices can examine the cookie and restrict the access if necessary. There is 
the risk that the cookie is stolen. However, for that to occur the browser has to be 
compromised, or the cookie has to be transferred via a unencrypted connection. 
This is often acceptable as risk.

With a token approach it is possible that microservices do not have to han-
dle the authorization of the caller but still can restrict the access to certain user 
groups or roles.

There are good reasons for the use of OAuth2:

• There are numerous libraries for practically all established programming
languages that implement OAuth2 or an OAuth2 server.30 The decision for
OAuth2 hardly restricts the technology choice for microservices.

• Between the microservices only the access token still has to be transferred.
This can occur in a standardized manner via an HTTP header when REST is
used. In case of different communication protocols similar mechanisms can be
exploited. Also in this area OAuth2 hardly limits the technology choice.

• Via JWT information can be placed into the token that the authorization
server communicates to the microservices in order for them to allow or pro-
hibit access. Therefore, also in this area the interplay between the individual
microservice and the shared infrastructure is simple to implement—with
standards that are widely supported.

Spring Cloud Security31 offers a good basis for implementing OAuth2 systems, 
especially for Java-based microservices.

Additional Security Measures

OAuth2 solves, first of all, the problem of authentication and authorization—
primarily for human users. There are additional measures for securing a  microservice-
based system:

• The communication between the microservices can be protected by SSL/TLS
against wiretapping. All communication is then encrypted. Infrastructures like
REST or messaging systems mostly support such protocols.

30. http://oauth.net/2/

31. http://cloud.spring.io/spring-cloud-security/

http://www.oauth.net/2/
http://www.cloud.spring.io/spring-cloud-security/
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• Apart from authentication with OAuth2 certificates can be used to authenti-
cate clients. A certificate authority creates the certificates. They can be used to
verify digital signatures. This makes it possible to authenticate a client based
on its digital signature. Since SSL/TLS supports certificates, at least at this level 
the use of certificates and authentication via certificates is possible.

• API keys represent a similar concept. They are given to external clients to ena-
ble them to use the system. Via the API key the external clients authenticate
themselves and can obtain the appropriate rights. In case of OAuth2 this can
be implemented with Client Credential.

• Firewalls can be used to protect the communication between microservices.
Normally firewalls secure a system against unauthorized access from out-
side. A firewall for the communication between the microservices prevents
that all microservices are endangered if  an individual microservice has been
successfully taken over. In this way the intrusion can be restricted to one
microservice.

• Finally, there should be an intrusion detection to detect unauthorized access to
the system. This topic is closely related to monitoring. The monitoring system
can also be used to trigger an appropriate alarm in case of an intrusion.

• Datensparsamkeit32 is also an interesting concept. It is derived from the data
security field and states that only data that is absolutely necessary to be saved.
Form a security perspective this results in the advantage that collecting lots of
data is avoided. This makes the system less attractive for attacks, and in addi-
tion the consequences of a security breach will not be as bad.

Hashicorp Vault

Hashicorp Vault33 is a tool that solves many problems in the area of microservice 
security. It offers the following features:

• Secrets like passwords, API keys, keys for encryption, or certificates can be
saved. This can be useful for enabling users to administrate their secrets. In
addition, microservices can be equipped with certificates in such a manner as
to protect their communication with each other or with external servers.

32. http://martinfowler.com/bliki/Datensparsamkeit.html

33. https://www.vaultproject.io/

http://www.martinfowler.com/bliki/Datensparsamkeit.html
https://www.vaultproject.io/
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• Secrets are given via a lease to services. Besides, they can be equipped with an
access control. This helps to limit the problem in case of a compromised ser-
vice. Secrets can, for instance, also be declared invalid.

• Data can be immediately encrypted or decrypted with the keys without the
microservices themselves having to save these keys.

• Access is made traceable by an audit. This enables tracing of who got which
secret and at what time.

• In the background Vault can use HSMs, SQL databases, or Amazon IAM to
store secrets. In addition, it can for instance also generate new access keys for
the Amazon Cloud by itself.

In this manner Vault takes care of handling keys and thereby relieves microser-
vices of this task. It is a big challenge to really handle keys securely. It is difficult to 
implement something like that in a really secure manner.

Additional Security Goals

With regard to a software architecture security comes in very different shapes. 
Approaches like OAuth2 only help to achieve confidentiality. They prevent data 
access to unauthorized users. However, even this confidentiality is not entirely safe-
guarded by OAuth2 on its own: The communication in the network likewise has to 
be protected against wiretapping—for instance via HTTPS or other kinds of 
encryption.

Additional security aspects include the following:

• Integrity—Integrity means that there are no unnoticed changes to the data.
Every microservice has to solve this problem. For instance, data can be signed
to ensure that they have not been manipulated in some way. The concrete
implementation has to be performed by each microservice.

• Confidentiality—The concept of confidentiality means ensuring that modi-
fications made by someone cannot be denied. This can be achieved by signing
the changes introduced by different users by keys that are specific for the indi-
vidual user. Then it is clear that exactly one specific user has modified the data. 
The overall security architecture has to provide the keys; the signing is then the
task of each individual service.

• Data security—Data security is ensured as long as no data are lost. This issue
can be handled by backup solutions and highly available storage solutions.
This problem has to be addressed by the microservices since it is within their



ptg18144917

1597.15 Documentation and Metadata

responsibility as part of their data storage. However, the shared infrastructure 
can offer certain databases that are equipped with appropriate backup and dis-
aster recovery mechanisms.

• Availability—Availability means that a system is available. Also here the
microservices have to contribute individually. However, since one has to deal
with the possibility of failures of individual microservices, especially in the
case of microservice-based architectures, microservice-based systems are
often well prepared in this area. Resilience (section 9.5) is, for instance, useful
for this.

These aspects are often not considered when devising security measures; how-
ever, the failure of a service has often even more dramatic consequences than the 
unauthorized access to data. One danger is denial-of-service attacks, which result in 
such an overloading of servers that they cannot perform any sensible work anymore. 
The technical hurdles for this are often shockingly low, and the defense against such 
attacks is frequently very difficult.

7.15 Documentation and Metadata

To keep the overview in a microservice-based architecture certain information about 
each microservice has to be available. Therefore, the microservice-based architecture 
has to define how microservices can provide such information. Only when all 
 microservices provide this information in a uniform way, the information can be 
 easily collected. Possible information of interest is, for instance:

• Fundamental information like the name of the service and the responsible
 contact person.

• Information about the source code: where the code can be found in the
version control and which libraries have been used. The used libraries can
be interesting in order to compare open-source licenses of the libraries with
the company policies or to identify in case of a security gap in a library the
affected microservices. For such purposes the information has to be available
even if  the decision about the use of a certain library rather concerns only
one microservice. The decision itself  can be made largely independently by
the responsible team.

• Another interesting information is with which other microservices the micro-
service works. This information is central for the architecture management
(see section 7.2).
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• In addition, information about configuration parameters or about feature
 toggles might be interesting. Feature toggles can switch features on or off. This
is useful for activating new features only in production when their implemen-
tation is really finished, or for avoiding the failure of a service by deactivating
certain features.

It is not sensible to document all components of the microservices or to unify 
the entire documentation. A unification only makes sense for information that is 
 relevant outside of the team implementing the microservice. Whenever it is necessary 
to manage the interplay of microservices or to check licenses, the relevant informa-
tion has to be available outside of the responsible team. These questions have to be 
solved across microservices. Each team can create additional documentation about 
their own microservices. However, this documentation is only relevant for this one 
team and therefore does not have to be standardized.

Outdated Documentation

A common problem concerning the documentation of any software is that the docu-
mentation gets easily outdated and then documents a state that is not up to date 
anymore. Therefore, the documentation should be versioned together with the code. 
Besides, the documentation should be created from information that is present in 
the system anyhow. For instance, the list of all used libraries can be taken from the 
build system since exactly this information is needed during the compilation of the 
system. Which other microservices are used can be obtained from Service Discovery. 
This information can, for instance, be used to create firewall rules when a firewall is 
supposed to be used to protect the communication between the microservices. In 
summary, the documentation does not have to be maintained separately, but docu-
mentation should be generated from information present in the system anyhow.

Access to Documentation

The documentation can be part of the artifacts that are created during the build. In 
addition, there can be a run-time interface that enables reading out of metadata. 
Such an interface can correspond to the otherwise common interfaces for monitor-
ing and, for instance, provide JSON documents via HTTP. In this way, the metadata 
are only an additional information microservices provide at run-time.

A service template can show how the documentation is created. The service 
 template can then form the basis for the implementation of new microservices. When 
the service template already contains this aspect, it facilitates the implementation of 
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a standard-conform documentation. In addition, at least the formal characteristics 
of the documentation can be checked by a test.

7.16 Conclusion

The domain architecture of a microservice-based system is essential because it influ-
ences not only the structure of the system, but also the organization (section 7.1). 
Unfortunately, tools for dependency management are rare, especially for microser-
vices, so that teams have to develop home-made solutions. However, often an under-
standing of the implementation of the individual business processes will be sufficient, 
and an overview of the entire architecture is not really necessary (section 7.2).

For an architecture to be successful it has to be permanently adjusted to the chang-
ing requirements. For deployment monoliths there are numerous refactoring tech-
niques to achieve this. Such possibilities also exist for microservices; however without 
the support of tools and with much higher hurdles (section 7.3). Still, microservice-
based systems can be sensibly developed further—for instance, by starting initially 
with a few large microservices and creating more and more microservices over time 
(section 7.4). An early distribution into many microservices entails the risk to end up 
with a wrong distribution.

A special case is the migration of a legacy application to a microservice-based 
architecture (section 7.6). In this case, the code base of the legacy application can 
be divided into microservices; however this can lead to a bad architecture due to the 
often bad structure of the legacy application. Alternatively, the legacy application 
can be supplemented by microservices, which replace functionalities of the legacy 
application in a stepwise manner.

Event-driven architecture (section 7.8) can serve to uncouple the logic in the 
microservices. This enables easy extensibility of the system.

Defining the technological basis is one of the tasks of an architecture  (section 7.9). 
In case of microservice-based systems this does not relate to the definition of a shared 
technology stack for implementation but to the definition of shared communication 
protocols, interfaces, monitoring, and logging. Additional technical functions of the 
entire system are coordination and configuration (section 7.10). In this area tools can 
be selected that all microservices have to employ. Alternatively, one can do without 
a central configuration and instead leave each microservice to bring along its own 
configuration.

Likewise, for Service Discovery (section 7.11) a certain technology can be cho-
sen. A solution for Service Discovery is in any case sensible for a microservice-based 
system—except messaging is used for communication. Based on Service Discovery, 
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Load Balancing can be introduced (section 7.12) to distribute the load across the 
instances of the microservices. Service Discovery knows all instances; the Load Bal-
ancing distributes the load to these instances. Load Balancing can be implemented 
via a central load balancer, via Service Discovery or via one load balancer per client. 
This provides the basis for scalability (section 7.13). This enables a microservice to 
process more load by scaling up.

Microservices have a significantly higher technical complexity than deployment 
monoliths. Operating systems, networks, load balancer, Service Discovery, and com-
munication protocols all become part of the architecture. Developers and architects 
of deployment monoliths are largely spared from these aspects. Thus architects have 
to deal with entirely different technologies and have to carry out architecture at an 
entirely different level.

In the area of security, a central component has to take over at least authentica-
tion and parts of authorization. The microservices should then settle the details of 
access (section 7.14). In order to obtain certain information from a system, which is 
composed of many microservices, the microservices have to possess a standardized 
documentation (section 7.15). This documentation can, for instance, provide infor-
mation about the used libraries—to compare them with open-source license regula-
tions or to remove security issues when a library has a security gap.

The architecture of a microservice-based system is different from classical appli-
cations. Many decisions are only made in the microservices, while topics like moni-
toring, logging or continuous delivery are standardized for the entire system.

Essential Points

• Refactoring between microservices is laborious. Therefore, it is hard to change
the architecture at this level. Accordingly, the continued development of the
architecture is a central point.

• An essential part of the architecture is the definition of overarching technolo-
gies for configuration and coordination, Service Discovery, Load Balancing,
security, documentation, and metadata.
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Microservices have to be integrated, and they need to communicate. This can be 
achieved at different levels (see Figure 8.1). Each approach has certain advantages 
and disadvantages, and at each level different technical implementations of integra-
tion are possible. 

• Microservices contain a graphical user interface. This means that microser-
vices can be integrated at the UI level. This type of integration is introduced in
section 8.1.

• Microservices can also be integrated at the logic level. They can use REST
 (section 8.2), SOAP, remote-procedure call (RPC); (section 8.3), or messaging
(section 8.4) to achieve this.

• Finally, integration can be performed at the database level using data replication
(section 8.5).

General rules for the design of interfaces are provided in section 8.6.

Chapter 8

Integration and 
Communication
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8.1 Web and UI

Microservices should bring their own UI along with them. By having the UI included 
with the relevant microservice, changes to that microservice that affect the UI can be 
done in one place. It is then necessary to integrate the UIs of the microservices 
together to form the system as a whole. This can be achieved using different 
approaches, which are reviewed in the innoQ Blog.1, 2

Multiple Single-Page-Apps

Single-page-apps (SPA)3 implement the entire UI with just one HTML page. The 
logic is implemented in JavaScript, which dynamically changes parts of the page. 
The logic can also manipulate the URL displayed in the browser so that bookmarks 
and other typical browser features can be used. However, SPAs do not conform to the 
way the web was originally designed; they demote HTML from being the central web 
technology and have most of their logic implemented in JavaScript. Traditional web 
architectures implement logic almost exclusively on the server.

SPAs are particularly useful when complex interactions or offline capability are 
required. Google’s Gmail is an example that helped to shape the meaning of the term 
SPA. Traditionally, mail clients have been native applications; however, Gmail as a 
SPA is able to offer nearly the same user experience.

There are different technologies for the implementation of single-page-apps:

• AngularJS4 is very popular. Among other features, AngularJS has bidirectional
UI data-binding: if the JavaScript code assigns a new value to an attribute of

1. https://www.innoq.com/blog/st/2014/11/web-based-frontend-integration/

2. https://www.innoq.com/en/blog/transclusion/

3. http://en.wikipedia.org/wiki/Single-page_application

4. https://angularjs.org/

Microservice Microservice

UI

Logic

Database

Figure 8.1 Different Levels of  Integration

https://www.innoq.com/blog/st/2014/11/web-based-frontend-integration/
https://www.innoq.com/en/blog/transclusion/
http://www.en.wikipedia.org/wiki/Single-page_application
https://www.angularjs.org/
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a bound model, the view components displaying the value are automatically 
changed. The binding also works from UI to the code: AngularJS can bind a 
user input to a JavaScript variable. Furthermore, AngularJS can render HTML 
templates in the browser. This enables JavaScript code to generate complex 
DOM structures. The entire front-end logic can be implemented in JavaScript 
code running on the browser. AngularJS was created by Google, which released 
the framework under the very liberal MIT license.

• Ember.js5 follows the “convention over configuration” principle and represents
essentially the same feature set as AngularJS. Through the supplementary
module Ember Data, it offers a model-driven approach for accessing REST
resources. Ember.js is made available under the MIT license and is maintained
by developers from the open-source community.

• Ext JS6 offers an MVC approach and also components which developers can
compose to build a UI similar to the way they would for rich client applications. 
Ext JS is available as open source under GPL v3.0. However, for commercial
development a license has to be bought from the creators Sencha.

SPA per Microservice

When using microservices with single-page apps each microservice can bring along 
its own SPA (see Figure 8.2). The SPA can, for instance, call the microservice via 
JSON/REST. This is particularly easy to implement with JavaScript. Links can then 
be used to join the different SPAs together. 

This enables the SPAs to be completely separate and independent. New versions 
of a SPA and of the associated microservice can be rolled out with ease. However, 

5. http://emberjs.com/

6. http://www.sencha.com/products/extjs/

Microservice Microservice

Logic Logic

LinkSingle-Page
App

Single-Page
App 

REST REST

Figure 8.2 Microservices with Single-Page Apps

http://www.emberjs.com/
http://www.sencha.com/products/extjs/
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a tighter integration of SPAs is difficult. When the user switches from one SPA to 
another, the browser loads a new web page and starts a different JavaScript applica-
tion. Even modern browsers need time to do this, and therefore this approach is only 
sensible when switching between SPAs is rare.

Asset Server for Uniformity

SPAs can be heterogeneous, and each can bring along its own individually designed 
UI. This can be a problem as it can lead to a UI that is not uniform across the system 
as a whole. This issue can be resolved by using an asset server. This type of server is 
used to provide JavaScript files and CSS files for the applications. When the SPAs of 
the microservices are only allowed to access these kinds of resources via the asset 
server, a uniform user interface can be achieved. To accomplish this, a proxy server 
can distribute requests to the asset server and the microservices. From the web brows-
er’s perspective, it looks as if all resources, as well as the microservices, have a shared 
URL. This approach avoids security rules that prohibit the use of content that 
 originates from different URLs. Caching can then reduce the time for loading the 
applications. When only JavaScript libraries, which are stored on the asset server, can 
be used, the choice of technologies for the microservices is reduced. Uniformity and 
free technology choice are competing aims.

The shared assets will create code dependencies between the asset server and 
all microservices. A new version of an asset requires the modification of all micro-
services that use this asset—they have to modified in order to use the new version. 
Such code dependencies endanger independent deployment and should therefore be 
avoided. Code dependencies in the back end are often a problem (see section 7.3). In 
fact, such dependencies should also be reduced in the front-end. This can mean that 
an asset server causes more problems than it solves.

UI guidelines, which describe the design of the application in more detail and help 
to establish a uniform approach at different levels, can be helpful. This enables the 
implementation of a uniform UI without a shared asset server and the related code 
dependencies.

In addition, SPAs need to have a uniform authentication and authorization 
scheme so that the users do not have to log in multiple times. An OAuth2 or a shared 
signed cookie can be a solution to this (see also section 7.14).

JavaScript can only access data that is available under the domain from which 
the JavaScript code originates. This “same-origin policy” prevents JavaScript 
code from reading data from other domains. When a proxy makes all microser-
vices accessible to the outside world under the same domain, this is no longer a 
limitation. Otherwise the policy has to be deactivated when the UI of a microser-
vice needs to access data from another microservice. This problem can be solved 
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with CORS (cross-origin resource sharing) where the server delivering the data 
allows JavaScript from other domains. Another option is to offer all SPA and 
REST services to the outside via a single domain so that cross-domain access is not 
required. This also allows access to shared JavaScript code on an asset server to be 
implemented.

A Single-Page App for All Microservices

The division into multiple SPAs results in a strict separation of the front-ends of the 
microservices. For instance, if an SPA is responsible for registering orders and 
another one for a fundamentally different use case like reports, the load time needed 
to change between SPAs is still acceptable. Potentially, the different SPAs might be 
used by different sets of users who never need to switch between them at all.

However, there are situations when a tighter integration of the microservices 
user interfaces is necessary. For example, when viewing an order, details about the 
items may need to be displayed. Displaying the order is the responsibility of one 
microservice, displaying the items is performed by another. To tackle this prob-
lem, the SPA can be distributed into modules (see Figure 8.3). Each module belongs 
to another microservice and therefore to another team. The modules should be 
deployed separately. They can be stored on the server in individual JavaScript files 
and use separate Continuous Delivery pipelines, for instance. There needs to be 
suitable conventions for the interfaces. For example, only the sending of events 
might be allowed. Events uncouple the modules because the modules only commu-
nicate changes in state, but not how other modules have to react to them. 

AngularJS has a module concept that enables the implementation of individ-
ual parts of the SPA in separate units. A microservice could provide an AngularJS 

Single-Page App

Microservice

Module

Logic

Microservice

Module

Logic

Figure 8.3 Close Integration of  Microservices Sharing One Single-Page App
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module for displaying the user interface of the microservice. The model can then 
integrate, if necessary, AngularJS modules from other microservices.

However, such an approach has disadvantages:

• Deploying the SPA is often only possible as a complete application. When a
module is modified, the entire SPA has to be rebuilt and deployed. This has
to be coordinated between the microservices that provide the modules for the
application. In addition, the deployment of the microservices on the server has
to be coordinated with the deployment of the modules since the modules call
the microservices. This requirement to coordinate the deployment of modules
of an application should be avoided.

• The modules can call each other. Depending on the way calls are implemented,
changes to a module can mean that other modules also have to be changed, for
instance, because an interface has been modified. When the modules belong
to separate microservices, this again requires a coordination across microser-
vices, which should be avoided.

For SPA modules a much closer coordination is necessary than for links between 
applications. On the other hand, SPA modules offer the benefit that UI elements from 
different microservices can be simultaneously displayed to the user. However, this 
approach closely couples the microservices at the UI level. The SPA modules corre-
spond to the module concepts that exist in other programming languages and cause 
a simultaneous deployment. This leads to the microservices, which really should be 
independent of each other, being combined at the UI level in one shared deployment 
artifact. Therefore, this approach undoes one of the most important benefits of a 
microservice-based architecture—independent deployment.

HTML Applications

Another way to implement the UI is with HTML-based user interfaces. Every micros-
ervice has one or more web pages that are generated on the server. These web pages 
can also use JavaScript. Here, unlike SPAs, only a new HTML web page and not nec-
essarily an application, is loaded by the server when changing between web pages.

ROCA

ROCA (resource-oriented client architecture)7 proposes a way to arrange the handling 
of JavaScript and dynamic elements in HTML user interfaces. ROCA views itself as 

7. http://roca-style.org/

http://www.roca-style.org/
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an alternative to SPAs. In ROCA the role of JavaScript is limited to optimizing the 
usability of the web pages. JavaScript can facilitate their use or can add effects to the 
HTML web pages. However, the application has to remain usable without JavaScript. 
It is not the purpose of ROCA that users really use web pages without JavaScript. The 
applications are only supposed to use the architecture of the web, which is based on 
HTML and HTTP. Also ROCA makes sure that all logic is actually implemented on 
the server instead of JavaScript on the client. That way other clients can use the very 
same logic.

When a web application is divided into microservices, ROCA reduces the depend-
encies and simplifies the division. Between microservices the coupling of the UI can 
be achieved by links. For HTML applications links are the usual tool for navigating 
between web pages and represent a natural integration. There are no foreign bodies 
as in the case of SPAs. 

To help with the uniformity of the HTML user interfaces, the microservices can 
use a shared asset server the same was as SPAs can (see Figure 8.4). It contains all the 
CSS and JavaScript libraries. If the teams create design guidelines for the HTML web 
pages and look after the assets on the asset server, the user interfaces of the differ-
ent microservices will be largely identical. However, as discussed previously, this will 
lead to code dependencies between the UIs of the microservices.

Easy Routing

To the outside world the microservices should appear like a single web application—
ideally with one URL. This also helps with the shared use of assets since the 
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Figure 8.4 HTML User Interface with an Asset Server
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same-origin-policy is not violated. However, user requests from the outside have to be 
directed to the right microservice. This is the function of the router. It can receive 
HTTP requests and forward them to one of the microservices. This can be done based 
on the URL. How individual URLs are mapped to microservices can be decided by 
rules that can be complex. The example application uses Zuul for this task (see 
 section 13.9). Reverse proxies are an alternative. These can be web servers, like Apache 
httpd or nginx, that can direct requests to other servers. In the process the requests 
can be modified, URLs can, for instance, be rewritten. However, these mechanisms 
are not as flexible as Zuul, which is very easy to extend with home-grown code.

When the logic in the router is very complex, this can cause problems. If this 
logic has to be changed because a new version of a microservice is brought into pro-
duction, an isolated deployment is no longer straightforward. This endangers the 
 philosophy of independent development and deployment of the microservices.

Arrange HTML with JavaScript

In some cases, a closer integration is necessary. It might be that information originating 
from different microservices needs to be displayed on a single HTML web page. For 
example, a web page might display order data from one microservice and data con-
cerning the ordered items from another microservice. In this situation one router is no 
longer sufficient. A router can only enable a single microservice to generate a complete 
HTML web page.

A simple solution that employs the architecture presented in Figure 8.4 is based 
on links. AJAX (Asynchronous JavaScript and XML) enables content from a link 
to be loaded from another microservice. JavaScript code calls the microservice. 
Once the HTML is received from the microservice the link is replaced with it. In 
the example a link to an item could be transformed into an HTML description of 
this item. This enables the logic for the presentation of a product to be implemented 
in one  microservice, while the design of the entire web page is implemented in 
another microservice. The entire web page would be the responsibility of the order 
microservice, while the presentation of the products would be the responsibility of 
the product microservice. This enables the continued independent development of 
both microservices and for content to be displayed from both components. If the 
 presentation of the items has to be changed or new products necessitate a revised 
presentation, these modifications can be implemented in the product microservice. 
The entire logic of the order microservice remains unchanged.

Another example for this approach is Facebook’s BigPipe.8 It optimizes not 
only the load time, but also enables the composition of web pages from pagelets. 

8. https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-
performance/389414033919

https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
https://www.facebook.com/notes/facebook-engineering/bigpipe-pipelining-web-pages-for-high-performance/389414033919
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A  custom implementation can use JavaScript to replace certain elements of the web 
page by other HTML. This can be links or div-elements like the ones commonly 
used for structuring web pages that can be replaced by HTML code.

However, this approach causes relatively long load times. It is mainly beneficial 
when the web UI already uses a lot of JavaScript and when there are not many transi-
tions between web pages.

Front-End Server

Figure 8.5 shows an alternative way to achieve tight integration. A front-end server 
composes the HTML web page from HTML snippets, each of which are generated 
by a microservice. Assets like CSS and JavaScript libraries are also stored in the front-
end server. Edge Side Includes (ESI) is a mechanism to implement this concept. ESI 
offers a relatively simple language for combining HTML from different sources. 
With ESI, caches can supplement static content—for instance, the skeleton of a web 
page—with dynamic content. This means that caches can help with the delivery of 
web pages, even ones that contain dynamic content. Proxies and caches like Varnish9 
or Squid10 implement ESI. Another alternative is Server Side Includes (SSI). They are 
very similar to ESIs; however, they are not implemented in caches, but in web servers. 
With SSIs web servers can integrate HTML snippets from other servers into HTML 
web pages. The microservices can deliver components for the web page that are then 

9. https://www.varnish-cache.org/

 10. http://www.squid-cache.org/
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Figure 8.5 Integration Using a Front-End Server
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assembled on the server. Apache httpd supports SSIs with mod_include.11 nginx uses 
the ngx_http_ssi_module12 for the support of SSIs. 

Portals also consolidate information from different sources on one web page. 
Most products use Java portlets that adhere to the Java standard JSR 168  (Portlet 1.0) 
or JSR 286 (Portlet 2.0). Portlets can be brought into production independently of 
each other and therefore solve one of the major challenges surrounding microservice-
based architectures. In practice these technologies frequently result in complex solu-
tions. Portlets behave very differently to normal Java web applications technically 
making the use of many technologies from the Java environment either  difficult or 
impossible. Portlets enable the user to compose a web page from previously defined 
portlets. In this way the user can assemble, for instance, their most important infor-
mation sources on one web page. However, this is not really necessary for creating a 
UI for microservices. The additional features result in additional complexity. There-
fore, portal servers that are based on portlets are not a very good solution for the web 
user interfaces of microservices. In addition, they restrict the available web technolo-
gies to the Java field.

Mobile Clients and Rich Clients

Web user interfaces do not need any software to be installed on the client. The web 
browser is the universal client for all web applications. On the server side the deploy-
ment of the web user interface can easily be coordinated with the deployment of the 
microservice. The microservice implements a part of the UI and can deliver the code 
of the web user interface via HTTP. This makes possible a relatively easy coordi-
nated deployment of client and server.

For mobile apps, rich clients, and desktop applications the situation is different: 
software has to be installed on the client. This client application is a deployment 
monolith that has to offer an interface for all microservices. If the client application 
delivers functionality from different microservices to the user, it would technically 
have to be modularized, and the individual modules, like the associated micro-
services, would have to be brought into production independently of each other. 
 However, this is not possible since the client application is a deployment monolith. 
A SPA can also easily turn into a deployment monolith. Sometimes an SPA is used to 
separate the development of client and server. In a microservices context such a use 
of SPAs is undesirable.

When a new feature is implemented in a microservice, that also requires modi-
fications of the client application. This change cannot be rolled out solely via a 

 11. http://httpd.apache.org/docs/2.2/mod/mod_include.html

 12. http://nginx.org/en/docs/http/ngx_http_ssi_module.html

http://www.httpd.apache.org/docs/2.2/mod/mod_include.html
http://www.nginx.org/en/docs/http/ngx_http_ssi_module.html
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new version of the microservice. A new version of the client application also has 
to be delivered. However, it is unrealistic to deliver the client application over and 
over again for each small change of a feature. If the client application is being made 
 available in the app store of a mobile platform, an extensive review of each version is 
necessary. If multiple changes are supposed to be delivered together, the change has 
to be coordinated. Additionally, the new version of the client application has to be 
coordinated with the microservices so that the new versions of the microservices are 
ready in time. This results in deployment dependencies between the microservices, 
which should ideally be avoided.

Organizational Level

At an organizational level there is often a designated team for developing the 
 client application. In this manner the division into an individual module is also 
implemented at the organizational level. Especially when different platforms are 
supported, it is unrealistic to have one developer in each microservice team for 
each platform. The developers are going to form one team for each platform. This 
team has to communicate with all the microservice teams that offer microservices 
for mobile applications. This can necessitate a lot of communication, which 
microservices-based architecture sets out to avoid. Therefore, the deployment 
monolith poses a challenge for client applications at the organizational level 
(see Figure 8.6). 

One possible solution is to develop new features initially for the web. Each micro-
service can directly bring functionality onto the web. With each release of the  client 
application these new features can then be included. However, this means that each 
microservice needs to support a certain set of features for the web application and, 
where required, another set for the client application. In exchange this approach 
can keep the web application and the mobile application uniform. It supports an 
approach where the domain-based teams provide features of the microservices to 
mobile users as well as to web users. Mobile applications and web applications are 
simply two channels to offer the same functionality.

Microservice

Mobile App
Rich Client Application

Microservice

Figure 8.6 Mobile Apps and Rich Client are Deployment Monoliths that Integrate Multiple 
Microservices
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Back-End for Each Front-End

However, the requirements can also be entirely different. For instance, the mobile 
application can be a largely independent application which is supposed to be devel-
oped further as independently of the microservices and the web user interface as 
possible. Often the use cases of the mobile application are so different from the use 
cases of the web application that a separate development is required due to the 
 differences in features.

In this situation, the approach depicted in Figure 8.7 can be sensible: the team 
responsible for the mobile app or the rich client application has a number of 
 developers who implement a special back-end. This enables functionality for the 
mobile app to be developed independently to the back-end, because at least a part 
of the requirements for the microservices can be implemented by developers from 
the same team. This should avoid logic for the mobile app being implemented in the 
microservice, when it really belongs in a back-end microservice. The back-end for a 
mobile application may differ from other APIs. Mobile clients have little bandwidth 
and a high latency. Therefore, APIs for mobile devices are optimized to operate with 
as few calls as possible and to only transfer really essential data. This is also true for 
rich clients—however not to the same extent. The adaption of an API to the specific 
requirements of a mobile application can be implemented in a microservice, which is 
built by the front-end team. 

A mobile app should be highly responsive to user interaction. This can be  difficult 
to achieve when the user interaction means a microservice call, with its associated 
latency, is required. If there are multiple calls, the latency will increase further. 
Therefore, the API for a mobile app should be optimized to deliver the required data 
with as few calls as possible. These optimizations can also be implemented by a 
back-end for the mobile app.

Microservice

Back-End

Microservice

Mobile App
Rich Client Application

Team Microservice

Mobile Team

Team Microservice

Figure 8.7 Mobile Apps or Rich Clients with Their Own Back-End
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The optimizations can be implemented by the team that is responsible for the 
mobile app. Doing this enables the microservices to offer universally valid interfaces 
while the teams responsible for the mobile apps can assemble their own special APIs 
by themselves. This leads to the mobile app teams not being so dependent on the 
teams that are responsible for the implementation of the microservices.

Modularizing web applications is simpler than modularizing mobile apps, espe-
cially when the web applications are based on HTML and not on SPAs. For mobile 
apps or rich client apps it is much more difficult since they form an individual 
 deployment unit and cannot be easily divided.

The architecture shown in Figure 8.7 has a number of advantages and disadvan-
tages. It makes it possible to reuse microservices for different clients and at the same 
time acts as an entry point into the layered architecture. However, the UI layer is 
now separated from the microservices and is implemented by another team. This 
leads to a situation where requirements have to be implemented by multiple teams. 
 Microservices were meant to avoid exactly this situation. This architecture also risks 
logic being implemented in the services for the client application, when it really 
belongs in the microservices.

Try and Experiment

• This section presented alternative ways to implement web applications: an
SPA per microservice, an SPA with modules per microservice, an HTML
application per microservice, and a front-end server with HTML snippets.
Which of these approaches would you choose? Why?

• How would you deal with mobile apps? One option would be a mobile
app team with back-end developers—or would you rather choose a team
 without back-end developers?

8.2 REST

Microservices have to be able to call each other in order to implement logic together. 
This can be supported by different technologies.

REST (representational state transfer) is one way to enable communication 
between microservices. REST is the term for the fundamental approaches of the 
World Wide Web (WWW):
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• There are a large number of resources which can be identified via URIs. URI
stands for uniform resource identifier. It unambiguously and globally identifies 
resources. URLs are practically the same as URIs.

• The resources can be manipulated via a fixed set of methods. For instance, in
the case of HTTP these are GET for requesting a resource, PUT for storing
a resource and DELETE for deleting a resource. The methods’ semantics are
rigidly defined.

• There can be different representations for resources—for instance as a PDF
or HTML. HTTP supports the so-called content negotiation via the Accept
header. This means that the client can determine which data representation it
can process. The content negotiation enables resources to be made available in
a way that is readable to humans and to provide them at the same time under
the same URL in a machine-readable manner. The client can communicate
via an Accept header whether it only accepts human-readable HTML or only
JSON.

• Relationships between resources can be represented by links. Links can point
to other microservices enabling the logic of different microservices to be
integrated.

• The servers in a REST system are supposed to be stateless. Therefore, HTTP
implements a stateless protocol.

The limited vocabulary represents the exact opposite of what object-oriented 
 systems employ. Object-orientation focuses on a specific vocabulary with specific 
methods for each class. The REST vocabulary can also execute complex logic. When 
data validations are necessary, this can be checked at the POST or PUT of new data. 
If complex processes need to be represented, a POST can start the process, and sub-
sequently the state can be updated. The current state of the process can be fetched 
by the client under a known URL via GET. Likewise, POST or PUT can be used to 
initiate the next state.

Cache and Load Balancer

A RESTful HTTP interface can be very easily supplemented with a cache. Because 
RESTful HTTP uses the same HTTP protocol as the web, a simple web cache is 
sufficient. Similarly, a standard HTTP load balancer can also be used for RESTful 
HTTP. The power of these concepts is impressively illustrated by the size of the 
WWW. This size is only possible due to the properties of HTTP. HTTP, for instance, 
possesses simple and useful mechanisms for security—not only encryption via 
HTTPS but also authentication with HTTP Headers.
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HATEOAS

HATEOAS (Hypermedia as the Engine of Application State) is another important 
component of REST. It enables the relationships between resources to be modeled 
with links. Therefore, a client only has to know an entry point, and from there it can 
go on navigating at will and locate all data in a step-by-step manner. In the WWW it 
is, for instance, possible to start from Google and from there to reach practically the 
entire web via links.

REST describes the architecture of the WWW and therefore the world’s largest 
integrated computer system. However, REST could also be implemented with other 
protocols. It is an architecture that can be implemented with different technologies. 
The implementation of REST with HTTP is called RESTful HTTP. When  RESTful 
HTTP services exchange data using JSON or XML instead as HTML, they can 
exchange data and not just access web pages.

Microservices can also benefit from HATEOAS. HATEOAS does not have cen-
tral coordination, just links. This fits very well with the concept that microservices 
should have as little central coordination as possible. REST clients need know only 
entry points based on which they can discover the entire system. Therefore, in a 
REST-based architecture, services can be moved in a way that is transparent for 
the client. The client simply gets new links. Central coordination is not necessary 
for this—the REST service just has to return different links. In the ideal case the 
 client only has to understand the fundamentals of HATEOAS and can then navigate 
via links to any data in the microservice system. The microservice-based systems, 
on the other hand, can modify their links and therefore change the distribution of 
functionality between microservices. Even extensive architecture changes can be 
kept transparent.

HAL

HATEOAS is a concept, and HAL13 (Hypertext Application Language) is a way to 
implement it. It is a standard for describing how the links to other documents should 
be contained in a JSON document. HATEOAS is particularly easy to implement in 
JSON/RESTful HTTP services. The links are separate from the actual document, 
enabling links to details or to independent data sets.

XML

XML has a long history as a data format. It is easy to use with RESTful HTTP. 
There are different types of systems for XML that can determine whether an XML 

 13. http://stateless.co/hal_specification.html

http://www.stateless.co/hal_specification.html
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document is valid. This is very useful for the definition of an interface. Among the 
languages for the definition of valid data is XML Schema (XSD)14 or RelaxNG.15 
Some frameworks make possible the generation of code in order to administer XML 
data that corresponds to such a schema. Via XLink16 XML documents can contain 
links to other documents. This enables the implementation of HATEOAS.

HTML

XML was designed to transfer data and documents. To display the information is the 
task of different software. HTML has a similar approach to XML: HTML defines 
only the structures, with display occurring via CSS. For communication between 
processes HTML documents can be sufficient because in modern web applications, 
HTML documents contain only data—just like XML. In a microservices world this 
approach has the advantage that the communication to the user and between the 
microservices employs the same format. This reduces effort and makes it even easier 
to implement microservices that contain a UI and a communication mechanism for 
other microservices.

JSON

JSON (JavaScript Object Notation) is a representation of data that is well suited to 
JavaScript. Like JavaScript, the data is dynamically typed. There are suitable JSON 
libraries for all programming languages. In addition, there are type systems, such as 
JSON Schema,17 that supplement JSON with validation concepts. With this addition 
JSON is no longer inferior to data formats like XML.

Protocol Buffer

Binary protocols such as Protocol Buffer18 can be used instead of text-based data 
representations. This technology has been designed by Google to represent data 
more efficiently and to achieve higher performance. There are implementations for 
many different programming languages so Protocol Buffer can be used universally, 
similar to JSON and XML.

 14. http://www.w3.org/XML/Schema

 15. http://relaxng.org/

 16. http://www.w3.org/TR/xlink11/

 17. http://json-schema.org/

 18. https://developers.google.com/protocol-buffers/

http://www.w3.org/XML/Schema
http://www.relaxng.org/
http://www.w3.org/TR/xlink11/
http://www.json-schema.org/
https://www.developers.google.com/protocol-buffers/
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RESTful HTTP Is Synchronous

RESTful HTTP is synchronous: typically, a service sends out a request and waits for a 
response, which is then analyzed in order to continue with the program sequence. This 
can cause problems if there are long latency times within the network. It can lengthen 
the processing of a request since responses from other services have to be waited for. 
After waiting for a certain period of time the request has to be aborted because it is 
likely that the request is not going to be answered at all. Possible reasons for a failure 
are that the server is not available at the moment or that the network has a problem. 
Correctly handled timeouts increase the stability of the system (section 9.5).

The timeout should be used to ensure that the calling service does not fail simply 
because it does not get a response from the system it is calling. This ensures that a 
failure does not propagate through the system as a whole.

8.3 SOAP and RPC

It is possible to build a microservices-based architecture using SOAP. Like REST, 
SOAP uses HTTP, but it only uses POST messages to transfer data to a server. 
 Ultimately, a SOAP call runs a method on a certain object on the server and is there-
fore an RPC mechanism (remote-procedure call).

SOAP lacks concepts such as HATEOAS that enable relationships between 
microservices to be handled flexibly. The interfaces have to be completely defined by 
the server and known on the client.

Flexible Transport

SOAP can convey messages using different transport mechanisms. For instance, it’s 
possible to receive a message via HTTP and to then send it on via JMS or as an email 
via SMTP/POP. SOAP-based technologies also support forwarding of requests. For 
example, the security standard WS-Security can encrypt or sign parts of a message. 
After this has been done, the parts can be sent on to different services without having 
to be decrypted. The sender can send a message in which some parts are encrypted. 
This message can be processed via different stations. Each station can process a part 
of the message or send it to other recipients. Finally, the encrypted parts will arrive at 
their final recipients—and only there do they have to be decrypted and processed.

SOAP has many extensions for special use contexts. For instance, the different 
extensions from the WS-*-environment cater for transactions and the coordination 
of web services. This enables a complex protocol stack to arise. The interoperability 
between the different services and solutions can suffer due to this complexity. Also, 
some technologies are not well suited for microservices. For example, a  coordination 
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of different microservices is problematic as this will result in a coordination layer, 
and modifications of a business process will probably impact the coordination of 
the microservices and also the microservices themselves. When the coordination 
layer consists of all microservices, a monolith is created that needs to be changed 
upon each modification. This contradicts the microservices concept of independent 
deployment. WS-* is better suited to concepts such as SOA.

Thrift

Another communication option is Apache Thrift.19 It uses very efficient binary 
encodings such as Protocol Buffer. Thrift can also forward requests from a process 
via the network to other processes. The interface is described in an interface 
 definition specific to Thrift. Based on this definition different client and server 
 technologies can communicate with each other.

8.4 Messaging

Another way for microservices to communicate is using messages and messaging 
 systems. As the name suggests, these systems are based on the sending of messages. 
A message may result in a response that is sent as a message again. Messages can go 
to one or multiple recipients.

The use of messaging solutions is particularly advantageous in distributed 
systems:

• Message transfer is resilient to network failures. The messaging system buffers
them and delivers them when the network is available again.

• Guarantees can be strengthened further: the messaging system can guarantee
not only the correct transfer of the messages but also their processing. If there
was a problem during the processing of the message, the message can be trans-
ferred again. The system can attempt to handle the message a number of times
until either the message is correctly processed or discarded because it cannot
be processed successfully.

• In a messaging architecture responses are transferred and processed asynchro-
nously. This approach is well suited to the high latency times that can occur in
the network. Waiting a period of time for a response is normal with messaging

 19. https://thrift.apache.org/

https://www.thrift.apache.org/
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systems and therefore the programming model works on the assumption of high 
latency.

• A call to another service does not block further processing. Even if the response 
has not been received yet, the service can continue working and potentially call
other services.

• The sender does not know the recipient of the message. The sender sends the
message to a queue or a topic. There the recipient registers. This means that
the sender and recipient are decoupled. There can even be multiple recipients
without the sender being aware of this. Also, the messages can be modified on
their way—for instance, data can be supplemented or removed. Messages can
also be forwarded to entirely different recipients.

Messaging works well with certain architectures of microservice-based systems 
such as Event Sourcing (see section 9.3) or event-driven architecture (section 7.8).

Messages and Transactions

Messaging is an approach that can be implemented in transactional systems that use 
microservices. It can be difficult to guarantee transactions when microservices call 
each other in a microservice-based system. When multiple microservices have to 
 participate in a transaction, they can only be allowed to write changes when all 
microservices in the transaction have processed the logic without errors. This means 
that changes have to be held back for a long time. That is bad for performance since 
no new transactions can change the data in the meantime. Also, in a network it is 
always possible that a participant fails. When this happens the transaction could 
remain open for a long time or might not be closed at all. This will potentially block 
changes to the data for a long period of time. Such problems arise, for instance, when 
the  calling system crashes. 

In a messaging system, transactions can be treated differently. The sending and 
receiving of messages is part of a transaction—just as, for instance, the writing 
to and reading from the database (see Figure 8.8). When an error occurs during 
the processing of the message, all outgoing messages are canceled, and the data-
base changes are rolled back. In the case of success all these actions take place. The 
recipients of the messages can be similarly safeguarded transactionally. To achieve 
this the processing of the outgoing messages is subject to the same transactional 
guarantees.

The important point is that the sending and receiving of messages and the 
associated transactions on the database can be combined in one transaction. The 
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coordination is then taken care of by the infrastructure—no extra code needs to be 
written. For the coordination of messaging and databases the two-phase commit 
(2PC) protocol can be employed. This protocol is the normal method for coordi-
nating transactional systems like databases and messaging systems with each other. 
Alternatives are products like Oracle AQ or ActiveMQ, which store messages in a 
database. By storing messages in a database, the coordination between database and 
messaging can be achieved simply by writing the messages as well as the data modifi-
cations in the same database transaction. Ultimately, messaging and database are the 
same systems in this setup.

Messaging enables the implementation of transactions without the need for a 
global coordination. Each microservice is transactional. The transactional sending 
of messages is ensured by the messaging technology. However, when a message can-
not be processed, for instance because it contains invalid values, there is no way to 
roll back the messages that have already been processed. Therefore, the correct pro-
cessing of transactions is not guaranteed in all circumstances.

Messaging Technology

In order to implement messaging a technology has to selected:

• AMQP (Advanced Message Queuing Protocol)20 is a standard. It defines a pro-
tocol with which messaging solutions can communicate on the wire with each
other and with clients. An implementation of this standard is RabbitMQ,21

which is written in Erlang and is made available under the Mozilla license.
Another implementation is Apache Qpid.

 20. https://www.amqp.org/

 21. https://www.rabbitmq.com/
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Figure 8.8 Transactions and Messaging

https://www.amqp.org/
https://www.rabbitmq.com/
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• Apache Kafka22 focuses on high throughput, replication, and fault-tolerance.
Therefore, it is well suited for distributed systems like microservices, especially
the fault-tolerance, which is very helpful in this context.

• 0MQ23 (also called ZeroMQ or ZMQ) operates without a server and is there-
fore very lightweight. It has some primitives that can be assembled into com-
plex systems. 0MQ is released under the LGPL license and written in C++.

• JMS (Java Messaging Service)24 defines an API that a Java application can use
to receive messages and send them. In contrast to AMQP the specification
does not define how the technology transfers messages on the wire. Since it is
a standard, Java-EE server implements this API. Well-known implementations
are ActiveMQ25 and HornetQ.26

• Azure Service Bus27 is Microsoft’s hosted messaging system. SDKs are pro-
vided for Java, Node.js, and also .NET.

• It is also possible to use ATOM28 Feeds29 for messaging. This technology is
normally used to transfer blog content enabling clients a relatively easily way
to request new entries on a blog. In the same way a client can use ATOM to
request new messages. ATOM is based on HTTP and therefore fits well in a
REST environment. However, ATOM only has functionality for delivering new 
information. It does not support more complex techniques like transactions.

For many messaging solutions a messaging server and therefore additional infra-
structure is required. This infrastructure has to be operated in a way that prevents 
failures because these would cause communication in the entire microservice-based 
system to fail. However, messaging solutions are normally designed to achieve high 
availability via clustering or other techniques.

For many developers messaging is a somewhat unfamiliar concept since it requires 
asynchronous communication, making it appear rather complex. In most cases the 
calling of a method in a different process is easier to understand. With approaches 
like Reactive (see section 9.6) asynchronous development is introduced into the 
microservices themselves. Also the AJAX model from JavaScript development 

 22. http://kafka.apache.org/

 23. http://zeromq.org/

 24. https://jcp.org/en/jsr/detail?id=343

 25. http://activemq.apache.org/

 26. http://hornetq.jboss.org/

 27. https://azure.microsoft.com/services/service-bus

 28. http://tools.ietf.org/html/rfc4287

 29. http://tools.ietf.org/html/rfc5023

http://www.kafka.apache.org/
http://www.zeromq.org/
https://www.jcp.org/en/jsr/detail?id=343
http://www.activemq.apache.org/
http://www.hornetq.jboss.org/
https://www.azure.microsoft.com/services/service-bus
http://www.tools.ietf.org/html/rfc4287
http://www.tools.ietf.org/html/rfc5023
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 resembles the asynchronous treatment of messages. More and more developers are 
therefore becoming familiar with the asynchronous model.

Try and Experiment

• REST, SOAP/RPC, and messaging each have advantages and disadvantages.
List the advantages and disadvantages and make up your mind which of the
alternatives to use.

• In a microservice-based system there can be different types of communi-
cation; however, there should be one predominant communication type.
Which would you choose? Which others would be allowed in addition? In
which situations?

8.5 Data Replication

At the database level microservices could share a database and all access the same 
data. This type of integration is something that has been used in practice for a long 
time: it is not unusual that a database is used by several applications. Often  databases 
last longer than applications, leading to a focus on the database rather than the 
applications that sit on top of it. Although integration via a shared database is 
 widespread, it has major disadvantages:

• The data representation cannot be modified easily since several applications
access the data. A change could cause one of the applications to break. This
means that changes have to be coordinated across all applications.

• This makes it impossible to rapidly modify applications in situations where
database changes are involved. However, the ability to rapidly change an
 application is exactly the benefit that microservices should bring.

• Finally, it is very difficult to tidy up the schema—for example, to remove
 columns that are no longer needed—because it is unclear whether any system
is still using these columns. In the long run the database will get more and
more complex and harder to maintain.

Ultimately, the shared use of a database is a violation of an important architec-
tural rule. Components should be able to change their internal data representation 
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without other components being affected. The database schema is an example of an 
internal data representation. When multiple components share the database, it is no 
longer possible to change the data representation. Therefore, microservices should 
have strictly separate data storage and not share a database schema.

A database instance can be used by multiple microservices when the data sets of 
the individual microservices are completely separate. For instance, each microservice 
can use its own schema within a shared database. However, in that situation there 
shouldn’t be any relationships between the schemas.

Replication

Replicating data is an alternative method for integrating microservices. But care 
should be taken that the data replication does not introduce a dependency on the 
database schemas by the back door. When the data is just replicated and the same 
schema is used, the same problem occurs as with a shared use of the database. 
A  schema change will affect other microservices, and the microservices become 
 coupled again. This has to be avoided.

The data should be transferred into another schema to ensure the independence 
of the schemas and therefore the microservices. In most cases, Bounded Context 
means that different representations or subsets of data are relevant for different 
microservices. Therefore, when replicating data between microservices it will 
often be necessary to transform the data or to replicate just subsets of the data 
anyway.

A typical example for the use of replication in traditional IT is data warehouses. 
They replicate data but store it differently. This is because the data access require-
ment for a data warehouse is different: the aim is to analyze lots of data. The data 
is optimized for read access and often also combined, as not every single data set is 
relevant for statistics.

Problems: Redundancy and Consistency

Replication causes a redundant storage of the data. This means that the data is not 
immediately consistent: it takes time until changes are replicated to all locations.

However, immediate consistency is often not essential. For analysis tasks such as 
those carried out by a data warehouse, an analysis that does not include orders from 
the last few minutes can be sufficient. There are also cases in which consistency is 
not that important. When an order takes a little bit of time until it is visible in the 
delivery microservice, this can be acceptable because nobody will request the data in 
the meanwhile.
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High consistency requirements make replication difficult. When system requirements 
are determined, it is often not clear how consistent the data really has to be. This limits 
the options when it comes to data replication.

When designing a replication mechanism there should ideally be a leading sys-
tem that contains the current data. All other replicas should obtain the data from 
this system. This makes it clear which data is really up-to-date. Data modifications 
should not be stored in different systems as this easily causes conflicts and makes for 
a very complex implementation. Such conflicts are not a problem when there is just 
one source for changes.

Implementation

Some databases offer replication as a feature. However, this is often not helpful with 
the replication of data between microservices because the schemas of the microser-
vices should be different. The replication has to be self-implemented. For this 
 purpose, a custom interface can be created. This interface should enable high perfor-
mance access even to large data sets. To achieve the necessary performance, one can 
also directly write into the target schema. The interface does not necessarily have to 
use a protocol like REST, but can employ faster alternative protocols. To achieves 
this, it may be necessary to use another communication mechanism than the one 
normally used by the microservices.

Batch

The replication can be activated in a batch. In this situation the entire data set—or at 
least changes from the last run—can be transferred. For the first replication run the 
volume of data can be large, meaning that the replication takes a long time.  However, 
it can still be sensible to transfer all the data each time. This makes possible the 
 correction of mistakes that occurred during the last replication run.

A simple implementation can assign a version to each data set. Based on the 
 version, data sets that have changed can specifically be selected and replicated. This 
approach means that the process can be easily restarted if it is interrupted for some 
reason, as the process itself does not hold a state. Instead the state is stored with the 
data itself.

Event

An alternative method is to start the replication on certain events. For instance, when 
a data set is newly generated, the data can be immediately copied into the replicas. 
This approach is particularly easy to implement with messaging (section 8.4).
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Data replication is an especially good choice where high-performance access 
is required to large amounts of data. Many microservice-based systems get along 
 without replicating data. Even those systems that use data replication can also 
employ other integration mechanisms.

Try and Experiment

Would you use data replication in a microservice-based system? In which 
areas? How would you implement it?

8.6 Interfaces: Internal and External

Microservice-based systems have different types of interfaces:

• Each microservice can have one or more interfaces to other microservices.
A change to the interface can require coordination with other microservice
teams.

• The interfaces between microservices that are developed by the same team are
a special case. Team members can closely work together so that these inter-
faces are easier to change.

• The microservice-based system can offer interfaces to the outside world, mak-
ing the system accessible beyond just the organization. In extreme cases this
can potentially be every Internet user if the system offers a public interface on
the Internet.

These interfaces vary in how easy they are to change. It is very easy to ask a col-
league in the same team for a change. This colleague is potentially in the same room, 
so it is very easy to communicate with him.

A change to an interface of a microservice belonging to another team is more 
difficult. The change has to compete against other changes and new features that 
team may be implementing. When the change has to be coordinated with other 
teams, additional effort arises.

Interface changes between microservices can be safeguarded by appropriate tests 
(consumer-driven contract tests, section 10.7). These tests examine whether the 
interface still meets the expectations of the interface users.
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External Interfaces

When considering interfaces to the outside, coordination with users is more compli-
cated. There may be very many users, and for public interfaces the users might even 
be unknown. This makes techniques like consumer-driven contract tests hard to 
implement. However, for interfaces to the outside, rules can be defined that deter-
mine, for instance, how long a certain version of the interface will be supported. 
A stronger focus on backwards compatibility can make sense for public interfaces.

For interfaces to the outside it can be necessary to support several versions of the 
interface in order to not force all users to perform changes. Between microservices it 
should be an aim to accept multiple versions only for uncoupling deployments. When a 
microservice changes an interface, it should still support the old interface. In that case 
the microservices that depend on the old interface do not have to be instantly deployed 
anew. However, the next deployment should use the new  interface. Afterwards the old 
interface can be removed. This reduces the number of interfaces that have to be sup-
ported and therefore the complexity of the system.

Separating Interfaces

Since interfaces vary in how easy they are to change, they should be implemented 
separately. When the interface of a microservice is to be used externally, it can subse-
quently only be changed when this change is coordinated with the external users. 
However, a new interface for internal use can be split off. In this situation the 
 interface that is exposed to the outside is the starting point for a separate internal 
interface that can be more easily changed.

Also several versions of the same interface can be implemented together internally. 
New parameters on a new version of the interface can be set to default  values when the 
old interface is called so that internally both interfaces use the same implementation.

Implementing External Interfaces

Microservice-based systems can offer interfaces to the outside in different ways. On 
top of a web interface for users there can also be an API, which can be accessed from 
outside. For the web interface section 8.1 described how the microservices can be 
integrated in a way that enables all microservices to implement part of the UI.

When the system offers a REST interface to the outside world, the calls from out-
side can be forwarded to a microservice with the help of a router. In the  example 
application the router Zuul is used for this (section 13.9). Zuul is highly flexible and 
can forward requests to different microservices based on very detailed rules. How-
ever, HATEOAS gives the freedom to move resources and makes routing dispensable. 
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The microservices are accessible from the outside via URLs, but they can be moved 
at any time. In the end the URLs are dynamically determined by HATEOAS.

It would also be possible to offer an adaptor for the external interface that modi-
fies the external calls before they reach the microservices. However, in that case a 
change to the logic cannot always be limited to a single microservice because it could 
also affect the adaptor.

Semantic Versioning

To denote changes to an interface a version number can be used. Semantic  Versioning30 
defines possible version number semantics. The version number is split into MAJOR, 
MINOR, and PATCH. The components have the following meaning:

• A change in MAJOR indicates that the new version breaks backwards compat-
ibility. The clients have to adjust to the new version.

• The MINOR version is changed when the interface offers new features. How-
ever, the changes should be backwards compatible. A change of the clients is
only necessary if they want to use the new features.

• PATCH is increased in the case of bug fixes. Such changes should be com-
pletely backwards compatible and should not require any modifications to the
clients.

When using REST one should keep in mind that it is not wise to encode the 
 version in the URL. The URL should represent a resource—independent of which 
version of the API version is called. The version can be defined, for instance, in an 
Accept header of the request.

Postel’s Law or the Robustness Principle

Another important principle for the definition of interfaces is Postel’s Law,31 which 
is also known as the Robustness Principle. It states that components should be strict 
with regard to what they are passing on and liberal with regard to what they are 
accepting from others. Put differently, each component should adhere as closely as 
possible to the defined interface when using other components but should, whenever 
possible, compensate for errors that arise during the use of its own interface.

 30. http://semver.org/

 31. http://tools.ietf.org/html/rfc793#section-2.10

http://www.semver.org/
http://www.tools.ietf.org/html/rfc793#section-2.10
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When each component behaves according to the Robustness Principle interop-
erability will improve: in fact, if each component adheres exactly to the defined 
 interfaces, interoperability should already be guaranteed. If a deviation does happen, 
then the component being used will try to compensate for it and thereby attempt to 
“save” the interoperability. This concept is also known as Tolerant Reader.32

In practice a called service should accept the calls as long as this is at all possible. 
One way to achieve this is to only read out those parameters from a call that are 
really necessary. On no account should a call be rejected just because it does not 
formally conform to the interface specification. However, the incoming calls should 
be validated. Such an approach makes it easier to ensure smooth communication in 
distributed systems like microservices.

8.7 Conclusion

The integration of microservices can occur at different levels.

Client

One possible level for the integration is the web interface (section 8.1):

• Each microservice can bring along its own single-page-app (SPA). The SPAs
can be developed independently. The transition between the microservices,
however, starts a completely new SPA.

• There can be one SPA for the entire system. Each microservice supplies one
module for the SPA. This makes the transitions between the microservices
very simple in the SPA. However, the microservices get very tightly integrated,
meaning that coordination of deployments can become necessary.

• Each microservice can bring along an HTML application, and integration can
occur via links. This approach is easy to implement and enables a modulariza-
tion of the web application.

• JavaScript can load HTML. The HTML can be supplied by different micro-
services so that each microservice can contribute a representation of its data.
Using this technique an order can, for example, load the presentation of a
product from another microservice.

 32. http://martinfowler.com/bliki/TolerantReader.html

http://www.martinfowler.com/bliki/TolerantReader.html
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• A skeleton can assemble individual HTML snippets. This would enable, say, an 
e-commerce landing page to display the last order from one microservice and
recommendations from another microservice. ESI (Edge Side Includes) or SSI
(Server Side Includes) can be useful for this.

In the case of a rich client or a mobile app the integration is difficult because the 
client application is a deployment monolith. Therefore, changes to different micro-
services can only be deployed together. The teams can modify the microservices and 
then deliver a certain amount of matching UI changes together for a new release 
of the client application. There can also be a team for each client application that 
adopts new functionality of the microservices into the client application. From an 
organizational perspective there can even be developers in the team of the client 
application that develop a custom service that can, for instance, implement an inter-
face that enables the client application to use it in a high-performance way.

Logic Layer

REST can be used for communication at the logic layer (section 8.2). REST uses the 
mechanisms of the WWW to enable communication between services. HATEOAS 
means that the relationships between systems are represented as links. The client 
only needs to know an entry URL. All the other URLs can be changed because they 
are not directly contacted by the clients but are found by them via links starting at 
the entry URL. HAL defines how links can be expressed and supports the implemen-
tation of REST. Other possible data formats for REST are XML, JSON, HTML, 
and Protocol Buffer.

Classical protocols like SOAP or RPC (section 8.3) can also be used for the com-
munication between microservices. SOAP offers ways for messages to be forwarded 
to other microservices. Thrift has an efficient binary protocol and can also forward 
calls between processes.

Messaging (section 8.4) has the benefit that it can handle network problems and 
high latency times very well. In addition, transactions are also very well supported 
by messaging.

Data Replication

At the database level a shared schema is not recommended (section 8.5). This would 
couple microservices too tightly since they would have a shared internal data repre-
sentation. The data has to be replicated into another schema. The schema should 
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meet the requirements of the respective microservice. As microservices are Bounded 
Contexts, it is very unlikely that the microservices will use the same data model.

Interfaces and Versions

Finally, interfaces are an important foundation for communication and integration 
(section 8.6). Not all interfaces are equally easy to change. Public interfaces can be 
practically impossible to change because too many systems depend on them. Internal 
interfaces can be changed more easily. In the simplest case public interfaces just route 
certain functionality to suitable microservices. Semantic Versioning is useful for giv-
ing a meaning to version numbers. To ensure a high level of compatibility the Robust-
ness Principle is helpful.

This section has hopefully shown that microservices are not just services that use 
RESTful HTTP. This is just one way for microservices to communicate.

Essential Points

• At the UI level the integration of HTML user interfaces is particularly
straightforward. SPAs, desktop applications, and mobile apps are deployment
 monoliths where changes to the user interface for a microservice have to be
closely coordinated with other changes.

• Though REST and RPC approaches offer a simple programming model at the
logic level, messaging makes a looser coupling possible and can cope better
with the challenges of distributed communication via the network.

• Data replication enables high-performance access to large amounts of data.
However, microservices should never use the same schema for their data since
this means the internal data representation can no longer be changed.
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When microservices are implemented, close attention must be paid to a number of key 
points. First, this chapter addresses the domain architecture of microservices 
(section  9.1). Next up is CQRS (Command Query Responsibility Segregation) 
(section 9.2), which can be interesting when implementing a microservice-based 
 system. This approach separates data writes from data reads. Event Sourcing 
(section 9.3) places events at the center of the modeling. The structure of a microser-
vice can correspond to a hexagonal architecture (section 9.4), which subdivides func-
tionality into a logic kernel and adapters. Section 9.5 focuses on resilience and 
stability—essential requirements for microservices. Finally, technical approaches for 
the implementation of microservices, such as Reactive, are discussed in section 9.6.

9.1 Domain Architecture

The domain architecture of a microservice defines how the microservice implements 
its domain-based functionality. A microservice-based architecture should not aim to 
predetermine this decision for all microservices. The internal structure of each 
microservice should be decided independently. This enables the teams to act largely 
autonomously of each other. It is sensible to adhere to established rules in order to 
keep the microservice easy to understand, simple to maintain, and also replaceable. 
However, there is no strict need for regulations at this level.

This section details how to identify potential problems with the domain architecture 
of a microservice. Once a potential issue has been discovered, the team responsible for 
the microservice will need to determine whether it constitutes a real problem and how 
it can be solved.

Chapter 9

Architecture of Individual 
Microservices
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Cohesion

The domain architecture of the overall system influences the domain architecture of 
the individual microservices. As presented in section 7.1, microservices should be 
loosely coupled to each other and have high cohesion internally. This means that a 
microservice should have only one responsibility with regard to the domain. If 
microservices are not highly cohesive, then most likely the microservice has more 
than one responsibility. If the cohesion within the microservice is not high enough, 
the microservice can be split into several microservices. The split ensures that the 
microservices remain small and thus are easier to understand, maintain, and replace.

Encapsulation

Encapsulation means that part of the architecture hides internal information from the 
outside—particularly internal data structures. Access should instead occur only 
through an interface. This makes sure that the software remains easy to modify, because 
internal structures can be changed without influencing other parts of the system. For 
this reason, microservices should never allow other microservices access to their internal 
data structures. If they do, then these data structures can no longer be modified. In 
order to use another microservice, only the interface for that microservice needs to be 
understood. This improves the structure and intelligibility of the system.

Domain-Driven Design

Domain-driven design (DDD) is one way to internally structure microservices. Each 
microservice can have a DDD domain model. The patterns required from domain-
driven design were introduced in section 3.3. When domain-driven design and strategic 
design define the structure of the overall system (section 7.1), the microservices should 
also use these approaches. During the development of the overall system strategic 
design is concerned with the domain models that exist and how these are distributed 
across the microservices.

Transactions

Transactions bundle multiple actions that should only be executed together or not at 
all. It is difficult for a transaction to span more than one microservice. Only messaging 
is able to support transactions across microservices (see section 8.4). The domain-
based design within a microservice ensures that each operation at the interface only 
corresponds to one transaction. By doing this it is possible to avoid having multiple 
microservices participating in one transaction. This would be very hard to implement 
technically.
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9.2 CQRS

Systems usually save a state. Operations can change data or read it. These two types of 
operations can be separated: Operations that change data and therefore have side effects 
(commands) can be distinguished from operations that just read data (queries). It is also 
possible to stipulate that an operation should not simultaneously change the state and 
return data. This distinction makes the system easier to understand: When an operation 
returns a value, it is a query and does not change any values. This leads to additional 
benefits. For example, queries can be provided by a cache. If read operations can also 
change data, then the addition of a cache becomes more difficult since operations with 
side effects still have to be executed. The separation between queries and commands is 
called CQS (Command Query Separation). This principle is not limited to microser-
vices, but can be applied more generally. For example, classes in an object-oriented 
 system can divide operations in the same manner.

CQRS

CQRS (Command Query Responsibility Segregation)1 is more extreme than CQS 
and completely separates the processing of queries and commands. 

Figure 9.1 shows the structure of a CQRS system. Each command is stored in the 
command store. In addition, there can be command handlers. The command han-
dler in the example uses the commands for storing the current state of the data in a 
database. A query handler uses this database to process queries. The database can 
be adjusted to the needs of the query handler. For example, a database for the analy-
sis of order processes can look completely different from a database that customers 
use for displaying their own order processes. Entirely different technologies can be 
employed for the query database. For instance, it is possible to use an in-memory 

1. https://speakerdeck.com/owolf/cqrs-for-great-good-2
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Figure 9.1 Overview of  CQRS
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cache, which loses data if there is a server failure. Information persistency is ensured 
by the command store. In an emergency the contents of the cache can be recon-
structed by the command store.

Microservices and CQRS

CQRS can be implemented with microservices:

• The communication infrastructure can implement the command queue when a 
messaging solution is used. With approaches such as REST a microservice has
to forward the commands to all interested command handlers and implement
the command queue that way.

• Each command handler can be a separate microservice and can handle the
commands with its own logic. This enables logic to be very easily distributed to 
multiple microservices.

• A query handler can also be a separate microservice. The changes to the data
which the query handler uses can be introduced by a command handler in
the same microservice. However, the command handler can also be a sepa-
rate microservice. In that situation the query handler has to offer a suitable
interface for accessing the database so that the command handler can change
the data.

Advantages

CQRS has a number of benefits particularly when it comes to the interplay between 
microservices:

• Reading and writing of data can be separated into individual microservices.
This makes possible even smaller microservices. When the writing and reading
is so complex that a single microservice for both would get too large and too
hard to understand, a split might make sense.

• Also a different model can be used for writing and reading. Microservices can
each represent a Bounded Context and therefore use different data models. For
instance, in an e-commerce shop a lot of data may be written for an online pur-
chase while statistical evaluations read only a small part of that data for each
purchase. From a technical perspective the data can be optimized for reading
operations via denormalization or via other means for certain queries.

• Writing and reading can be scaled differently by starting a different number
of query handler microservices and command handler microservices. This
supports the fine-grained scalability of microservices.
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• The command queue helps to handle any load peaks that occur during
 writing. The queue buffers the changes that are then processed later on.
 However, this does mean that a change to the data will not immediately be
taken into consideration by the queries.

• It is easy to run different versions of the command handlers in parallel. This
facilitates the deployment of new versions of the microservices.

CQRS can serve to make microservices even smaller, even when operations and 
data are very closely connected. Each microservice can independently decide for or 
against CQRS.

There are different ways to implement an interface that offers operations for 
changing and reading data. CQRS is only one option. Both aspects can also be 
implemented without CQRS in just one microservice. The freedom to be able to use 
different approaches is one of the main benefits of microservice-based architectures.

Challenges

CQRS also brings some challenges:

• Transactions that contain both read and write operations are hard to imple-
ment. The read and write operations may be implemented in different micro-
services. This may mean it is very difficult to combine the operations into one 
transaction since transactions across microservices are usually impossible.

• It is hard to ensure data consistency across different systems. The processing of
events is asynchronous, meaning that different nodes can finish processing at
different points in time.

• The cost for development and infrastructure is higher. More system compo-
nents and more complex communication technologies are required.

It is not wise to implement CQRS in every microservice. However, the approach 
can be valuable for microservice-based architectures in many circumstances.

9.3 Event Sourcing

Event Sourcing2 has a similar approach to CQRS. However, the events from Event 
Sourcing differ from the commands from CQRS. Commands are specific: They 
define exactly what is to be changed in an object. Events contain information about 

2. http://slideshare.net/mploed/event-sourcing-introduction-challenges

http://www.slideshare.net/mploed/event-sourcing-introduction-challenges
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something that has happened. Both approaches can be combined: A command can 
change data. This will result in events that other components of the system can react to.

Instead of the maintaining state itself Event Sourcing stores the events that have 
led to the current state. While the state itself is not saved, it can be reconstructed 
from the events. 

Figure 9.2 gives an overview of Event Sourcing:

• The event queue sends all events to the different recipients. It can, for instance,
be implemented with messaging middleware.

• The event store saves all events. This makes it possible to reconstruct the chain
of events and the events themselves.

• An event handler reacts to the events. It can contain business logic that reacts
to events.

• In such a system it is only the events that are easy to trace. The current state of
the system is not easy to follow up on. Therefore, it can be sensible to main-
tain a snapshot that contains the current state. At each event or after a certain
period of time the data in the snapshot will be changed to bring it up-to-date
with the new events. The snapshot is optional. It is also possible to reconstruct
the state from the events in an ad hoc manner.

Events may not be changed afterwards. Erroneous events have to be corrected by 
new events.
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Event

Event 
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Event

Event

Event 
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Event 
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Figure 9.2 Overview of  Event Sourcing



ptg18144917

9.4 Hexagonal Architecture 199

Event Sourcing is based on domain-driven design (see section 3.3). To adhere to the 
concept of Ubiquitous Language, the events should have names that also make sense 
in the business context. In some cases, an event-based model makes particular sense 
from a domain perspective. For instance, bookings to an account can be considered 
as events. Requirements like auditing are very easy to implement with Event Sourcing. 
Because the booking is modeled as an event, it is very easy to trace who has performed 
which booking. In addition, it is relatively easy to reconstruct a historical state of the 
system and old versions of the data. So Event Sourcing can be a good choice from a 
domain perspective. Generally, approaches like Event Sourcing make sense in complex 
domains which also benefit from domain-driven design.

Event Sourcing has similar advantages and disadvantages to CQRS, and both 
approaches can easily be combined. Event Sourcing makes particular sense when the 
overall system works with an event-driven architecture (section 7.8). In this type of 
system, the microservices already send events relating to changes of state, and it is 
logical to also use this approach in the microservices.

Try and Experiment

Choose a project you know.

• In which places would Event Sourcing make sense? Why? Would Event
Sourcing be usable in an isolated manner in some places, or would the
entire system have to be changed to events?

• Where could CQRS be helpful? Why?

• Do the interfaces adhere to the CQR rule? If they do, then the read and
write operations would have to be separate in all interfaces.

9.4 Hexagonal Architecture

A hexagonal architecture3 focuses on the logic of the application (see Figure 9.3). 
The logic contains only business functionality. It has different interfaces, each of 
which are represented by an edge of the hexagon. In the example shown, these are 
the interfaces for the interaction with users and the interface for administrators. 

3. http://alistair.cockburn.us/Hexagonal+architecture

http://www.alistair.cockburn.us/Hexagonal+architecture
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Users can utilize these interfaces via a web interface implemented by HTTP  adapters. 
For tests there are special adapters enabling the tests to simulate users. Finally, there 
is an adapter that makes the logic accessible via REST. This enables other microser-
vices to call the logic.

Interfaces don’t just take requests from other systems; they are also used to initi-
ate contact with other systems. In the example the database is accessed via the DB 
adapter—an alternative adapter is provided for test data. Another application can be 
contacted via the REST adapter. Instead of these adapters a test adapter can be used 
to simulate the external application. 

Another name for hexagonal architecture is “ports and adapters.” Each facet of 
the application like user, admin, data, or event is a port. The adapters implement the 
ports based on technologies like REST or web user interfaces. Through the ports on 
the right side of the hexagon the application fetches data, while the ports on the left 
side offer the system’s functionality to users and other systems.

The hexagonal architecture divides a system into a logic kernel and adapter. Only 
the adapters can communicate with the outside.

Hexagons or Layers?

A hexagonal architecture is an alternative to a layered architecture. In a layered architec-
ture there is a layer in which the UI is implemented and a layer in which the persistence is 
implemented. In a hexagonal architecture there are adapters that are connected to the 
logic via ports. A hexagonal architecture enables more ports than just persistence and 
UI. The term “adapter” illustrates that the logic and the ports are supposed to be sepa-
rate from the concrete protocols and implementations of the adapter.
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Figure 9.3 Overview of  Hexagonal Architecture
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Hexagonal Architectures and Microservices

It is very natural for hexagonal architectures to offer logic not only to other micro-
services via a REST interface but also to users via a web UI. This concept is also the 
basis of microservices. They are supposed to not only provide logic for other 
microservices but should also support direct interaction by users through a UI.

Since individual test implementations can be implemented for all ports, the isolated 
testing of a microservice is easier with a hexagonal architecture. For this  purpose, test 
adapters just have to be used instead of the actual implementation. The independent 
testing of individual microservices is an important prerequisite for the independent 
implementation and the independent deployment of microservices.

The logic required for resilience and stability (see section 9.5) or Load Balancing 
(section 7.12) can also be implemented in the adapter.

It is also possible to distribute the adapters and the actual logic into individual 
microservices. This will result in more distributed communication with its associ-
ated overhead. However, this does mean that the implementation of the adapter and 
kernel can be distributed to different teams. For instance, a team developing a mobile 
client can implement a specific adapter that is adapted to the bandwidth restrictions 
of mobile applications (see also section 8.1).

An Example

As an example of a hexagonal architecture, consider the order microservice shown in 
Figure 9.4. The user can make use of the microservice by placing orders through the web 
UI. There is also a REST interface, which gives other microservices or external clients 
use of the user functionality. The web UI, the REST interface, and the test adapter 
are three adapters for the user functionality of the microservice. The implementation 
with three adapters emphasizes that REST and web UI are just two ways to use the same 
functionality. It also leads to microservices that are implemented to integrate UI and 
REST. Technically the adapters can still be implemented in separate microservices. 

Another interface is the order events. They announce to the Delivery microservice 
whenever new orders arrive so that the orders can be delivered. Through this inter-
face the Delivery microservice also communicates when an order has been delivered or 
when delays have occurred. In addition, this interface can be served by an adapter for 
tests. This means that the interface to the delivery microservice does not just write data 
but can also introduce changes to the orders. This means the interface works in both 
directions: It calls other microservices but can also be used by other microservices to 
change data.

The hexagonal architecture has a domain-based distribution into an interface 
for user functionality and an interface for order events. That way, the architecture 
underlines the domain-based design.
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The state of the orders is saved in a database. There is also an interface where test 
data can be used for tests instead of the database. This interface corresponds to the 
persistence layer of a traditional architecture.

Finally, there is an interface that uses data replication to transmit order information 
to reporting. There statistics can be generated from the orders. Reporting appears to 
be a persistence interface but is really more: The data is not just stored, but changed to 
enable quick generation of statistics.

As the example shows, a hexagonal architecture creates a good domain-based 
distribution into different domain-based interfaces. Each domain-based interface 
and each adapter can be implemented as a separate microservice. This makes pos-
sible the division of the application into numerous microservices, if necessary.

Try and Experiment

Choose a project you know.

• Which individual hexagons would there be?

• Which ports and adapters would the hexagons have?

• Which advantages would a hexagonal architecture offer?

• What would the implementation look like?
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9.5 Resilience and Stability

In a well-designed microservices-based system, the failure of a single microservice 
should have a minimal impact on the availability of other microservices in the system. 
As microservice-based systems are, by their very nature, distributed, the danger of a 
failure is fundamentally higher than with other architectural styles: Networks and 
servers are unreliable. As microservices are distributed onto multiple servers, the num-
ber of servers is higher per system, and this also increases the chances of a failure. 
When the failure of one microservice results in the failure of additional microservices, 
a cascade effect can result in the entire system breaking down. This should be avoided.

For this reason, microservices have to be shielded from the failure of other 
microservices. This property is called resilience. The necessary measures to achieve 
resilience have to be part of the microservice. Stability is a broader term that 
denotes high software availability. Release It!4 lists several patterns on this topic.

Timeout

Timeouts help to detect when a target system is unavailable during a communication 
with that system. If no response has been returned after the timeout period, the system 
being called is considered to be unavailable. Unfortunately, many APIs do not have 
methods to define timeouts, and some default timeouts are very high. For example, at 
the operating system level, default TCP timeouts can be as high as five minutes. During 
this time the microservice cannot respond to callers since the service is waiting for the 
other microservice. This may lead to requests to the calling microservice appearing to 
have failed. It is also possible that the request can block a thread during this time. At 
some point all threads are blocked, and the microservice can no longer receive any fur-
ther requests. This type of cascade effect needs to be avoided. When the API intends a 
timeout to be used for accessing another system or a database, this timeout should be 
set. An alternative option is to let all requests to external systems or databases take 
place in an extra thread and to terminate this thread after a timeout.

Circuit Breaker

A circuit breaker is a safety device used in electrical circuits. In the event of a short 
circuit the circuit breaker interrupts the flow of electricity to avoid a dangerous situ-
ation occurring, such as overheating or fire. This idea can be applied to software as 
well: When another system is no longer available or returns errors, a Circuit Breaker 

4. Michael T. Nygard. 2007. Release It!: Design and Deploy Production-Ready Software. Raleigh, NC:
Pragmatic Programmers.
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design feature prevents calls going to that system. After all, there is no point in 
making calls to a broken system.

Normally the Circuit Breaker is closed and calls are forwarded to the target system. 
When an error occurs, depending on the error frequency, the Circuit Breaker will be 
opened. Calls will no longer be sent on to the target system but will instead return an 
error. The Circuit Breaker can also be combined with a timeout. When the timeout 
parameters are exceeded, the Circuit Breaker is opened.

This takes load off the target system and means that the calling system does not 
need to wait for a timeout to occur, as the error is returned immediately. After some 
set period, the Circuit Breaker will close again. Incoming calls will once again be for-
warded to the target system. If the error persists, the Circuit Breaker will open again.

The state of the Circuit Breakers in a system can highlight where problems are 
currently occurring to operations staff. An open Circuit Breaker indicates that a 
microservice is no longer able to communicate with another microservice. Therefore, 
the state of the Circuit Breaker should be part of the monitoring done by operations.

When the Circuit Breaker is open, an error does not necessarily have to be gener-
ated. It is also possible to simply degrade the functionality. Let us assume that an 
automated teller machine (ATM) cannot verify whether an account contains enough 
money for the desired withdrawal because the system that is responsible is not reach-
able. Nevertheless, cash withdrawals can be permitted up to a certain limit so that 
customers do not get annoyed by the failure, and the bank can continue to make the 
associated withdrawal fees. Whether a cash withdrawal is allowed and up to what 
limit is a business decision. The possible damage has to be balanced against the 
potential for profit. There can also be other rules applied in case of the failure of a 
system. Calls can be answered from a cache, for instance. More important than the 
technical options is the domain-based requirement for deciding on the appropriate 
handling of a system failure.

Bulkhead

A bulkhead is a special door on a ship which can be closed in a watertight manner. It 
divides the ship into several areas. When water gets in, only a part of the ship should 
be affected, and therefore the ship stays afloat.

Similar approaches are applicable to software: the entire system can be divided 
into individual areas. A breakdown or a problem in one area should not affect 
the other areas. For example, there can be several different instances of a micros-
ervice for different clients. If a client overloads the microservices, the other clients 
will not be negatively affected. The same is true for resources like database connec-
tions or threads. When different parts of a microservice use different pools for these 
resources, one part cannot block the other parts, even if it uses up all its resources.
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In microservices-based architectures the microservices themselves form  separate 
areas. This is particularly true when each microservice brings its own virtual machine 
along. Even if the microservice causes the entire virtual machine to crash or over-
loads it, the other microservices will not be affected. They run on different virtual 
machines and are therefore separate.

Steady State

The term steady state is used to describe systems that are built in a way that makes 
possible their continuous operation. For instance, this would mean that a system 
should not store increasing amounts of data. Otherwise the system will have used up 
its entire capacity at some point and break down. Log files, for example, have to be 
deleted at some point. Usually they are only interesting during a certain time interval 
anyway. Another example is caching: when a cache keeps growing, it will at some 
point fill all available storage space. Therefore, values in the cache have to be flushed 
at some point to keep the cache size from continuously increasing.

Fail Fast

Timeouts are necessary only because another system may need a long time to 
respond. The idea behind Fail Fast is to address the problem from the other side: 
Each system should recognize errors as quickly as possible and indicate them imme-
diately. When a call requires a certain service and that service is unavailable at the 
moment, the call can be directly answered with an error message. The same is true 
when other resources are not available at the time. Also, a call should be validated 
right at the start. When it contains errors, there is nothing to be gained by processing 
it and an error message can be returned immediately. The benefits of Fail Fast are 
identical to those offered by timeouts: A rapid failure uses up less resources and 
therefore results in a more stable system.

Handshaking

Handshaking in a protocol serves to initiate communication. This feature of proto-
cols gives servers the opportunity to reject additional calls when the server is 
 overloaded. This can help to avoid additional overload, a breakdown, or responses 
that are too slow. Unfortunately, protocols like HTTP do not support this. There-
fore, the application has to mimic the functionality with, for instance, health checks. 
An application can signal that it is, in principle, reachable but has so much load at 
the moment that it is unable to handle further calls. Protocols that build on socket 
connections can implement these type of approaches by themselves.
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Test Harness

A Test Harness can be used to find out how an application behaves in certain error 
situations. Those problems might be at the level of TCP/IP or, say, responses of other 
systems that contain an HTTP header but no HTTP body. Theoretically, something 
like that should never occur since the operating system or network stack should deal 
with it. Nevertheless, such errors can occur in practice and have dramatic conse-
quences if applications are not prepared to handle them. A Test Harness can be an 
extension of the tests that are discussed in section 10.8.

Uncoupling via Middleware

Calls in a single program only ever function on the same host at the same time in 
the same process. Synchronous distributed communication (REST) enables com-
munication between different hosts and different processes at the same time. 
Asynchronous communication via messaging systems (section 8.4) also enables an 
uncoupling over time. A system should not wait for the response of an asynchro-
nous process. The system should continue working on other tasks instead of just 
waiting for a response. Errors that cause one system after another to break down 
like dominoes are much less likely when using asynchronous communication. The 
systems are forced to deal with long response times since asynchronous communi-
cation often means long response times.

Stability and Microservices

Stability patterns like Bulkheads restrict failures to a unit. Microservices are the 
obvious choice for a unit. They run on separate virtual machines and are therefore 
already isolated with regard to most issues. This means that the bulkhead pattern 
arises very naturally in a microservices-based architecture. Figure 9.5 shows an over-
view: A microservice using Bulkheads, Circuit Breakers, and Timeouts can safeguard 
the use of other microservices. The used microservice can additionally implement 
fail fast. The safeguarding can be implemented via patterns in those parts of a 
microservice that are responsible for communicating with other microservices. This 
enables this aspect to be implemented in one area of the code and not distributed 
across the entire code. 

Microservice Microservice

Bulkhead
Circuit Breaker

Timeout
Fail Fast

Figure 9.5 Stability in the Case of  Microservices
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On a technical level the patterns can be implemented in different ways. For micro-
services there are the following options:

• Timeouts are easy to implement. When another system is accessed, an indi-
vidual thread is started that is terminated after a timeout.

• At first glance Circuit Breakers are not very complex and can be developed
in your own code. However, any implementation must work under high load
and has to offer an interface for operations to enable monitoring. This is not
trivial. Therefore, a home-grown implementation is often not sensible.

• Bulkheads are an inherent feature of microservices since a problem is, in many
cases, already limited to just one microservice. For instance, a memory leak
will only cause one microservice to fail.

• Steady State, Fail Fast, Handshaking and Test Harness have to be implemented
by each microservice.

• Uncoupling via middleware is an option for shared communication of
microservices.

Resilience and Reactive

The Reactive Manifesto5 lists resilience as an essential property of a Reactive 
 application. Resilience can be implemented in an application by processing calls 
asynchronously. Each part of an application which processes messages (actor) has to 
be monitored. When an actor does not react anymore, it can be restarted. This ena-
bles errors to be handled and makes applications more resilient.

Hystrix

Hystrix6 implements Timeout and Circuit Breaker. To achieve this, developers have 
to encapsulate calls in commands. Alternatively, Java annotations can be used. The 
calls take place in individual thread pools, and several thread pools can be created. If 
there is one thread pool per called microservice, the calls to the microservices can be 
separated from each other in such a manner that a problem with one microservice 
does not affect the use of the other microservices. This is in line with the Bulkhead 
concept. Hystrix is a Java library that is made available under the Apache license and 
originates from the Netflix stack. The example application uses Hystrix together 
with Spring Cloud (see section 13.10). In combination with a sidecar, Hystrix can 
also be used for applications that are not written in Java (see section 7.9). Hystrix 

5. http://www.reactivemanifesto.org/

6. https://github.com/Netflix/Hystrix/

http://www.reactivemanifesto.org/
https://www.github.com/Netflix/Hystrix/
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supplies information about the state of the thread pools and the Circuit Breaker for 
monitoring and operational purposes. This information can be displayed in a special 
monitoring tool—the Hystrix dashboard. Internally, Hystrix uses the Reactive 
Extensions for Java (RxJava). Hystrix is the most widely used library in the area of 
resilience.

Try and Experiment

• This chapter introduced eight patterns for stability. Prioritize these pat-
terns. Which properties are indispensable? Which are important? Which are
unimportant?

• How can it be verified that the microservices actually implement the
patterns?

9.6 Technical Architecture

The technical architecture of each microservice can be individually designed. 
 Frameworks or programming languages do not have to be uniform for all microser-
vices. Therefore, each microservice may well use different platforms. However, 
 certain technical infrastructures fit microservices better than others.

Process Engines

Process engines, which typically serve to orchestrate services in an SOA (section 6.1), 
can be used within a microservice to model a business process. The important point is 
that one microservice should implement only one domain—that is, one Bounded 
Context. A microservice should not end working purely to integrate or orchestrate 
other microservices without its own logic. When this happens, changes will affect not 
just the responsible microservice but also the microservice responsible for integration/
orchestration. However, it is a central objective of microservice-based architectures 
that changes should be limited to one microservice whenever possible. If multiple 
business processes have to be implemented, different microservices should be used 
for these. Each of these microservices should implement one business process together 
with the dependent services. Of course, it will not always be possible to avoid other 
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microservices having to be integrated to implement a business process. However, a 
microservice that just represents an integration is not sensible.

Statelessness

Stateless microservices are very beneficial. To put it more clearly, microservices 
should not save any state in their logic layer. States held in a database or on the 
client side are acceptable. When using a stateless approach, the failure of an individ-
ual instance does not have a big impact. The instance can just be replaced by a new 
instance. In addition, the load can be distributed between multiple instances without 
having to take into consideration which instance processed the previous calls of the 
user. Finally, the deployment of a new version is easier since the old version can just 
be stopped and replaced without having to migrate its state.

Reactive

Implementing microservices with Reactive7 technologies can be particularly 
 useful. These approaches are comparable to Erlang (see section 14.7): Applications 
consist of actors. In Erlang they are called processes. Work in each actor is 
sequential; however, different actors can work in parallel on different messages. 
This enables the parallel processing of tasks. Actors can send messages to other 
actors that end up in the mailboxes of these actors. I/O operations are not 
blocking in Reactive applications: A request for data is sent out. When the data is 
there, the actor is called and can process the data. In the meantime, the actors can 
work on other requests.

Essential properties according to the Reactive Manifesto:

• Responsive: The system should react to requests as fast as possible. This
has among others advantages for fail fast and therefore for stability
(see section 9.5). Once the mailbox is filled to a certain predetermined degree,
the actor can, for instance, reject or accept additional messages. This results in
the sender being slowed down and the system does not get overloaded. Other
requests can still be processed. The aim of being responsive is also helped if
blocking I/O operations are not used.

• Resilience and its relationship with Reactive applications has already been
 discussed in section 9.5.

7. http://www.reactivemanifesto.org/

http://www.reactivemanifesto.org/
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• Elastic means that new systems can be started at run times that share the
load. To achieve this, the system has to be scalable, and it has to be possible to
change the system at run time in such a way that the load can be distributed to
the different nodes.

• Message Driven means that the individual components communicate with
each other via messages. As described in section 8.4, this communication fits
well with microservices. Reactive applications also use very similar approaches
within the application itself.

Reactive systems are particularly easy to implement using microservices and the 
concepts from Reactive fit neatly with microservices’ concepts. However, similarly 
good results can also be achieved by the use of more traditional technologies.

Some examples of technologies from the Reactive arena are:

• The programming language Scala8 with the Reactive framework Akka9 and the 
web framework Play10 is based on it. These frameworks can also be used with
Java.

• There are Reactive extensions11 for practically all popular programming
 languages. Among them are RxJava12 for Java or RxJS13 for JavaScript.

• Similar approaches are also supported by Vert.x14 (see also section 14.6). Even
though this framework is based on the JVM, it supports many different pro-
gramming languages like Java, Groovy, Scala, JavaScript, Clojure, Ruby, and
Python.

Microservices without Reactive?

Reactive is only one way to implement a system with microservices. The traditional 
programming model with blocking I/O, without actors, and with synchronous calls 
is also suitable for this type of system. As previously discussed, resilience can be 
implemented via libraries. Elasticity can be achieved by starting new instances of the 
microservices, for instance, as virtual machines or Docker containers. Additionally, 

8. http://www.scala-lang.org/

9. http://akka.io/

10. https://www.playframework.com/

11. http://reactivex.io/

12. https://github.com/ReactiveX/RxJava

13. https://github.com/Reactive-Extensions/RxJS

14. http://vertx.io/

http://www.scala-lang.org/
http://www.akka.io/
https://www.playframework.com/
http://www.reactivex.io/
https://www.github.com/ReactiveX/RxJava
https://www.github.com/Reactive-Extensions/RxJS
http://www.vertx.io/
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traditional applications can also communicate with each other via messages. 
 Reactive applications have benefits for responsiveness. However, in that case it has to 
be guaranteed that operations really do not block. For I/O operations Reactive solu-
tions can usually ensure that. However, a complex calculation can block the system. 
This may mean that no messages can be processed anymore, and the entire system is 
blocked. A microservice does not have to be implemented with Reactive technolo-
gies, but they are certainly an interesting alternative.

Try and Experiment

Get more information about Reactive and microservices.

• How exactly are the benefits achieved and implemented?

• Is there a Reactive extension for your preferred programming language?
Which features does it offer? How does this help with implementing
microservices?

9.7 Conclusion

The team implementing a particular microservice is also responsible for its domain-
based architecture. There should be only a small number of guidelines restricting 
team decisions so that the independence of the teams is maintained.

Low cohesion can be an indication of a problem with the domain-based design 
of a microservice. Domain-driven design (DDD) is an interesting way to structure 
a microservice. Transactions can also provide clues for an optimized domain-based 
division: An operation of a microservice should be a transaction (section 9.1).

CQS (command–query separation) divides operations of a microservice or a class 
into read operations (queries) and write operations (commands). CQRS (command–
query responsibility segregation) (section 9.2) separates data changes via commands 
from query handlers, which process requests. This means that microservices or classes 
are created that can only implement reading or writing services. Event Sourcing 
(section 9.3) stores events and does not focus on the current state but on the history 
of all events. These approaches are useful for building up microservices because 
they enable the creation of smaller microservices that implement only read or write 
operations. This enables independent scaling and optimizations for both types of 
operations.
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Hexagonal architecture (section 9.4) focuses on a kernel that can be called via 
adapters, for instance, by a UI or an API, as the center point of each microservice. 
Likewise, adapters can enable the use of other microservices or of databases. For 
microservices this results in an architecture that supports a UI and a REST interface 
in a microservice.

Section 9.5 presented patterns for Resilience and Stability. The most important 
of those are Circuit Breaker, Timeout and Bulkhead. A popular implementation is 
Hystrix.

Section 9.6 introduced certain technical choices for microservices: For instance, 
the use of process engines is a possibility for a microservice. Statelessness is ben-
eficial. And finally, reactive approaches are a good basis for the implementation of 
microservices.

In summary, this chapter explained some essential considerations for the imple-
mentation of individual microservices.

Essential Points

• Microservices within a microservice-based system can have different domain-
based architectures.

• Microservices can be implemented internally with Event Sourcing, CQRS, or
hexagonal architectures.

• Technical properties like stability can only be implemented individually by
each microservice.
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The division of a system into microservices has an impact on testing. Section 10.1 
explains the motivation behind software tests. Section 10.2 discusses fundamental 
approaches to testing broadly, not just with regard to microservices. Section 10.3 
explains why there are particular challenges when testing microservices that are not 
present in other architectural patterns. For example, in a microservice-based system 
the entire system consisting of all microservices has to be tested (section 10.4). This 
can be difficult when there are a large number of microservices. Section 10.5 describes 
the special case of a legacy application that is being replaced by microservices. In 
that situation the integration of microservices and the legacy application has to be 
tested—testing just the microservices is not sufficient. Another way to safeguard the 
interfaces between microservices are consumer-driven contract tests (section 10.7). 
They reduce the effort required to test the system as a whole—although, of course, 
the individual microservices still have to be tested as well. In this context the question 
arises of how individual microservices can be run in isolation without other micro-
services (section 10.6). Microservices provide technology freedom; nevertheless, 
there have to be certain standards, and tests can help to enforce the technical stand-
ards (section 10.8) that have been defined in the architecture.

10.1 Why Tests?

Even though testing is an essential part of every software development project, 
 questions about the goals of testing are rarely asked. Ultimately, tests are about risk 
 management. They are supposed to minimize the risk that errors will appear in 
 production systems and be noticed by users or do other damage.

Chapter 10

Testing Microservices and 
Microservice-Based Systems
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With this in mind, there are a number of things to consider:

• Each test has to be evaluated based on the risk it minimizes. In the end, a test
is only meaningful when it helps to avoid concrete error scenarios that could
otherwise occur in production.

• Tests are not the only way to deal with risk. The impact of errors that occur in
production can also be minimized in other ways. An important consideration
is how long it takes for a certain error to be corrected in production. Usually,
the longer an error persists, the more severe the consequences. How long it
takes to put a corrected version of the services into production depends on the
Deployment approach. This is one place where testing and Deployment strate-
gies impact on each other.

• Another important consideration is the time taken before an error in produc-
tion is noticed. This depends on the quality of monitoring and logging.

There are many measures that can address errors in production. Just focusing on 
tests is not enough to ensure that high-quality software is delivered to customers.

Tests Minimize Expenditure

Tests can do more than just minimize risk. They can also help to minimize or avoid 
expenditure. An error in production can incur significant expense. The error may 
also affect customer service, something that can result in extra costs. Identifying and 
correcting errors in production is almost always more difficult and time-consuming 
than during tests. Access to the production systems is normally restricted, and devel-
opers will have moved on to work on other features and will have to reacquaint 
 themselves with the code that is causing errors.

In addition, using the correct approach for tests can help to avoid or reduce 
 expenditures. Automating tests may appear time-consuming at first glance.  However, 
when tests are so well defined that results are reproducible, the steps needed to 
achieve complete formalization, and automation are small. When the costs for the 
execution of the tests are negligible it becomes possible to test more frequently, 
which leads to improved quality.

Tests = Documentation

A test defines what a section of code is supposed to do and therefore represents a 
form of documentation. Unit tests define how the production code is supposed to be 
used and also how it is intended to behave in exceptional and borderline cases. 
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Acceptance tests reflect the requirements of the customers. The advantage of tests 
over documentation is that they are executed. This ensures that the tests actually 
reflect the current behavior of the system and not an outdated state or a state that 
will only be reached in the future.

Test-Driven Development

Test-driven development is an approach to development that makes use of the fact that 
tests represent requirements: In this approach developers initially write tests and then 
write the implementation. This ensures that the entire codebase is safeguarded by tests. 
It also means that tests are not influenced by knowledge of the code because the code 
does not exist when the test is written. When tests are implemented after code has been 
written, developers might not test for certain potential problems because of their 
knowledge about the implementation. This is unlikely when using test-driven 
development. Tests turn into a very important base for the development process. They 
push the development: before each change there has to be a test that does not work. 
Code can only be adjusted when the test was successful. This is true not only at the level 
of individual classes, which are safeguarded by previously written unit tests, but also at 
the level of requirements that are ensured by previously written acceptance tests.

10.2 How to Test?

There are different types of tests that handle different types of risks. The next sections 
will look into each type of test and which risk it addresses.

Unit Tests

Unit tests examine the individual units that compose a system—just as their name 
suggests. They minimize the risk that an individual unit contain errors. Unit tests are 
intended to check small units, such as individual methods or functions. In order to 
achieve this, any dependencies that exist in the unit have to replaced so that only the 
unit under test is being exercised and not all its dependencies. There are two ways to 
replace the dependencies:

• Mocks simulate a certain call with a certain result. After the call the test
can verify whether the expected calls have actually taken place. A test can,
for instance, define a mock that will return a defined customer for a certain
customer number. After the test it can evaluate whether the correct customer
has actually been fetched by the code. In another test scenario the mock can



ptg18144917

Chapter 10 Testing Microservices and Microservice-Based Systems216

simulate an error if asked for a customer. This enables unit tests to simulate 
error situations that might otherwise be hard to reproduce.

• Stubs, on the other hand, simulate an entire microservice, but with limited
functionality. For example, the stub may return a constant value. This means
that a test can be performed without the actual dependent microservice. For
example, a stub can be implemented that returns test customers for certain
customer numbers—each with certain properties.

The responsibility for creating unit tests lies with developers. To support them 
there are unit testing frameworks that exist for all popular programming languages. 
The tests use knowledge about the internal structure of the units. For example, they 
replace dependencies by mocks or stubs. Also, this knowledge can be employed to run 
through all code paths for code branches within the tests. The tests are white box tests 
because they exploit knowledge about the structure of the units. Logically, one should 
really call it a transparent box; however, white box is the commonly used term.

One advantage of unit tests is their speed: even for a complex project the unit tests 
can be completed within a few minutes. This enables, literally, each code change to 
be safeguarded by unit tests.

Integration Tests

Integration tests check the interplay of the components. This is to minimize the risk 
that the integration of the components contains errors. They do not use stubs or 
mocks. The components can be tested as applications via the UI or via special test 
frameworks. At a minimum, integration tests should evaluate whether the individual 
parts are able to communicate with each other. They should go further, however, 
and, for example, test the logic based on business processes.

In situations where they test business processes the integration tests are similar to 
acceptance tests that check the requirements of the customers. This area is covered by 
tools for BDD (behavior-driven design) and ATDD (acceptance test-driven design). 
These tools make possible a test-driven approach where tests are written first and 
then the implementation—even for integration and acceptance tests.

Integration tests do not use information about the system under test. They are 
called black box tests, for they do not exploit knowledge about the internal structure 
of the system.

UI Tests

UI tests check the application via the user interface. In principle, they only have to 
test whether the user interface works correctly. There are numerous frameworks and 
tools for testing the user interface. Among those are tools for web UIs and also for 
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desktop and mobile applications. The tests are black box tests. Since they test the 
user interface, the tests tend to be fragile: changes to the user interface can cause 
problems even if the logic remains unchanged. Also this type of testing often requires 
a complete system setup and can be slow to run.

Manual Tests

Finally, there are manual tests. They can either minimize the risk of errors in new 
features or check certain aspects like security, performance, or features that have pre-
viously caused quality problems. They should be explorative: They look at problems 
in certain areas of the applications. Tests that are aimed at detecting whether a cer-
tain error shows up again (regression tests) should never be done manually since 
automated tests find such errors more easily and in a more cost-efficient and repro-
ducible manner. Manual testing should be limited to explorative tests.

Load Tests

Load tests analyze the behavior of the application under load. Performance tests check 
the speed of a system, and capacity tests examine how many users or requests the 
 system is able to handle. All of these tests evaluate the efficiency of the application. 
For this purpose, they use similar tools that measure response times and generate load. 
Such tests can also monitor the use of resources or check whether errors occur under a 
certain load. Tests that investigate whether a system is able to cope with high load over 
an extended period of time are called endurance tests.

Test Pyramid

The distribution of tests is illustrated by the test pyramid (Figure 10.1): The broad 
base of the pyramid represents the large number of unit tests. They can be rapidly 
performed, and most errors can be detected at this level. There are fewer integration 
tests since they are more difficult to create and take longer to run. There are also 
fewer potential problems related to the integration of the different parts of the 
 system. The logic itself is also safeguarded by the unit tests. UI tests only have to 
verify the correctness of the graphical user interface. They are even more difficult 
to  create since automating UI is complicated, and a complete environment is 
 necessary. Manual tests are only required now and then.

Test-driven development usually results in a test pyramid: For each require-
ment there is an integration test written, and for each change to a class a unit test is 
 written. This leads to many integration tests and even more unit tests being created 
as part of the process. 

The test pyramid achieves high quality with low expenditure. The tests are auto-
mated as much as possible. Each risk is addressed with a test that is as simple as 
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possible: is tested by simple and rapid unit tests. More difficult tests are restricted to 
areas that cannot be tested with less effort.

Many projects are far from the ideal of the test pyramid. Unfortunately, in reality 
tests are often better represented by the ice-cream cone shown in Figure 10.2. This 
leads to the following challenges:

• There are comprehensive manual tests since such tests are very easy to imple-
ment, and many testers do not have sufficient experience with test automation.
If the testers are not able to write maintainable test code, it is very difficult to
automate tests.

• Tests via the user interface are the easiest type of automation because they
are very similar to the manual tests. When there are automated tests, it is nor-
mally largely UI tests. Unfortunately, automated UI tests are fragile: Changes to
the graphical user interface often lead to problems. Since the tests are testing the 
entire system, they are slow. If the tests are parallelized, there are often failures
resulting from excessive load on the system rather than actual failures of the
test.

• There are few integration tests. Such tests require a comprehensive knowledge
about the system and about automation techniques, which testers often lack.

• There can actually be more unit tests than presented in the diagram. However,
their quality is often poor since developers often lack experience in writing
unit tests.

Unit Tests

Integration Tests

UI
Tests

Manual 
Tests

Figure 10.1 Test Pyramid: The Ideal
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Other common problems include unnecessarily complex tests that are often 
used for certain error sources and UI tests or manual tests being used to test logic. 
For this purpose, however, unit tests would normally be sufficient and much faster. 
When testing, developers should try to avoid these problems and the ice-cream 
cone. Instead the goal should be to implement a test pyramid.

The test approach should be adjusted according to the risks of the respective soft-
ware and should provide tests for the right properties. For example, a project where 
performance is key should have automated load or capacity tests. Functional tests 
might not be so important in this scenario.

Try and Experiment

• In which places does the approach in your current project correspond to the
ice-cream cone rather than the test pyramid?

• Where are manual tests used? Are the most important tests automated?

• What is the relationship of UI to integration and unit tests?

• How is the quality of the different tests?

• Is test-driven development used? For individual classes or also for
requirements?

Unit 
Tests

Integration 
Tests

UI Tests

Manual Tests

Figure 10.2 Test Ice-Cream Cone: Far Too Common
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Continuous Delivery Pipeline

The continuous delivery pipeline (Figure 4.2, section 4.1) illustrates the different test 
phases. The unit tests from the test pyramid are executed in the commit phase. UI 
tests can be part of the acceptance tests or could also be run in the commit phase. 
The capacity tests use the complete system and can therefore be regarded as integra-
tion tests from the test pyramid. The explorative tests are the manual tests from the 
test pyramid.

Automating tests is even more important for microservices than in other software 
architectures. The main objective of microservice-based architectures is independent 
and frequent software Deployment. This can only be achieved when the quality of 
microservices is safeguarded by tests. Without these, Deployment into production 
will be too risky.

10.3 Mitigate Risks at Deployment

An important benefit of microservices is that they can be deployed quickly because 
of the small size of the deployable units. Resilience helps to ensure that the failure of 
an individual microservice doesn’t result in other microservices or the entire system 
failing. This results in lower risks should an error occur in production despite the 
microservice passing the tests.

However, there are additional reasons why microservices minimize the risk of a 
Deployment:

• It is much faster to correct an error, for only one microservice has to be rede-
ployed. This is far faster and easier than the Deployment of a Deployment
monolith.

• Approaches like Blue/Green Deployment or Canary Releasing (section 11.4)
further reduce the risk associated with Deployments. Using these techniques,
a microservice that contains a bug can be removed from production with little
cost or time lost. These approaches are easier to implement with microservices
since it requires less effort to provide the required environments for a microser-
vice than for an entire Deployment monolith.

• A service can participate in production without doing actual work. Although
it will get the same requests as the version in production, changes to data that
the new service would trigger are not actually performed but are compared
to the changes made by the service in production. This can, for example, be
achieved by modifications to the database driver or the database itself. The
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service could also use a copy of the database. The main point is that in this 
phase the microservice will not change the data in production. In addition, 
messages that the microservice sends to the outside can be compared with the 
messages of the microservices in production instead of sending them on to the 
recipients. With this approach the microservice runs in production against all 
the special cases of the real life data—something that even the best test cannot 
cover completely. Such a procedure can also provide more reliable information 
regarding performance, although data is not actually written, so performance 
is not entirely comparable. These approaches are very difficult to implement 
with a Deployment monolith because of the difficulty of running the entire 
Deployment monolith in another instance in production. This would require 
a lot of resources and a very complex configuration because the Deployment 
monolith could introduce changes to data in numerous locations. Even with 
microservices this approach is still complex, and comprehensive support is 
necessary in software and Deployment. Extra code has to be written for calling 
the old and the new version and to compare the changes and outgoing messages 
of both versions. However, this approach is at least feasible.

• Finally, the service can be closely examined via monitoring in order to rap-
idly recognize and solve problems. This shortens the time before a problem
is noticed and addressed. This monitoring can act as a form of acceptance
criteria of load tests. Code that fails in a load test should also create an alarm
during monitoring in production. Therefore, close coordination between
monitoring and tests is sensible.

In the end the idea behind these approaches is to reduce the risk associated with 
bringing a microservice into production instead of addressing the risk with tests. 
When the new version of a microservice cannot change any data, its Deployment is 
practically free of risk. This is difficult to achieve with Deployment monoliths since 
the Deployment process is much more laborious and time consuming and requires 
more resources. This means that the Deployment cannot be performed quickly and 
therefore cannot be easily rolled back when errors occur.

The approach is also interesting because some risks are difficult to eliminate with 
tests. For example, load and performance tests can be an indicator of the behavior 
of the application in production. However, these tests cannot be completely reliable 
since the volume of data will be different in production, user behavior is different, 
and hardware is often differently sized. It is not feasible to cover all these aspects 
in one test environment. In addition, there can be errors that only occur with data 
sets from production—these are hard to simulate with tests. Monitoring and rapid 
Deployment can be a realistic alternative to tests in a microservices environment. It 
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is important to think about which risk can be reduced with which type of measure—
tests or optimizations of the Deployment pipeline.

10.4 Testing the Overall System

In addition to the tests for each of the individual microservices, the system as a whole 
also has to be tested. This means that there are multiple test pyramids: one for each 
individual microservice and one for the system in its entirety (see Figure 10.3). For 
the complete system there will also be integration tests of the microservices, UI tests 
of the entire application and manual tests. Unit tests at this level are the tests of the 
microservices since they are the units of the overall system. These tests consist of a 
complete test pyramid of the individual microservices. 

The tests for the overall system are responsible for identifying problems that occur 
in the interplay of the different microservices. Microservices are distributed systems. 
Calls can require the interplay of multiple microservices to return a result to the user. 
This is a challenge for testing: distributed systems have many more sources of errors, 
and tests of the overall system have to address these risks. However, when testing 
microservices another approach is chosen: with resilience the individual micro-
services should still work even if there are problems with other microservices. So a 
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Figure 10.3 Test Pyramid for Microservices



ptg18144917

10.4 Testing the Overall System 223

failure of parts of the system is expected and should not have severe consequences. 
Functional tests can be performed with stubs or mocks of the other microservices. In 
this way microservices can be tested without the need to build up a complex distrib-
uted system and examine it for all possible error scenarios.

Shared Integration Tests

Before being deployed into production, each microservice should have its integration 
with other microservices tested. This requires changes to the continuous delivery 
pipeline as it was described in section 5.1: At the end of the Deployment pipeline 
each microservice should be tested together with the other microservices. Each 
microservice should run through this step on its own. When new versions of multiple 
microservices are tested together at this step and a failure occurs it will not be clear 
which microservice has caused the failure. There may be situations where new ver-
sions of multiple microservices can be tested together and the source of failures will 
always be clear. However, in practice such optimizations are rarely worth the effort. 

This reasoning leads to the process illustrated in Figure 10.4: The continuous 
delivery pipelines of the microservices end in a common integration test into which 
each microservice has to enter separately. When a microservice is in the integration 
test phase, the other microservices have to wait until the integration test is  completed. 
To ensure that only one microservice at a time runs through the integration tests 
the tests can be performed in a separate environment. Only one new version of a 
microservice may be delivered into this environment at a given point in time, and 
the environment enforces the serialized processing of the integration tests of the 
microservices.
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Such a synchronization point slows down the Deployment and therefore the entire 
process. If the integration test lasts for an hour, for example, it will only be possible 
to put eight microservices through the integration test and into production per eight-
hour work day. If there are eight teams in the project, each team will only be able to 
deploy a microservice once a day. This is not sufficient to achieve rapid error correc-
tion in production. Besides, this weakens an essential advantage of microservices: It 
should be possible to deploy each microservice independently. Even though this is in 
principle still possible, the Deployment takes too long. Also, the microservices now 
have dependencies to each other because of the integration tests—not at the code 
level but in the Deployment pipelines. In addition, things are not balanced when the 
continuous delivery without the last integration test requires, for example, only one 
hour, but it is still not possible to get more than one release into production per day.

Avoiding Integration Tests of the Overall System

This problem can be solved with the test pyramid. It moves the focus from integra-
tion tests of the overall system to integration tests of the individual microservices 
and unit tests. When there are fewer integration tests of the overall system, they will 
not take as much time to run. In addition, less synchronization is necessary, and the 
Deployment into production is faster. The integration tests are only meant to test the 
interplay between microservices. It is sufficient when each microservice can reach all 
dependent microservices. All other risks can then be taken care of before this last 
test. With consumer-driven contract tests (section 10.7) it is even possible to exclude 
errors in the communication between the microservices without having to test the 
microservices together. All these measures help to reduce the number of integration 
tests and therefore their total duration. In the end there is no reduction in overall 
testing—the testing is just moved to other phases: to the tests of the individual 
microservices and to the unit tests.

The tests for the overall system should be developed by all teams working 
together. They form part of the macro architecture because they concern the sys-
tem as a whole and cannot therefore be the responsibility of an individual team 
(see section 12.3).

The complete system can also be tested manually. However, it is not feasible for 
each new version of a microservice to only go into production after a manual test 
with the other microservices. The delays will just be too long. Manual tests of the 
system can, for example, address features that are not yet activated in production. 
Alternatively, certain aspects like security can be tested in this manner if problems 
have occurred in these areas previously.
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10.5  Testing Legacy Applications and 
Microservices

Microservices are often used to replace legacy applications. The legacy applications 
are usually Deployment monoliths. Therefore, the continuous delivery pipeline of 
the legacy application tests many functionalities that have to be split into microser-
vices. Because of the many functionalities the test steps of the continuous delivery 
pipeline for Deployment monoliths take a very long time. Accordingly, the Deploy-
ment in production is very complex and takes a long time. Under such conditions it is 
unrealistic that each small code change to the legacy application goes into produc-
tion. Often there are Deployments at the end of a sprint of 14 days or even only one 
release per quarter. Nightly tests inspect the current state of the system. Tests can be 
transferred from the continuous delivery pipeline into the nightly tests. In that case 
the continuous delivery pipeline will be faster, but certain errors are only recognized 
during the nighttime testing. Then the question arises of which of the changes of the 
past day is responsible for the error.

Relocating Tests of the Legacy Application

When migrating from a legacy application to microservices, tests are especially 
important. If just the tests of the legacy application are used, they will test a number 
of functionalities that meanwhile have been moved to microservices. In that case 
these tests have to be run at each release of a microservice—which takes much too 
long. The tests have to be relocated. They can turn into integration tests for the 
microservices (see Figure 10.5). However, the integration tests of the microservices 
should run rapidly. In this phase it is not necessary to use tests for functionalities, 
which reside in a single microservice. Then the tests of the legacy application have to 
turn into integration tests of the individual microservices or even into unit tests. In 
that case they are much faster. Additionally, they run as tests for a single microservice 
so that they do not slow down the shared tests of the microservices.

Not only the legacy application has to be migrated, but also the tests. Other-
wise fast Deployments will not be possible in spite of the migration of the legacy 
application.

The tests for the functionalities that have been transferred to microservices can 
be removed from the tests of the legacy application. Step by step this will speed 
up the Deployment of the legacy application. Consequently, changes to the legacy 
 application will also get increasingly easier. 
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Integration Test: Legacy Application and Microservices

The legacy application also has to be tested together with the microservices. The 
microservices have to be tested together with the version of the legacy production 
that is in production. This ensures that the microservices will also work in produc-
tion together with the legacy application. For this purpose, the version of the legacy 
application running in production can be integrated into the integration tests of the 
microservices. It is the responsibility of each microservice to pass the tests without 
any errors with this version (see Figure 10.6). 

When the Deployment cycles of the legacy application last days or weeks, a new 
version of the legacy application will be in development in parallel. The microservices 
also have to be tested with this version. This ensures that there will not suddenly 
be errors occurring upon the release of the new legacy application. The version of the 
legacy application that is currently in development runs an integration test with the
current microservices as part of its own Deployment pipeline (Figure 10.7). For 
this the versions of the microservices that are in production have to be used.
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Microservices

Unit Tests
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Figure 10.5 Relocating Tests of  Legacy Applications

Integration 
Test of All 

Microservices
Production

Microservice
Continuous Delivery 

Pipeline

Legacy 
Application 
(Production 

Version)

Microservice
Continuous Delivery 

Pipeline

Microservice
Continuous Delivery 

Pipeline

Figure 10.6 Legacy Application in the Continuous Delivery Pipelines
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Figure 10.7 Microservices in the Continuous Delivery Pipeline of  the Legacy Application

The versions of the microservices change much more frequently than the version 
of the legacy application. A new version of a microservice can break the continu-
ous delivery pipeline of the legacy application. The team of the legacy application 
cannot solve these problems since it does not know the code of the microservices. 
This version of the microservice is possibly already in production though. In 
that case a new version of the microservice has to be delivered to eliminate the 
error—although the continuous delivery pipeline of the microservice ran through 
successfully. 

An alternative would be to also send the microservices through an integration test 
with the version of the legacy application that is currently in development. However, 
this prolongs the overarching integration test of the microservices and therefore ren-
ders the development of the microservices more complex.

The problem can be addressed by consumer-driven contract tests (section 10.7). 
The expectations of the legacy application to the microservices and of the micro-
services to the legacy application can be defined by consumer-driven contract tests so 
that the integration tests can be reduced to a minimum.

In addition, the legacy application can be tested together with a stub of the 
microservices. These tests are not integration tests since they only test the leg-
acy application. This enables reduction of the number of overarching integration 
tests. This concept is illustrated in section 10.6 using tests of microservices as 
example. However, this means that the tests of the legacy application have to be 
adjusted.

10.6 Testing Individual Microservices

Tests of the individual microservices are the duty of the team that is responsible for 
the respective microservice. The team has to implement the different tests such as 
unit tests, load tests, and acceptance tests as part of their own continuous delivery 
pipeline—as would also be the case for systems that are not microservices.

However, for some functionalities microservices require access to other micro-
services. This poses a challenge for the tests: It is not sensible to provide a complete 
environment with all microservices for each test of each microservice. On the one 
hand, this would use up too many resources. On the other hand, it is difficult to 
supply all these environments with the up-to-date software. Technically, lightweight 
virtualization approaches like Docker can at least reduce the expenditure in terms of 
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resources. However, for 50 or 100 microservices this approach will not be sufficient 
anymore.

Reference Environment

A reference environment in which the microservices are available in their current 
 version is one possible solution. The tests of the different microservices can use the 
microservices from this environment. However, errors can occur when multiple teams 
test different microservices in parallel with the microservices from the reference 
 environment. The tests can influence each other and thereby create errors. Besides the 
reference environment has to be available. When a part of the reference environment 
breaks down due to a test, in extreme cases tests might be impossible for all teams. The 
microservices have to be hold available in the reference environment in their current 
version. This generates additional expenditure. Therefore, a reference environment is 
not a good solution for the isolated testing of microservices.

Stubs

Another possibility is the simulation of the used microservice. For the simulation of 
parts of a system for testing there are two different options as section 10.2 presented, 
namely stubs and mocks. Stubs are the better choice for the replacement of microser-
vices. They can support different test scenarios. The implementation of a single stub 
can support the development of all dependent microservices.

If stubs are used, the teams have to deliver stubs for their microservices. This 
ensures that the microservices and the stubs really behave largely identically. When 
consumer-driven contract tests also validate the stubs (see section 10.7), the correct 
simulation of the microservices by the stubs is ensured.

The stubs should be implemented with a uniform technology. All teams that use 
a microservice also have to use stubs for testing. Handling the stubs is facilitated by 
a uniform technology. Otherwise a team that employs several microservices has to 
master a plethora of technologies for the tests.

Stubs could be implemented with the same technology as the associated 
microservices. However, the stubs should use fewer resources than the microser-
vices. Therefore, it is better when the stubs utilize a simpler technology stack. The 
example in section 13.13 uses for the stubs the same technology as the associated 
microservices. However, the stubs deliver only constant values and run in the same 
process as the microservices that employ the stub. Thereby the stubs use up less 
resources.

There are technologies that specialize on implementing stubs. Tools for client-
driven contract tests can often also generate stubs (see section 10.7).
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• mountebank1 is written in JavaScript with Node.js. It can provide stubs for
TCP, HTTP, HTTPS, and SMTP. New stubs can be generated at run time. The
definition of the stubs is stored in a JSON file. It defines under which condi-
tions which responses are supposed to be returned by the stub. An extension
with JavaScript is likewise possible. mountebank can also serve as proxy. In
that case it forwards requests to a service—alternatively, only the first request
is forwarded and the response is recorded. All subsequent requests will be
answered by mountebank with the recorded response. In addition to stubs,
mountebank also supports mocks.

• WireMock2 is written in Java and is available under the Apache 2 license. This
framework makes it very easy to return certain data for certain requests. The
behavior is determined by Java code. WireMock supports HTTP and HTTPS.
The stub can run in a separate process, in a servlet container or directly in a
JUnit test.

• Moco3 is likewise written in Java and is available under the MIT license. The
behavior of the stubs can be expressed with Java code or with a JSON file.
It supports HTTP, HTTPS, and simple socket protocols. The stubs can be
started in a Java program or in an independent server.

• stubby4j4 is written in Java and is available under the MIT license. It utilizes a
YAML file for defining the behavior of the stub. HTTPS is supported as pro-
tocol in addition to HTTP. The definition of the data takes place in YAML or
JSON. It is also possible to start an interaction with a server or to program the
behavior of stubs with Java. Parts of the data in the request can be copied into
the response.

Try and Experiment

Use the example presented in Chapter 13, “Example of a Microservice-Based 
Architecture,” and supplement stubs with a stub framework of your choice. The 
example application uses the configuration file application-test.properties. In 
this configuration it is defined which stub is used for the tests.

1. http://www.mbtest.org/

2. http://wiremock.org/

3. https://github.com/dreamhead/moco

4. https://github.com/azagniotov/stubby4j

http://www.mbtest.org/
http://www.wiremock.org/
https://www.github.com/dreamhead/moco
https://www.github.com/azagniotov/stubby4j
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10.7 Consumer-Driven Contract Tests

Each interface of a component is ultimately a contract: the caller expects that certain 
side effects are triggered or that values are returned when it uses the interface. The 
contract is usually not formally defined. When a microservice violates the  expectations, 
this manifests itself as error that is either noticed in production or in integration tests. 
When the contract can be made explicit and tested independently, the integration tests 
can be freed from the obligation to test the contract without incurring a larger risk for 
errors during production. Besides, then it would get easier to modify the microservices 
because it would be easier to anticipate which changes cause problems with using 
other microservices.

Often changes to system components are not performed because it is unclear 
which other components use that specific component and how they us it. There is a 
risk of errors during the interplay with other microservices, and there are fears that 
the error will be noticed too late. When it is clear how a microservice is used, changes 
are much easier to perform and to safeguard.

Components of the Contract

These aspects belong to the contract5 of a microservice:

• The data formats define in which format information is expected by the other
microservices and how they are passed over to a microservice.

• The interface determines which operations are available.

• Procedures or protocols define which operations can be performed in which
sequence with which results.

• Finally, there is meta information associated with the calls that can comprise
for example a user authentication.

• In addition, there can be certain nonfunctional aspects like the latency time or
a certain throughput.

Contracts

There are different contracts between the consumers and the provider of a service:

• The Provider Contract comprises everything the service provider provides. There 
is one such contract per service provider. It completely defines the entire service.
It can, for instance, change with the version of the service (see section 8.6).

5. http://martinfowler.com/articles/consumerDrivenContracts.html

http://www.martinfowler.com/articles/consumerDrivenContracts.html
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• The Consumer Contract comprises all functionalities that a service user really 
utilizes. There are several such contracts per service—at least one with each
user. The contract comprises only the parts of the service that the user really
employs. It can change through modifications to the service consumer.

• The Consumer-Driven Contract (CDC) comprises all user contracts. There-
fore, it contains all functionalities that any service consumer utilizes. There is
only one such contract per service. Since it depends on the user contracts, it
can change when the service consumers add new calls to the service provider or 
when there are new requirements for the calls.

Figure 10.8 summarizes the differences. 
The Consumer-Driven Contract makes clear which components of the provider 

contracts are really used. This also clarifies where the microservice can still change 
its interface and which components of the microservice are not used.

Implementation

Ideally, a Consumer-Driven Contract turns into a consumer-driven contract test that 
the service provider can perform. It has to be possible for the service consumer to 
change these tests. They can be stored together in the version control with the 
microservice of the service provider. In that case the service consumers have to get 
access to the version control of the service provider. Otherwise the tests can also be 
stored in the version control of the service consumers. In that case the service pro-
vider has to fetch the tests out of the version control and execute them with each 
version of the software. However, in that case it is not possible to perform version 
control on the tests together with the tested software since tests and tested software 
are in two separate projects within the version control system.

The entirety of all tests represents the Consumer-Driven Contract. The tests of 
each team correspond to the Consumer Contract of each team. The consumer-driven 
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Figure 10.8 Differences between Consumer and Provider Contracts
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contract tests can be performed as part of the tests of the microservice. If they are 
successful, all service consumers should be able to successfully work together with 
the microservice. The test precludes that errors will only be noticed during the inte-
gration test. Besides, modifications to the microservices get easier because require-
ments for the interfaces are known and can be tested without special expenditure. 
Therefore, the risk associated with changes that affect the interface is much smaller 
since problems will be noticed prior to integration tests and production.

Tools

To write consumer-driven contract tests a technology has to be defined. The technol-
ogy should be uniform for all projects because a microservice can use several other 
microservices. In that case a team has to write tests for different other microservices. 
This is easier when there is a uniform technology. Otherwise the teams have to know 
numerous different technologies. The technology for the tests can differ from the 
technology used for implementation.

• An arbitrary test framework is an option for implementing the consumer-
driven contract tests. For load tests additional tools can be defined. In addition
to the functional requirements there can also be requirements with regard to
the load behavior. However, it has to be clearly defined how the microservice
is provided for the test. For example, it can be available at a certain port on the
test machine. In this way the test can take place via the interface that is also
used for access by other microservices.

• In the example application (section 13.13), simple JUnit tests are used for test-
ing the microservice and for verifying whether the required functionalities are
supported. When incompatible changes to data formats are performed or the
interface is modified in an incompatible manner, the tests fail.

• There are tools especially designed for the implementation of consumer-driven
contract tests. An example is Pacto.6 It is written in Ruby and is available under 
the MIT license. Pacto supports REST/HTTP and supplements such interfaces 
with a contract. Pacto can be integrated into a test structure. In that case Pacto
compares the header with expected values and the JSON data structures in
the body with JSON schemas. This information represents the contract. The
contract can also be generated out of a recorded interaction between a client
and a server. Based on the contract Pacto can validate the calls and responses
of a system. In addition, Pacto can create with this information simple stubs.

6. http://thoughtworks.github.io/pacto/

http://www.thoughtworks.github.io/pacto/
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Moreover, Pacto can be used in conjunction with RSpec to write tests in Ruby. 
Also test systems that are written in other languages than Ruby can be tested in 
this way. Without RSpec, Pacto offers the possibility to run a server. Therefore 
it is possible to use Pacto outside of a Ruby system also.

• Pact7 is likewise written in Ruby and under MIT license. The service consumer
can employ Pact to write a stub for the service and to record the interaction
with the stub. This results in a Pact file that represents the contract. It can also
be used for testing whether the actual service correctly implements the con-
tract. Pact is especially useful for Ruby, however pact-jvm8 supports a similar
approach for different JVM languages like Scala, Java, Groovy or Clojure.

Try and Experiment

• Use the example presented in Chapter 13 and supplement consumer-driven
contracts with a framework of your choice. The example application has
the configuration application-test.properties. In this configuration which
stub is used for the tests is defined. Verify also the contracts in the produc-
tion environment.

10.8 Testing Technical Standards

Microservices have to fulfill certain technical requirements. For example, microser-
vices should register themselves in Service Discovery and keep functioning even if 
other microservices break down. Tests can verify these properties. This entails a 
number of advantages:

• The guidelines are unambiguously defined by the test. Therefore, there is no
discussion how precisely the guidelines are meant.

• They can be tested in an automated fashion. Therefore it is clear at any time
whether a microservice fulfills the rules or not.

7. https://github.com/realestate-com-au/pact

8. https://github.com/DiUS/pact-jvm

https://www.github.com/realestate-com-au/pact
https://www.github.com/DiUS/pact-jvm
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• New teams can test new components concerning whether they comply with
the rules or not.

• When microservices do not employ the usual technology stack, it can still be
ensured that they behave correctly from a technical point of view.

Among the possible tests are:

• The microservices have to register in the Service Discovery (section 7.11).
The test can verify whether the component registers at service registry upon
starting.

• Besides, the shared mechanisms for configuration and coordination have to be
used (section 7.10). The test can control whether certain values from the cen-
tral configuration are read out. For this purpose, an individual test interface
can be implemented.

• A shared security infrastructure can be checked by testing the use of the
microservice via a certain token (section 7.14).

• With regard to documentation and metadata (section 7.15) whether a test can
access the documentation via the defined path can be tested.

• With regard to monitoring (section 11.3) and logging (section 11.2) whether
the microservice provides data to the monitoring interfaces upon starting and
delivers values resp. log entries can be examined.

• With regard to Deployment (section 11.4) it is sufficient to deploy and start the
microservice on a server. When the defined standard is used for this, this aspect
is likewise correctly implemented.

• As test for control (section 11.6) the microservice can simply be restarted.

• To test for resilience (section 9.5) in the simplest scenario whether the micro-
service at least boots also in absence of the dependent microservices and
 displays errors in monitoring can be checked. The correct functioning of the
microservice upon availability of the other microservices is ensured by the
functional tests. However, a scenario where the microservice cannot reach any
other service is not addressed in normal tests.

In the easiest case the technical test can just start and deploy the microservice. 
Therefore Deployment and control are already tested. Dependent microservices do 
not have to be present for that. Starting the microservice should also be possible 
without dependent microservices due to resilience. Subsequently, logging and moni-
toring can be examined that should also work and contain errors in this situation.
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Finally, the integration in the shared technical services like Service Discovery, 
configuration and coordination, or security can be checked.

Such a test is not hard to write and can render many discussions about the pre-
cise interpretation of the guidelines superfluous. Therefore, this test is very  useful. 
Besides, it tests scenarios that are usually not covered by automated tests—for 
instance, the breakdown of dependent systems.

This test does not necessarily provide complete security that the microservice 
complies with all rules. However, it can at least examine whether the fundamental 
mechanisms function.

Technical standards can easily be tested with scripts. The scripts should install 
the microservice in the defined manner on a virtual machine and start it. Afterwards 
the behavior, for instance with regard to logging and monitoring, can be tested. 
Since technical standards are specific for each project, a uniform approach is hardly 
 possible. Under certain conditions a tool like Serverspec9 can be useful. It serves to 
examine the state of a server. Therefore, it can easily determine whether a certain 
port is used or whether a certain service is active.

10.9 Conclusion

Reasons for testing include, on the one hand, the risk that problems are only noticed 
in production and, on the other hand, that tests serve as an exact specification of the 
system (section 10.1).

Section 10.2 illustrated how using the concept of the test pyramid tests should be 
structured: The focus should be on fast, easily automatable unit tests. They address 
the risk that there are errors in the logic. Integration tests and UI tests then only 
ensure the integration of the microservices with each other and the correct integra-
tion of the microservices into the UI.

As section 10.3 showed, microservices can additionally deal with the risk of errors 
in production in a different manner: microservice Deployments are faster, they 
influence only a small part of the system, and microservices can even run blindly 
in  production. Therefore the risk of Deployment decreases. Thus it can be sensi-
ble instead of comprehensive tests to rather optimize the Deployment in production 
to such an extent that it is, for all practical purposes, free of risk. In addition, the 
 section discussed that there are two types of test pyramids for microservice-based 
systems: one per microservice and one for the overall system.

Testing the overall system entails the problem that each change to a microservice 
necessitates a run through this test. Therefore, this test can turn into a bottleneck 

9. http://serverspec.org/

http://www.serverspec.org/
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and should be very fast. Thus, when testing microservices, one objective is to reduce 
the number of integration tests across all microservices (section 10.4).

When replacing legacy applications not only their functionality has to be trans-
ferred into microservices, but also the tests for the functionalities have to be moved 
into the tests of the microservices (section 10.5). Besides, each modification to a 
microservice has to be tested in the integration with the version of the legacy applica-
tion used in production. The legacy application normally has a much slower release 
cycle than the microservices. Therefore, the version of the legacy application that is 
at the time in development has to be tested together with the microservices.

For testing individual microservices the other microservices have to be replaced 
by stubs. This enables you to uncouple the tests of the individual microservices from 
each other. Section 10.6 introduced a number of concrete technologies for creating 
stubs.

In section 10.7 client-driven contract tests were presented. With this approach 
the contracts between the microservices get explicit. This enables a microservice to 
check whether it fulfills the requirements of the other microservices—without the 
need for an integration test. Also for this area a number of tool are available.

Finally, section 10.8 demonstrated that technical requirements to the microser-
vices can likewise be tested in an automated manner. This enables unambiguous 
establishment of whether a microservice fulfills all technical standards.

Essential Points

• Established best practices like the test pyramid are also sensible for
microservices.

• Common tests across all microservices can turn into a bottleneck and there-
fore should be reduced, for example, by performing more consumer-driven
contract tests.

• With suitable tools stubs can be created from microservices.
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Deployment and operation are additional components of the continuous delivery 
pipeline (see section 10.1). When the software has been tested in the context of the 
pipeline, the microservices go into production. There, monitoring and logging col-
lect information that can be used for the further development of the microservices.

The operation of a microservice-based system is more laborious than the opera-
tion of a deployment monolith. There are many more deployable artifacts that 
all have to be surveilled. Section 11.1 discusses the typical challenges associated 
with the operation of microservice-based systems in detail. Logging is the topic of 
section 11.2. Section 11.3 focuses on the monitoring of the microservices. Deploy-
ment is treated in section 11.4. Section 11.6 shows necessary measures for directing 
a microservice from the outside, and finally, section 11.7 describes suitable infra-
structures for the operation of microservices.

The challenges associated with operation should not be underestimated. It is in 
this area where the most complex problems associated with the use of microservices 
frequently arise.

11.1  Challenges Associated with the Operation 
of Microservices

There are a number of challenges associated with the operation of microservices. 
The main challenges are covered in this section.

Chapter 11

Operations and Continuous 
Delivery of Microservices
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Numerous Artifacts

Teams that have so far only run deployment monoliths are confronted with the 
 problem that there are many additional deployable artifacts in microservices-based 
systems. Each microservice is independently brought into production and therefore a 
separate deployable artifact. Fifty, one hundred, or more microservices are definitely 
possible. The concrete number depends on the size of the project and the size of the 
microservices. Such a number of deployable artifacts is hardly met with outside of 
microservices-based architectures. All these artifacts have to be versioned indepen-
dently because only then can which code runs currently in production be tracked. 
Besides, this enables bringing a new version of each microservice independently into 
production.

When there are so many artifacts, there has to be a correspondingly high number 
of continuous delivery pipelines. They comprise not only the deployment in produc-
tion but also the different testing phases. In addition, many more artifacts have to be 
surveilled in production by logging and monitoring. This is only possible when all 
these processes are mostly automated. For a small number of artifacts, manual inter-
ventions might still be acceptable. Such an approach is simply not possible any more 
for the large number of artifacts contained in a microservice-based architecture.

The challenges in the areas of deployment and infrastructure are the most diffi-
cult ones encountered when introducing microservices. Many organizations are not 
sufficiently proficient in automation although automation is also very advantageous 
in other architectural approaches and should already be routine.

There are different approaches for achieving the necessary automation.

Delegate into Teams

The easiest option is to delegate this challenge to the teams that are responsible for 
the development of the microservices. In that case each team has not only to develop 
its microservice but also to take care of its operation. They have the choice to either 
use appropriate automation for it or to adopt automation approaches from other 
teams.

The team does not even have to cover all areas. When there is no need to evaluate 
log data to achieve reliable operation, the team can decide not to implement a sys-
tem for evaluating log data. A reliable operation without surveilling the log output 
is hardly possible, though. However, this risk is then within the responsibility of the 
respective team.

This approach only works when the teams have a lot of knowledge regarding 
operation. Another problem is that the wheel is invented over and over again by the 
different teams: each team implements automation independently and might use 
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different tools for it. This approach entails the danger that the laborious operation 
of the microservices gets even more laborious due to the heterogeneous approaches 
taken by the teams. The teams have to do this work. This interferes with the rapid 
implementation of new features. However, the decentralized decision about which 
technologies to use increases the independence of the teams.

Unify Tools

Because of the higher efficiency, unification can be a sensible approach for deploy-
ment. The easiest way to obtain uniform tools is to prescribe one tool for each area—
deployment, test, monitoring, logging, and deployment pipeline. In addition, there 
will be guidelines and best practices such as immutable server or the separation of 
build environment and deployment environment. This enables the identical imple-
mentation of all microservices and will facilitate operation since the teams only need 
to be familiar with one tool for each area.

Specify Behavior

Another option is to specify the behavior of the system. For example, when log 
 output is supposed to be evaluated in a uniform manner across services, it is suffi-
cient to define a uniform log format. The log framework does not necessarily have to 
be prescribed. Of course, it is sensible to offer a configuration that generates this 
output format for at least one log framework. This increases the motivation of the 
teams to use this log framework. In this way uniformity is not forced but emerges on 
its own since the teams will minimize their own effort. When a team regards the use 
of another log framework or programming language that necessitates another log 
framework as more advantageous, it can still use these technologies.

Defining uniform formats for log output has an additional advantage: the infor-
mation can be delivered to different tools that process log files differently. This 
 enables operations to screen log files for errors while the business stakeholders create 
statistics. Operation and business stakeholders can use different tools that use the 
uniform format as shared basis.

Similarly, behavior can be defined for the other areas of operation such as deploy-
ment, monitoring, or the deployment pipeline.

Micro and Macro Architecture

Which decisions can be made by the team and which have to be made for the overall 
project correspond to the separation of the architecture into micro and macro archi-
tecture (see section 12.3). Decisions the team can make belong to micro architecture 
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while decisions that are made across all teams for the overall project are part of the 
macro architecture. Technologies or the desired behavior for logging can be either 
part of the macro or the micro architecture.

Templates

Templates offer the option to unify microservices in these areas and to increase the 
productivity of the teams. Based on a very simple microservice, a template demon-
strates how the technologies can be used and how microservices are integrated into 
the operation infrastructure. The example can simply respond to a request with a 
constant value since the domain logic is not the point here.

The template will make it easy and fast for a team to implement a new micro-
service. At the same time, each team can easily make use of the standard technol-
ogy stack. So the uniform technical solution is at the same time the most attractive 
for the teams. Templates achieve a large degree of technical uniformity between 
microservices without prescribing the technology used. In addition, a faulty use of 
the  technology stack is avoided when the template demonstrates the correct use.

A template should contain the complete infrastructure in addition to the code for 
an exemplary microservice. This refers to the continuous delivery pipeline, the build, 
the continuous integration platform, the deployment in production, and the neces-
sary resources for running the microservice. Especially build and continuous delivery 
pipeline are important since the deployment of a large number of microservices is 
only possible when these are automated.

The template can be very complex when it really contains the complete 
 infrastructure—even if the respective microservice is very simple. It is not necessarily 
required to provide a complete and perfect solution at once. The template can also 
be built up in a stepwise manner.

The template can be copied into each project. This entails the problem that 
changes to the template are not propagated into the existing microservices. On the 
other hand, this approach is much easier to implement than an approach that ena-
bles the automated adoption of changes. Besides, such an approach would create 
dependencies between the template and practically all microservices. Such depend-
encies should be avoided for microservices.

The templates fundamentally facilitate the generation of new microservices. 
Accordingly, teams are more likely to create new microservices. Therefore, they can 
more easily distribute microservices in multiple smaller microservices. Thus tem-
plates help to keep microservices small. When the microservices are rather small, the 
advantages of a microservice-based architecture can be exploited even better.
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11.2 Logging

By logging, an application can easily provide information about which events 
occurred. These can be errors, but they can also be events like the registration of a 
new user that are mostly interesting for statistics. Finally, log data can help develop-
ers to locate errors by providing detailed information.

In normal systems logs have the advantage that they can be written very easily 
and that the data can be persisted without huge effort. Besides, log files are human-
readable and can be easily searched.

Logging for Microservices

For microservices writing and analyzing log files is hardly sufficient:

• Many requests can only be handled by the interplay of multiple microservices.
In that case the log file of a single microservice is not sufficient to understand
the complete sequence of events.

• The load is often distributed across multiple instances of one microservice.
Therefore, the information contained in the log file of an individual instance is
not very useful.

• Finally, due to increased load, new releases, or crashes, new instances of a
microservice start constantly. The data from a log file can get lost when a vir-
tual machine is shut down and its hard disk is subsequently deleted.

It is not necessary for microservices to write logs into their file system because the 
information cannot be analyzed there anyhow. Only writing to the central log server 
is definitely necessary. This has also the advantage that the microservices utilize less 
local storage.

Usually, applications just log text strings. The centralized logging parses the 
strings. During parsing relevant pieces of information like time stamps or server 
names are extracted. Often parsing goes even beyond that and scrutinizes the texts 
more closely. If it is possible, for instance, to determine the identity of the current 
user from the logs, all information about a user can be selected from the log data 
of the microservices. In a way the microservice hides the relevant information in a 
string that the log system subsequently takes apart again. To facilitate the parsing 
log data can be transferred into a data format like JSON. In that case the data can 
already be structured during logging. They are not first packaged into a string that 
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then has to be laboriously parsed. Likewise, it is sensible to have uniform standards: 
When a microservice logs something as an error, then an error should really have 
occurred. In addition, the semantics of the other log levels should be uniform across 
all microservices.

Technologies for Logging via the Network

Microservices can support central logging by sending log data directly via the 
 network. Most log libraries support such an approach. Special protocols like GELF 
(Graylog Extended Log Format)1 can be used for this or long-established protocols 
like syslog, which is the basis for logging in UNIX systems. Tools like the logstash-
forwarder,2 Beaver,3 or Woodchuck4 are meant to send local files via the network to a 
central log server. They are sensible in cases where the log data is supposed to be also 
locally stored in files.

ELK for Centralized Logging

Logstash, Elasticsearch, and Kibana can serve as tools for the collection and 
 processing of logs on a central server (see Figure 11.1). These tools form the ELK 
stack (Elasticsearch, Logstash, Kibana). 

• With the aid of Logstash5 log files can be parsed and collected by servers in
the network. Logstash is a very powerful tool. It can read data from a source,
modify or filter data, and finally write it into a sink. Apart from importing
logs from the network and storage in Elasticsearch, Logstash supports many
other data sources and data sinks. For example, data can be read from message
queues or databases or written into them. Finally, Logstash can also parse data
and supplement it—for example, time stamps can be added to each log entry,
or individual fields can be cut out and further processed.

• Elasticsearch6 stores log data and makes it available for analyses. Elasticsearch
cannot only search the data with full text search, but it can also search in indi-
vidual fields of structured data and permanently store the data like a database.
Finally, Elasticsearch offers statistical functions and can use those to analyze

1. https://www.graylog.org/

2. https://github.com/elastic/logstash-forwarder

3. https://github.com/python-beaver/python-beaver

4. https://github.com/danryan/woodchuck

5. https://www.elastic.co/products/logstash

6. https://www.elastic.co/products/elasticsearch

https://www.graylog.org/
https://www.github.com/elastic/logstash-forwarder
https://www.github.com/python-beaver/python-beaver
https://www.github.com/danryan/woodchuck
https://www.elastic.co/products/logstash
https://www.elastic.co/products/elasticsearch
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data. As a search engine Elasticsearch is optimized for fast response times so 
that the data can be analyzed quasi-interactively.

• Kibana7 is a web user interface that enables analysis of data from Elastic-
search. In addition to simple queries, statistical evaluations, visualizations and
diagrams can be created.

All three tools are open source projects and are available under the Apache 2.0 
license.

Scaling ELK

Especially in case of microservices, log data often accumulates in large amounts. 
Therefore, in microservice-based architectures the system for the central processing 
of logs should be highly scalable. Good scalability is one of the advantages of the 
ELK stack:

• Elasticsearch can distribute the indices into shards. Each data set is stored in
a single shard. As the shards can be located on different servers, this makes
possible load balancing. In addition, shards can be replicated across several
servers to improve fail-safe qualities of the system. Besides, a read access can
be directed to an arbitrary replica of the data. Therefore, replicas can serve to
scale read access.

• Logstash can write logs into different indices. Without an additional con-
figuration Logstash would write the data for each day into a different index.
Since the current data usually is read more frequently, this enables reduction of
the amount of data that has to be searched for a typical request and therefore
improves performance. Besides, there are still other possibilities to distribute
the data to indices—for instance, according to the geographic origin of the

7. https://www.elastic.co/products/kibana

Logstash Kibanaelasticsearch

Parse  Store  Analyze  

Microservice

Transfer 
Logs over 

the Network

Figure 11.1 ELK Infrastructure for Log Analysis

https://www.elastic.co/products/kibana
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user. This also promotes the optimization of the data amounts that has to be 
searched.

• Log data can be buffered in a broker prior to processing by Logstash. The bro-
ker serves as buffer. It stores the messages when there are so many log messages
that they cannot be immediately processed. Redis8 is often used as broker. It is
a fast in memory database.

Graylog

The ELK stack is not the only solution for the analysis of log files. Graylog9 is also an 
open source solution and likewise utilizes Elasticsearch for storing log data. Besides 
it uses MongoDB for metadata. Graylog defines its own format for the log messages: 
The already mentioned GELF (Graylog Extended Log Format) standardizes the data 
that is transmitted via the network. For many log libraries and programming lan-
guages there are extensions for GELF. Likewise, the respective information can be 
extracted from the log data or surveyed with the UNIX tool syslog. Also Logstash 
supports GELF as in- and output format so that Logstash can be combined with 
Graylog. Graylog has a web interface that makes it possible to analyze the informa-
tion from the logs.

Splunk

Splunk10 is a commercial solution that has already been on the market for a long 
time. Splunk presents itself as a solution that not only analyzes log files but can gen-
erally analyze machine data and big data. For processing logs Splunk gathers the 
data via a forwarder, prepares it via an indexer for searching, and search heads take 
over the processing of search requests. Its intention to serve as an enterprise solution 
is underlined by the security concept. Customized analysis, but also alerts in case of 
certain problems, are possible. Splunk can be extended by numerous plugins. Besides 
there are apps that provide ready-made solutions for certain infrastructures, such as 
Microsoft Windows Server. The software does not necessarily have to be installed in 
your own computing center, but is also available as a cloud solution.

8. http://redis.io/

9. https://www.graylog.org/

 10. http://www.splunk.com/

http://www.redis.io/
https://www.graylog.org/
http://www.splunk.com/
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Stakeholders for Logs

There are different stakeholders for logging. However, the analysis options of the log 
servers are so flexible and the analyses so similar that one tool is normally sufficient. 
The stakeholders can create their own dashboards with the information that is 
 relevant to them. For specific requirements the log data can be passed on to other 
systems for evaluation.

Correlation IDs

Often multiple microservices work together on a request. The path the request takes 
through the microservices has to be traceable for analysis. For filtering all log entries 
to a certain customer or to a certain request, a correlation ID can be used. This ID 
unambiguously identifies a request to the overall system and is passed along during 
all communication between microservices. In this manner log entries for all systems 
to a single request are easy to find in the central log system, and the processing of the 
requests can be tracked across all microservices.

Such an approach can, for instance, be implemented by transferring a request ID 
for each message within the headers or within the payloads. Many projects imple-
ment the transfer in their own code without using a framework. For Java there is 
the library tracee,11 which implements the transfer of the IDs. Some log frameworks 
support a context that is logged together with each log message. In that case it is only 
necessary to put the correlation ID into the context when receiving a message. This 
obliterates the need to pass the correlation ID on from method to method. When the 
correlation ID is bound to the thread, problems can arise when the processing of a 
request involves several threads. Setting the correlation ID in the context ensures that 
all log messages contain the correlation ID. How the correlation ID is logged has to 
be uniform across all microservices so that the search for a request in the logs works 
for all microservices.

Zipkin: Distributed Tracing

Also in regard to performance, evaluations have to be made across microservices. 
When the complete path of the requests is traceable, which microservice represents 
a bottleneck and requires an especially long time for processing requests can be 
identified. With the aid of distributed tracing which microservice needs how much 
time for answering a request and where optimization should start can be determined. 

 11. https://github.com/tracee/tracee

https://www.github.com/tracee/tracee
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Zipkin12 enables exactly this type of investigations.13 It comprises support for 
 different network protocols so that a request ID is automatically passed on via 
these  protocols. In contrast to the correlation IDs, the objective is not to correlate 
log entries, but to analyze the time behavior of the microservices. For this purpose, 
 Zipkin offers suitable analysis tools.

Try and Experiment

• Define a technology stack that enables a microservice-based architecture to
implement logging:

• How should the log messages be formatted?

• Define a logging framework if necessary.

• Determine a technology for collecting and evaluating logs.

This section listed a number of tools for the different areas. Which prop-
erties are especially important? The objective is not a complete product 
 evaluation, but a general weighing of advantages and disadvantages.

• Chapter 13, “Example of a Microservice-Based Architecture,” shows an
example for a microservice-based architecture, and in section 13.15 there
are suggestions about how the architecture can be supplemented with a log
analysis.

• How does your current project handle logging? Is it possible to implement
parts of these approaches and technologies in your project also?

11.3 Monitoring

Monitoring surveils the metrics of a microservice and uses information sources other 
than logging. Monitoring uses mostly numerical values that provide information 
about the current state of the application and indicate how this state changes over 
time. Such values can represent the number of processed calls over a certain time, the 
time needed for processing the calls, or also system values like the CPU or memory 

 12. https://github.com/openzipkin/zipkin

 13. https://blog.twitter.com/2012/distributed-systems-tracing-with-zipkin

https://www.github.com/openzipkin/zipkin
https://www.blog.twitter.com/2012/distributed-systems-tracing-with-zipkin
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utilization. If certain thresholds are surpassed or not reached, this indicates a 
 problem and can trigger an alarm so that somebody can solve the problem. Or even 
better: The problem is solved automatically. For example, an overload can be 
addressed by starting additional instances.

Monitoring offers feedback from production that is not only relevant for opera-
tion but also for developers or the users of the system. Based on the information 
from monitoring they can better understand the system and therefore make informed 
decisions about how the system should be developed further.

Basic Information

Basic monitoring information should be mandatory for all microservices. This 
makes it easier to get an overview of the state of the system. All microservices should 
deliver the required information in the same format. Besides, components of the 
microservice system can likewise use the values. Load balancing, for instance, can 
use a health check to avoid accessing microservices that cannot process calls.

The basic values all microservices should provide can comprise the following:

• There should be a value that indicates the availability of the microservice. In
this manner the microservice signals whether it is capable of processing calls at
all (“alive”).

• Detailed information regarding the availability of the microservice is
another important metric. One relevant piece of information is whether all
 microservices used by the microservice are accessible and whether all other
resources are available (“health”). This information does not only indicate
whether the microservice functions but also provide hints about which part
of a microservice is currently unavailable and why it failed. Importantly, it
becomes apparent whether the microservice is unavailable because of the
 failure of another microservice or because the respective microservice itself is
having a problem.

• Information about the version of a microservice and additional meta
information like the contact partner or libraries used and their versions as
well as other artifacts can also be provided as metrics. This can cover part
of the documentation (see section 7.15). Alternatively, which version of the
microservice is actually currently in production can be checked. This facilitates 
the search for errors. Besides, an automated continuous inventory of the
microservices and other software used is possible, which simply inquires after
these values.
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Additional Metrics

Additional metrics can likewise be recorded by monitoring. Among the possible 
 values are, for instance, response times, the frequency of certain errors, or the num-
ber of calls. These values are usually specific for a microservice so that they do not 
necessarily have to be offered by all microservices. An alarm can be triggered when 
certain thresholds are reached. Such thresholds are different for each microservice.

Nevertheless, a uniform interface for accessing the values is sensible when all 
microservices are supposed to use the same monitoring tool. Uniformity can reduce 
expenditure tremendously in this area.

Stakeholders

There are different stakeholders for the information from monitoring:

• Operations wants to be informed about problems in a timely manner to enable 
a smooth operation of the microservice. In case of acute problems or failures
it wants to get an alarm—at any time of day or night—via different means like
a pager or SMS. Detailed information is only necessary when the error has to
be analyzed more closely—often together with the developers. Operations is
interested not only in observing the values from the microservice itself, but also 
in monitoring values of the operating system, the hardware, or the network.

• Developers mostly focus on information from the application. They want to
understand how the application functions in production and how it is utilized
by the users. From this information they deduce optimizations, especially
at the technical level. Therefore, they need very specific information. If the
application is, for instance, too slow in responding to a certain type of call,
the system has to be optimized for this type of call. To do so it is necessary to
obtain as much information as possible about exactly this type of call. Other
calls are not as interesting. Developers evaluate this information in detail.
They might even be interested in analyzing calls of just one specific user or a
circle of users.

• The business stakeholders are interested in the business success and the result-
ing business numbers. Such information can be provided by the application
specifically for the business stakeholders. The business stakeholders then gen-
erate statistics based on this information and therefore prepare business deci-
sions. On the other hand, they are usually not interested in technical details.

The different stakeholders are not only interested in different values but also ana-
lyze them differently. Standardizing the data format is sensible to support different 
tools and enables all stakeholders to access all data. 
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Figure 11.2 shows an overview of a possible monitoring of a microservice-
based system. The microservice offers the data via a uniform interface. Operations 
uses monitoring to surveil for instance threshold values. Development utilizes a 
detailed monitoring to understand processes within the application. Finally, the 
business stakeholders look at the business data. The individual stakeholders might 
use more or less similar approaches: The stakeholders can, for instance, use the 
same monitoring software with different dashboards or entirely different software.

Correlate with Events

In addition, it can be sensible to correlate data with an event, such as a new release. 
This requires that information about the event has to be handed over to monitoring. 
When a new release creates markedly more revenue or causes decisively longer 
response times, this is an interesting realization.

Monitoring = Tests?

In a certain way monitoring is another version of testing (see section 10.4). While 
tests look at the correct functioning of a new release in a test environment, monitor-
ing examines the behavior of the application in a production environment. The inte-
gration tests should also be reflected in monitoring. When a problem causes an 
integration test to fail, there can be an associated alarm in monitoring. Besides, 
 monitoring should also be activated for test environments to pinpoint problems 
already in the tests. When the risk associated with deployments is reduced by suita-
ble measures (see section 11.4), the monitoring can even take over part of the tests.

Operations

Business
Stakeholders

Development

System 
Metrics

Microservice
Application 

Metrics

Business 
Metrics

Uniform 
Interface

Figure 11.2 Stakeholders and Their Monitoring Data
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Dynamic Environment

Another challenge when working with microservice-based architectures is that 
microservices come and go. During the deployment of a new release, an instance can 
be stopped and started anew with a new software version. When servers fail, 
instances shut down, and new ones are started. For this reason, monitoring has to 
occur separately from the microservices. Otherwise the stopping of a microservice 
would influence the monitoring infrastructure or may even cause it to fail. Besides, 
microservices are a distributed system. The values of a single instance are not telling 
in themselves. Only by collecting values of multiple instances does the monitoring 
information become relevant.

Concrete Technologies

Different technologies can be used for monitoring microservices:

• Graphite14 can store numerical data and is optimized for processing time-series 
data. Such data occurs frequently during monitoring. The data can be ana-
lyzed in a web application. Graphite stores the data in its own database. After
some time, the data is automatically deleted. Monitoring values are accepted
by Graphite in a very simple format via a socket interface.

• Grafana15 extends Graphite by alternative dashboards and other graphical
elements.

• Seyren16 extends Graphite by a functionality for triggering alarms.

• Nagios17 is a comprehensive solution for monitoring and can be an alternative
to Graphite.

• Icinga18 has originally been a fork of Nagios and therefore covers a very similar 
use case.

• Riemann19 focuses on the processing of event streams. It uses a functional pro-
gramming language to define logic for the reaction to certain events. For this
purpose, a fitting dashboard can be configured. Messages can be sent by SMS
or email.

14. http://graphite.wikidot.com/

15. http://grafana.org/

16. https://github.com/scobal/seyren

17. http://www.nagios.org/

18. https://www.icinga.org/

19. http://riemann.io/

http://www.graphite.wikidot.com/
http://www.grafana.org/
https://www.github.com/scobal/seyren
http://www.nagios.org/
https://www.icinga.org/
http://www.riemann.io/
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• Packetbeat20 uses an agent that records the network traffic on the computer to
be monitored. This enables Packetbeat to determine with minimal effort which
requests take how long and which nodes communicate with each other. It is
especially interesting that Packetbeat uses Elasticsearch for data storage and
Kibana for analysis. These tools are also widely used for analyzing log data
(see section 11.2). Having only one stack for the storage and analysis of logs
and monitoring reduces the complexity of the environment.

• In addition, there are different commercial tools. Among those are HP’s
 Operations Manager,21 IBM Tivoli,22 CA Opscenter23 and BMC  Remedy.24

These tools are very comprehensive, have been on the market for a long time,
and offer support for many different software and hardware products. Such
platforms are often used enterprise-wide, and introducing them into an
 organization is usually a very complex project. Some of these solutions can
also analyze and monitor log files. Due to their large number and the high
dynamics of the environment, it can be sensible for microservices to establish
their own monitoring tools, even if an enterprise-wide standard exists already.
When the established processes and tools require a high manual expenditure
for administration, this expenditure might not be feasible any more in the face
of the large number of microservices and the dynamics of the microservice
environment.

• Monitoring can be moved to the Cloud. In this manner no extra infrastructure
has to be installed. This facilitates the introduction of tools and monitoring
the applications. An example is NewRelic.25

These tools are, first of all, useful for operations and for developers. Business 
monitoring can be performed with different tools. Such monitoring is not only 
based on current trends and data, but also on historical values. Therefore, the 
amount of data is markedly larger than for operations and development. The data 
can be exported into a separate database or investigated with big data solutions. 
In fact, the analysis of data from web servers is one of the areas where big data 
 solutions have first been used.

20. https://www.elastic.co/products/beats

21. http://www8.hp.com/us/en/software-solutions/operations-manager-infrastructure-monitoring/

22. http://www-01.ibm.com/software/tivoli/

23. http://www3.ca.com/us/opscenter.aspx

24. http://www.bmc.com/it-solutions/remedy-itsm.html

25. http://newrelic.com/

https://www.elastic.co/products/beats
http://www8.hp.com/us/en/software-solutions/operations-manager-infrastructure-monitoring/
http://www-01.ibm.com/software/tivoli/
http://www3.ca.com/us/opscenter.aspx
http://www.bmc.com/it-solutions/remedy-itsm.html
http://www.newrelic.com/
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Enabling Monitoring in Microservices

Microservices have to deliver data that is displayed in the monitoring solutions. It is 
possible to provide the data via a simple interface like HTTP with a data format such 
as JSON. Then the monitoring tools can read the data out and import it. For this 
purpose, adaptors can be written as scripts by the developers. This makes it possible 
to provide different tools via the same interface with data.

Metrics

In the Java world, the Metrics26 framework can be used. It offers functionalities for 
recording custom values and sending them to a monitoring tool. This makes it pos-
sible to record metrics in the application and to hand them over to a monitoring tool.

StatsD

StatsD27 can collect values from different sources, perform calculations, and hand over 
the results to monitoring tools. This enables condensing of data before it is passed on 
to the monitoring tool in order to reduce the load on the monitoring tool. There are 
also many client libraries for StatsD that facilitate the sending of data to StatsD.

collectd

collectd28 collects statistics about a system—for instance, the CPU utilization. The 
data can be analyzed with the front end or it can be stored in monitoring tools. 
 collectd can collect data from a HTTP JSON data source and send it on to the moni-
toring tool. Via different plugins, collectd can collect data from the operating system 
and the basic processes. 

Technology Stack for Monitoring

A technology stack for monitoring comprises different components (see Figure 11.3):

• Within the microservice itself data has to be recorded and provided to moni-
toring. For this purpose, a library can be used that directly contacts the moni-
toring tool. Alternatively, the data can be offered via a uniform  interface—for

26. https://github.com/dropwizard/metrics

27. https://github.com/etsy/statsd

28. https://collectd.org/

https://www.github.com/dropwizard/metrics
https://www.github.com/etsy/statsd
https://www.collectd.org/
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example JSON via HTTP– and another tool collects the data and sends it on 
to the monitoring tool.

• In addition, if necessary, there should be an agent to record the data from the
operating system and the hardware and pass it on to monitoring.

• The monitoring tool stores and visualizes the data and can, if needed, trigger an 
alarm. Different aspects can be covered by different monitoring applications.

• For analyses of historical data or by complex algorithms a solution based on
big data tools can be created in parallel.

Effects on the Individual Microservice

A microservice also has to be integrated into the infrastructure. It has to hand over 
monitoring data to the monitoring infrastructure and provide some mandatory data. 
This can be ensured by a suitable template for the microservice and by tests.  

Microservice

Monitoring

Big Data 
Tool

Agent

Figure 11.3 Parts of  a Monitoring System

Try and Experiment

• Define a technology stack that enables implementation of monitoring in a
microservice-based architecture. To do so define the stakeholders and the
data that is relevant for them. Each of the stakeholders needs to have a tool
for analyzing the data that is relevant for him/her. Finally, with which tools
the data can be recorded and how it is stored has to be defined. This section
listed a number of tools for the different areas. In conjunction with further
research it is possible to assemble a technology stack that is well suited for
individual projects.

(continued)
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11.4 Deployment

Independent deployment is a central aim of microservices. Besides, the deployment 
has to be automated because manual deployment or even just manual corrections are 
not feasible due to the large number of microservices.

Deployment Automation

There are different possibilities for automating deployment:

• Installation scripts can be used that only install the software on the computer.
Such scripts can, for instance, be implemented as shell scripts. They can install
necessary software packages, generate configuration files, and create user
accounts. Such scripts can be problematic when they are called repeatedly. In
that case the installation finds a computer on which the software is already
installed. However, an update is different from a fresh installation. In such a
situation a script can fail, for example, because user accounts or configura-
tion files might already be present and cannot easily be overwritten. When the
scripts are supposed to handle updates, development and testing the scripts get
more laborious.

• Immutable servers are an option to handle these problems. Instead of updat-
ing the software on the servers, the server is completely deployed anew. This
facilitates not only the automation of deployment but also the exact repro-
duction of the software installed on a server. It is sufficient to consider fresh
installations. A fresh installation is easier to reproduce than an update, which
can be started from many different configuration states and should lead to the
same state from any of those. Approaches like Docker29 make it possible to
tremendously reduce the expenditure for installing software. Docker is a kind

29. https://www.docker.com/

• Chapter 13 shows an example for a microservice-based architecture, and in
section 13.15 there is also a suggestion about how the architecture can be
extended by monitoring. How does your current project handle monitor-
ing? Can some of the technologies presented in this section also be advanta-
geous for your project? Which? Why?

https://www.docker.com/
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of lightweight virtualization. It also optimizes the handling of virtual hard 
drives. If there is already a virtual hard drive with the correct data, it is recycled 
instead of installing the software anew. When installing a package like Java, 
first a virtual hard drive is looked for that already has this installation. Only 
when one does not exist is the installation really performed. Should there only 
be a change in a configuration file when going from an old to a new version 
of an immutable server, Docker will recycle the old virtual hard drives behind 
the scenes and only supplement the new configuration file. This does not only 
reduce the consumption of hard drive space, but also profoundly speeds up the 
installation of the servers. Docker also decreases the time a virtual team needs 
for booting. These optimizations turn immutable server in conjunction with 
Docker into an interesting option. The new deployment of the servers is very 
fast with Docker, and the new server can also rapidly be booted.

• Other possibilities are tools like Puppet,30 Chef,31 Ansible,32 or Salt.33 They
are specialized for installing software. Scripts for these tools describe what the
system is supposed to look like after the installation. During an installation
run the tool will take the necessary steps to transfer the system into the desired
state. During the first run on a fresh system the tool completely installs the
software. If the installation is run a second time immediately afterwards, it
will not change the system any further since the system is already in the desired 
state. Besides, these tools can uniformly install a large number of servers in an
automated manner and are also able to roll out changes to a large number of
servers.

• Operating systems from the Linux area possess package managers like rpm
(RedHat), dpkg (Debian/Ubuntu), or zypper (SuSE). They make it possible to
centrally roll out software onto a large number of servers. The file formats
used are very simple, so that it is very easy to generate a package in a fitting
format. The configuration of the software poses a problem, though. Package
managers usually support scripts that are executed during installation. Such
scripts can generate the necessary configuration files. However, there can also
be an extra package with the individual configurations for each host. The
installation tools mentioned under the last bullet point can also use package
manager for installing the actual software so that they themselves only gener-
ate the configuration files.

30. http://puppetlabs.com/

31. https://www.chef.io/

32. http://www.ansible.com/

33. http://www.saltstack.com/

http://www.puppetlabs.com/
https://www.chef.io/
http://www.ansible.com/
http://www.saltstack.com/
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Installation and Configuration

Section 7.10 already described tools that can be used for configuring microservices. 
In general, it is hard to separate the installation from the software configuration. The 
installation has to generate a configuration. Therefore, many of the tools such as 
Puppet, Chef, Ansible, or Salt can also create configurations and roll them out onto 
servers. Thus, these solutions are an alternative to the configuration solutions that 
are specialized for microservices.

Risks Associated with Microservice Deployments

Microservices are supposed to make possible an easy and independent deployment. 
Nevertheless, it can never be excluded that problems arise in production. The 
 microservice-based architecture by itself will already help to reduce the risk. When a 
microservice fails as a result of a problem with a new version, this failure should be 
limited to the functionality of this microservice. Apart from that, the system should 
keep working. This is made possible by stability patterns and resilience described in 
section 9.5. Already for this reason the deployment of a microservice is much less 
risky than the deployment of a monolith. In cases of a monolith it is much harder to 
limit a failure to a certain functionality. If a new version of the deployment monolith 
has a memory leak, this will cause the entire process to break down so that the entire 
monolith will not be available any more. A memory leak in a microservice only influ-
ences this microservice. There are different challenges for which microservices are 
not helpful per se: schema changes in relational databases are, for instance, problem-
atic because they often take very long and might fail—especially when the database 
already contains a lot of data. As microservices have their own data storage, a 
schema migration is always limited to just one microservice.

Deployment Strategies

To further reduce the risk associated with a microservice deployment there are 
 different strategies:

• A rollback brings the old version of a microservice back into production.
 Handling the database can be problematic: Often the old version of the
microservice does not work anymore with the database schema created by the
newer version. When there are already data in the database that use the new
schema, it can get very difficult to recreate the old state without losing the
new data. Besides, the rollback is hard to test.
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• A roll forward brings a new version of a microservice in production that does
not contain the error any more. The procedure is identical to the procedure for
the deployment of any other new version of the microservice so that no special
measures are necessary. The change is rather small so that deployment and the
passage through the continuous delivery pipeline should rapidly take place.

• Continuous deployment is even more radical: Each change to a microser-
vice is brought into production when the continuous delivery pipeline was
passed successfully. This further reduces the time necessary for the correction
of errors. Besides, this entails that there are fewer changes per release, which
 further decreases the risk and makes it easier to track that changes to the code
caused a problem. Continuous deployment is the logical consequence when
the deployment process works so well that going into production is just a for-
mality. Moreover, the team will pay more attention to the quality of their code
when each change really goes into production.

• A blue/green deployment builds up a completely new environment with the
new version of a microservice. The team can completely test the new version
and then bring it into production. Should problems occur, the old version can
be used again, which is kept for this purpose. Also in this scenario there are
challenges in case of changes to the database schema. When switching from
the one version to the other version of the microservice, the database has to
be switched also. Data that has been written into the old database between the
built-up of the new environment and the switch has to be transferred into the
new database.

• Canary releasing is based on the idea to deploy the new version initially just
on one server in a cluster. When the new version runs without trouble on one
server, it can also be deployed on the other servers. The database has to sup-
port the old and the new version of the microservice in parallel.

• Microservices can also run blindly in production. In that case they get all
requests, but they may not change data, and calls that they send out are not
passed on. By monitoring, log analyses, and comparison with the old version, it
is possible to determine whether the new service has been correctly implemented.

Theoretically, such procedures can also be implemented with deployment mono-
liths. However, in practice this is very difficult. With microservices it is easier since 
they are much smaller deployment units. Microservices require less comprehensive 
tests. Installing and starting microservices is much faster. Therefore, microservices 
can more rapidly pass through the continuous delivery pipeline into production. 
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This will have positive effects for roll forward or rollback because problems require 
less time to fix. A microservice needs fewer resources in operation. This is helpful for 
canary releasing or blue/green deployment since new environments have to be built 
up. If this is possible with fewer resources, these approaches are easier to implement. 
For a deployment monolith it is often very difficult to build up an environment at all.

11.5 Combined or Separate Deployment? (Jörg Müller)

by Jörg Müller, Hypoport AG

The question whether different services are rolled out together or independently 
from each other is of greater relevance than sometimes suspected. This is an 
 experience we had to make in the context of a project that started approximately five 
years ago.

The term “microservices” was not yet important in our industry. However, achiev-
ing a good modularization was our goal right from the start. The entire application 
consisted initially of a number of web modules coming in the shape of typical Java 
web application archives (WAR). These comprised in turn multiple modules that 
had been split based on domain as well as technical criteria. In addition to modulari-
zation we relied from the start on continuous deployment as a method for rolling out 
the application. Each commit goes straight into production.

Initially, it seemed an obvious choice to build an integrated deployment pipeline 
for the entire application. This enabled integration tests across all components. A 
single version for the entire application enabled controlled behavior, even if multiple 
components of the applications were changed simultaneously. Finally, the pipeline 
itself was easier to implement. The latter was an important reason: Since there were 
relatively few tools for continuous deployment at the time, we had to build most 
ourselves.

However, after some time the disadvantages of our approach became obvious. 
The first consequence was a longer and longer run time of our deployment pipeline. 
The larger the number of components that were built, tested, and rolled out, the 
longer the process took. The advantages of continuous deployments rapidly dimin-
ished when the run time of the pipeline became longer. The first countermeasure was 
the optimization that only changed components were built and tested. However, this 
increased the complexity of the deployment pipeline tremendously. At the same time 
other problems like the runtime for changes to central components or the size of the 
artifacts could not be improved this way.

But there was also a subtler problem. A combined rollout with integrative tests 
offered a strong security net. It was easy to perform refactorings across multiple 
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modules. However, this often changed interfaces between modules just because it 
was so easy to do. This is, in principle, a good thing. However, it had the consequence 
that it became very frequently necessary to start the entire system. Especially when 
working on the developer machine, this turned into a burden. The requirements for 
the hardware got very high, and the turnaround times lengthened considerably.

The approach got even more complicated when more than one team worked with 
this integrated pipeline. The more components were tested in one pipeline, the more 
frequently errors were uncovered. This blocked the pipeline since the errors had to 
be fixed first. At the time when only one team was dependent on the pipeline, it was 
easy to find somebody who took over responsibility and fixed the problem. When 
there were several teams, this responsibility was not so clear any more. This meant 
that errors in the pipeline persisted for a longer time. Simultaneously, the variety 
of technologies increased. Again, the complexity rose. This pipeline now needed 
very specialized solutions. Therefore, the expenditure for maintenance increased, 
and the stability decreased. The value of continuous deployment got hard to put 
into effect.

At this time it became obvious that the combined deployment in one pipeline 
could not be continued any more. All new services, regardless of whether they were 
microservices or larger modules, now had their own pipeline. However, it caused a 
lot of expenditure to separate the previous pipeline that was based on shared deploy-
ment into multiple pipelines.

In a new project it can be the right decision to start with a combined deployment. 
This especially holds true when the borders between the individual services and their 
interfaces are not yet well known. In such a case good integrative tests and simple 
refactoring can be very useful. However, starting at a certain size an independent 
deployment is obligatory. Indications for this are the number of modules or services, 
the run time and stability of the deployment pipeline, and last, but not least, the how 
many teams work on the overall system. If these indications are overlooked and the 
right point in time to separate the deployment is missed, it can easily happen that 
one builds a monolith that consists of many small microservices.

11.6 Control

Interventions in a microservice might be necessary at run time. For instance, a 
 problem with a microservice might require restarting the respective microservice. 
 Likewise, a start or a stop of a microservice might be necessary. These are ways for 
operation to intervene in case of a problem or for a load balancer to terminate 
instances that cannot process requests any more.
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Different measures can be used for control:

• When a microservice runs in a virtual machine, the virtual machine can be
shut down or restarted. In that case the microservice itself does not have to
make special arrangements.

• The operating system supports services that are started together with the
operating system. Usually, services can also be stopped, started, or restarted
by means of the operating system. In that case the installation only has to reg-
ister the microservice as service. Working with services is nothing unusual for
operation, which is sufficient for this approach.

• Finally, an interface can be used that enables restarting or shutting down, for
instance via REST. Such an interface has to be implemented by the  microservice 
itself. This is supported by several libraries in the microservices area—for
instance by Spring Boot, which is used to implement the example in Chapter
13. Such an interface can be called with simple HTTP tools like curl.

Technically, the implementation of control mechanisms is not a big problem, but 
they have to be present for operating the microservices. When they are identically imple-
mented for all microservices, this can reduce the expenditure for operating the system.

11.7 Infrastructure

Microservices have to run on a suitable platform. It is best to run each microservice 
in a separate virtual machine (VM). Otherwise it is difficult to assure an independent 
deployment of the individual microservices.

When multiple microservices run on a virtual machine, the deployment of one 
microservice can influence another microservice. The deployment can generate 
a high load or introduce changes to the virtual machine that also concern other 
microservices running on the virtual machine.

Besides, microservices should be isolated from each other to achieve a better stabil-
ity and resilience. When multiple microservices are running on one virtual machine, 
one microservice can generate so much load that the other microservices fail. However, 
precisely that should be prevented: When one microservice fails, this failure should be 
limited to this one microservice and not affect additional microservices. The isolation 
of virtual machines is helpful for limiting the failure or the load to one microservice.
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Scaling microservices is likewise easier when each microservice runs in an 
 individual virtual machine. When the load is too high, it is sufficient to start a new 
virtual machine and register it with the load balancer.

In case of problems it is also easier to analyze the error when all processes on a 
virtual machine belong to one microservice. Each metric on the system then unam-
biguously belongs to this microservice.

Finally, the microservice can be delivered as hard drive image when each microser-
vice runs on its own virtual machine. Such a deployment has the advantage that the 
entire environment of the virtual machine is exactly in line with the requirements of 
the microservice and that the microservice can bring along its own technology stack 
up to its own operating system.

Virtualization or Cloud

It is hardly possible to install new physical hardware upon the deployment of a new 
microservice. Besides, microservices profit from virtualization or a Cloud, since this 
renders the infrastructures much more flexible. New virtual machines for scaling or 
testing environments can easily be provided. In the continuous delivery pipeline 
microservices are constantly started to perform different tests. Moreover, in produc-
tion new instances have to be started depending on the load.

Therefore, it should be possible to start a new virtual machine in a completely 
automated manner. Starting new instances with simple API calls is exactly what a 
Cloud offers. A cloud infrastructure should be available in order to really be able 
to implement a microservice-based architecture. Virtual machines that are provided 
by operation via manual processes are not sufficient. This also demonstrates that 
microservices can hardly be run without modern infrastructures.

Docker

When there is an individual virtual machine for each microservice, it is laborious to 
generate a test environment containing all microservices. Even creating an environ-
ment with relatively few microservices can be a challenge for a developer machine. 
The usage of RAM and CPU is very high for such an environment. In fact, it is hardly 
sensible to use an entire virtual machine for one microservice. In the end, the micros-
ervice should just run and integrate in logging and monitoring. Therefore, solutions 
like Docker are convenient: Docker does not comprise many of the normally com-
mon operating system features.
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Instead Docker34 offers a very lightweight virtualization. To this purpose Docker 
uses different technologies:

• In place of a complete virtualization Docker employs Linux Containers.35

Support for similar mechanisms in Microsoft Windows has been announced.
This enables implementation of a lightweight alternative to virtual machines:
All containers use the same kernel. There is only one instance of the kernel in
memory. Processes, networks, data systems, and users are separate from each
other. In comparison to a virtual machine with its own kernel and often also
many operating system services, a container has a profoundly lower overhead.
It is easily possible to run hundreds of Linux containers on a simple laptop.
Besides, a container starts much more rapidly than a virtual machine with its
own kernel and complete operating system. The container does not have to
boot an entire operating system; it just starts a new process. The container
itself does not add a lot of overhead since it only requires a custom configura-
tion of the operating system resources.

• In addition, the file system is optimized: basic read-only file systems can be
used. At the same time additional file systems can be added to the container,
which also enables writing. One file system can be put on top of another file
system. For instance, a basic file system can be generated that contains an
operating system. If software is installed in the running container or if files
are modified, the container only has to store these additional files in a small
container-specific file system. In this way the memory requirement for the
 containers on the hard drive is significantly reduced.

Besides, additional interesting possibilities arise: For example, a basic file system 
can be started with an operating system, and subsequently software can be installed. 
As mentioned, only changes to the file system are saved that are introduced upon the 
installation of the software. Based on this delta a file system can be generated. Then 
a container can be started that puts a file system with this delta on top of the basic 
file system containing the operating system—and afterwards additional software 
can be installed in yet another layer. In this manner each “layer” in the file system 
can contain specific changes. The real file system at run time can be composed from 
numerous such layers. This enables recycling software installations very efficiently.

34. https://www.docker.com/

35. https://linuxcontainers.org/

https://www.docker.com/
https://www.linuxcontainers.org/
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Figure 11.4 shows an example for the file system of a running container: The 
 lowest level is an Ubuntu Linux installation. On top there are changes that have been 
introduced by installing Java. Then there is the application. For the running con-
tainer to be able to write changes into the file system, there is a file system on top into 
which the container writes files. When the container wants to read a file, it will move 
through the layers from top to bottom until it finds the respective data. 

Docker Container versus Virtualization

Docker containers offer a very efficient alternative to virtualization. However, they 
are not “real” virtualization since each container has separate resources, its own 
memory, and its own file systems, but all share, for instance, one kernel. Therefore, 
this approach has some disadvantages. A Docker container can only use Linux and 
only the same kernel as the host operating system—consequently Windows applica-
tions, for instance, cannot be run on a Linux machine this way. The separation of the 
containers is not as strict as in the case of real virtual machines. An error in the ker-
nel would, for example, affect all containers. Moreover, Docker also does not run on 
Mac OS X or Windows. Nevertheless, Docker can directly be installed on these plat-
forms. Behind the scenes a virtual machine with Linux is being used. Microsoft has 
announced a version for Windows that can run the Windows container.

Communication between Docker Containers

Docker containers have to communicate with each other. For example, a web appli-
cation communicates with its database. For this purpose, containers export network 
ports that other containers use. Besides, file systems can be used together. There con-
tainers write data that can be read by other containers.

Ubuntu

Java

Application

Written Data

Figure 11.4 Filesystems in Docker
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Docker Registry

Docker images comprise the data of a virtual hard drive. Docker registries enable 
saving and downloading Docker images. This makes it possible to save Docker 
images as result of a build process and subsequently to roll them out on servers. 
Because of the efficient storage of images, it is easily possible to distribute even com-
plex installations in a performant manner. Besides, many cloud solutions can directly 
run Docker containers.

Docker and Microservices

Docker constitutes an ideal running environment for microservices. It hardly limits 
the technology used, as every type of Linux software can run in a Docker container. 
Docker registries make it possible to easily distribute Docker containers. At the same 
time the overhead of a Docker container is negligible in comparison to a normal pro-
cess. Since microservices require a multitude of virtual machines, these optimiza-
tions are very valuable. On the one hand, Docker is very efficient, and on the other 
hand, it does not limit the technology freedom.

Try and Experiment

• At https://docs.docker.com/engine/getstarted/ the Docker online tutorial
can be found. Complete the tutorial—it demonstrates the basics of working 
with Docker. The tutorial can be completed quickly.

Docker and Servers

There are different possibilities to use Docker for servers:

• On a Linux server Docker can be installed, and afterwards one or multiple
Docker containers can be run. Docker then serves as solution for the provision-
ing of the software. For a cluster new servers are started on which, again, the
Docker containers are installed. Docker only serves for the installation of the
software on the servers.

• Docker containers are run directly on a cluster. Which physical computer a
certain Docker is located on is decided by the software for cluster adminis-
tration. Such an approach is supported by the scheduler Apache Mesos.36 It
administrates a cluster of servers and directs jobs to the respective servers.

36. http://mesos.apache.org/

https://www.docs.docker.com/engine/getstarted/
http://www.mesos.apache.org/
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Mesosphere37 enables running of Docker containers with the aid of the Mesos 
scheduler. Besides Mesos supports many additional kinds of jobs.

• Kubernetes38 likewise supports the execution of Docker containers in a cluster.
However, the approach taken is different from Mesos. Kubernetes offers a ser-
vice that distributes pods in the cluster. Pods are interconnected Docker con-
tainers, which are supposed to run on a physical server. As basis Kubernetes
requires only a simple operating system installation—Kubernetes implements
the cluster management.

• CoreOS39 is a very lightweight server operating system. With etcd it
supports the cluster-wide distribution of configurations. fleetd enables the
deployment of services in a cluster—up to redundant installation, failure
security, dependencies, and shared deployment on a node. All services
have to be deployed as Docker containers while the operating system itself
remains essentially unchanged.

• Docker Machine40 enables the installation of Docker on different virtualiza-
tion and cloud systems. Besides, Docker machine can configure the Docker
command line tool in such a manner that it communicates with such a
system. Together with Docker Compose41 multiple Docker containers can
be combined to an overall system. The example application employs this
approach—compare section 13.6 and section 13.7. Docker Swarm42 adds a
way to configure and run clusters with this tool stack: Individual servers can 
be installed with Docker Machine and combined to a cluster with Docker
Swarm. Docker Compose can run each Docker container on a specific
machine in the cluster.

Kubernetes, CoreOS, Docker Compose, Docker Machine, Docker Swarm, and 
Mesos, of course, influence the running of the software so that the solutions require 
changes in the operation procedures in contrast to virtualization. These technologies 
solve challenges that were previously addressed by virtualization solutions. Modern 
virtualization technology run virtual machines on a node in a cluster and do the clus-
ter management. The container technologies mentioned above distribute containers 
in the cluster. So the cluster handling is done by different software which requires a 
fundamental change in the operations procedures.

37. http://mesosphere.com/

38. http://kubernetes.io/

39. http://coreos.com/

40. https://docs.docker.com/machine/

41. http://docs.docker.com/compose/

42. http://docs.docker.com/swarm/

http://www.mesosphere.com/
http://www.kubernetes.io/
http://www.coreos.com/
https://www.docs.docker.com/machine/
http://www.docs.docker.com/compose/
http://www.docs.docker.com/swarm/
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PaaS

PaaS (platform as a service) is based on a fundamentally different approach. The 
deployment of an application can be done simply by updating the application in 
 version control. The PaaS fetches the changes, builds the application, and rolls it out 
on the servers. These servers are installed by PaaS and represent a standardized envi-
ronment. The actual infrastructure—that is, the virtual machines—are hidden from 
the application. PaaS offers a standardized environment for the application. The 
environment also takes care, for instance, of the scaling and can offer services like 
databases and messaging systems. Because of the uniform platform PaaS systems 
limit the technology freedom that is normally an advantage of microservices. Only 
technologies that are supported by PaaS can be used. On the other hand, deployment 
and scaling are further facilitated.

Microservices impose high demands on infrastructure. Automation is an essential 
prerequisite for operating the numerous microservices. A PaaS offers a good basis for 
this since it profoundly facilitates automation. To use a PaaS can be especially sensi-
ble when the development of a home-grown automation is too laborious and there 
is not enough knowledge about how to build the necessary infrastructure. However, 
the microservices have to restrict themselves to the features that are offered by the 
PaaS. When the microservices have been developed for the PaaS from the start, this 
is not very laborious. However, if they have to be ported, considerable expenditure 
can ensue.

Nanoservices (Chapter 14, “Technologies for Nanoservices”) have different oper-
ating environments, which, for example, even further restrict the technology choice. 
On the other hand, they are often even easier to operate and even more efficient in 
regards to resource usage.

11.8 Conclusion

Operating a microservice-based system is one of the central challenges when work-
ing with microservices (section 11.1). A microservice-based system contains a tre-
mendous number of microservices and therefore operating system processes. Fifty or 
one hundred virtual machines are no rarity. The responsibility for operation can be 
delegated to the teams. However, this approach creates a higher overall expenditure. 
Standardizing operations is a more sensible strategy. Templates are a possibility to 
achieve uniformity without exerting pressure. Templates turn the uniform approach 
into the easiest one.
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For logging (section 11.2) a central infrastructure has to be provided that collects 
logs from all microservices. There are different technologies available for this. To 
trace a call across the different microservices a correlation ID can be used that unam-
biguously identifies a call.

Monitoring (section 11.3) has to offer at least basic information such as the 
availability of the microservice. Additional metrics can, for instance, provide an 
overview of the overall system or can be useful for load balancing. Metrics can 
be individually defined for each microservice. There are different stakeholders for 
the monitoring: operations, developers, and business stakeholders. They are inter-
ested in different values and use, where necessary, their own tools for evaluating the 
microservices data. Each microservice has to offer an interface with which the dif-
ferent tools can fetch values from the application. The interface should be identical 
for all microservices.

The deployment of microservices (section 11.4) has to be automated. Simple 
scripts, especially in conjunction with immutable server, special deployment tools, 
and package manager can be used for this purpose.

Microservices are small deployment units. They are safeguarded by stability and 
resilience against the failure of other microservices. Therefore, the risk associated 
with deployments is already reduced by the microservice-based architecture itself.
Strategies like rollback, roll forward, continuous deployment, blue/green- deployment, 
or a blind moving along in production can further reduce the risk. Such strategies are 
easy to implement with microservices since the deployment units are small and the 
consumption of resources by microservices is low. Therefore, deployments are faster, 
and environments for blue/green-deployment or canary releasing are much easier to 
provide.

Control (section 11.6) comprises simple intervention options like starting, stop-
ping, and restarting of microservices.

Virtualization or Cloud are good options for infrastructures for microservices 
(section 11.7). On each VM only a single microservice should run to achieve a bet-
ter isolation, stability, and scaling. Especially interesting is Docker because the con-
sumption of resources by a Docker container is much lower than that of a VM. This 
makes it possible to provide each microservice with its own Docker container even 
if the number of microservices is large. PaaS are likewise interesting. They enable a 
very simple automation. However, they also restrict the choice of technologies.

This section only focuses on the specifics of continuous delivery and operation 
in a microservices environment. Continuous delivery is one of the most important 
reasons for the introduction of microservices. At the same time operation poses the 
biggest challenges.
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Essential Points

• Operation and continuous delivery are central challenges for microservices.

• The microservices should handle monitoring, logging, and deployment in a
uniform manner. This is the only way to keep the effort reasonable.

• Virtualization, Cloud, PaaS, and Docker are interesting infrastructure alterna-
tives for microservices.
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It is an essential feature of the microservice-based approach that one team is responsible 
for each microservice. Therefore, when working with microservices, it is necessary to 
look not only at the architecture but also at the organization of teams and the responsi-
bilities for the individual microservices. This chapter discusses the organizational effects 
of microservices.

In section 12.1 organizational advantages of microservices are described.  Section 
12.2 shows that collective code ownership presents an alternative to devising teams 
according to Conway’s Law, which states that an organization can only generate 
architectures that mirror its communication structures. The independence of the 
teams is an important consequence of microservices. Section 12.3 defines micro and 
macro architecture and shows how these approaches offer a high degree of auton-
omy to the teams and let them make independent decisions. Closely connected is 
the question about the role of the technical leadership (section 12.4). DevOps is an 
organizational approach that combines development (Dev) and operations (Ops) 
(section 12.5). DevOps has synergies with microservices. Since microservices focus 
on independent development from a domain perspective, they also influence prod-
uct owners and business stakeholders—for example, the departments of the business 
that uses the software. Section 12.7 discusses how these groups can handle micro-
services. Reusable code can only be achieved in microservice systems via organi-
zational measures as illustrated in section 12.8. Finally, section 12.9 follows up on 
the question whether an introduction of microservices is possible without changing 
the organization.

Chapter 12

Organizational Effects 
of a Microservices-Based 
Architecture



ptg18144917

Chapter 12 Organizational Effects of  Microservices270

12.1 Organizational Benefits of Microservices

Microservices are an approach for tackling large projects with small teams. As the 
teams are independent of each other, less coordination is necessary between them. In 
particular the communication overhead renders the work of large teams inefficient. 
Microservices are an approach on the architectural level for solving this problem. 
The architecture helps to reduce the need for communication and to let many small 
teams work in the project instead of one large one. Each domain-based team can 
have the ideal size: the Scrum guide1 recommends three to nine members.

Besides, modern enterprises stress self-organization and teams that are them-
selves active directly at the market. Microservices support this approach because 
each service is in the responsibility of an individual team consistent with Conway’s 
Law (Section 3.2). Therefore, microservices fit well to self-organization. Each team 
can implement new features independently of other teams and can evaluate the suc-
cess on the market by themselves.

On the other hand, there is a conflict between independence and standardization: 
when the teams are supposed to work on their own, they have to be independent. 
Standardization restricts independence. This concerns, for instance, the decision 
about which technologies should be used. If the project is standardized in regard to 
a certain technology stack, the teams cannot decide independently anymore which 
technology they want to use. In addition, independence conflicts with the wish to 
avoid redundancy: if the system is supposed to be free of redundancy, there has to be 
coordination between the teams in order to identify the redundancies and to elimi-
nate them. This, in turn, limits the independence of the teams.

Technical Independence

An important aspect is the technological decoupling. Microservices can use different 
technologies and can have entirely different structures internally. This means that 
developers have less need to coordinate. Only fundamental decisions have to be made 
together. All other technical decisions can be made by the teams.

Separate Deployment

Each microservice can be brought into production independently of the other 
microservices. There is also no need to coordinate release dates or test phases across 

1. http://www.scrumguides.org/scrum-guide.html#team

http://www.scrumguides.org/scrum-guide.html#team
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teams. Each team can choose its own speed and its own dates. A delayed release date 
of one team does not influence the other teams.

Separate Requirement Streams

The teams should each implement independent stories and requirements. This ena-
bles each team to pursue its own business objectives.

Three Levels of Independence

Microservices enable independence on three levels:

• Decoupling via independent releases: each team takes care of one or multiple
microservices. The team can bring them into production independently of the
other teams and the other microservices.

• Technological decoupling: the technical decisions made by a certain team con-
cern, first of all, their microservices and none of the other microservices.

• Domain-based decoupling: the distribution of the domain in separate compo-
nents enables each team to implement their own requirements.

For deployment monoliths, in contrast, the technical coordination and deploy-
ment concerns the entire monolith (see Figure 12.1). This necessitates such a close 
coordination between the developers that in the end all developers working on the 
monolith have to act like one team. 

Deployment
Monolith

Team

Requirements

Technical Coordination

Figure 12.1 Deployment Monolith
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A prerequisite for the independence of the microservice teams is that the 
architecture really offers the necessary independence of the microservices. This 
requires, first of all, good domain architecture. This architecture also enables inde-
pendent requirement streams for each team. 

There are the following teams in the example from Figure 12.2:

• The team “user registration” takes care of how users can register in the
e-commerce shop. A possible business objective is to achieve a high number of
registrations. New features aim at optimizing this number. The components
of the team are the processes that are necessary for the registration and the UI
elements. The team can change and optimize them at will.

• The team “order process” addresses how the shopping cart turns into an order.
Here, a possible objective is that as many shopping carts as possible turn into
orders. The entire process is implemented by this team.

• The team “product search” improves the search for products. The success of
this team depends on how many search processes lead to items being put into
a shopping cart.

Of course, there can be additional teams with other goals. Overall this 
approach distributes the task of developing an e-commerce shop onto multiple 
teams, which all have their own objectives. The teams can largely independently 
pursue their objectives because the architecture of the system is distributed into 
microservices that each team can develop independently—without much need for 
coordination.

Team
User Registration

Requirements

Microservice

Technical
Coordination

Team
Order Process

Requirements

Microservice

Technical
Coordination

Team
Product Search

Requirements

Microservice

Technical
Coordination

Figure 12.2 Separation into Microservices
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In addition, small projects have many more advantages:

• Estimations are more accurate since estimates concerning smaller efforts are
easier to make.

• Small projects are easier to plan.

• The risk decreases because of the more accurate estimates and because of the
better forecast reliability.

• If there still is a problem, its effects are smaller because the project is smaller.

In addition, microservices offer much more flexibility. This makes decisions faster 
and easier because the risk is smaller, and changes can be implemented more rapidly. 
This ideally supports agile software development that relies on such flexibility.

12.2 An Alternative Approach to Conway’s Law

Section 3.2 introduced Conway’s Law. According to this law, an organization can 
only generate architectures that mirror its communication structures. In micro-
service-based architectures the teams are built according to the microservices. Each 
team develops one or multiple microservices. Thus each microservice is only devel-
oped by exactly one team. This ensures that the domain architecture is not only 
implemented by the distribution into microservices but also supported by the organi-
zational distribution. This renders violations of the architecture practically impossi-
ble. Moreover, the teams can independently develop features when the features are 
limited to one microservice. For this to work the distribution of domains between 
the microservices has to be of very high quality.

The Challenges Associated with Conway’s Law

However, this approach also has disadvantages:

• The teams have to remain stable in the long run. Especially when the
microservices use different technologies, the ramp-up time for an individual
micro service is very long. Developers cannot easily switch between teams.
Especially in teams containing external consultants, long-term stability is
often hard to ensure. Already the usual fluctuation of personnel can turn into
a challenge when working with microservices. In the worst case, if  there is
nobody left to maintain a specific microservice, it is still possible to rewrite



ptg18144917

Chapter 12 Organizational Effects of  Microservices274

the respective microservice. Microservices are easy to replace due to their 
limited size. Of course, this still entails some expenditure.

• Only the team understands the component. When team members quit, knowl-
edge about one or multiple microservices can get lost. In that case the micro-
service cannot be modified anymore. Such islands of knowledge need to be
avoided. In such a case it will not be an option to replace the microservice since
an exact knowledge of the domain is necessary for this.

• Changes are difficult whenever they require the coordinated work of mul-
tiple teams. When a team can implement all changes for a feature in its own
microservices, architecture and scaling of development will work very well.
However, when the feature concerns another microservice also and therefore
another team, the other team needs to implement the changes to the respective
microservice. This requires not only communication, but the necessary changes
also have to be prioritized versus the other requirements of the team. If the
teams work in sprints, a team can deliver the required changes without prema-
turely terminating the current sprint earliest in the following sprint—this causes 
a marked delay. In case of a sprint length of two weeks the delay can amount to
two weeks—if the team prioritizes the change high enough so that it is taken
care of in the next sprint. Otherwise the ensuing delay can be even longer.

Collective Code Ownership

When it is always only the responsible team that can introduce changes to a micro-
service, a number of challenges result as described. Therefore, it is worthwhile to 
consider alternatives. Agile processes have led to the concept of “collective code 
ownership.” Here, each developer has not only the right, but even the duty to alter 
any code—for example when he/she considers the code quality as insufficient in a 
certain place. Therefore, all developers take care of code quality. Besides, technical 
decisions are better communicated because more developers understand them due to 
their reading and changing code. This leads to the critical questioning of decisions so 
that the overall quality of the system increases.

Collective code ownership can relate to a team and its microservices. Since the 
teams are relatively free in their organization, such an approach is possible without 
much coordination.

Advantages of Collective Code Ownership

However, in principle teams can also modify microservices that belong to other 
teams. This approach is used by some microservice projects to deal with the dis-
cussed challenges because it entails a number of advantages:
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• Changes to a microservice of another team can be faster and more easily
implemented. When a modification is necessary, the change does not to be
introduced by another team. Instead the team requiring the change can imple-
ment it by itself. It is not necessary anymore to prioritize the change in regard
to other changes to the component.

• Teams can be put together more flexibly. The developers are familiar with a larger 
part of the code—at least superficially due to changes that they have introduced in 
the code. This makes it easier to replace team members or even an entire team—
or to enlarge a team. The developers do not have to ramp up from the very basics. 
A stable team is still the best option—however, often this cannot be achieved.

• The distribution in microservices is easy to change. Because of the broader
knowledge of the developers it is easier to move responsibility for a microser-
vice to a different team. This can be sensible when microservices have a lot of
dependencies on each other but are in the responsibility of different teams that
then have to closely and laboriously coordinate. If the responsibility for the
microservices is changed so that the same team is responsible for both of the
closely coupled microservices, coordination is easier than in the case where two
teams were working on these microservices. Within one team the team members
often sit in the same office. Therefore, they can easily and directly communicate
with each other.

Disadvantages of Collective Code Ownership

However, there also disadvantages associated with this approach:

• Collective code ownerships are in contrast to technology freedom: when each
team uses other technologies, it is difficult for developers outside of a team to
change the respective microservices. They might not even know the technology
used in the microservice.

• The teams can lose their focus. The developers acquire a larger overview of the
full system. However, it might be better when the developers concentrate on
their own microservices instead.

• The architecture is not as solid anymore. By knowing the code of other com-
ponents developers can exploit the internals and, therefore, rapidly create
dependencies that had not been intended in the architecture. Finally, the dis-
tribution of the teams according to Conway’s Law is supposed to support the
architecture by turning interfaces between domain components into interfaces
between teams. However, the interfaces between the teams lose importance
when everybody can change the code of every other team.
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Pull Requests for Coordination

Communication between teams is still necessary; in the end, the team responsible for 
the respective microservice has the most knowledge about the microservice. So 
changes should be coordinated with the respective team. This can be safeguarded 
technically: the changes of the external teams can initially be introduced separately 
from other changes and subsequently be sent to the responsible team via a pull 
request. Pull requests bundle changes to the source code. In the open source commu-
nity they are an especially popular approach to enable external contributions with-
out giving up control of the project. The responsible team can accept the pull request 
or demand fixes. This means that there is a review for each change by the responsible 
team. This enables the responsible team to ensure that the architecture and design of 
the microservice remain sound.

Since there is still the need for communication between teams, Conway’s Law is 
not violated by this approach. It is just a different way of playing the game. In case of 
a bad split among teams in a microservice-based architecture all options are associ-
ated with tremendous disadvantages. To correct the distribution is difficult as larger 
changes across microservices are laborious, as discussed in section 7.4. Due to the 
unsuitable distribution, the teams are forced to communicate a lot with each other. 
Therefore, productivity is lost. Also, there is no option to leave the distribution as it 
is. Collective code ownership can be used to limit the need for communication. The 
teams directly implement requirements in the code of other teams. This causes less 
need for communication and better productivity. To do so the technology freedom 
should be restricted. The changes to the microservices still have to be coordinated—
at least reviews are definitely necessary. However, if the architecture had been set up 
appropriately from the start, this measure would not be necessary as a workaround 
at all.

Try and Experiment

• Did you already encounter collective code ownership? Which experiences
did you have with it?

• Which restrictions are there in your current project when a developer wants
to change some code that has been written by another developer in the same
team or by a developer from another team? Are changes to the code of other
teams not meant to occur? In that case, how is it still possible to implement the
necessary changes? Which problems are associated with this course of action?
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12.3 Micro and Macro Architecture

Microservices enable you to largely avoid overarching architecture decisions. Each 
team can choose the optimal type of architecture for its microservices.

The basis for this is the microservices architecture. It provides a large degree of 
technical freedom. While normally due to technical reasons, uniform technologies 
are mandatory, microservices do not have these restrictions. However, there can be 
other reasons for uniformity. The question is which decision is made by whom. There 
are two layers of decision making:

• Macro architecture comprises the decisions that concern the overall sys-
tem. These are at least the decisions presented in Chapter 7, “Architecture of
Microservice-Based Systems,” regarding the domain architecture and basic
technologies, which have to be used by all microservices, as well as communi-
cation protocols (Chapter 8, “Integration and Communication”). The proper-
ties and technologies of individual microservices can also be preset (Chapter 9,
“Architecture of Individual Microservices”). However, this does not have to be
the case. Decisions about the internals of the individual microservices do not
have to be made in the macro architecture.

• The micro architecture deals with decisions each team can make by itself.
These should address topics that concern only the microservices developed
by the respective team. Among these topics can be all aspects presented in
Chapter 9 as long as they have not already been defined as part of the macro
architecture.

The macro architecture cannot be defined once and for all but has to undergo 
continuous development. New features can require a different domain architecture 
or new technologies. Optimizing the macro architecture is a permanent process.

Decision = Responsibility

The question is, who defines macro and micro architecture and takes care of their 
optimization? It is important to keep in mind that each decision is linked to responsi-
bility. Whoever makes a decision is responsible for its consequences—good or bad. In 
turn the responsibility for a microservice entails the necessity to make the required 
decisions for its architecture. When the macro architecture defines a certain technol-
ogy stack, the responsibility for this stack rests with the persons responsible for the 
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macro architecture—not with the teams that use them in the microservices and 
might later have problems with this technology stack. Therefore, a strong restriction 
of the technology freedom of the individual microservices by the macro architecture 
is often not helpful. It only shifts decisions and responsibility to a level that does not 
have much to do with the individual microservices. This can lead to an ivory-tower 
architecture that is not based on the real requirements. In the best case it is ignored. 
In the worst case it causes serious problems in the application. Microservices enable 
you to largely do without macro architecture decisions in order to avoid such an 
ivory-tower architecture.

Who Creates the Macro Architecture?

For defining the macro architecture, decisions have to be made that affect all micro-
services. Such decisions cannot be made by a single team since the teams only carry 
responsibility for their respective microservices. Macro architecture decisions go 
beyond individual microservices.

The macro architecture can be defined by a team that is composed from members 
of each individual team. This approach seems to be obvious at first glance: It enables 
all teams to voice their perspectives. Nobody dictates certain approaches. The teams 
are not left out of the decision process. There are many microservice projects that 
very successfully employ this approach.

However, this approach has also disadvantages:

• For decisions at the macro architecture level, an overview of the overall system
and an interest to develop the system in its entirety are necessary. Members
of the individual teams often have a strong focus on their own microservices.
That is, of course, very sensible since the development of these microservices is 
their primary task. However, this can make it hard for them to make overarch-
ing decisions since those require a different perspective.

• The group can be too large. Effective teams normally have five to ten members
at maximum. If there are many teams and each is supposed to participate with
at least one member, the macro architecture team will get too large and thus
cannot work effectively anymore. Large teams are hardly able to define and
maintain the macro architecture.

The alternative is to have a single architect or an architecture team that is exclusively 
responsible for shaping the macro architecture. For larger projects this task is so 
demanding that an entire architecture team certainly is needed to work on it. This 
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architecture team takes the perspective of the overall project. However, there is a dan-
ger that the architecture team distances itself too much from the real work of the 
other teams and consequently makes ivory-tower decisions or solves problems the 
teams do not actually have. Therefore, the architecture team should mainly moder-
ate the process of decision making and make sure that the viewpoints of the different 
teams are all considered. It should not set a certain direction all by itself. In the end 
the different microservices teams will have to live with the consequences of the archi-
tecture team’s decisions.

Extent of the Macro Architecture

There is no one and only way to divide the architecture into micro and macro 
architecture. The company culture, the degree of self-organization, and other 
organizational criteria play a prominent role. A highly hierarchical organization 
will give the teams less freedom. When as many decisions as possible are made on 
the level of the micro architecture, the teams will gain more responsibility. This 
often has positive effects because the teams really feel responsible and will act 
accordingly.

The NUMMI car factory2 in the United States, for instance, was a very unproduc-
tive factory that was known for drug abuse and sabotage. By the company focusing 
more on teamwork and trust, the same workers could be turned into a very produc-
tive workforce. When teams are able to make more decisions on their own and have 
more freedom of choice, the work climate as well as productivity will profoundly 
benefit.

Besides, by delegating decisions to teams, less time is spent on coordination so 
that the teams can work more productively. To avoid the need for communication 
by delegating more decisions to the teams and therefore to micro architecture is an 
essential point for architecture scaling.

However, when the teams are very restricted in their choices, one of the main 
advantages of microservices is not realized. Microservices increase the technical 
complexity of the system. This only makes sense if the advantages of microservices 
are really exploited. Consequently, when the decision for microservices has been 
made, there should also be a decision for having as much micro architecture and as 
little macro architecture as possible.

The decision for more or less macro architecture can be made for each area 
differently.

2. http://en.wikipedia.org/wiki/NUMMI#Background

http://www.en.wikipedia.org/wiki/NUMMI#Background
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Technology: Macro/Micro Architecture

For the technologies the following decisions can be made concerning macro versus 
micro architecture:

• Uniform security (section 7.14), service discovery (section 7.11), and commu-
nication protocols (Chapter 8) are necessary to enable microservices to com-
municate with each other. Therefore, decisions in these areas clearly belong to
macro architecture. Among these are also the decisions for the use and details
of downwards compatible interfaces that are required for the independent
deployment of microservices.

• Configuration and coordination (Section 7.10) do not necessarily have to be
determined globally for the complete project. When each microservice is oper-
ated by its respective team, the team can also handle the configuration and use
its own tool of choice for it. However, a uniform tool for all microservices has
clear advantages. Besides, there is hardly any sensible reason why each team
should use a different mechanism.

• The use of resilience (section 9.5) or load balancing (section 7.12) can be defined
in the macro architecture. The macro architecture can either define a certain
standard technology or just enforce that these points have to be addressed during 
the implementation of the microservices. This can, for instance, be ensured by
tests (section 10.8). The tests can check whether a microservice is still available
after a dependent microservice failed. In addition, they can check whether the
load is distributed to multiple microservices. The decision for the use of resil-
ience or load balancing can theoretically be left to the teams. When they are
responsible for the availability and the performance of their service, they have to
have the freedom to use their choice of technologies for it. When their microser-
vices are sufficiently available without resilience and load balancing, their strat-
egy is acceptable. However, in the real world such scenarios are hard to imagine.

• In regard to platform and programming language the decision can be made
at the level of macro or micro architecture. The decision might not only influ-
ence the teams but also operations, since operations needs to understand the
technologies and to be able to deal with failures. It is not necessarily required
to prescribe a programming language. Alternatively, the technology can be
restricted, for example, to the JVM (Java Virtual Machine) that supports a
number of programming languages. In regard to the platform a potential com-
promise is that a certain database is provided by operations, but the teams can
also use and operate different ones. Whether the macro architecture defines
platform and programming language depends also on whether developers need 
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to be able to change between teams. A shared platform facilitates transferring 
the responsibility for a microservice from one team to another team.

Figure 12.3 shows which decisions are part of the macro architecture—they are on 
the right side. The micro architecture parts are on the left side. The areas in the mid-
dle can be either part of the macro or micro architecture. Each project can handle 
them differently. 

Operations

In the area of operations (see Figure 12.4) there is control (section 11.6), monitoring 
(section 11.3), logging (section 11.2), and deployment (section 11.4). To reduce the 
complexity of the environment and to enable a uniform operations solution, these 
areas have to be defined by macro architecture. The same holds true for platform and 
programming language. However, standardizing is not obligatory; when the entire 
operations of the microservices rests with the teams, theoretically each team can use 
a different technology for each of the mentioned areas. But while this scenario does 
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not generate many advantages, it creates a huge technological complexity. However, 
it is, for example, possible that the teams use their own special solution for certain 
tasks. When, for instance, the revenue is supposed to be transferred in a different way 
into the monitoring for the business stakeholders, this is certainly doable. 

Domain Architecture

In the context of domain architecture (see Figure 12.5) the distribution of domains 
to teams is part of the macro architecture (section 7.1). It not only influences the 
architecture but also decides which teams are responsible for which domains. 
 Therefore, this task cannot be moved into the micro architecture. However, the 
domain architecture of the individual microservices has to be left to the teams 
(sections 9.1–9.4). To dictate the domain architecture of the individual microservices 
to the teams would be equivalent to treating microservices at the organizational level 
like monoliths because the entire architecture is centrally coordinated. In that case 
one could as well develop a deployment monolith, which is technically easier. Such a 
decision would not make sense. 

Tests

In the area of testing (see Figure 12.6) integration tests (section 10.4) belong to the 
macro architecture. In practice whether there should be an integration test for a 
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certain domain and who should implement it has to be decided. Integration tests 
only make sense when they concern functionalities across teams. The respective 
teams can test all other functionalities on their own. Therefore, integration tests 
have to be globally coordinated across teams. Technical tests (section 10.8) can be 
dictated to the teams by the macro architecture. They are a good option to enforce 
and control global standards and technical areas of macro architecture. Con-
sumer-driven contract tests (CDC) (section 10.7) and stubs (section 10.6) can be 
coordinated between the teams themselves. A shared technological foundation as 
part of macro architecture can profoundly facilitate development. Uniform tech-
nologies are especially sensible in this area since teams have to use the CDCs and 
stubs of other teams. When only one technology is used, work is markedly easier. 
However, it is not obligatory that technologies are rigidly prescribed by the macro 
architecture.

How to test the respective microservices should be up to the individual teams as 
they have the responsibility for the quality of the microservices. 

In many areas decisions can be made either at the level of macro or at the level 
of micro architecture. It is a central objective of microservice-based architectures 
to give the individual teams as much independence as possible. Therefore, as many 
decisions as possible should be made on the level of micro architecture and there-
fore by the individual teams. However, in regard to operations the question arises 
whether the teams really profit from the freedom to use their own distinct tools. It 
seems more likely that the technology zoo just gets bigger without real advantages. 
In this area there is a connection to DevOps (section 12.5). Depending on the degree 
of cooperation between developers and operations there can be different degrees of 
freedom. In case of a clear division between development and operations, operations 
will define many standards in macro architecture. In the end operations will have to 
take care of the microservices in production. When all microservices employ a uni-
form technology, this task is easier.

When defining programming language and platform, one should likewise weigh 
the advantages of specialized technology stacks versus the disadvantages of having 
heterogeneous technologies in the overall system. Depending on the circumstances 
the decision to prescribe a technology stack might be as sensible as the decision to 
leave the technology choice to the individual teams. A uniform technology stack can 
facilitate operations and make it easier for developers to change between microser-
vices and teams. Specialized technology stacks make it easier to handle special chal-
lenges and motivate employees who thus have the possibility to use cutting-edge 
technologies.

Whether a microservice really conforms to the macro architecture can be evalu-
ated by a test (see section 10.8). This test can be an artifact that is likewise part of 
the macro architecture. The group responsible for the macro architecture can use this 
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artifact to unambiguously define the macro architecture. This enables you to check 
whether all microservices are in line with macro architecture.

12.4 Technical Leadership

The division in micro and macro architecture completely changes the technical lead-
ership teams and is an essential advantage of microservices. The macro architecture 
defines technical duties and freedom. The freedom of choice entails also the respon-
sibility for the respective decisions.

For example, a database can be prescribed. In that case the team can delegate 
the responsibility for the database to the technical leadership team. If the database 
decision were part of the micro architecture, the database would be run by the team 
since it made the decision for the technology. No other team would need to deal with 
potential consequences of this decision (see section 7.9). Whoever makes the deci-
sion also has the responsibility. The technical leadership team certainly can make 
such decisions, but by doing so it takes away responsibility from the microservices 
teams and therefore independence.

A larger degree of freedom entails more responsibility. The teams have to be able 
to deal with this and also have to want this freedom. Unfortunately, this is not always 
the case. This can either argue for more macro architecture or for organizational 
improvements that in the end lead to more self-organization and thus less macro 
architecture. It is one of the objectives of the technical leadership team to enable less 
macro architecture and to lead the way to more self-organization.

Developer Anarchy

The approach Developer3 Anarchy4 is even more radical in regards to the freedom of 
the teams. It confers the entire responsibility to the developers. They cannot only 
freely choose technologies but even rewrite code if they deem it necessary. Besides, 
they communicate directly with the stakeholders. This approach is employed in very 
fast growing enterprises and works very well there. Behind this idea is Fred George, 
who has collected more than 40 years of experience while working in many different 
companies. In a model like this, macro architecture and deployment monoliths are 
abolished so that the developers can do what they think is best. This approach is very 
radical and shows how far the idea can be extended.

3. http://www.infoq.com/news/2012/02/programmer-anarchy

4. https://www.youtube.com/watch?v=uk-CF7klLdA

http://www.infoq.com/news/2012/02/programmer-anarchy
https://www.youtube.com/watch?v=uk-CF7klLdA
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Try and Experiment

• In Figures 12.3–12.5 areas are marked that can belong to either micro or
macro architecture. These are the elements that are depicted in the center
of the respective figures. Look through these elements and decide whether
you would place them in micro or macro architecture. Most important is
your reasoning for the one or the other alternative. Take into considera-
tion that making decisions at the level of the micro architecture rather than
the level of the macro architecture corresponds to the microservice idea of
independent teams.

12.5 DevOps

DevOps denotes the concept that development (Dev) and operations (Ops) merge 
into one team (DevOps). This is an organizational change: each team has developers 
and operations experts. They work together in order to develop and operate a micro-
service. This requires a different mindset, since operations-associated topics are often 
unfamiliar to developers while people working in operations often do not work in 
projects but usually run systems independently of projects. Ultimately, the technical 
skills become very similar: operations works more on automation and associated suit-
able tests—and this is, in the end, software development. At the same time monitor-
ing, log analysis, or deployment also turn more and more into topics for developers.

DevOps and Microservices

DevOps and microservices ideally complement each other:

• The teams cannot only take care of the development but also of the operations
of the microservices. This requires that the teams have knowledge in the areas
of operations and development.

• Orienting the teams in line with features and microservices represents a sensi-
ble organizational alternative to the division into operations and development.

• Communication between operations and development gets easier when mem-
bers of both areas work together in one team. Communication within a team
is easier than between teams. This is in line with the aim of microservices to
reduce the need for coordination and communication.
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DevOps and microservices fit very well together. In fact, the aim that teams 
deploy microservices up to production and keep taking care of them in production 
can only be achieved with DevOps teams. This is the only way to ensure that teams 
have the necessary knowledge about both areas.

Do Microservices Necessitate DevOps?

DevOps is such a profound change in organization that many enterprises are still 
reluctant to take this step. Therefore the question arises whether microservices can 
also be implemented without introducing DevOps. In fact, this is possible:

• Via the macro versus micro architecture division, operations can define stand-
ards. Then technical elements like logging, monitoring, or deployment belong
to the macro architecture. When these standards are conformed to, opera-
tions can take over the software and make it part of the standard operations
processes.

• In addition, platform and programming language can be defined as much as
needed for operations. When staff from operations only feels comfortable run-
ning Java applications on a Tomcat, this can be prescribed as the platform in
the macro architecture. The same holds true for infrastructure elements like
databases or messaging systems.

• Moreover, there can be organizational requirements. For example, opera-
tions can ask that members of the microservices teams are available at cer-
tain times so that problems arising in production can be referred to the teams.
To put it concretely, whoever wants to deploy on his/her own has to provide a
phone number and will be called at night in case of problems. If the call is not
answered, the manager for that developer can be called next. This increases the
likelihood that developers actually answer such calls.

In such a context the teams cannot be responsible anymore for bringing all 
microservices up to production. Access and responsibility rest with operations. 
There has to be a point in the continuous delivery pipeline where the microservices 
are passed on to operations and then are rolled out in production. At this point the 
microservice passes into the responsibility of operations that has to coordinate with 
the respective team about their microservices. A typical point for the transfer to 
operations is immediately after the test phases, prior to possible explorative tests. 
Operations is at least responsible for the last phase, that is, the rollout in production. 
Operations can turn into a bottleneck if a high number of modified microservices 
have to be brought into production.
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Overall, DevOps and microservices have synergies; however, it is not necessarily 
required to also introduce DevOps when deciding for microservices.

12.6  When Microservices Meet Classical IT 
Organizations (Alexander Heusingfeld)

by Alexander Heusingfeld, innoQ

The “microservices” topic has meanwhile reached numerous IT departments and is 
discussed there. Interestingly, initiatives for introducing microservices are often 
started by middle management. However, frequently too little thought is spent on 
the effect a microservice architecture has on the (IT) organization of enterprises. 
Because of this I would like to tell of a number of “surprises” that I experienced dur-
ing the introduction of such an architecture approach.

Pets versus Cattle

“Pets vs. cattle”5 is a slogan that reached a certain fame at the outset of the DevOps 
movement. Its basic message is that in times of Cloud and virtualization, servers 
should not be treated like pets but rather like a herd of cattle. If a pet gets sick, the 
owner will likely nurse it back to health. Sick cattle, on the other hand, are killed 
immediately in order not to endanger the health of the entire herd.

Thus the point is to avoid the personification of servers—for example, by giv-
ing them names (like Leviathan, Pollux, Berlin, or Lorsch). If you assign such “pet” 
names to servers, there will be a tendency to care for them like pets and thus provide 
individual updates, scripts, adjustments, or other specific modifications. However, it 
is well known that this has negative consequences for the reproducibility of instal-
lations and server state. Especially considering auto-scaling and failover features as 
they are required for microservice-based architectures, this is a deal breaker.

One of my projects addressed this problem in a very interesting manner. The 
server and virtual machines still had names. However, the administration of these 
systems was completely automated via Puppet. Puppet downloaded the respective 
scripts from an SVN repository. In this repository individual scripts for each server 
were stored. This scenario could be called “Puppets for automated pet care.” The 
advantage is that crashed servers can quickly be replaced by exact copies.

However, requirements for scalability are not taken into consideration at all, 
since there can always only be one instance of a “pet server” named Leviathan. 

5. http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds

http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
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An alternative is to switch to parameterized scripts and to use templates like 
“production VM for app XYZ.” At the same time this also enables more flexible 
deployment scenarios like Blue/Deployments. In that case it is not relevant any-
more whether the VM app-xyz-prod08.zone1.company.com or app-xyz-prod045.
zone1.company.com gets the job done. The only relevant point is that eight 
instances of this service are constantly available, and at times of high load addi-
tional instances can be started. How these instances are named does not matter.

Us versus Them

“Monitoring is our concern!”

“You shouldn’t care about that!”

“That is none of your business; it’s our area!”

Unfortunately, I frequently hear sentences like these in so-called cross-functional 
teams. These are teams composed of architects, developers, testers, and administra-
tors. Especially if the members previously worked in other, purely functional teams 
within the same company, old trench wars and prejudices are carried along into the 
new team—often subconsciously. Therefore, it is important to be aware of the social 
aspects right from the start and to counter these proactively. For example, in my 
experience letting newly set-up teams work in the same office for the first two to four 
weeks has very positive effects. This enables the new teammates to get to know each 
other’s human side and to directly experience the colleague’s body language, charac-
ter, and humor. This will markedly facilitate communication during the later course 
of the project, and misunderstandings can be avoided.

In addition, team-building measures during the first weeks that require that the 
team members rely on each other can help to break the ice, to get an idea of the 
strengths and weaknesses of the individual members, and to build up and strengthen 
trust within the team. If these points are neglected, there will be noticeable adverse 
consequences throughout the run time of the project. People who do not like each 
other or do not trust each other will not rely on each other, even if only subcon-
sciously. And this means that they will not be able to work 100 percent as a team.

Development versus Test versus Operations: 
Change of Perspective

In many companies there are initiatives for a change of perspective. For example, 
employees from sales may work in the purchasing department for a day to get to 
know the people and the processes there. The expectation is that the employees will 
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develop a better understanding for their colleagues and to let that become part of 
their daily work so that cross-department processes harmonize better. The motto is: 
“On ‘the other side’ you get to know a new perspective!”

Such a change of perspective can also be advantageous in IT. A developer could, 
for instance, get a new perspective with regard to the use cases or test cases. This 
might motivate them to enforce a modularization in the development, which is easier 
to test. Or they might consider early in development which criteria will be needed 
later on to better monitor the software in production or to more easily find errors. 
A deeper insight into the internal processes of the application can help an adminis-
trator to develop a better understanding for implementing a more specific and more 
efficient monitoring. Each perspective that deviates from one’s own perspective can 
raise questions that previously were not considered in this section of the application 
life cycle. These questions will help the team to evolve as a whole and deliver better 
software.

For Operations There Is Never an “Entirely Green Field”

Certainly, microservices are a topical subject and bring along new technologies, con-
cepts, and organizational changes. However, one should always consider that enter-
prises introducing microservices hardly ever start from scratch! There are always 
some kinds of legacy systems or entire IT environments that already exist and might 
better not be replaced in a Big Bang approach. Usually these legacy systems have to 
be integrated into the brave new world of microservices; at least they will have to 
coexist.

For this reason, it is important to take these systems into consideration when 
planning a microservices-based architecture, especially in regards to IT costs. Can 
the existing hardware infrastructure really be restructured for the microservices or 
is there a legacy system that relies exactly on this infrastructure? These are often 
questions that get caught on the infrastructure or operations team—if there is such 
an organizational unit in the company. Otherwise it might happen that these ques-
tions first arise when a deployment to the system test or production environment is 
supposed to be done. To recognize these questions early on, I recommend dealing 
with the deployment pipeline as early as possible in the reorganization project. The 
deployment pipeline should already be in place before the first business functionality 
is implemented by the teams. A simple “Hello World” program will often be suffi-
cient, which then is brought towards production by the combined forces of the entire 
team. While doing so, the team will almost always encounter open questions, which 
in the worst case will have effects on the design of the systems. However, as not much 
is implemented at this stage early on during the project, such changes are still compa-
rably cost-efficient to implement.

12.6 When Microservices Meet Classical IT Organizations



ptg18144917

Chapter 12 Organizational Effects of  Microservices290

Conclusion

Up to now the organizational changes with regard to Conway’s Law that accompany 
the introduction of microservices are often underestimated. Old habits, prejudices, 
and maybe even trench wars are often deep-rooted, especially if the new teammates 
were previously assigned to different departments. However, “one team” has to be 
more than just a buzzword. If the team manages to bury their prejudices and put 
their different experiences to good use, it can advance together. Everyone has to 
understand that all of them now share the task and responsibility to bring a stable 
software into production for the customer. Everybody can profit from the experi-
ences of the others when everybody acts on the premise: “Everybody voices their 
concerns, and we will solve it jointly.”

12.7 Interface to the Customer

To ensure that the development can really be scaled to multiple teams and micro-
services, each team needs to have its own product owner. In line with Scrum 
approaches, he/she is responsible for the further development of the microservice. 
For this purpose, he/she defines stories that are implemented in the microservice. 
The product owner is the source of all requirements and prioritizes them. This is 
especially easy when a microservice only comprises features that are within the 
responsibility of a single department at the business level (see Figure 12.7). Usually 
this objective is achieved by adjusting microservices and teams to the organization 
of departments. Each department gets its product owner and therefore its team and 
its microservices.

When the microservices have a good domain architecture, they can be indepen-
dently developed. Ultimately, each domain should be implemented in one or many 
microservices, and the domain should only be of interest to one department. The 
architecture has to take the organization of the departments into consideration when 
distributing the domains into microservices. This ensures that each department has 
its own microservices that are not shared with other domains or departments. 

Unfortunately, the architecture often is not perfect. Besides, microservices 
have interfaces—an indication that functionalities might span multiple micro-
services. When multiple functionalities concern one microservice and therefore 
multiple departments want to influence the development of a microservice, the 
product owner has to ensure a prioritization that is coordinated with the differ-
ent departments. This can be a challenge because departments can have different 
priorities. In that case the product owner has to coordinate between the concerned 
departments.
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Let us assume that there is a department that takes care of sales campaigns in an 
e-commerce shop. It starts a campaign where orders containing a certain item get
a rebate on the delivery cost. The required modification concerns the order team:
tt has to find out whether an order contains such an item. This information has to
be transmitted to the delivery microservice, which has to calculate the costs for the
delivery. Accordingly, the product owners of these two teams have to prioritize these
changes in regards to the changes desired by the departments in charge of delivery
and orders. Unfortunately, many of these sales campaigns combine different func-
tionalities so that such a prioritization is often required. The departments for orders
and deliveries have their own microservices, while the department in charge of sales
campaigns does not have its own microservices. Instead it has to introduce its fea-
tures into the other microservices.

Architecture Leads to Departments

The microservice architecture can thus be a direct result of the departmental organi-
zation of the company. However, there are also cases where a new department is cre-
ated around an IT system, which then takes care of this system from the business 
side. In such a case one can argue that the microservices architecture directly influ-
ences the organization. For instance, there might be a new Internet market place that 
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is implemented by an IT system. If it is successful, a department can be created that 
takes over the further development of this marketplace. This department will con-
tinue to develop the IT system from a domain and from a business perspective. In 
this case the marketplace was developed first, and subsequently the department has 
been created. Therefore, the system architecture has defined the departmental struc-
ture of the organization.

12.8 Reusable Code

At first sight the reuse of code is a technical problem. Section 7.3 already described 
the challenges that arise when two microservices use the same library. When the 
microservices use the library in such a way that a new release of the library necessi-
tates a new deployment of the microservices, the result is a deployment dependency. 
This has to be avoided to enable an independent deployment of the microservices. 
There is additional expenditure because the teams responsible for the microservices 
have to coordinate their changes to the library. New features for the different micros-
ervices have to be prioritized and developed. These also represent dependencies 
between the teams, which should be avoided.

Client Libraries

Client libraries that encapsulate calls from a microservice can be acceptable. When 
the interfaces of the microservices are downwards compatible, the client library does 
not have to be replaced in case of a new version of the microservice. In such a sce-
nario client libraries do not cause problems because a new deployment of the called 
microservices does not lead to an update of the client library or a new deployment of 
the calling microservice.

However, when the client library also contains domain objects, problems can 
occur. When a microservice wants to change the domain model, the team has to 
coordinate this change with the other users of the client library and therefore can-
not develop independently anymore. The boundaries between a simplified use of 
the interface, which can be sensible, and a shared implementation of logic or other 
deployment dependencies, which can be problematic, is not clear cut. One option is 
to entirely forbid shared code.

Reuse Anyhow?

However, obviously, projects can reuse code. Hardly any project nowadays manages 
without some open source library. Using this code is obviously easy and thus facilitates 
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work. Problems like the ones arising upon reusing code between microservices are 
unlikely for a number of reasons:

• Open source projects in general are of high quality. Developers working in
different companies use the code and therefore spot errors. Often they even
remove the errors so that the quality permanently increases. To publish source
code and therefore provide insight into internals is often already motivation
enough to increase the quality.

• The documentation enables you to immediately start to use the code without a
need to directly communicate with the developers. Without good documenta-
tion open source projects hardly find enough users or additional developers
since getting started would be too hard.

• There is a coordinated development with a bug tracker and a process for
accepting code changes introduced by external developers. Therefore, errors
and their fixes can be tracked. In addition, it is clear how changes from the
outside can be incorporated into the code basis.

• Moreover, in case of a new version of the open source library it is not neces-
sary for all users to use the new version. The dependencies in regard to the
library are not so pronounced that a deployment dependency ensues.

• Finally, there are clear rules how one’s own supplements can be incorporated
into the open source library.

In the end the difference between a shared library and an open source project is 
mainly a higher quality in regard to different aspects. Besides, there is also an organi-
zational aspect: there is a team that takes care of the open source project. It directs 
the project and keeps developing it. This team does not necessarily make all changes, 
but it coordinates them. Ideally, the team has members from different organizations 
and projects so that the open source project is developed under different viewpoints 
and in the context of different use cases.

Reuse as Open Source

With open source projects as role models in mind there are different options for reus-
able code in a microservices project:

• The organization around reusable libraries is structured like in an open source
project. There are employees responsible for the continued code develop-
ment, the consolidation of requirements and for incorporating the changes of
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other employees. The team members ideally come from different microservice 
teams.

• The reusable code turns into a real open source project. Developers outside of
the organization can use and extend the project.

Both decisions can result into a significant investment since markedly more effort 
has to go into quality and documentation, etc. Besides, the employees working on the 
project have to get enough freedom to do so in their teams. The teams can control the 
prioritization in the open source project by only making their members available for 
certain tasks. Due to the large investment and potential problems with prioritization the 
decision to establish an open source project should be well considered. The idea itself 
is not new—experiences6 in this area have already been collected for quite some time.

If the investment is very high, it means that the code is hardly reusable for the 
moment, and using the code in its current state causes quite some effort. Probably 
the code is not only hard to reuse, but hard to use at all. The question is why team 
members would accept such a bad code quality. Investing into code quality in order 
to make the code reusable can pay off already by reusing it just once.

At first glance it does not appear very sensible to make code available to external 
developers. This requires that code quality and documentation are of high enough 
quality for external developers to be able to use the code without direct contact to 
the developers of the open source project. Only the external developers seem to 
profit from this approach as they get good code for free.

However, a real open source project has a number of advantages:

• External developers find weak spots by using the code. Besides, they will use
the code in different projects so that it gets more generalized. This will improve 
quality as well as documentation.

• Maybe external developers contribute to the further development of the code.
However, this is the exception rather than the norm. But having external feed-
back via bug reports and requests for new features can already represent a sig-
nificant advantage.

• Running open source projects is great marketing for technical competence.
This can be useful for attracting employees as well as customers. Important is
the extent of the project. If it is only a simple supplement of an existing open
source project, the investment can be manageable. An entirely new open source 
framework is a very different topic.

6. http://dirkriehle.com/2015/05/20/inner-source-in-platform-based-product-engineering/

http://dirkriehle.com/2015/05/20/inner-source-in-platform-based-product-engineering/
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Blueprints such as documentation for certain approaches, represent elements that 
are fairly easy to reuse. This can be elements of macro architecture, like a document 
detailing the correct approach for logging. Likewise, there can be templates that con-
tain all necessary components of a microservice including a code skeleton, a build 
script and a continuous delivery pipeline. Such artifacts can rapidly be written and 
are immediately useful.

Try and Experiment

• Maybe you have already previously used your own technical libraries in
projects or even developed some yourself. Try to estimate how large the
expenditure would be to turn these libraries into real open source libraries.
Apart from a good code quality this also necessitates documentation about
the use and the extension of the code. Besides, there has to be a bug tracker
and forums. How easy would it be to reuse it in the project itself? How high
would be the quality of the library?

12.9  Microservices without Changing 
the Organization?

Microservices are more than just an approach for software architecture. They have 
pronounced effects on organization. Changes to the organization are often very dif-
ficult. Therefore, the question arises whether microservices can be implemented 
without changing the organization.

Microservices without Changing the Organization

Microservices make independent teams possible. The domain-focused teams are 
responsible for one or multiple microservices—this ideally includes their develop-
ment as well as operations. Theoretically it is possible to implement microservices 
without dividing developers into domain-focused teams. In that case the developers 
could modify each microservice—an extension of the ideas presented in section 12.2. 
It would even be possible that technically focused teams work on microservices that 
are split according to domain-based criteria. In this scenario there would be a UI, a 
middle tier, and a database team that work on domain microservices such as order 
process or registration. However, a number of advantages usually associated with 
microservices cannot be exploited anymore in that case. First, it is not possible 
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anymore to scale the agile processes via microservices. Second, it will be necessary to 
restrict the technology freedom since the teams will not be able to handle the differ-
ent microservices if they all employ different technologies. Besides, each team can 
modify each microservice. This entails the danger that though a distributed system is 
created, there are dependencies that prevent the independent development of indi-
vidual microservices. The necessity for independent microservices is obliterated 
because a team can change multiple microservices together and therefore also can 
handle microservices having numerous dependencies. However, even under these 
conditions sustainable development, an easier start with continuous delivery, inde-
pendent scaling of individual microservices, or a simple handling of legacy systems 
can still be implemented because the deployment units are smaller.

Evaluation

To put it clearly, introducing microservices without creating domain-focused teams 
does not lead to the main benefits meant to be derived from microservices. It is 
always problematic to implement only some parts of a certain approach as only the 
synergies between the different parts will generate the overall value. Although imple-
menting microservices without domain-focused teams is a possible option—it is cer-
tainly not recommended.

Departments

As already discussed in section 12.7, the microservice structure should ideally extend 
to the departments. However, in reality this is sometimes hard to achieve since the 
microservice architecture often deviates too much from the organizational structure 
of the departments. It is unlikely that the organization of the departments will adapt 
to the distribution into microservices. When the distribution of the microservice can-
not be adjusted, the respective product owners have to take care of prioritization and 
coordinate the wishes of the departments that concern multiple microservices in such 
a way that all requirements are unambiguously prioritized for the teams. If this is not 
possible, a collective code ownership approach (section 12.2) can limit the problem. 
In this case the product owner and his/her team can also modify microservices that do 
not really belong to their sphere of influence. This can be the better alternative in con-
trast to a coordination across teams—however, both solutions are not optimal.

Operations

In many organizations there is a separate team for operations. The teams responsible 
for the microservices should also take care of the operations of their microservices 



ptg18144917

29712.10 Conclusion

following the principle of DevOps. However, as discussed in section 12.5, it is not a 
strict requirement for microservices to introduce DevOps. If the separation between 
operations and development is supposed to be maintained, operations has to define 
the necessary standards for the microservices in the macro architecture to ensure a 
smooth operations of the system.

Architecture

Often architecture and development are likewise kept separated. In a microservices 
environment there is the area of macro architecture where architects make global 
decisions for all teams. Alternatively, the architects can be distributed to the different 
teams and work together with the teams. In addition, they can found an overarching 
committee that defines topics for macro architecture. In that case it has to be ensured 
that the architects really have time for this task and are not completely busy with 
work in their team.

Try and Experiment

• What does the organization of a project you know look like?

• Is there a special organizational unit that takes care of architecture? How 
would they fit into a microservices-based architecture?

• How is operations organized? How can the organization of operations
best support microservices?

• How well does the domain-based division fit to the departments? How
could it be optimized?

• Can a product owner with fitting task area be assigned to each team?

12.10 Conclusion

Microservices enable the independence of teams in regard to technical decisions and 
deployments (section 12.1). This enables the teams to independently implement 
requirements. In the end this makes it possible for numerous small teams to work 
together on a large project. This reduces the communication overhead between the 
teams. Since the teams can deploy independently, the overall risk of the project is 
reduced.
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Ideally the teams should be put together in a way that enables them to work sepa-
rately on different domain aspects. If this is not possible or requires too much coordina-
tion between the teams, collective code ownership can be an alternative (section 12.2). 
In that case each developer can change all of the code. Still, one team has the responsi-
bility for each microservice. Changes to this microservice have to be coordinated with 
the responsible team.

Section 12.3 described that microservices have a macro architecture that comprises 
decisions that concern all microservices. In addition, there is the micro architecture, 
which can be different for each microservice. In the areas of technology, operations, 
domain architecture, and testing there are decisions that can either be attributed to 
micro or macro architecture. Each project has the choice to delegate them to teams 
(micro architecture) or to centrally define them (macro architecture). Delegating into 
teams is in line with the objective to achieve a large degree of independence and is 
therefore often the better option. A separate architecture team can define the macro 
architecture; alternatively, the responsible team is assembled from members of the 
different microservice teams.

Responsibility for the macro architecture is closely linked to a concept for techni-
cal leadership (section 12.4). Less macro architecture means more responsibility for 
the microservice teams and less responsibility for the central architecture team.

Though microservices profit from merging operations and development to 
DevOps (section 12.5), it is not strictly required to introduce DevOps to do micro-
services. If DevOps is not possible or desired, operations can define guidelines in the 
context of macro architecture to unify certain aspects in order to ensure a smooth 
operation of the microservice-based system.

Microservices should always implement their own separate requirements. There-
fore, it is best when each microservice can be assigned to a certain department on 
the business side (section 12.7). If this is not possible, the product owners have to 
coordinate the requirements coming from different departments in such a way that 
each microservice has clearly prioritized requirements. When collective code owner-
ship is used, a product owner and his/her team can also change microservices of 
other teams, which can limit the communication overhead. Instead of coordinating 
priorities, a team will introduce the changes that are necessary for a new feature 
by itself—even if they concern different microservices. The team responsible for 
the modified microservice can review the introduced changes and adjust them if 
necessary.

Code can be reused in a microservices project if the code is treated like an open 
source project (section 12.8). An internal project can be handled like an internal open 
source project—or can in fact be turned into a public open source project. The effort 
for a real open source project is high, which has to be considered. Therefore, it can be 
more efficient not to reuse code. Besides, the developers of the open source project 
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have to prioritize domain requirements versus changes to the open source project, 
which can be a difficult decision at times.

Section 12.9 discussed that an introduction of microservices without changes to 
the organizational structure at the development level does not work in real life. When 
there are no domain-focused teams that can develop certain domain aspects indepen-
dently of other teams, it is practically impossible to develop multiple features in par-
allel and thus to bring more features to the market within the same time. However, 
this is just what microservices were meant to achieve. Sustainable development, an 
easy introduction of continuous delivery, independent scaling of individual micro-
services, or a simple handling of legacy systems are still possible. Operations and an 
architecture team can define the macro architecture so that changes to the organi-
zational structure in this area are not strictly required. Ideally, the requirements of 
the departments are always reflected by one microservice. If that is not possible, the 
product owners have to coordinate and prioritize the required changes.

Essential Points

• Microservices have significant effects on the organization. Independent small
teams that work together on a large project are an important advantage of
microservices.

• Viewing the organization as part of the architecture is an essential innovation
of microservices.

• A combination of DevOps and microservices is advantageous but not
obligatory.
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PART IV

Technologies

Part IV moves away from the theoretical to show the technologies involved in actual 
implementations of microservices. 

Chapter 13, “Example of a Microservices-Based Architecture,” contains a 
complete example of a microservices architecture based on Java, Spring, Spring 
Boot, Spring Cloud, the Netflix stack, and Docker. The example is a good start-
ing point for your own implementation or experiments. Many of the technologi-
cal challenges discussed in Part III are solved in this part with the aid of concrete 
technologies—for instance, build, deployment, service discovery, communication, 
load balancing, and tests.

Even smaller than microservices are the nanoservices discussed in Chapter 14, 
“Technologies for Nanoservices.” They require special technologies and a number 
of compromises. The chapter introduces technologies that can implement very small 
services—Amazon Lambda for JavaScript, Python and Java; OSGi for Java; Java EE; 
and Vert.x on the JVM (Java Virtual Machine) with support for languages like Java, 
Scala, Clojure, Groovy, Ceylon, JavaScript, Ruby, and Python. The programming 
language Erlang can also be used for very small services, and it is able to integrate 
with other systems. Seneca is a specialized JavaScript framework for the implementa-
tion of nanoservices.

At the close of the book Chapter 15, “Getting Started with Microservices,” 
concludes by re iterating the benefits of using microservices and discusses how you 
might go about starting to use them.
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This chapter provides an example of an implementation of a microservices-based 
architecture. It aims at demonstrating concrete technologies in order to lay the founda-
tion for experiments. The example application has a very simple domain architecture 
containing a few compromises. Section 13.1 deals with this topic in detail.

For a real system with a comparable low complexity as in the presented example 
application, an approach without microservices would be better suited. However, 
the low complexity makes the example application easy to understand and simple 
to extend. Some aspects of a microservice environment, such as security, documen-
tation, monitoring, or logging are not illustrated in the example application—but 
these aspects can be relatively easily addressed with some experiments.

Section 13.2 explains the technology stack of the example application. The build 
tools are described in section 13.3. Section 13.4 deals with Docker as a technology for 
the deployment. Docker needs to run in a Linux environment. Section 13.5 describes 
Vagrant as a tool for generating such environments. Section 13.6 introduces Docker 
Machine as alternative tool for the generation of a Docker environment, which can be 
combined with Docker Compose for the coordination of several Docker containers 
(section 13.7). The implementation of Service Discovery is discussed in section 13.8. 
The communication between the microservices and the user interface is the main 
topic of section 13.9. Thanks to resilience other microservices are not affected if a 
single microservice fails. In the example application resilience is implemented with 
Hystrix (section 13.10). Load Balancing (section 13.11), which can distribute the load 
onto several instances of a microservice, is closely related to that. Possibilities for 
the integration of non-Java-technologies are detailed in section 13.12, and testing is 
 discussed in section 13.13.

Chapter 13

Example of a 
Microservices-Based 
Architecture
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The code of the example application can be found at https://github.com/ewolff/
microservice. It is Apache-licensed, and can, accordingly, be used and extended freely 
for any purpose.

13.1 Domain Architecture

The example application has a simple web interface, with which users can submit 
orders. There are three microservices (see Figure 13.1):

• “Catalog” keeps track of products. Items can be added or deleted.

• “Customer” performs the same task in regards to customers: It can register
new customers or delete existing ones.

• “Order” can not only show orders but also create new orders.

For the orders the microservice “Order” needs access to the two other micro-
services, “Customer” and “Catalog.” The communication is achieved via REST. 
However, this interface is only meant for the internal communication between the 
microservices. The user can interact with all three microservices via the HTML-/
HTTP-interface.

Separate Data Storages

The data storages of the three microservices are completely separate. Only the 
respective microservice knows the information about the business objects. The 
microservice “Order” saves only the primary keys of the items and customers, which 
are necessary for the access via the REST interface. A real system should use 

Customer Order Catalog

HTTP / HTML

RESTREST

Figure 13.1 Architecture of  the Example Application

https://www.github.com/ewolff/microservice
https://github.com/ewolff/microservice
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artificial keys as the internal primary keys so that they do not become visible to the 
outside. These are internal details of the data storage that should be hidden. To 
expose the primary keys, the class SpringRestDataConfig within the micro-
services configures Spring Data REST accordingly.

Lots of Communication

Whenever an order needs to be shown, the microservice “Customer is called for the 
customer data and the microservice “Catalog” for each line of the order in order to 
determine the price of the item. This can have a negative influence on the response 
times of the application as the display of the order cannot take place before all requests 
have been answered by the other microservices. As the requests to the other services 
take place synchronously and sequentially, latencies will add up. This problem can be 
solved by using asynchronous parallel requests.

In addition, a lot of computing power is needed to marshal the data for send-
ing and receiving. This is acceptable in case of such a small example application. 
When such an application is supposed to run in production, alternatives have to be 
considered.

This problem can, for instance, be solved by caching. This is relatively easy as 
customer data will not change frequently. Items can change more often—still, not 
so fast that caching would pose a problem. Only the amount of data can interfere 
with this approach. The use of microservices has the advantage that such a cache 
can be implemented relatively simply at the interface of the microservices, or even 
at the level of HTTP, if this protocol is used. An HTTP cache, like the one used for 
websites, can be added to REST services in a transparent manner and without much 
programming effort.

Bounded Context

Caching will solve the problem of too long response times technically. However, very 
long response times can also be a sign of a fundamental problem. Section 3.3 argued 
that a microservice should contain a Bounded Context. A specific domain model is 
only valid in a Bounded Context. The modularization into microservices in this 
example contradicts this idea: The domain model is used to modularize the system 
into the microservices “Order” for orders, “Catalog” for items, and “Customer” for 
customers. In principle the data of these entities should be modularized in different 
Bounded Contexts.

The described modularization implements, in spite of low domain complexity, 
a system consisting of three microservices. In this manner the example application 
is easy to understand while still having several microservices and demonstrating the 
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communication between microservices. In a real system the microservice “Order” can 
also handle information about the items that is relevant for the order process such as 
the price. If necessary, the service can replicate the data from another microservice into 
its own database in order to access it efficiently. This is an alternative to the aforemen-
tioned caching. There are different possibilities how the domain models can be modu-
larized into the different Bounded Contexts “Order,” “Customer,” and “Catalog.”

This design can cause errors: when an order has been put into the system and the 
price of the item is changed afterwards, the price of the order changes as well, which 
should not happen. In case the item is deleted, there is even an error when displaying 
the order. In principle the information concerning the item and the customer should 
become part of the order. In that case the historical data of the orders including cus-
tomer and item data would be transferred into the service “Order.”

Don’t Modularize Microservices by Data!

It is important to understand the problem inherent in architecting a microservices 
system by domain model. Often the task of a global architecture is misunderstood: 
The team designs a domain model, which comprises, for instance, objects such as 
customers, orders, and items. Based on this model microservices are defined. That is 
how the modularization into microservices could have come about in the example 
application, resulting in a huge amount of communication. A modularization based 
on processes such as ordering, customer registration, and product search might be 
more advantageous. Each process could be a Bounded Context that has its own 
domain model for the most important domain objects. For product search the cate-
gories of items might be the most relevant, while for the ordering process, data like 
weight and size might matter more.

The modularization by data can also be advantageous in a real system. When the 
microservice “Order” gets too big in combination with the handling of customer 
and product data, it is sensible to modularize data handling. In addition, the data 
can be used by other microservices. When devising the architecture for a system, 
there is rarely a single right way of doing things. The best approach depends on the 
system and the properties the system should have.

13.2 Basic Technologies

Microservices in the example application are implemented with Java. Basic function-
alities for the example application are provided by the Spring Framework.1 This 

1. http://projects.spring.io/spring-framework/

http://www.projects.spring.io/spring-framework/
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framework offers not only dependency injection, but also a web framework, which 
enables the implementation of REST-based services.

HSQL Database

The database HSQLDB handles and stores data. It is an in-memory database, which 
is written in Java. The database stores the data only in RAM so that all data is lost 
upon restarting the application. In line with this, this database is not really suited for 
production use, even if it can write data to a hard disk. On the other hand, it is not 
necessary to install an additional database server, which keeps the example applica-
tion easy. The database runs in the respective Java application.

Spring Data REST

The microservices use Spring Data REST 2 in order to provide the domain objects 
with little effort via REST and to write them into the database. Handing objects out 
directly means that the internal data representation leaks into the interface between 
the services. Changing the data structures is very difficult as the clients need to be 
adjusted as well. However, Spring Data REST can hide certain data elements and can 
be configured flexibly so that the tight coupling between the internal model and the 
interface can be decoupled if necessary.

Spring Boot

Spring Boot3 facilitates Spring further. Spring Boot makes the generation of a Spring 
system very easy: with Spring Boot starters predefined packages are available that 
contain everything that is necessary for a certain type of application. Spring Boot can 
generate WAR files, which can be installed on a Java application or web server. In 
addition, it is possible to run the application without an application or web server. 
The result of the build is a JAR file in that case, which can be run with a Java Runtime 
Environment (JRE). The JAR file contains everything for running the application 
and also the necessary code to deal with HTTP requests. This approach is by far less 
demanding and simpler than the use of an application server (https://jaxenter.com/
java-application-servers-dead-112186.html).

A simple example for a Spring Boot application is shown in Listing 13.1. The main 
program main hands control over to Spring Boot. The class is passed in as a parameter 
so that the application can be called. The annotation @SpringBootApplication 

2. http://projects.spring.io/spring-data-rest/

3. http://projects.spring.io/spring-boot/

https://jaxenter.com/java-application-servers-dead-112186.html
https://www.jaxenter.com/java-application-servers-dead-112186.html
http://www.projects.spring.io/spring-data-rest/
http://www.projects.spring.io/spring-boot/
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makes sure that Spring Boot generates a suitable environment. For example, a web 
server is started, and an environment for a Spring web application is generated as the 
application is a web application. Because of @RestController the Spring Frame-
work instantiates the class and calls methods for the processing of REST requests. 
@RequestMapping shows which method is supposed to handle which request. Upon 
request of the URL “/” the method hello() is called, which returns as result the sign 
chain “hello” in the HTTP body. In an @RequestMapping annotation, URL templates 
such as “/customer/{id}” can be used. Then a URL like “/customer/42” can be cut into 
separate parts and the 42 bound to a parameter annotated with @PathVariable. As 
dependency the application uses only spring-boot-starter-web pulling all necessary 
libraries for the application along—for instance the web server, the Spring Framework, 
and additional dependent classes. Section 13.3 will discuss this topic in more detail.

Listing 13.1 A simple Spring Boot REST Service

@RestController

@SpringBootApplication

public class ControllerAndMain {

 @RequestMapping("/") 

 public String hello() { 

  return "hello"; 

 }

 public static void main(String[] args) {

  SpringApplication.run(ControllerAndMain.class, args); 

 }

}

Spring Cloud

Finally, the example application uses Spring Cloud4 to gain easy access to the Netflix 
Stack. Figure 13.2 shows an overview. 

Spring Cloud offers via the Spring Cloud Connectors access to the PaaS (platform 
as a service) Heroku and Cloud Foundry. Spring Cloud for Amazon Web Services 
offers an interface for services from the Amazon Cloud. This part of Spring Cloud is 
responsible for the name of the project but is not helpful for the implementation of 
microservices.

4. http://projects.spring.io/spring-cloud/

http://www.projects.spring.io/spring-cloud/
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However, the other sub-projects of Spring Cloud provide a very good basis for the 
implementation of microservices:

• Spring Cloud Security supports the implementation of security mechanisms
as typically required for microservices, among those single sign on into a
microservices environment. That way a user can use each of the microservices 
without having to log in anew every time. In addition, the user token is trans-
ferred automatically for all calls to other REST services to ensure that those
calls can also work with the correct user rights.

• Spring Cloud Config can be used to centralize and dynamically adjust the
configuration of microservices. Section 11.4 already presented technologies,
which configure microservices during deployment. To be able to reproduce
the state of a server at any time, a new server should be started with a new
microservice instance in case of a configuration change instead of dynami-
cally adjusting an existing server. If a server is dynamically adjusted, there is no 
guarantee that new servers are generated with the right configuration as they

Figure 13.2 Overview of  Spring Cloud
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are configured in a different way. Because of these disadvantages the example 
application refrains from using this technology.

• Spring Cloud Bus can send dynamic configuration changes for Spring Cloud
Config. Moreover, the microservices can communicate via Spring Cloud
Bus. However, the example application does not use this technology because
Spring Cloud Config is not used, and the microservices communicate via
REST.

• Spring Cloud Sleuth enables distributed tracing with tools like Zipkin or
Htrace. It can also use a central log storage with ELK (see section 11.2).

• Spring Cloud Zookeeper supports Apache Zookeeper (see section 7.10). This
technology can be used to coordinate and configure distributed services.

• Spring Cloud Consul facilitates Services Discovery using Consul (see section 7.11).

• Spring Cloud Cluster implements leader election and stateful patterns using
technologies like Zookeeper or Consul. It can also use the NoSQL data store
Redis or the Hazelcast cache.

• Spring Cloud for Cloud Foundry provides support for the Cloud Foundry
PaaS. For example, single sign on (SSO) and OAuth2 protected resources are
supported as well as creating managed service for the Cloud Foundry service
broker.

• Spring Cloud Connectors support access to services provided by PaaS like
Heroku or Cloud Foundry.

• Spring Cloud Data Flow helps with the implementation of applications and
microservices for Big Data analysis.

• Spring Cloud Tasks provides features for short lived microservices.

• Finally, Spring Cloud Stream supports messaging using Redis, Rabbit, or
Kafka.

Spring Cloud Netflix

Spring Cloud Netflix offers simple access to Netflix Stack, which has been especially 
designed for the implementation of microservices. The following technologies are 
part of this stack:

• Zuul can implement routing of requests to different services.

• Ribbon serves as a load balancer.
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• Hystrix assists with implementing resilience in microservices.

• Turbine can consolidate monitoring data from different Hystrix servers.

• Feign is an option for an easier implementation of REST clients. It is not lim-
ited to microservices. It is not used in the example application.

• Eureka can be used for Service Discovery.

These technologies are the ones that influence the implementation of the example 
application most.

Try and Experiment

For an introduction into Spring it is worthwhile to check out the Spring Guides 
at https://spring.io/guides/. They show in detail how Spring can be used to 
implement REST services or to realize messaging solutions via JMS. An intro-
duction into Spring Boot can be found at https://spring.io/guides/gs/spring-
boot/. Working your way through these guides provides you with the necessary 
know-how for understanding the additional examples in this chapter.

13.3 Build

The example project is built with the tool Maven.5 The installation of the tool is 
described at https://maven.apache.org/download.cgi. The command mvn package 
in the directory microservice/microservice-demo can be used to download all 
dependent libraries from the Internet and to compile the application.

The configuration of the projects for Maven is saved in files named pom.xml. The 
example project has a Parent-POM in the directory microservice-demo. It contains 
the universal settings for all modules and in addition a list of the example project 
modules. Each microservice is such a module, and some infrastructure servers are 
modules as well. The individual modules have their own pom.xml, which contains 
the module name among other information. In addition, they contain the dependen-
cies, i.e., the Java libraries they use.

5. http://maven.apache.org/

https://www.spring.io/guides/
https://www.spring.io/guides/gs/spring-boot/
https://spring.io/guides/gs/spring-boot/
https://www.maven.apache.org/download.cgi
http://www.maven.apache.org/
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Listing 13.2 Part of  pom.xml Including Dependencies

...

<dependencies>

 <dependency>

    <groupId>org.springframework.cloud</groupId>

   <artifactId>spring-cloud-starter-eureka</artifactId>

 </dependency>

 <dependency>

   <groupId>org.springframework.boot</groupId>

   <artifactId>

spring-boot-starter-data-jpa

</artifactId>

 </dependency>

Listing 13.2 shows a part of a pom.xml, which lists the dependencies of the mod-
ule. Depending on the nature of the Spring Cloud features the project is using, addi-
tional entries have to be added in this part of the pom.xml usually with the groupId
org.springframework.cloud.

The build process results in one JAR file per microservice, which contains the 
compiled code, the configuration, and all necessary libraries. Java can directly start 
such JAR files. Although the microservices can be accessed via HTTP, they do not 
have to be deployed on an application or web server. This part of the infrastructure is 
also contained in the JAR file.

As the projects are built with Maven, they can be imported into all usual Java 
IDEs (integrated development environment) for further development. IDEs simplify 
code changes tremendously.  

Try and Experiment

• Download and compile the example:

Download the example provided at https://github.com/ewolff/microservice.
Install Maven; see https://maven.apache.org/download.cgi. In the subdirec-
tory microservices-demo execute the command mvn package. This will
build the complete project.

• Create a continuous integration server for the project:

https://github.com/ewolff/user-registration-V2 is an example project for
a continuous delivery project. This contains in subdirectory ci-setup a

https://www.github.com/ewolff/microservice
https://www.maven.apache.org/download.cgi
https://www.github.com/ewolff/user-registration-V2
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setup for a continuous integration server (Jenkins) with static code analysis 
(Sonarqube) and Artifactory for the handling of binary artifacts. Integrate 
the microservices project into this infrastructure so that a new build is trig-
gered upon each change.

The next section (13.4) will discuss Vagrant in more detail. This tool is used 
for the continuous integration servers. It simplifies the generation of test 
environments greatly.

13.4 Deployment Using Docker

Deploying microservices is very easy:

• Java has to be installed on the server.

• The JAR file, which resulted from the build, has to be copied to the server.

• A separate configuration file application.properties can be created for further
configurations. It is automatically read out by Spring Boot and can be used
for additional configurations. An application.properties containing default
 values is comprised in the JAR file.

• Finally, a Java process has to start the application out of the JAR file.

Each microservice starts within its own Docker container. As discussed in 
section 11.7, Docker uses Linux containers. In this manner the microservice 
cannot interfere with processes in other Docker containers and has a completely 
independent file system. The Docker image is the basis for this file system. However, 
all Docker containers share the Linux kernel. This saves resources. In comparison 
to an operating system process a Docker container has virtually no additional 
overhead.

Listing 13.3 Dockerfile for a Microservice Used in the Example Application

FROM java 

CMD /usr/bin/java -Xmx400m -Xms400m \

-jar /microservice-demo/microservice-demo-catalog\

/target/microservice-demo-catalog-0.0.1-SNAPSHOT.jar

EXPOSE 8080
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A file called Dockerfile defines the composition of a Docker container.  Listing 13.3 
shows a Dockerfile for a microservice used in the example application:

• FROM determines the base image used by the Docker container. A Dockerfile
for the image java is contained in the example project. It generates a minimal
Docker image with only a JVM installed.

• CMD defines the command executed at the start of the Docker container. In the
case of this example it is a simple command line. This line starts a Java appli-
cation out of the JAR file generated by the build.

• Docker containers are able to communicate with the outside via network ports. 
EXPOSE determines which ports are accessible from outside. In the example
the application receives HTTP requests via port 8080.

13.5 Vagrant

Docker runs exclusively under Linux, because it uses Linux containers. However, 
there are solutions for other operating systems, which start a virtual Linux machine 
and thus enable the use of Docker. This is largely transparent so that the use is prac-
tically identical to the use under Linux. But in addition all Docker containers need to 
be built and started.

To make installing and handling Docker as easy as possible, the example applica-
tion uses Vagrant. Figure 13.3 shows how Vagrant works: 

Vagrant

Virtual 
Machine

e.g.
VirtualBox

e.g. Docker
Software 
(Docker 

Container)

1. Starts

Provisions

2. Starts

Installs

Figure 13.3 How Vagrant Works
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To configure Vagrant a single file is necessary, the Vagrantfile. Listing 13.4 shows 
the Vagrantfile of the example application:

Listing 13.4 Vagrantfile from the Example Application

Vagrant.configure("2") do |config| 

  config.vm.box = " ubuntu/trusty64"

  config.vm.synced_folder ."./microservice-demo", 

    "/microservice-demo", create: true 

   config.vm.network "forwarded_port", 

     guest: 8080, host: 18080 

   config.vm.network "forwarded_port", 

     guest: 8761, host: 18761 

   config.vm.network "forwarded_port", 

guest: 8989, host: 18989

config.vm.provision "docker" do |d| 

d.build_image "--tag=java /vagrant/java"

d.build_image "--tag=eureka /vagrant/eureka"

d.build_image

"--tag=customer-app /vagrant/customer-app" 

d.build_image "

"--tag=catalog-app /vagrant/catalog-app" 

d.build_image "--tag=order-app /vagrant/order-app"

d.build_image "--tag=turbine /vagrant/turbine"

d.build_image "--tag=zuul /vagrant/zuul"

end

config.vm.provision "docker", run: "always" do |d| 

d.run "eureka",

args: "-p 8761:8761"+

"-v /microservice-demo:/microservice-demo" 

d.run "customer-app",

args: "-v /microservice-demo:/microservice-demo"+

"--link eureka:eureka" 

d.run "catalog-app",

args: "-v /microservice-demo:/microservice-demo"+

"--link eureka:eureka" 

d.run "order-app",

args: "-v /microservice-demo:/microservice-demo"+

"--link eureka:eureka" 
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d.run "zuul",

args: "-v /microservice-demo:/microservice-demo"+

" -p 8080:8080 --link eureka:eureka" 

d.run "turbine",

args: "-v /microservice-demo:/microservice-demo"+

" --link eureka:eureka" 

  end

end

• config.vm.box selects a base image—in this case an Ubuntu-13.04 Linux
installation (Trusty Tahr).

• config.vm. synced_folder mounts the directory containing the results of
the Maven build into the virtual machine. In this manner the Docker contain-
ers can directly make use of the build results.

• The ports of the virtual machine can be linked to the ports of the computer
running the virtual machine. The config.vm.network settings can be used
for that. In this manner applications in the Vagrant virtual machine become
accessible as if running directly on the computer.

• config.vm.provision starts the part of the configuration that deals with
the software provisioning within the virtual machine. Docker serves as provi-
sioning tool and is automatically installed within the virtual machine.

• d.build_image generates the Docker images using Dockerfiles. First the base
image java is created. Images for the three microservices customer-app, catalog-
app and order-app follow. The images for the Netflix technologies servers belong 
to the infrastructure: Eureka for Service Discovery, Turbine for monitoring, and
Zuul for routing of client requests.

• Vagrant starts the individual images using d.run. This step is not only performed 
when provisioning the virtual machine, but also when the system is started anew
(run: "always"). The option –v mounts the directory /microservice-demo
into each Docker container so that the Docker container can directly execute
the compiled code. -p links a port of the Docker container to a port of virtual
machine. This link provides access to the Docker container Eureka under the
host name eureka from within the other Docker containers.

In the Vagrant setup the JAR files containing the application code are not con-
tained in the Docker image. The directory /microservice-demo does not belong 
to the Docker container. It resides on the host running the Docker containers, that 
is, the Vagrant VM. It would also be possible to copy these files into the Docker 
image. Afterwards the resulting image could be copied on a repository server and 
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downloaded from there. Then the Docker container would contain all necessary files 
to run the microservice. A deployment in production then only needs to start the 
Docker images on a production server. This approach is used in the Docker Machine 
setup (see section 13.6).

Networking in the Example Application

Figure 13.4 shows how the individual microservices of the example application com-
municate via the network. All Docker containers are accessible in the network via IP 
addresses from the 172.17.0.0/16 range. Docker generates such a network automati-
cally and connects all Docker containers to the network. Within the network all ports 
are accessible that are defined in the Dockerfiles using EXPOSE. The Vagrant virtual 
machine is also connected to this network. Via the Docker links (see Listing 13.4) all 
Docker containers know the Eureka container and can access it under the host name 
eureka. The other microservices have to be looked up via Eureka. All further com-
munication takes place via the IP address.

In addition, the -p option in the d.run entries for the Docker containers in List-
ing 13.4 has connected the ports to the Vagrant virtual machine. These containers 
can be accessed via these ports of the Vagrant virtual machine. To reach them also 
from the computer running the Vagrant virtual machine there is a port mapping 
that links the ports to the local computer. This is accomplished via the config.
vm. network entries in Vagrantfile. The port 8080 of the Docker container “zuul” 
can, for instance, be accessed via the port 8080 in the Vagrant virtual machine. 

Localhost

Vagrant VM

Eureka Zuul

Customer-
App

Catalog-
App

Turbine

Order-App

172.17.0.0/16 Network

8761

8761

8080

8080

18761 18080

8989

8989

18989

Figure 13.4 Network and Ports of  the Example Application
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This port can be reached from the local computer via the port 18080. So the URL 
http://localhost:18080/ accesses this Docker container.   

Try and Experiment

• Run the Example Application

The example application does not need much effort to make it run. A run-
ning example application lays the foundation for the experiments described
later in this chapter.

One remark: The Vagrantfile defines how much RAM and how many CPUs 
the virtual machines gets. The settings v.memory and v.cpus, which are
not shown in the listing, deal with this. Depending on the computer used,
the values should be increased if a lot of RAM or many CPUs are present.
Whenever the values can be increased, they should be elevated in order to
speed the application up.

The installation of Vagrant is described in https://www.vagrantup.com/docs/
installation/index.html. Vagrant needs a virtualization solution like Virtual-
Box. The installation of VirtualBox is explained at https://www.virtualbox
.org/wiki/Downloads. Both tools are free.

The example can only be started once the code has been compiled. Instruc-
tions how to compile the code can be found in the experiment described in
section 13.3. Afterwards you can change into the directory docker-vagrant
and start the example demo using the command vagrant up.

To interact with the different Docker containers, you have to log into the
virtual machine via the command vagrant ssh. This command has to be
executed within the subdirectory docker-vagrant. For this to be possible
an ssh client has to be installed on the computer. On Linux and Mac OS X
such a client is usually already present. In Windows installing git will bring
an ssh client along as described at http://git-scm.com/download/win. After-
wards vagrant ssh should work.

• Investigate Docker Containers

Docker contains several useful commands:

• docker ps provides an overview of the running Docker containers.

• The command docker log "name of Docker container" shows
the logs.

https://www.vagrantup.com/docs/installation/index.html
https://www.vagrantup.com/docs/installation/index.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
http://www.git-scm.com/download/win
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• docker log -f "name of Docker Container" provides incessantly 
the up-to-date log information of the container.

• docker kill "name of the Docker Container" terminates a
Docker container.

• docker rm "name of the Docker Container" deletes all data. For
that all containers first needs to be stopped. After starting the application, 
the log files of the individual Docker containers can be looked at.

• Update Docker Containers

A Docker container can be terminated (docker kill) and the data of
the container deleted (docker rm). The commands have to be executed
inside the Vagrant virtual machine. vagrant provision starts the miss-
ing Docker containers again. This command has to be executed on the host
running Vagrant. If you want to change the Docker container, simply delete
it, compile the code again and generate the system anew using vagrant
provision. Additional Vagrant commands include the following:

• vagrant halt terminates the virtual machine.

• vagrant up starts it again.

• vagrant destroy destroys the virtual machine and all saved data.

• Store Data on Disk

Right now the Docker container does not save the data so that it is lost upon
restarting. The used HSQLDB database can also save the data into a file.
To achieve that a suitable HSQLDB URL has to be used, see http://hsqldb
.org/doc/guide/dbproperties-chapt.html#dpc_connection_url. Spring Boot
can read the JDBC URL out of the application.properties file; see http://
docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql
.html#boot-features-connect-to-production-database. Now the container
can be restarted without data loss. But what happens if the Docker container 
has to be generated again? Docker can save data also outside of the con-
tainer itself; compare https://docs.docker.com/userguide/dockervolumes/.
These options provide a good basis for further experiments. Also another
database than HSQLDB can be used, such as MySQL. For that purpose
another Docker container has to be installed that contains the database.

(continued)

http://www.hsqldb.org/doc/guide/dbproperties-chapt.html#dpc_connection_url
http://www.hsqldb.org/doc/guide/dbproperties-chapt.html#dpc_connection_url
http://www.docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
http://www.docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
http://www.docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html#boot-features-connect-to-production-database
https://www.docs.docker.com/userguide/dockervolumes/
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Figure 13.5 Docker Machine

In addition to adjusting the JDBC URL, a JDBC driver has to be added to 
the project.

• How is the Java Docker Image Built?

The Docker file is more complex than the ones discussed here. https://docs.
docker.com/reference/builder/ demonstrates which commands are available
in Dockerfiles. Try to understand the structure of the Dockerfiles.

13.6 Docker Machine

Vagrant serves to install environments on a developer laptop. In addition to Docker, 
Vagrant can use simple shell scripts for deployment. However, for production envi-
ronments this solution is unsuitable. Docker Machine6 is specialized in Docker. It 
supports many more virtualization solutions as well as some cloud providers.

Figure 13.5 demonstrates how Docker Machine builds a Docker environment: 
First, using a virtualization solution like VirtualBox, a virtual machine is installed. 
This virtual machine is based on boot2docker, a very lightweight version of Linux 
designed specifically as a running environment for Docker containers. On that 
Docker Machine installs a current version of Docker. A command like docker-
machine create --driver virtualbox dev generates, for instance, a new 
environment with the name dev running on a VirtualBox computer. 

The Docker tool now can communicate with this environment. The Docker 
command line tools use a REST interface to communicate with the Docker server. 
Accordingly, the command line tool just has to be configured in a way that enables 

6. https://docs.docker.com/machine/

https://www.docs.docker.com/reference/builder/
https://www.docs.docker.com/reference/builder/
https://www.docs.docker.com/machine/


ptg18144917

13.7 Docker Compose 321

it to communicate with the server in a suitable manner. In Linux or Mac OS X, the 
command eval "$(docker-machine env dev)" is sufficient to configure the 
Docker appropriately. For Windows PowerShell, the command docker-machine.
exe env --shell powershell dev must be used and in Windows cmd docker-
machine.exe env --shell cmd dev.

Docker Machine thus renders it very easy to install one or several Docker envi-
ronments. All the environments can be handled by Docker Machine and accessed 
by the Docker command line tool. As Docker Machine also supports technologies 
like Amazon Cloud or VMware vSphere, it can be used to generate production 
environments.

Try and Experiment 

The example application can also run in an environment created by Docker 
Machine. 

The installation of Docker Machine is described at https://docs.docker.com/
machine/#installation. Docker Machine requires a virtualization solution like 
VirtualBox. How to install VirtualBox can be found at https://www.virtualbox 
.org/wiki/Downloads. Using docker-machine create --virtualbox-

memory "4096" --driver virtualbox dev a Docker environment called 
dev can now be created on a Virtual Box. Without any further configuration the 
storage space is set to 1 GB, which is not sufficient for a larger number of Java 
Virtual Machines. 

docker-machine without parameters displays a help text, and docker-
machine create shows the options for the generation of a new environ-
ment. https://docs.docker.com/machine/get-started-cloud/ demonstrates how 
Docker Machine can be used in a Cloud. This means that the example applica-
tion can also easily be started in a cloud environment. 

At the end of your experiments, docker-machine rm deletes the environment.

13.7 Docker Compose

A microservice-based system comprises typically several Docker containers. These 
have to be generated together and need to be put into production simultaneously.

This can be achieved with Docker Compose.7 It enables the definition of Docker 
containers, which each house one service. YAML serves as format.

7. http://docs.docker.com/compose/

https://www.docs.docker.com/machine/#installation
https://docs.docker.com/machine/#installation
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.docs.docker.com/machine/get-started-cloud/
http://www.docs.docker.com/compose/
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Listing 13.5 Docker Compose Configuration for the Example Application

version: '2'

services:

  eureka:

    build: ../microservice-demo/microservice-demo-eureka-server 

    ports: 

- "8761:8761"

  customer: 

    build: ../microservice-demo/microservice-demo-customer 

    links: 

- eureka

  catalog: 

    build: ../microservice-demo/microservice-demo-catalog 

    links: 

- eureka

  order: 

    build: ../microservice-demo/microservice-demo-order 

    links: 

- eureka

  zuul: 

    build: ../microservice-demo/microservice-demo-zuul-server 

    links: 

- eureka

ports:

- "8080:8080"

  turbine: 

    build: ../microservice-demo/microservice-demo-turbine-

server 

    links: 

- eureka

ports:

- "8989:8989"

Listing 13.5 shows the configuration of the example application. It consists of 
the different services. build references the directory containing the Dockerfile. 
The Dockerfile is used to generate the image for the service. links defines which 
additional Docker containers the respective container should be able to access. All 
containers can access the Eureka container under the name eureka. In contrast to 
the Vagrant configuration there is no Java base image, which contains only a Java 
installation. This is because Docker Compose supports only containers that really 
offer a service. Therefore, this base image has to be downloaded from the Internet. 
Besides, in case of the Docker Compose containers the JAR files are copied into the 
Docker images so that the images contain everything for starting the microservices. 
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The resulting system is very similar to the Vagrant system (see Figure 13.6). The 
Docker containers are linked via their own private network. From the outside, only 
Zuul can be accessed for the processing of requests and Eureka for the dashboard. 
They are running directly on a host that then can be accessed from the outside.

Using docker-compose build the system is created based on the Docker 
 Compose configuration. Thus the suitable images are generated. docker-compose
up then starts the system. Docker Compose uses the same settings as the Docker 
command line tool so it can also work together with Docker Machine. Thus it is 
transparent whether the system is generated on a local virtual machine or somewhere 
in the Cloud.  

Docker Host

Eureka Zuul

Customer-
App

Catalog-
App

Turbine

Order-App

172.17.0.0/16 Network

8761

8761

8080

8080

8989

8989

Figure 13.6 Network and Ports of  the Example Application

Try and Experiment

• Run the Example with Docker Compose

The example application possesses a suitable Docker Compose configura-
tion. Upon the generation of an environment with Docker Machine, Docker 
Compose can be used to create the Docker containers. README.md in the
directory docker describes the necessary procedure.

• Scale the Application

Have a look at the docker-compose scale command. It can scale
the environment. Services can be restarted and logs can be analyzed and

(continued)
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finally stopped. Once you have started the application, you can test these 
functionalities.

• Cluster Environments for Docker

Mesos (http://mesos.apache.org/) together with Mesosphere (http://
mesosphere.com/), Kubernetes (http://kubernetes.io/), or CoreOS (http://
coreos.com/) offers similar options as Docker Compose and Docker
Machine. However they are meant for servers and server clusters. The
Docker Compose and Docker Machine configurations can provide a good
basis for running the application on these platforms.

13.8 Service Discovery

Section 7.11 introduced the general principles of Service Discovery. The example 
application uses Eureka8 for Service Discovery.

Eureka is a REST-based server, which enables services to register themselves so that 
other services can request their location in the network. In essence, each service can 
register a URL under its name. Other services can find the URL by the name of the 
service. Using this URL other services can then send REST messages to this service.

Eureka supports replication onto several servers and caches on the client. This 
makes the system fail-safe against the failure of individual Eureka servers and ena-
bles rapid answer requests. Changes to data have to be replicated to all servers. 
Accordingly, it can take some time until they are really updated everywhere. During 
this time the data is inconsistent: Each server has a different version of the data.

In addition, Eureka supports Amazon Web Services because Netflix uses it in this 
environment. Eureka can, for instance, quite easily be combined with Amazon’s scaling.

Eureka monitors the registered services and removes them from the server list if 
they cannot be reached anymore by the Eureka server.

Eureka is the basis for many other services of the Netflix Stack and for Spring 
Cloud. Through a uniform Service Discovery, other aspects such as routing can eas-
ily be implemented.

Eureka Client

For a Spring Boot application to be able to register with a Eureka server and to 
find other microservices, the application has to be annotated with @Enable
DiscoveryClient or @EnableEurekaClient. In addition, a dependency from 

8. https://github.com/Netflix/Eureka

http://www.mesos.apache.org/
http://www.mesosphere.com/
http://www.mesosphere.com/
http://www.kubernetes.io/
http://www.coreos.com/
http://www.coreos.com/
https://www.github.com/Netflix/Eureka
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spring-cloud-starter-eureka has to be included in the file pom.xml. The 
application registers automatically with the Eureka server and can access other 
microservices. The example application accesses other microservices via a load bal-
ancer. This is described in detail in section 13.11.

Configuration

Configuring the application is necessary to define, for instance, the Eureka server to 
be used. The file application.properties (see Listing 13.6) is used for that. Spring 
Boot reads it out automatically in order to configure the application. This mecha-
nism can also be used to configure one’s own code. In the example application the 
values serve to configure the Eureka client:

• The first line defines the Eureka server. The example application uses the
Docker link, which provides the Eureka server under the host name “eureka.”

• leaseRenewalIntervalInSeconds determines how often data is updated
between client and server. As the data has to be held locally in a cache on each cli-
ent, a new service first needs to create its own cache and replicate it onto the server. 
Afterwards the data is replicated onto the clients. Within a test environment it is
important to track system changes rapidly so that the example application uses
five seconds instead of the preset value of 30 seconds. In production with many
clients, this value should be increased. Otherwise the updates of information will
use a lot of resources, even though the information remains essentially unchanged.

• spring.application.name serves as the name for the service during the reg-
istration at Eureka. During registration the name is converted into capital letters. 
This service would thus be known by Eureka under the name “CUSTOMER.”

• There can be several instances of each service to achieve fail over and load
balancing. The instanceId has to be unique for each instance of a service.
Because of that it contains a random number, which ensures unambiguousness.

• preferIpAddress makes sure that microservices register with their IP
addresses and not with their host names. Unfortunately in a Docker envi-
ronment host names are not easily resolvable by other hosts. This problem is
 circumvented by the use of IP addresses.

Listing 13.6 Part of  application.properties with Eureka Configuration

eureka.client.serviceUrl.defaultZone=http://eureka:8761/eureka/

eureka.instance.leaseRenewalIntervalInSeconds=5 

spring.application.name=catalog 

eureka.instance.metadataMap.instanceId=catalog:${random.value} 

eureka.instance.preferIpAddress=true 
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Eureka Server

The Eureka server (Listing 13.7) is a simple Spring Boot application, which turns into 
a Eureka server via the @EnableEurekaServer annotation. In addition, the server 
needs a dependency on spring-cloud-starter-eureka-server.

Listing 13.7 Eureka Server

@EnableEurekaServer 

@EnableAutoConfiguration 

public class EurekaApplication { 

  public static void main(String[] args) {

    SpringApplication.run(EurekaApplication.class, args); 

  } 

}

The Eureka server offers a dashboard that shows the registered services. In the 
example application, this can be found at http://localhost:18761/ (Vagrant) or on 
Docker host under port 8761 (Docker Compose). Figure 13.7 shows a screenshot of 

Figure 13.7 Eureka Dashboard
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the Eureka dashboards for the example application. The three microservices and the 
Zuul-Proxy, which is discussed in the next section, are present on the dashboard. 

13.9 Communication

Chapter 8, “Integration and Communication,” explains how microservices commu-
nicate with each other and can be integrated. The example application uses REST 
for internal communication. The REST end points can be contacted from outside; 
however, the web interface the system offers is of far greater importance. The REST 
implementation uses HATEOAS. The list containing all orders, for instance, con-
tains links to the individual orders. This is automatically implemented by Spring 
Data REST. However, there are no links to the customer and the items of the order.

Using HATEOAS can go further: the JSON can contain a link to an HTML docu-
ment for each order—and vice versa. In this way a JSON-REST-based service can 
generate links to HTML pages to display or modify data. Such HTML code can, for 
instance, present an item in an order. As the “Catalog” team provides the HTML 
code for the item, the catalog team itself can introduce changes to the presentation—
even if the items are displayed in another module.

REST is also of use here: HTML and JSON are really only representations of the 
same resource that can be addressed by a URL. Via Content Negotiation the right 
resource representation as JSON or HTML can be selected (see section 8.2).

Zuul: Routing

The Zuul9 proxy transfers incoming requests to the respective microservices. The 
Zuul proxy is a separate Java process. To the outside only one URL is visible; how-
ever, internally the calls are processed by different microservices. This enables the 
system to internally change the structure of the microservices while still offering a 
URL to the outside. In addition, Zuul can provide web resources. In the example in 
Figure 13.8, Zuul provides the first HTML page viewed by the user. 

Zuul needs to know which requests to transfer to which microservice. With-
out additional configuration Eureka will forward a request to a URL starting with 
“/customer” to the microservice called CUSTOMER. This renders the internal 
microservice names visible to the outside. However, this routing can also be config-
ured differently. Moreover, Zuul filters can change the requests in order to implement 
general aspects in the system. There is, for instance, an integration with Spring Cloud 
Security to pass on security tokens to the microservices. Such filters can also be used 
to pass on certain requests to specific servers. This makes it possible, for instance, 

9. https://github.com/Netflix/zuul

https://www.github.com/Netflix/zuul
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Figure 13.8 Zuul Proxy in the Example Application

to transfer requests to servers having additional analysis options for investigating 
error situations. In addition, a part of a microservice functionality can be replaced by 
another microservice.

Implementing the Zuul proxy server with Spring Cloud is very easy and analogous 
to the Eureka server presented in Listing 13.7. Instead of @EnableEurekaServer it 
is @EnableZuulProxy, which activates the Zuul-Proxy. As an additional depend-
ency, spring-cloud-starter-zuul has to be added to the application, for 
instance, within the Maven build configuration, which then integrates the remaining 
dependencies of Zuul into the application.

A Zuul server represents an alternative to a Zuul proxy. It does not have routing 
built in, but uses filters instead. A Zuul server is activated by @EnableZuulServer.

Try and Experiment

• Add Links to Customer and Items

Extend the application so that an order contains also links to the customer
and to the items and thus implements HATEOAS better. Supplement the
JSON documents for customers, items, and orders with links to the forms.

• Use the “Catalog” Service to Show Items in Orders

Change the order presentation so that HTML from the “Catalog” service is
used for items. To do so, you have to insert suitable JavaScript code into the
order component, which loads HTML code from the “Catalog.”
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• Implement Zuul Filters

Implement your own Zuul filter (see https://github.com/Netflix/zuul/wiki/
Writing-Filters). The filter can, for instance, only release the requests.
Introduce an additional routing to an external URL. For instance, /google
could redirect to http://google.com/. Compare the Spring Cloud reference
documentation.10

• Authentication and Authorization

Insert an authentication and authorization with Spring Cloud Security.
Compare http://cloud.spring.io/spring-cloud-security/.

10. http://projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html

13.10 Resilience

Resilience means that microservices can deal with the failure of other microservices. 
Even if a called microservice is not available, they will still work. Section 9.5 pre-
sented this topic.

The example application implements resilience with Hystrix.11 This library pro-
tects calls so that no problems arise if a system fails. When a call is protected by 
Hystrix, it is executed in a different thread than the call itself. This thread is taken 
from a distinct thread pool. This makes it comparatively easy to implement a time-
out during a call.

Circuit Breaker

In addition, Hystrix implements a Circuit Breaker. If a call causes an error, the Circuit 
Breaker will open after a certain number of errors. In that case subsequent calls are not 
directed to the called system anymore, but generate an error immediately. After a sleep 
window the Circuit Breaker closes so that calls are directed to the actual system again. 
The exact behavior can be configured.12 In the configuration the error threshold per-
centage can be determined. That is the percentage of calls that have to cause an error 
within the time window for the circuit breaker to open. Also the sleep window can be 
defined, in which the Circuit Breaker is open and not sending calls to the system.

 11. https://github.com/Netflix/Hystrix/

 12. https://github.com/Netflix/Hystrix/wiki/Configuration

https://www.github.com/Netflix/zuul/wiki/Writing-Filters
https://www.github.com/Netflix/zuul/wiki/Writing-Filters
http://www.google.com/
http://www.cloud.spring.io/spring-cloud-security/
http://www.projects.spring.io/spring-cloud/docs/1.0.3/spring-cloud.html
https://www.github.com/Netflix/Hystrix/
https://www.github.com/Netflix/Hystrix/wiki/Configuration
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Hystrix with Annotations

Spring Cloud uses Java annotations from the project hystrix-javanica for the config-
uration of Hystrix. This project is part of hystrix-contrib.13 The annotated methods 
are protected according to the setting in the annotation. Without this approach 
 Hystrix commands would have to be written, which is a lot more effort than just 
adding some annotations to a Java method.

To be able to use Hystrix within a Spring Cloud application, the application has to be 
annotated with @EnableCircuitBreaker respectively @EnableHystrix. Moreo-
ver, the project needs to contain a dependency to spring-cloud-starter-hystrix.

Listing 13.8 shows a section from the class CatalogClient of the “Order” 
microservice from the example application. The method findAll() is annotated 
with @HystrixCommand. This activates the processing in a different thread and the 
Circuit Breaker. The Circuit Breaker can be configured—in the example the number 
of calls, which have to cause an error in order to open the Circuit Breaker, is set to 
2. In addition, the example defines a fallbackMethod. Hystrix calls this method
if the original method generates an error. The logic in findAll() saves the last
result in a cache, which is returned by the fallbackMethod without calling the real
 system. In this way a reply can still be returned when the called microservice fails,
however this reply might no longer be up-to-date.

Listing 13.8 Example for a Method Protected by Hystrix

@HystrixCommand( 

 fallbackMethod = "getItemsCache", 

 commandProperties = { 

 @HystrixProperty( 

name = "circuitBreaker.requestVolumeThreshold", value = "2") }) 

public Collection findAll() { 

  this.itemsCache = ... 

  ... 

  return pagedResources.getContent(); 

}

private Collection getItemsCache() { 

  return itemsCache; 

}

 13. https://github.com/Netflix/Hystrix/tree/master/hystrix-contrib

https://www.github.com/Netflix/Hystrix/tree/master/hystrix-contrib
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Monitoring with the Hystrix Dashboard

Whether a Circuit Breaker is currently open or closed gives an indication of how well 
a system is running. Hystrix offers data to monitor this. A Hystrix system provides 
such data as a stream of JSON documents via HTTP. The Hystrix Dashboard can 
visualize the data in a web interface. The dashboard presents all Circuit Breakers 
along with the number of requests and their state (open/closed) (see Figure 13.9). In 
addition, it displays the state of the thread pools. 

A Spring Boot Application needs to have the annotation @EnableHystrixDash-
board and a dependency to spring-cloud-starter-hystrix-dashboard to be 
able to display a Hystrix Dashboard. That way any Spring Boot application might 
in addition show a Hystrix Dashboard, or the dashboard can be implemented in an 
application by itself.

Turbine

In a complex microservices environment it is not useful that each instance of a 
microservice visualizes the information concerning the state of its Hystrix Circuit 
Breaker. The state of all Circuit Breakers in the entire system should be summarized 
on a single dashboard. To visualize the data of the different Hystrix systems on one 

Figure 13.9 Example for a Hystrix Dashboard
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dashboard, there is the Turbine project. Figure 13.10 illustrates the approach Turbine 
takes: the different streams of the Hystrix enabled microservices are provided at 
URLs like http://<host:port>/hystrix.stream. The Turbine server requests them and 
provides them in a consolidated manner at the URL http://<host:port>/turbine.
stream. This URL can be used by the dashboard in order to display the information 
of all Circuit Breakers of the different microservice instances. 

Turbine runs in a separate process. With Spring Boot the Turbine server is a simple 
application, which is annotated with @EnableTurbine and @EnableEurekaClient. 
In the example application it has the additional annotation @EnableHystrixDash-
board so that it also displays the Hystrix Dashboard. It also needs a dependency on 
spring-cloud-starter-turbine.

Which data is consolidated by the Turbine server is determined by the configura-
tion of the application. Listing 13.9 shows the configuration of the Turbine servers of 
the example project. It serves as a configuration for a Spring Boot application just like 
application.properties files but is written in YAML. The configuration sets the value 
ORDER for turbine.aggregator.clusterConfig. This is the application name in 
Eureka. turbine.aggregator.appConfig is the name of the data stream in the 
Turbine server. In the Hystrix Dashboard a URL like http://172.17.0.10:8989/turbine.
stream?cluster=ORDER has to be used in visualize the data stream. Part of the URL is 
the IP address of the Turbine server, which can be found in the Eureka Dashboard. The 
dashboard accesses the Turbine server via the network between the Docker containers.

Listing 13.9 Configuration application.yml

turbine:

 aggregator: 

  clusterConfig: ORDER 

 appConfig: order

Hystrix
Dashboard

Hystrix
System

Hystrix
System

Hystrix
System

Hystrix
System

Turbine
Server

http://<host:port>/hystrix.stream

http://<host:port>/turbine.stream

Figure 13.10 Turbine Consolidates Hystrix Monitoring Data
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Try and Experiment

• Terminate Microservices

Using the example application generate a number of orders. Find the name
of the “Catalog” Docker container using docke ps. Stop the “Catalog”
Docker container with docker kill. This use is protected by Hystrix.

What happens? What happens if the “Customer” Docker container is ter-
minated as well? The use of this microservice is not protected by Hystrix.

• Add Hystrix to “Customer” Microservice

Protect the use of the “Customer” Docker container with Hystrix also. In
order to do so change the class CustomerClient from the “Order” pro-
ject. CatalogClient can serve as a template.

• Change Hystrix Configuration

Change the configuration of Hystrix for the “Catalog” microservice. There are 
several configuration options.14 Listing 13.8 (CatalogClient from the “Order”
Project) shows the use of the Hystrix annotations. Other time intervals for
opening and closing of the circuit breakers are, for instance, a possible change.

 14. https://github.com/Netflix/Hystrix/wiki/Configuration

 13.11 Load Balancing

For Load Balancing the example application uses Ribbon.15 Many load balancers are 
proxy based. In this model the clients send all calls to a Load Balancer. The Load 
Balancer runs as a distinct server and forwards the request to a web server—often 
depending on the current load of the web servers.

Ribbon implements a different model called client-side load balancing: The cli-
ent has all the information to communicate with the right server. The client calls the 
server directly and distributes the load by itself to different servers. In the architec-
ture there is no bottleneck as there is no central server all calls would have to pass. In 
conjunction with data replication by Eureka, Ribbon is quite resilient: As long as the 
client runs, it can send requests. The failure of a proxy load balancer would stop all 
calls to the server.

 15. https://github.com/Netflix/ribbon/wiki

https://github.com/Netflix/Hystrix/wiki/Configuration
https://github.com/Netflix/ribbon/wiki
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Dynamic scaling is very simple within this system: A new instance is started, 
enlists itself at Eureka, and then the Ribbon Clients redirect load to the instance.

As already discussed in the section dealing with Eureka (section 13.8), data can be 
inconsistent over the different servers. Because data is not up to date, servers can be 
contacted, which really should be left out by the Load Balancing.

Ribbon with Spring Cloud

Spring Cloud simplifies the use of Ribbon. The application has to be annotated with 
@RibbonClient. While doing so, a name for the application can be defined. In addi-
tion, the application needs to have a dependency on spring-cloud-starter-
ribbon. In that case an instance of a microservice can be accessed using code like 
that in Listing 13.10. For that purpose, the code uses the Eureka name of the 
microservice.

Listing 13.10 Determining a Server with Ribbon Load Balancing

ServiceInstance instance 

 = loadBalancer.choose("CATALOG"); 

String url = "http://" + instance.getHost() + ":" + 

 instance.getPort() + "/catalog/";

The use can also be transparent to a large extent. To illustrate this Listing 13.11 
shows the use of RestTemplates with Ribbon. This is a Spring class, which can be 
used to call REST services. In the Listing the RestTemplate of Spring is injected into 
the object as it is annotated with @Autowired. The call in callMicroservice() 
looks like it is contacting a server called “stores.” In reality this name is used to search 
a server at Eureka, and the REST call is sent to this server. This is done via Ribbon so 
that the load is also distributed across the available servers.

Listing 13.11 Using Ribbon with RestTemplate

@RibbonClient(name = "ribbonApp") 

 … // Left out other Spring Cloud / Boot Annotations 

public class RibbonApp {

 @Autowired 

   private RestTemplate restTemplate;

   public void callMicroservice() { 

     Store store = restTemplate.

getForObject("http://stores/store/1", Store.class);

   }

}
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Try and Experiment

• Load Balance to an Additional Service Instance

The “Order” microservice distributes the load onto several instances of the
“Customer and Catalog” microservice—if several instances exist. Without
further measures, only a single instance is started. The “Order” microservice 
shows in the log which “Catalog” or “Customer” microservice it contacts.
Initiate an order and observe which services are contacted.

Afterwards start an additional “Catalog” microservice. You can do that using
the command: docker run -v /microservice-demo:/microservice-
demo --link eureka:eureka catalog-app in Vagrant. For Docker
Compose docker-compose scale catalog=2 should be enough. Verify
whether the container is running and observe the log output.

For reference: “Try and Experiment” in section 13.4 shows the main com-
mands for using Docker. Section 13.7 shows how to use Docker Compose.

• Create Data

Create a new dataset with a new item. Is the item always displayed in
the selection of items? Hint: The database runs within the process of
the microservice—that is, each microservice instance possesses its own
database.

13.12 Integrating Other Technologies

Spring Cloud and the entire Netflix Stack are based on Java. Thus, it seems impossi-
ble for other programming languages and platforms to use this infrastructure. How-
ever, there is a solution: the application can be supplied with a sidecar. The sidecar is 
written in Java and uses Java libraries to integrate into a Netflix-based infrastructure. 
The sidecar, for instance, takes care of registration and finding other microservices in 
Eureka. Netflix itself offers for this purpose the Prana project.16 The Spring Cloud 
solution is explained in the documentation.17 The sidecar runs in a distinct process 
and serves as an interface between the microservice itself and the microservice infra-

 16. http://github.com/Netflix/Prana/

 17. http://cloud.spring.io/spring-cloud-static/Brixton.SR5/#_polyglot_support_with_sidecar

http://github.com/Netflix/Prana/
http://cloud.spring.io/spring-cloud-static/Brixton.SR5/#_polyglot_support_with_sidecar
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structure. In this manner other programming languages and platforms can be easily 
integrated into a Netflix or Spring Cloud environment.

13.13 Tests

The example application contains test applications for the developers of microser-
vices. These do not need a microservice infrastructure or additional microservices—
in contrast to the production system. This enables developers to run each microservice 
without a complex infrastructure.

The class OrderTestApp in the “Order” project contains such a test appli-
cation. The applications contain their own configuration file application-test.
properties with specific settings within the directory src/test/resources. The 
settings prevent that the applications register with the Service Discovery Eureka. 
Besides, they contain different URLs for the dependent microservices. This con-
figuration is automatically used by the test application as it uses a Spring profile 
called “test.” All JUnit tests use these settings as well so that they can run without 
dependent services.

Stubs

The URLs for the dependent microservices in the test application and the JUnit tests 
point to stubs. These are simplified microservices, which only offer a part of the 
functionalities. They run within the same Java process as the real microservices or 
JUnit tests. Therefore, only a single Java process has to be started for the develop-
ment of a microservice, analogous to the usual way of developing with Java. The 
stubs can be implemented differently—for instance, using a different programming 
language or even a web server, which returns certain static documents representing 
the test data (see section 10.6). Such approaches might be better suited for real-life 
applications.

Stubs facilitate development. If each developer needs to use a complete environ-
ment including all microservices during development, a tremendous amount of hard-
ware resources and a lot of effort to keep the environment continuously up to date 
would be necessary. The stubs circumvent this problem as no dependent microservices 
are needed during development. Due to the stubs the effort to start a microservice is 
hardly bigger than the one for a regular Java application.

In a real project the teams can implement stubs together with the real micro-
services. The “Customer” team can implement a stub for the “Customer” micro-
service in addition to the real service, which is used by the other microservices for 
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development. This ensures that the stub largely resembles the microservice and is 
updated if the original service is changed. The stub can be taken care of in a differ-
ent Maven projects, which can be used by the other teams.

Consumer-Driven Contract Test

It has to be ensured that the stubs behave like the microservices they simulate. In 
addition, a microservice has to define the expectations regarding the interface of a 
different microservice. This is achieved by consumer-driven contract tests (see 
section 10.7). These are written by the team that uses the microservices. In the exam-
ple this is the team that is responsible for the “Order” microservice. In the “Order” 
micro service the consumer-driven contract tests are found in the classes Catalog-
ConsumerDrivenContractTest and CustomerConsumerDrivenContract-

Test. They run there to test the stubs of the “Customer and Catalog” microservice 
for correctness.

Even more important than the correct functioning of the stubs is the correct func-
tioning of the microservices themselves. For that reason, the consumer-driven con-
tract tests are also contained in the “Customer and Catalog” project. There they run 
against the implemented microservices. This ensures that the stubs as well as the real 
microservices are in line with this specification. In case the interface is supposed to 
be changed, these tests can be used to confirm that the change does not break the 
calling microservice. It is up to the used microservices—“Customer and Catalog” 
in the example—to comply with these tests. In this manner the requirements of the 
“Order” microservice in regard to the “Customer and Catalog” microservice can be 
formally defined and tested. The consumer-driven contract tests serve in the end as 
formal definition of the agreed interface.

In the example application the consumer-driven contract tests are part of the 
“Customer and Catalog” projects in order to verify that the interface is correctly 
implemented. Besides they are part of the “Order” project for verifying the correct 
functioning of the stubs. In a real project copying the tests should be prevented. The 
consumer-driven contract tests can be located in one project together with the tested 
microservices. Then all teams need to have access to the microservice projects to be 
able to alter the tests. Alternatively, they are located within the projects of the differ-
ent teams that are using the microservice. In that case the tested microservice has to 
collect the tests from the other projects and execute them.

In a real project it is not really necessary to protect stubs by consumer-driven 
contract tests, especially as it is the purpose of the stubs to offer an easier imple-
mentation than the real microservices. Thus the functionalities will be different and 
conflict with consumer-driven contract tests.
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Try and Experiment

• Insert a field into “Catalog” or “Customer” data. Is the system still working? 
Why?

• Delete a field in the implementation of the server for “Catalog” or
 “Customer.” Where is the problem noticed? Why?

• Replace the home-grown stubs with stubs, that use a tool from Section 10.6.

• Replace the consumer-driven contract tests with tests that use a tool from
Section 10.7.

13.14  Experiences with JVM-Based Microservices in the 
Amazon Cloud (Sascha Möllering)

By Sascha Möllering, zanox AG

During the last months zanox has implemented a lightweight microservices archi-
tecture in Amazon Web Services (AWS), which runs in several AWS regions. Regions 
divide the Amazon Cloud into sections like US-East or EU-West, which each have 
their own data centers. They work completely independently of each other and do 
not exchange any data directly. Different AWS regions are used because latency is very 
important for this type of application and is minimized by latency-based routing. 
In addition, it was a fundamental aim to design the architecture in an event-driven 
manner. Furthermore, the individual services were intended not to communicate 
directly but rather to be separated by message queues respectively bus systems. An 
Apache Kafka cluster as message bus in the zanox data center serves as central point 
of synchronization for the different regions. Each service is implemented as a state-
less application. The state is stored in external systems like the bus systems, Amazon 
ElastiCache (based on the NoSQL database Redis), the data stream processing tech-
nology Amazon Kinesis, and the NoSQL database Amazon DynamoDB. The JVM 
serves as basis for the implementation of the individual services. We chose Vert.x and 
the embedded web server Jetty as frameworks. We developed all applications as self-
contained services so that a Fat JAR, which can easily be started via java –jar, is 
generated at the end of the build process.

There is no need to install any additional components or an application server. 
Vert.x serves as basis framework for the HTTP part of the architecture. Within the 
application work is performed almost completely asynchronously to achieve high 
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performance. For the remaining components we use Jetty as framework: These act 
either as Kafka/Kinesis consumer or update the Redis cache for the HTTP layer. 
All called applications are delivered in Docker containers. This enables the use of a 
uniform deployment mechanism independent of the utilized technology. To be able 
to deliver the services independently in the different regions, an individual Docker 
 Registry storing the Docker images in a S3 bucket was implemented in each region. 
S3 is a service that enables the storage of large file on Amazon server.

If you intend to use Cloud Services, you have to address the question of whether 
you want to use the managed services of a cloud provider or develop and run the 
infrastructure yourself. zanox decided to use the managed services of a cloud pro-
vider because building and administrating proprietary infrastructure modules does 
not provide any business value. The EC2 computers of the Amazon portfolio are pure 
infrastructure. IAM, on the other hand, offers comprehensive security mechanisms. 
In the deployed services the AWS Java SDK is used, which enables it, in combination 
with IAM roles for EC2,18 to generate applications that are able to access the man-
aged services of AWS without using explicit credentials. During initial bootstrapping 
an IAM role containing the necessary permissions is assigned to an EC2 instance. Via 
the Metadata Service19 the AWS SDK is given the necessary credentials. This enables 
the application to access the managed services defined in the role. Thus, an applica-
tion can be that sends metrics to the monitoring system Amazon Cloud Watch and 
events to the data streaming processing solution Amazon Kinesis without having to 
roll out explicit credentials together with the application.

All applications are equipped with REST interfaces for heartbeats and health 
checks so that the application itself as well as the infrastructure necessary for the 
availability of the application can be monitored at all times: Each application uses 
health checks to monitor the infrastructure components it uses. Application scal-
ing is implemented via Elastic Load Balancing (ELB) and AutoScaling20 to be able 
to achieve a fine-grained application depending on the concrete load. AutoScaling 
starts additional EC2 instances if needed. ELB distributes the load between the 
instances. The AWS ELB service is not only suitable for web applications working 
with HTTP protocols but for all types of applications. A health check can also be 
implemented based on a TCP protocol without HTTP. This is even simpler than an 
HTTP healthcheck.

Still the developer team decided to implement the ELB healthchecks via HTTP 
for all services to achieve the goal that they all behave exactly the same, independent 
of the implemented logic, the used frameworks, and the language. It is also quite 

 18. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

 19. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

 20. https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-add-elb-healthcheck.html

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/as-add-elb-healthcheck.html
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possible that in the future applications that do not run on JVM and, for instance, use 
Go or Python as programming languages, are deployed in AWS.

For the ELB healthcheck zanox uses the application heartbeat URL. As a result, 
traffic is only directed to the application respectively potentially necessary infrastruc-
ture scaling operations are only performed once the EC2 instance with the application 
has properly been started and the heartbeat was successfully monitored.

For application monitoring Amazon CloudWatch is a good choice as CloudWatch 
alarms can be used to define scaling events for the AutoScaling Policies, that is, the 
infrastructure scales automatically based on metrics. For this purpose, EC2 basis 
metrics like CPU can be used, for instance. Alternatively, it is possible to send your 
own metrics to CloudWatch. For this purpose, this project uses a fork of the project 
jmxtrans-agent,21 which uses the CloudWatch API to send JMX metrics to the moni-
toring system. JMX (Java Management Extension) is the standard for monitoring 
and metrics in the Java world. Besides metrics are sent from within the application 
(i.e., from within the business logic) using the library Coda Hale Metrics22 and a 
module for the CloudWatch integration by Blacklocus.23

A slightly different approach is chosen for the logging: In a cloud environment it 
is never possible to rule out that a server instance is abruptly terminated. This often 
causes the sudden loss of data that are stored on the server. Log files are an example 
for that. For this reason, a logstash-forwarder24 runs in parallel to the core applica-
tion on the server for sending the log entries to our ELK-Service running in our own 
data center. This stack consists of Elasticsearch for storage, Logstash for parsing the 
log data, and Kibana for UI-based analysis. ELK is an acronym for Elasticsearch, 
Logstash, und Kibana. In addition, a UUID is calculated for each request respectively 
each event in our HTTP layer so that log entries can still be assigned to events after 
EC2 instances have ceased to exist.

Conclusion

The pattern of microservices architectures fits well to the dynamic approach of 
Amazon Cloud if the architecture is well designed and implemented. The clear 
advantage over implementing in your own data center is the infrastructure flexibility. 
This makes it possible to implement a nearly endlessly scalable architecture, which is, 
in addition, very cost efficient.

 21. https://github.com/SaschaMoellering/jmxtrans-agent

 22. https://dropwizard.github.io/metrics/

 23. https://github.com/blacklocus/metrics-cloudwatch

 24. https://github.com/elastic/logstash-forwarder

https://github.com/SaschaMoellering/jmxtrans-agent
https://dropwizard.github.io/metrics/
https://github.com/blacklocus/metrics-cloudwatch
https://github.com/elastic/logstash-forwarder
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13.15 Conclusion

The technologies used in the example provide a very good foundation for imple-
menting a microservices architecture with Java. Essentially, the example is based on 
the Netflix Stack, which has demonstrated its efficacy for years already in one of the 
largest websites.

The example demonstrates the interplay of different technologies for Service Dis-
covery, Load Balancing, and resilience—as well as an approach for testing micro-
services and for their execution in Docker containers. The example is not meant to be 
directly useable in a production context but is first of all designed to be very easy to 
set up and get running. This entails a number of compromises. However, the example 
serves very well as the foundation for further experiments and the testing of ideas.

In addition, the example demonstrates a Docker-based application deployment, 
which is a good foundation for microservices.

Essential Points

• Spring, Spring Boot, Spring Cloud, and the Netflix Stack offer a well- integrated 
stack for Java-based microservices. These technologies solve all typical chal-
lenges posed during the development of microservices.

• Docker-based deployment is easy to implement, and in conjunction with
Docker Machine and Docker Compose, can be used for deployment in the
Cloud, too.

• The example application shows how to test microservices using consumer-
driven contract tests and stubs without special tools. However, for real-life
projects tools might be more useful.

Try and Experiment

Add Log Analysis

The log analysis of all log files is important for running a microservice sys-
tem. At https://github.com/ewolff/user-registration-V2 an example project is 
provided. The subdirectory log-analysis contains a setup for an ELK (Elastic-
search, Logstash und Kibana) stack-based log analysis. Use this approach to 
add a log analysis to the microservice example.

(continued)

https://github.com/ewolff/user-registration-V2
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Add Monitoring

In addition, the example project from the continuous delivery book contains 
graphite an installation of Graphite for monitoring in the subdirectory. Adapt 
this installation for the microservice example.

Rewrite a Service

Rewrite one of the services in a different programming language. Use the 
consumer-driven contract tests (see sections 13.13 and 10.7) to protect the 
implementation. Make use of a sidecar for the integration into the  technology 
stack (see section 13.12).
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Section 14.1 discusses the advantages of nanoservices and why nanoservices can be 
useful. Section 14.2 defines nanoservices and distinguishes them from microservices. 
Section 14.3 focuses on Amazon Lambda, a cloud technology that can be used with 
Python, JavaScript, or Java. Here each function call is billed instead of renting virtual 
machines or application servers. OSGi (section 14.4) modularizes Java applications 
and also provides services. Another Java technology for nanoservices is Java EE 
(section 14.5), if used correctly. Vert.x, another option, (section 14.6) also runs on 
the JVM but supports a broad variety of programming languages in addition to 
Java. Section 14.7 focuses on the programming language Erlang, which is quite old. 
The architecture of Erlang enables the implementation of nanoservices. Seneca 
(section 14.8) has a similar approach as Erlang but is based on JavaScript and has 
been specially designed for the development of nanoservices.

The term “microservice” is not uniformly defined. Some people believe microser-
vices should be extremely small services—that is, ten to a hundred lines of code 
(LoC). This book calls such services “nanoservices.” The distinction between 
microservices and nanoservices is the focus of this chapter. A suitable technology 
is an essential prerequisite for the implementation of small services. If the technol-
ogy, for instance, combines several services into one operating system process, the 
resource utilization per service can be decreased and the service rollout in produc-
tion facilitated. This decreases the expenditure per service, which enables support of 
a large number of small nanoservices.

Chapter 14

Technologies for Nanoservices
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14.1 Why Nanoservices?

Nanoservices are well in line with the previously discussed size limits of microser-
vices: Their size is below the maximum size, which was defined in section 3.1 and 
depends, for instance, on the number of team members. In addition, a microservice 
should be small enough to still be understood by a developer. With suitable technolo-
gies the technical limits for the minimal size of a microservice, which were discussed 
in section 3.1, can be further reduced.

Very small modules are easier to understand and therefore easier to maintain and 
change. Besides, smaller microservices can be replaced more easily by new imple-
mentations or a rewrite. Accordingly, systems consisting of minimally sized nanoser-
vices can more easily be developed further.

There are systems that successfully employ nanoservices. In fact, in practice it is 
rather the too large modules that are the source of problems and prevent the success-
ful further development of a system. Each functionality could be implemented in 
its own microservice—each class or function could become a separate microservice. 
Section 9.2 demonstrated that it can be sensible for CQRS to implement a microser-
vice that only reads data of a certain type. Writing the same type of data can already 
be implemented in another microservice. So microservices can really have a pretty 
small scope.

Minimum Size of Microservices is Limited

What are reasons against very tiny microservices? Section 3.1 identified factors that 
render microservices below a certain size not practicable:

• The expenditure for infrastructure increases. When each microservice is a
separate process and requires infrastructure, such as an application server and
monitoring, the expenditure necessary for running hundreds or even thou-
sands of microservices becomes too large. Therefore, nanoservices require
technologies that make it possible to keep the expenditure for infrastructure
per individual service as small as possible. In addition, a low resource utiliza-
tion is desirable. The individual services should consume as little memory and
CPU as possible.

• In the case of very small services a lot of communication via the network is
required. That has a negative influence on system performance. Consequently,
when working with nanoservices communication between the services should not 
occur via the network. This might result in less technological freedom. When all
nanoservices run in a single process, they are usually required to employ the same
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technology. Such an approach also affects system robustness. When several ser-
vices run in the same process, it is much more difficult to isolate them from each 
other. A nanoservice can use up so many resources that other nanoservices do 
not operate error free anymore. When two nanoservices run in the same process, 
the operating system cannot intervene in such situations. In addition, a crash of 
a nanoservice can result in the failure of additional nanoservices. If the processes 
crash, their crash will affect all nanoservices running in the same process.

The technical compromises can have a negative effect on the properties of nanoser-
vices. In any case the essential feature of microservices has to be  maintained—
namely, the independent deployment of the individual services.

Compromises

In the end the main task is to identify technologies that minimize the overhead per 
nanoservice and at the same time preserve as many advantages of microservices as 
possible.

In detail the following points need to be achieved:

• The expenditure for infrastructure such as monitoring and deployment has to
be kept low. It has to be possible to bring a new nanoservice into production
without much effort and to have it immediately displayed in monitoring.

• Resource utilization, for instance in regard to memory, should be as low as
possible to enable a large number of nanoservices with little hardware. This
does not only make the production environment cheaper but also facilitates the 
generation of test environments.

• Communication should be possible without the network. This does not only
improve latency and performance but increases the reliability of the communi-
cation between nanoservices because it is not influenced by network failures.

• Concerning isolation, a compromise has to be found. The nanoservices should
be isolated from each other so that one nanoservice cannot cause another
nanoservice to fail. Otherwise, a single nanoservice might cause the entire
system to break down. However, achieving a perfect isolation might be less
important than having a lower expenditure for infrastructure, a low resource
utilization, and the other advantages of nanoservices.

• Using nanoservices can limit the choice of programming languages, platforms,
and frameworks. Microservices, on the other hand, enable, in principle, a free
choice of technology.
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Desktop Applications

Nanoservices enable the use of microservice approaches in areas in which microser-
vices themselves are hardly useable. One example is the possibility of dividing a 
desktop application in nanoservices. OSGi (section 14.4) is, for instance, used for 
desktop and even for embedded applications. A desktop application consisting of 
microservices is, on the other hand, probably too difficult to deploy to really use it 
for desktop applications. Each microservice has to be deployed by itself, and that is 
hardly possible for a large number of desktop clients—some of which might even be 
located in other companies. Moreover, the integration of several microservices into a 
coherent desktop application is hard—in particular if they are implemented as 
 completely separated processes.

14.2 Nanoservices: Definition

A nanoservice differs from a microservice. It compromises in certain areas. One of 
these areas is isolation: multiple nanoservices run on a single virtual machine or in a 
single process. Another area is technology freedom: nanoservices use a shared 
 platform or programming language. Only with these limitations does the use of 
nanoservices become feasible. The infrastructure can be so efficient that a much 
larger number of services is possible. This enables the individual services to be 
smaller. A nanoservice might comprise only a few lines of code.

However, by no means may the technology require a joint deployment of nanoser-
vices, for independent deployment is the central characteristic of microservices and 
also nanoservices. Independent deployment constitutes the basis for the essential 
advantages of microservices: Teams that can work independently, a strong modulari-
zation, and as consequence a sustainable development.

Therefore, nanoservices can be defined as follows:

• Nanoservices compromise in regard to some microservice properties such as
isolation and technology freedom. However, nanoservices still have to be inde-
pendently deployable.

• The compromises enable a larger number of services and therefore for smaller
services. Nanoservices can contain just a few lines of code.

• To achieve this, nanoservices use highly efficient runtime environments. These
exploit the restrictions of nanoservices in order to enable more and smaller
services.
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Thus, nanoservices depend a lot on the employed technologies. The technology 
enables certain compromises in nanoservices and therefore nanoservices of a certain 
size. Therefore, this chapter is geared to different technologies to explain the possible 
varieties of nanoservices.

The objective of nanoservices is to amplify a number of advantages of microser-
vices. Having even smaller deployment units decreases the deployment risk  further, 
facilitates deployment even more, and achieves better, understandable, and 
 replaceable services. In addition, the domain architecture will change: A Bounded 
Context that might consist of one or a few microservices will now comprise a multi-
tude of nanoservices that each implement a very narrowly defined functionality.

The difference between microservices and nanoservices is not strictly defined: 
If two microservices are deployed in the same virtual machine, efficiency increases, 
and isolation is compromised. The two microservices now share an operating sys-
tem instance and a virtual machine. When one of the microservices uses up the 
resources of the virtual machine, the other microservice running on the same virtual 
machine will also fail. This is the compromise in terms of isolation. So in a sense 
these microservices are already nanoservices.

By the way, the term “nanoservice” is not used very much. This book uses the 
term “nanoservice” to make it plain that there are modularizations that are similar 
to microservices but differ when it comes to detail, thereby enabling even smaller 
 services. To distinguish these technologies with their compromises clearly from 
“real” microservices the term “nanoservice” is useful.

14.3 Amazon Lambda

Amazon Lambda1 is a service in the Amazon Cloud. It is available worldwide in all 
Amazon computing centers.

Amazon Lambda can execute individual functions that are written in Python, 
JavaScript with Node.js, or Java 8 with OpenJDK. The code of these functions 
does not have dependencies on Amazon Lambda. Access to the operating system is 
 possible. The computers the code is executed on contain the Amazon Web Services 
SDK as well as ImageMagick for image manipulations. These functionalities can be 
used by Amazon Lambda applications. Besides, additional libraries can be installed.

Amazon Lambda functions have to start quickly because it can happen that they 
are started for each request. Therefore, the functions also may not hold a state.

1. http://aws.amazon.com/lambda

http://aws.amazon.com/lambda


ptg18144917

Chapter 14 Technologies for Nanoservices348

Thus there are no costs when there are no requests that cause an execution of the 
functions. Each request is billed individually. Currently, the first million requests are 
free. The price depends on the required RAM and processing time.

Calling Lambda Functions

Lambda functions can be called directly via a command line tool. The processing 
occurs asynchronously. The functions can return results via different Amazon func-
tionalities. For this purpose, the Amazon Cloud contains messaging solutions such 
as Simple Notification Service (SNS) or Simple Queue Service (SQS).

The following events can trigger a call of a Lambda function:

• In Simple Storage Service (S3) large files can be stored and downloaded. Such
actions trigger events to which an Amazon Lambda function can react.

• Amazon Kinesis can be used to administrate and distribute data streams.
This technology is meant for the real time processing of large data amounts.
Lambda can be called as reaction to new data in these streams.

• With Amazon Cognito it is possible to use Amazon Lambda to provide simple
back ends for mobile applications.

• The API Gateway provides a way to implement REST APIs using Amazon
Lambda.

• Furthermore, it is possible to have Amazon Lambda functions be called at reg-
ular intervals.

• As a reaction to a notification in Simple Notification Service (SNS), an Ama-
zon Lambda function can be executed. As there are many services which can
provide such notifications, this makes Amazon Lambda useable in many
scenarios.

• DynamoDB is a database within the Amazon Cloud. In case of changes to
the database it can call Lambda functions. So Lambda functions essentially
become database triggers.

Evaluation for Nanoservices

Amazon Lambda enables the independent deployment of different functions with-
out problems. They can also bring their own libraries along.
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The technological expenditure for infrastructure is minimal when using this tech-
nology: A new version of an Amazon Lambda function can easily be deployed with 
a command line tool. Monitoring is also simple: the functions are immediately inte-
grated into Cloud Watch. Cloud Watch is offered by Amazon to create metrics of 
Cloud applications and to consolidate and monitor log files. In addition, alarms 
can be defined based on these data that can be forwarded by SMS or email. Since 
all Amazon services can be contacted via an API, monitoring or deployment can be 
automated and integrated into their own infrastructures.

Amazon Lambda provides integration with the different Amazon services such 
as S3, Kinesis, and DynamoDB. It is also easily possible to contact an Amazon 
Lambda function via REST using the API Gateway. However, Amazon Lambda 
exacts that Node.js, Python, or Java are used. This profoundly limits the technology 
freedom.

Amazon Lambda offers an excellent isolation of functions. This is also necessary 
since the platform is used by many different users. It would not be acceptable for a 
Lambda function of one user to negatively influence the Lambda functions of other 
users.

Conclusion

Amazon Lambda enables you to implement extremely small services. The overhead 
for the individual services is very small. Independent deployment is easily possible. 
A Python, JavaScript, or Java function is the smallest deployment unit supported by 
Amazon Lambda—it is hardly possible to make them any smaller. Even if there is a 
multitude of Python, Java, or JavaScript functions, the expenditure for the deploy-
ments remains relatively low.

Amazon Lambda is a part of the Amazon ecosystem. Therefore, it can be 
supplemented by technologies like Amazon Elastic Beanstalk. There, microservices 
can run that can be larger and written in other languages. In addition, a 
combination with Elastic Computing Cloud (EC2) is possible. EC2 offers virtual 
machines on which any software can be installed. Moreover, there is a broad choice 
in regard to databases and other services that can be used with little additional 
effort. Amazon Lambda defines itself as a supplement of this tool kit. In the end 
one of the crucial advantages of the Amazon Cloud is that nearly every possible 
infrastructure is available and can easily be used. Thus developers can concentrate 
on the development of specific functionalities while most standard components can 
just be rented.  
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14.4 OSGi

OSGi4 is a standard with many different implementations.5 Embedded systems often 
use OSGi. Also the development environment Eclipse is based on OSGi, and many 
Java desktop applications use the Eclipse framework. OSGi defines a modularization 
within the JVM (Java Virtual Machine). Even though Java enables a division of code 
into classes or packages, there is no modular concept for larger units.

The OSGi Module System

OSGi supplements Java by such a module system. To do so OSGi introduces bundles 
into the Java world. Bundles are based on Java’s JAR files, which comprise code of 
multiple classes. Bundles have a number of additional entries in the file META-INF/
MANIFEST.MF, which each JAR file should contain. These entries define which 
classes and interfaces the bundle exports. Other bundles can import these classes and 
interfaces. Therefore OSGi extends Java with a quite sophisticated module concept 
without inventing entirely new concepts.

4. http://www.osgi.org/

5. http://en.wikipedia.org/wiki/OSGi#Current_framework_implementations

Try and Experiment

• There is a comprehensive tutorial2 that illustrates how to use Amazon
Lambda. It does not only demonstrate simple scenarios, but it also shows
how to use complex mechanisms such as different Node.js libraries, imple-
menting REST services, or how to react to different events in the Amazon
system. Amazon offers cost-free quotas of most services to new customers.
In case of Lambda each customer gets such a large free quota that it is fully
sufficient for tests and first getting to know the technology. Also note that
the first million calls during a month are free. However, you should check
the current pricing.3

2. http://aws.amazon.com/lambda/getting-started/

3. https://aws.amazon.com/lambda/pricing/

http://www.osgi.org/
http://en.wikipedia.org/wiki/OSGi#Current_framework_implementations
http://aws.amazon.com/lambda/getting-started/3
https://aws.amazon.com/lambda/pricing/
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Listing 14.1 OSGi MANIFEST.MF

Bundle-Name: A service 

Bundle-SymbolicName: com.ewolff.service 

Bundle-Description: A small service 

Bundle-ManifestVersion: 2 

Bundle-Version: 1.0.0 

Bundle-Acltivator: com.ewolff.service.Activator 

Export-Package: com.ewolff.service.interfaces;version="1.0.0" 

Import-Package: com.ewolff.otherservice.interfaces;

version="1.3.0"

Listing 14.1 shows an example of a MANIFEST.MF file. It contains the descrip-
tion and name of the bundle and the bundle activator. This Java class is executed 
upon the start of the bundle and can initialize the bundle. Export-Package 
 indicates which Java packages are provided by this bundle. All classes and interfaces 
of these packages are available to other bundles. Import-Package serves to import 
packages from another bundle. The packages can also be versioned.

In addition to interfaces and classes bundles can also export services. However, an 
entry in MANIFEST.MF is not sufficient for this. Code has to be written. Services 
are only Java objects in the end. Other bundles can import and use the services. Also 
calling the services happens in the code.

Bundles can be installed, started, stopped, and uninstalled at runtime. Therefore, 
bundles are easy to update: Stop and uninstall the old version, then install a new 
 version and start. However, if a bundle exports classes or interfaces and another 
bundle uses these, an update is not so simple anymore. All bundles that use classes 
or interfaces of the old bundle and now want to use the newly installed bundle have 
to be restarted.

Handling Bundles in Practice

Sharing code is by far not as important for microservices as the use of services. 
 Nevertheless at least the interface of the services has to be offered to other bundles.

In practice a procedure has been established where a bundle only exports the inter-
face code of the service as classes and Java interfaces. Another bundle contains the 
implementation of the service. The classes of the implementation are not exported. 
The service implementation is exported as OSGi service. To use the service a bundle 
has to import the interface code from the one bundle and the service from the other 
bundle (see Figure 14.1).
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OSGi enables restarting services. With the described approach the implementa-
tion of the service can be exchanged without having to restart other bundles. These 
bundles only import the Java interfaces and classes of the interface code. That code 
does not change for a new service implementation so that restarting is not necessary 
anymore. That way the access to services can be implemented in such a manner that 
the new version of the service is, in fact, used.

With the aid of OSGi blueprints6 or OSGi declarative services7 these details can 
be abstracted away when dealing with the OSGi service model. This facilitates the 
handling of OSGi. These technologies, for instance, render it much easier to handle 
the restart of a service or its temporary failure during the restart of a bundle. 

An independent deployment of services is possible but also laborious since inter-
face code and service implementation have to be contained in different bundles. This 
model allows only changes to the implementation. Modifications of the interface 
code are more complex. In such a case the bundles using a service have to be restarted 
because they have to reload the interface.

In reality OSGi systems are often completely reinstalled for these reasons instead 
of modifying individual bundles. An Eclipse update, for instance, often entails a 
restart. A complete reinstallation also facilitates the reproduction of the environ-
ment. When an OSGi system is dynamically changed, at some point it will be in a 
state that nobody is able to reproduce. However, modifying individual bundles is 
an essential prerequisite for implementing the nanoservice approach with OSGi. 

6. https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf

7. https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf

Calling Bundle
Bundle (Interface 

Code)

Bundle 
(Implementation 

and Service)

Package
(Interface

Code)

Package
(Interface

Code)Service

Figure 14.1 OSGi Service, Implementation, and Interface Code

https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf
https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf
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Independent deployment is an essential property of a nanoservice. OSGi compro-
mises this essential property.

Evaluation for Nanoservices

OSGi has a positive effect on Java projects in regard to architecture. The bundles are 
usually relatively small so that the individual bundles are easy to understand. In addi-
tion, the split into bundles forces the developers and architects to think about the 
relationships between the bundles and to define them in the configurations of the 
bundles. Other dependencies between bundles are not possible within the system. 
Normally, this leads to a very clean architecture with clear and intended 
dependencies.

However, OSGi does not offer technological freedom: It is based on the JVM and 
therefore can only be used with Java or JVM-based languages. For example, it is 
nearly impossible that an OSGi bundle brings along its own database because data-
bases are normally not written in Java. For such cases additional solutions alongside 
the OSGi infrastructure have to be found.

For some Java technologies an integration with OSGi is difficult since loading 
Java classes works differently without OSGi. Moreover, many popular Java applica-
tion servers do not support OSGi for deployed applications so that changing code at 
runtime is not supported in such environments. The infrastructure has to be specially 
adapted for OSGi.

Furthermore, the bundles are not fully isolated: When a bundle uses a lot of CPU 
or causes the JVM to crash, the other bundles in the same JVM will be affected. 
Failures can occur, for instance, due to a memory leak, which causes more and more 
memory to be allocated due to an error until the system breaks down. Such errors 
easily arise due to blunders.

On the other hand, the bundles can locally communicate due to OSGi. Distrib-
uted communication is also possible with different protocols. Moreover, the bundles 
share a JVM, which reduces, for instance, the memory utilization.

Solutions for monitoring are likewise present in the different OSGi 
implementations.

Conclusion

OSGi leads, first of all, to restrictions in regard to technological freedom. It restricts 
the project to Java technologies. In practice the independent deployment of the bun-
dles is hard to implement. Interface changes are especially poorly supported. Besides 
bundles are not well isolated from each other. On the other hand, bundles can easily 
interact via local calls.  
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14.5 Java EE

Java EE9 is a standard from the Java field. It comprises different APIs such as JSF (Java 
ServerFaces), Servlet, and JSP (Java Server Pages) for web applications; JPA (Java Persis-
tence API) for persistence; or JTA (Java Transaction API) for transactions. Additionally, 
Java EE defines a deployment model. Web applications can be packaged into WAR files 
(Web ARchive), JAR files (Java ARchive) can contain logic components like Enterprise 
Java Beans (EJBs), and EARs (Enterprise ARchives) can comprise a collection of JARs 
and WARs. All these components are deployed in one application server. The applica-
tion server implements the Java EE APIs and offers, for instance, support for HTTP, 
threads, and network connections and also support for accessing databases.

This section deals with WARs and the deployment model of Java EE applica-
tion servers. Chapter 13, “Example of a Microservice-Based Architecture,” already 
described in detail a Java system that does not require an application server. Instead it 
directly starts a Java application on the Java Virtual Machine (JVM). The application 
is packaged in a JAR file and contains the entire infrastructure. This deployment is 
called Fat JAR deployment, because the application, including the entire infrastructure, 
is contained in one single JAR. The example from Chapter 13 uses Spring Boot, which 
also supports a number of Java EE APIs such as JAX-RS for REST. Dropwizard10 also 
offers such a JAR model. It is actually focused on JAX RS-based REST web services; 
however, it can also support other applications. Wildfly Swarm11 is a variant of the Java 
EE server Wildfly, which also supports such a deployment model.

9. http://www.oracle.com/technetwork/java/javaee/overview/index.html

 10. https://dropwizard.github.io/dropwizard/

 11. http://github.com/wildfly-swarm/

Try and experiment

• Get familiar with OSGi with, for instance, the aid of a tutorial.8

• Create a concept for the distribution into bundles and services for a part of
a system you know.

• If you had to implement the system with OSGi, which additional technolo-
gies (databases etc.) would you have to use? How would you handle this?

8. http://www.vogella.com/tutorials/OSGi/article.html

http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://www.dropwizard.github.io/dropwizard/
http://www.github.com/wildfly-swarm/
http://www.vogella.com/tutorials/OSGi/article.html
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Nanoservices with Java EE

A Fat JAR deployment utilizes too many resources for nanoservices. In a Java EE 
application server, multiple WARs can be deployed, thereby saving resources. Each 
WAR can be accessed via its own URL. Furthermore, each WAR can be individually 
deployed. This enables bringing each nanoservice individually into production.

However, the separation between WARs is not optimal:

• Memory and CPU are collectively used by all nanoservices. When a nanoser-
vice uses a lot of CPU or memory, this can interfere with other nanoservices.
A crash of one nanoservice propagates to all other nanoservices.

• In practice, redeployment of a WAR causes memory leaks if it is not possible
to remove the entire application from memory. Therefore, in practice the inde-
pendent deployment of individual nanoservices is hard to achieve.

• In contrast to OSGi the ClassLoaders of the WARs are completely separate.
There is no possibility for accessing the code of other nanoservices.

• Because of the separation of the code, WARs can only communicate via HTTP 
or REST. Local method calls are not possible.

Since multiple nanoservices share an application server and a JVM, this solu-
tion is more efficient than the Fat JAR deployment of individual microservices in 
their own JVM as described in Chapter 13. The nanoservices use a shared heap and 
therefore use less memory. However, scaling works only by starting more application 
 servers. Each of the application servers contains all nanoservices. All nanoservices 
have to be scaled collectively. It is not possible to scale individual nanoservices.

The technology choice is restricted to JVM technologies. Besides all technologies 
are excluded that do not work with the servlet model, such as Vert.x (section 14.6) 
or Play.

Microservices with Java EE?

For microservices Java EE can also be an option: Theoretically it would be possible 
to run each microservice in its own application server. In this case an application 
server has to be installed and configured in addition to the application. The version 
of the application server and its configuration have to fit to the version of the appli-
cation. For Fat JAR deployment there is no need for a specific configuration of the 
application server because it is part of the Fat JAR and therefore configured just like 
the application. This additional complexity of the application server is not counter-
balanced by any advantage. Since deployment and monitoring of the application 
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server only work for Java applications, these features can only be used in a 
 microservices-based architecture when the technology choice is restricted to Java 
technologies. In general, application servers have hardly any advantages12— 
especially for microservices.

An Example

The application from Chapter 13 is also available with the Java EE deployment 
 model.13 Figure 14.2 provides an overview of the example: There are three WARs, 
which comprise “Order,” “Customer,” and “Catalog.” They communicate with each 
other via REST. When “Customer” fails, “Order” would also fail in the host since 
“Order” communicates only with this single “Customer” instance. To achieve better 
availability, the access would have to be rerouted to other “Customer” instances.

A customer can use the UI of the nanoservices from the outside via HTML/
HTTP. The code contains only small modifications compared to the solution from 
Chapter 13. The Netflix libraries have been removed. On the other hand, the applica-
tion has been extended with support for servlet containers. 

 12. http://jaxenter.com/java-application-servers-dead-1-111928.html

 13. https://github.com/ewolff/war-demo

Docker Container

Tomcat Java EE 
Server

customer.war

catalog.war

order.war
REST

to localhost

HTTP/HTML

Figure 14.2  Example Application with Java EE Nanoservices

http://jaxenter.com/java-application-servers-dead-1-111928.html
https://github.com/ewolff/war-demo
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14.6 Vert.x

Vert.x 15 is a framework containing numerous interesting approaches. Although it 
runs on the Java Virtual Machine, it supports many different programming 
 languages—such as Java, Scala, Clojure, Groovy, and Ceylon as well as JavaScript, 
Ruby, or Python. A Vert.x system is built from Verticles. They receive events and can 
return messages.

 15. http://vertx.io/

Try and Experiment

The application as Java EE nanoservices can be found on GitHub.14

The application does not use the Netflix technologies.

• Hystrix offers resilience (see section 13.10).

• Does it make sense to integrate Hystrix into the application?

• How are the nanoservices isolated from each other?

• Is Hystrix always helpful?

• Compare also section 9.5 concerning stability and resilience. How can
these patterns be implemented in this application?

• Eureka is helpful for service discovery. How would it fit into the Java EE
nanoservices?

• How can other service discovery technologies be integrated (see
section 7.11)?

• Ribbon for load balancing between REST services could likewise be
integrated. Which advantages would that have? Would it also be possible
to use Ribbon without Eureka?

14. https://github.com/ewolff/javaee-example/

http://vertx.io/
https://github.com/ewolff/javaee-example/


ptg18144917

Chapter 14 Technologies for Nanoservices358

Listing 14.2 shows a simple Vert.x Verticle, which only returns the incoming 
 messages. The code creates a server. When a client connects to the server, a callback 
is called, and the server creates a pump. The pump serves to transfer data from a 
source to a target. In the example source and target are identical.

The application only becomes active when a client connects, and the callback is 
called. Likewise, the pump only becomes active when new data are available from 
the client. Such events are processed by the event loop, which calls the Verticles. The 
Verticles then have to process the events. An event loop is a thread. Usually one event 
loop is started per CPU core so that the event loops are processed in parallel. An 
event loop and thus a thread running on a single CPU core can support an arbitrary 
number of network connections. Events of all connections can be processed in a sin-
gle event loop. Therefore, Vert.x is also suitable for applications that have to handle a 
large number of network connections.

Listing 14.2 Simple Java Vert.x Echo Verticle

public class EchoServer extends Verticle {

  public void start() { 

    vertx.createNetServer().connectHandler(new Handler() { 

public void handle(final NetSocket socket) { 

Pump.createPump(socket, socket).start(); 

} 

    }).listen(1234); 

  }

}

As described Vert.x supports different programming languages. Listing 14.3 
shows the same Echo Verticle in JavaScript. The code adheres to JavaScript conven-
tions and uses, for instance, a JavaScript function for callback. Vert.x has a layer for 
each programming language that adapts the basic functionality in such a way that it 
seems like a native library for the respective programming language.

Listing 14.3 Simple JavaScript Vert.x Echo Verticle

var vertx = require('vertx')

vertx.createNetServer().connectHandler(function(sock) { 

  new vertx.Pump(sock, sock).start(); 

}).listen(1234);

Vert.x modules can contain multiple Verticles in different languages. Verticles and 
modules can communicate with each other via an event bus. The messages on the 
event bus use JSON as data format. The event bus can be distributed onto multiple 
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servers. In this manner Vert.x supports distribution and can implement high avail-
ability by starting modules on other servers. Besides the Verticles and modules are 
loosely coupled since they only exchange messages. Vert.x also offers support for 
other messaging systems and can also communicate with HTTP and REST. There-
fore, it is relatively easy to integrate Vert.x systems into microservice-based systems.

Modules can be individually deployed and also removed again. Since the  modules 
communicate with each other via events, modules can easily be replaced by new 
modules at runtime. They only have to process the same messages. A module can 
implement a nanoservice. Modules can be started in new nodes so that the failure of 
a JVM can be compensated.

Vert.x also supports Fat JARs where the application brings all necessary libraries 
along. This is useful for microservices since this means that the application brings 
all dependencies along and is easier to deploy. For nanoservices this approach is not 
so useful because the approach consumes too many resources—deploying multiple 
Vert.x modules in one JVM is a better option for nanoservices.

Conclusion

Via the independent module deployment and the loose coupling by the event bus 
Vert.x supports multiple nanoservices within a JVM. However, a crash of the JVM, 
a memory leak, or blocking the event loop would affect all modules and Verticles in 
the JVM. On the other hand, Vert.x supports many different programming 
 languages—in spite of the restriction to JVM. This is not only a theoretical option. 
In fact, Vert.x aims at being easily useable in all supported languages. Vert.x 
 presumes that the entire application is written in a nonblocking manner. However, 
there is the possibility to execute blocking tasks in Worker Verticles. They use sepa-
rate thread pools so that they do not influence the nonblocking Verticles. Therefore 
even code that does not support the Vert.x nonblocking approach can still be used in 
a Vert.x system. This enables even greater technological freedom.  

Try and Experiment

The Vert.x homepage16 offers an easy start to developing with Vert.x. It dem-
onstrates how a web server can be implemented and executed with different 
programming languages. The modules in the example use Java and Maven.17 
There are also complex examples in other programming languages.18

16. http://vertx.io/

17. https://github.com/vert-x3/vertx-examples/tree/master/maven-simplest

18. https://github.com/vert-x/vertx-examples

http://vertx.io/
https://github.com/vert-x3/vertx-examples/tree/master/maven-simplest
https://github.com/vert-x/vertx-examples
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14.7 Erlang

Erlang19 is a functional programming language that is, first of all, used in combina-
tion with the Open Telecom Platform (OTP) framework. Originally, Erlang was 
developed for telecommunication. In this field applications have to be very reliable. 
Meanwhile Erlang is employed in all areas that profit from its strengths. Erlang uses a 
virtual machine similar to Java as a runtime environment, which is called BEAM 
(Bogdan/ Björn’s Erlang Abstract Machine).

Erlang’s strengths are, first of all, its resilience against failures and the possibility 
to let systems run for years. This is only possible via dynamic software updates. At 
the same time, Erlang has a lightweight concept for parallelism. Erlang uses the con-
cept of processes for parallel computing. These processes are not related to operating 
system processes and are even more lightweight than operating system threads. In 
an Erlang system millions of processes can run that are all isolated from each other.

Another factor contributing to the isolation is the asynchronous communication. 
Processes in an Erlang system communicate with each other via messages. Messages 
are sent to the mailbox of a process (see Figure 14.3). In one process only one message 
is processed at a time. This facilitates the handling of parallelism: there is parallel 
execution because many messages can be handled at the same time. But each process 
takes care of only one message at a time. Parallelism is achieved because there are 
multiple processes. The functional approach of the language, which attempts to get 
by without a state, fits well to this model. This approach corresponds to the Verticles 
in Vert.x and their communication via the event bus. 

Listing 14.4 shows a simple Erlang server that returns the received message. It 
is defined in its own module. The module exports the function loop, which does 
not have any parameters. The function receives a message Msg from a node From 
and then returns the same message to this node. The operator “!” serves for sending 
the message. Afterwards the function is called again and waits for the next message. 
Exactly the same code can also be used for being called by another computer via the 

19. http://www.erlang.org/
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Figure 14.3 Communication between Erlang Processes

http://www.erlang.org/
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network. Local messages and messages via the network are processed by the same 
mechanisms.

Listing 14.4 An Erlang Echo Server

module(server). 

-export([loop/0]).

loop() ->

    receive 

{From, Msg} -> 

From ! Msg, 

loop() 

end. 

Due to the sending of messages, Erlang systems are especially robust. Erlang 
makes use of “Let It Crash.” An individual process is just restarted when problems 
occur. This is the responsibility of the supervisor, a process that is specifically dedi-
cated to monitoring other processes and restarting them if necessary. The supervisor 
itself is also monitored and restarted in case of problems. This way a tree is cre-
ated in Erlang that in the end prepares the system in case processes should fail (see 
Figure 14.4). 

Since the Erlang process model is so lightweight, restarting a process is done 
 rapidly. When the state is stored in other components, there will also be no informa-
tion loss. The remainder of the system is not affected by the failure of the process: 
As the communication is asynchronous, the other processes can handle the higher 
latency caused by the restart. In practice this approach has proven very reliable. 
Erlang systems are very robust and still easy to develop.

This approach is based on the actor model:20 Actors communicate with each 
other via asynchronous messages. As a response they can themselves send messages, 

20. http://en.wikipedia.org/wiki/Actor_model

Supervisor

Supervisor Supervisor

Process Process Process ProcessProcess Process

Figure 14.4 Monitoring in Erlang Systems

http://en.wikipedia.org/wiki/Actor_model
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start new actors, or change their behavior for the next messages. Erlang’s processes 
correspond to actors.

In addition, there are easy possibilities to monitor Erlang systems. Erlang itself 
has built-in functions that can monitor memory utilization or the state of the mail-
boxes. OTP offers for this purpose the operations and maintenance support (OAM), 
which can, for instance, also be integrated into SNMP systems.

Since Erlang solves typical problems arising upon the implementation of micro-
services like resilience, it supports the implementation of microservices21 quite well. 
In that case a microservice is a system written in Erlang that internally consists of 
multiple processes.

However, the services can also get smaller; each process in an Erlang system could 
be considered as a nanoservice. It can be deployed independently of the others, even 
during runtime. Furthermore, Erlang supports operating system processes. In that 
case they are also integrated into the supervisor hierarchy and restarted in case of a 
breakdown. This means that any operating system process written in any language 
might become a part of an Erlang system and its architecture.

Evaluation for Nanoservices

As discussed an individual process in Erlang can be viewed as a nanoservice. The 
expenditure for the infrastructure is relatively small in that case: Monitoring is 
 possible with built-in Erlang functions. The same is true for deployment. Since the 
processes share a BEAM instance, the overhead for a single process is not very high. 
In addition, it is possible for the processes to exchange messages without having to 
communicate via the network and therefore with little overhead. The isolation of 
processes is also implemented.

Finally, even processes in other languages can be added to an Erlang system. For 
this purpose, an operating system process that can be implemented in an arbitrary 
language is put under the control of Erlang. The operating system process can, for 
instance, be safeguarded by “Let It Crash.” This enables integration of practically all 
technologies into Erlang—even if they run in a separate process.

On the other hand, Erlang is not very common. The consequent functional 
approach also needs getting used to. Finally, the Erlang syntax is not very intuitive for 
many developers.

21. https://www.innoq.com/en/talks/2015/01/talk-microservices-erlang-otp/

https://www.innoq.com/en/talks/2015/01/talk-microservices-erlang-otp/
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Try and Experiment

• A very simple example22 is based on the code from this section and demon-
strates how communication between nodes is possible. You can use it to get
a basic understanding of Erlang.

• There is a very nice tutorial 23 for Erlang, which also treats deployment and
operation. With the aid of the information from the tutorial the example 24

can be supplemented by a supervisor.

• An alternative language out of the Erlang ecosystem is Elixir.25 Elixir has a
different syntax but also profits from the concepts of OTP. Elixir is much
simpler to learn than Erlang and thus lends itself to a first start.

• There are many other implementations of the actor model.26 It is worth-
while to look more closely before deciding whether such technologies are
also useful for the implementation of microservices or nanoservices and
which advantages might be associated. Akka from the Scala/Java area might 
be of interest here.

22. https://github.com/ewolff/erlang-example/

23. http://learnyousomeerlang.com/

24. https://github.com/ewolff/erlang-example/

25. http://elixir-lang.org/

26. http://en.wikipedia.org/wiki/Actor_model

14.8 Seneca

Seneca27 is based on Node.js and accordingly uses JavaScript on the server. Node.js 
has a programming model where one operating system process can take care of many 
tasks in parallel. To achieve this there is an event loop that handles the events. When 
a message enters the system via a network connection, the system will first wait until 
the event loop is free. Then the event loop processes the message. The processing has 
to be fast since the loop is blocked, otherwise resulting in long waiting times for all 
other messages. For this reason, the response of other servers may in no case be 
waited for in the event loop. That would block the system for too long. The interac-
tion with other systems has to be implemented in such a way that the interaction is 

27. http://senecajs.org/

https://github.com/ewolff/erlang-example/
http://learnyousomeerlang.com/
https://github.com/ewolff/erlang-example/
http://elixir-lang.org/
http://en.wikipedia.org/wiki/Actor_model
http://senecajs.org/
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only initiated. Then the event loop is freed to handle other events. Only when the 
response of the other system arrives is it processed by the event loop. Then the event 
loop calls a callback that has been registered upon the initiation of the interaction. 
This model is similar to the approaches used by Vert.x and Erlang.

Seneca introduces a mechanism in Node.js that enables processing of commands. 
Patterns of commands are defined that cause certain code to be executed.

Communicating via such commands is also easy to do via the network. Listing 
14.5 shows a server that calls seneca.add(). Thereby a new pattern and code for 
handling events with this pattern are defined. To the command with the component 
cmd: "echo" a function reacts. It reads out the value from the command and 
puts it into the value parameter of the function callback. Then the function 
callback is called. With seneca.listen() the server is started and listens to 
commands from the network.

Listing 14.5 Seneca Server

var seneca = require("seneca")()

seneca.add( {cmd: "echo"}, function(args,callback){ 

    callback(null,{value:args.value}) 

})

seneca.listen()

The client in Listing 14.6 sends all commands that cannot be processed locally via 
the network to the server. seneca.client(). seneca.act() creates the com-
mands that are sent to the server. It contains cmd: "echo"—therefore the function 
of the server in Listing 14.5 is called. "echo this" is used as the value. The server 
returns this string to the function that was passed in as a callback—and in this way it 
is finally printed on the console. The example code can be found on GitHub.28

Listing 14.6 Seneca Client

var seneca=require("seneca")()

seneca.client()

seneca.act('cmd: "echo",value:"echo this", function(err,result){ 

    console.log( result.value ) 

})

28. https://github.com/ewolff/seneca-example/

https://github.com/ewolff/seneca-example/
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Therefore, it is very easy to implement a distributed system with Seneca. However, 
the services do not use a standard protocol like REST for communicating. Neverthe-
less, REST systems also can be implemented with Seneca. Besides the Seneca protocol 
is based on JSON and therefore can also be used by other languages.

A nanoservice can be a function that reacts with Seneca to calls from the 
 network—and therefore it can be very small. As already described, a Node.js system 
as implemented with Seneca is fragile when a function blocks the event loop. There-
fore, the isolation is not very good.

For the monitoring of a Seneca application there is an admin console that at least 
offers a simple monitoring. However, in each case it is only available for one Node.js 
process. Monitoring across all servers has to be achieved by different means.

An independent deployment of a single Seneca function is only possible if there is 
a single Node.js process for the Seneca function. This represents a profound limita-
tion for independent deployment since the expenditure of a Node.js process is hardly 
acceptable for a single JavaScript function. In addition, it is not easy to integrate 
other technologies into a Seneca system. In the end the entire Seneca system has to be 
implemented in JavaScript.

Evaluation for Nanoservices

Seneca has been especially developed for the implementation of microservices with 
JavaScript. In fact, it enables a very simple implementation for services that can also 
be contacted via the network. The basic architecture is similar to Erlang: In both 
approaches services send messages or. commands to each other to which functions 
react. In regard to the independent deployment of individual services, the isolation 
of services from each other and the integration of other technologies, Erlang is 
clearly superior. Besides, Erlang has a much longer history and has long been 
employed in different very demanding applications.  

Try and Experiment

The code example29 can be a first step to get familiar with Seneca. You can 
also use the basic tutorial.30 In addition, it is worthwhile to look at other 
 examples.31 The nanoservice example can be enlarged to a comprehensive 
application or can be distributed to a larger number of Node.js processes.

29. https://github.com/ewolff/seneca-example/

30. http://senecajs.org/getting-started/

31. https://github.com/rjrodger/seneca-examples/

https://github.com/ewolff/seneca-example/
http://senecajs.org/getting-started/
https://github.com/rjrodger/seneca-examples/
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14.9 Conclusion

The technologies presented in this chapter show how microservices can also be 
implemented very differently. Since the difference is so large, the use of the separate 
term “nanoservice” appears justified. Nanoservices are not necessarily independent 
processes anymore that can only be contacted via the network but might run together 
in one process and use local communication mechanisms to contact each other. 
Thereby not only the use of extremely small services is possible, but also the adop-
tion of microservice approaches in areas such as embedded or desktop applications.

An overview of the advantages and disadvantages of different technologies in 
regard to nanoservices is provided in Table 14.1. Erlang is the most interesting tech-
nology since it also enables the integration of other technologies and is able to iso-
late the individual nanoservices quite well from each other so that a problem in one 
nanoservice will not trigger the failure of the other services. In addition, Erlang has 
been the basis of many important systems for a long time already so that the technol-
ogy as such has proven its reliability beyond doubt.

Seneca follows a similar approach, but cannot compete with other technologies in 
terms of isolation and the integration of other technologies than JavaScript. Vert.x 
has a similar approach on the JVM and supports numerous languages. However, 
it does not isolate nanoservices as well as Erlang. Java EE does not allow for com-
munication without a network, and individual deployment is difficult in Java EE. In 
practice memory leaks occur frequently during the deployment of WARs. Therefore, 
during a deployment the application server is usually restarted to avoid memory 
leaks. Then all nanoservices are unavailable for some time. Therefore, a nanoservice 

Table 14.1 Technology Evaluation for Nanoservices

Lambda OSGi Java EE Vert x Erlang Seneca

Effort for 
infrastructure 
per service

++ + + + ++ ++

Resource 
consumption

++ ++ ++ ++ ++ ++

Communication 
with network

− ++ −− ++ ++ −

Isolation of services ++ −− −− − ++ −
Use of different 
technologies

− −− −− + + −−
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cannot be deployed without influencing the other nanoservices. OSGi enables the 
shared use of code between nanoservices, in contrast to Java EE. In addition, OSGi 
uses method calls for communication between services and not commands or mes-
sages like Erlang and Seneca. Commands or messages have the advantage of being 
more flexible. Parts of a message that a certain service does not understand are not a 
problem; they can just be ignored. 

Amazon Lambda is especially interesting since it is integrated into the Amazon 
ecosystem. This makes handling the infrastructure very easy. The infrastructure 
can be a challenging problem in case of small nanoservices because so many more 
 environments are needed due to the high number of services. With Amazon a data-
base server is only an API call or a click away—alternatively, an API can be used to 
store data instead of a server. Servers become invisible for storing data—and this is 
also the case with Amazon Lambda for executing code. There is no infrastructure for 
an individual service but only code that is executed and can be used by other services. 
Because of the prepared infrastructure monitoring is also no challenge anymore.

Essential Points

• Nanoservices divide systems into even smaller services. To achieve this, they
compromise in certain areas such as technology freedom or isolation.

• Nanoservices require efficient infrastructures that can handle a large number
of small nanoservices.
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As a conclusion to the book, this chapter helps you think about how to get started with 
microservices. Section 15.1 enumerates the different advantages of microservices once 
more to illustrate that there is not only a single reason to introduce microservices but 
several. Section 15.2 describes several ways for introducing microservices—depending 
on the use context and the expected advantages. Section 15.3 finally follows up on the 
question of whether microservices are more than just hype.

15.1 Why Microservices?

Microservices entail a number of advantages such as the following (see also 
 Chapter 4, “Reasons for Using Microservices”):

• Microservices make it easier to implement agility for large projects since teams
can work independently.

• Microservices can help to supplement and replace legacy applications stepwise.

• Microservice-based architectures make possible sustainable development since
they are less susceptible to architecture decay and because individual microser-
vices can be easily replaced. This increases the long-term maintainability of
the system.

• In addition, there are technical reasons for microservices such as robustness
and scalability.

Chapter 15

Getting Started with 
Microservices
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To prioritize these advantages and the additional ones mentioned in Chapter 4 
should be the first step when considering the adaptation of a microservice-based 
architecture. Likewise, the challenges discussed in Chapter 5, “Challenges,” have to 
be evaluated and, where necessary, strategies for dealing with these challenges have 
to be devised.

Continuous delivery and infrastructure play a prominent role in this context. 
If the deployment processes are still manual, the expenditure for operating a large 
number of microservices is so high that their introduction is hardly feasible. Unfor-
tunately, many organizations still have profound weaknesses, especially in the area 
of continuous delivery and infrastructure. In such a case continuous delivery should 
be introduced alongside microservices. Since microservices are much smaller than 
deployment monoliths, continuous delivery is also easier with microservices. There-
fore, both approaches have synergies.

In addition, the organizational level (Chapter 12, “Organizational Effects of a 
Microservices-Based Architecture”) has to be taken into account. When the scalabil-
ity of agile processes constitutes an important reason for introducing microservices, 
the agile processes should already be well established. For example, there has to be a 
product owner per team who also decides about all features as well as agile planning. 
The teams should also be already largely self-reliant—otherwise in the end they 
might not make use of the independence microservices offer.

Introducing microservices can solve more than just one problem. The specific 
motivation for microservices will differ between projects. The large number of 
advantages can be a good reason for introducing microservices on its own. In the end 
the strategy for introducing microservices has to be adapted to the advantages that 
are most important in the context of a specific project.

15.2 Roads towards Microservices

There are different approaches that pave the way towards microservices:

• The most typical scenario is to start out with a monolith that is converted
stepwise into a multitude of microservices. Usually, different functionalities
are transferred one by one into microservices. A driving force behind this
conversion is often the wish for an easier deployment. However, independent
scaling and achieving a more sustainable architecture can also be important
reasons.

• However, migrating from a monolith to microservices can also occur in a dif-
ferent manner. When, for instance, resilience is the main reason for switching
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to microservices, the migration can be started by first adding technologies like 
Hystrix to the monolith. Afterwards the system can be split into microservices.

• Starting a microservice-based system from scratch is by far the rarer scenario.
Even in such a case a project can start by building a monolith. However, it is
more sensible to devise a first coarse-grained domain architecture that leads to
the first microservices. Thereby an infrastructure is created that supports more
than just one microservice. This approach also enables teams to already work
independently on features. However, a fine-granular division into microser-
vices right from the start often does not make sense because it will probably
have to be revised again later on. Introducing the necessary profound changes
into an already existing microservices architecture can be highly complex.

Microservices are easy to combine with existing systems, which facilitates their 
introduction. A small microservice as supplement to an existing deployment mon-
olith is rapidly written. If problems arise, such a microservice can also be rapidly 
removed again from the system. Other technical elements can then be introduced in 
a stepwise manner.

The easy combination of microservices with legacy systems is an essential reason 
for the fact that the introduction of microservices is quite simple and can immedi-
ately result in advantages.

15.3 Microservice: Hype or Reality?

Without a doubt microservices are an approach that is in the focus of attention right 
now. This does not have to be bad—yet, such approaches often are at second glance 
only fashionable and do not solve any real problems.

However, the interest in microservices is more than just a fashion or hype:

• As described in the introduction, Amazon has been employing microservices
for many years. Likewise, many Internet companies have been following this
approach for a long time. Therefore, microservices are not just fashionable but
have already been used for a long time behind the scenes in many companies
before they became fashionable.

• For the microservice pioneers the advantages associated with microservices
were so profound that they were willing to invest a lot of money into creating
the not-yet-existing necessary infrastructures. These infrastructures are nowa-
days available free of cost as Open Source—Netflix is a prominent example.
Therefore, it is much easier nowadays to introduce microservices.
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• The trend towards agility and cloud infrastructures is suitably complemented
by microservices-based architectures: They enable the scaling of agility and
fulfill the demands of the Cloud in regards to robustness and scalability.

• Likewise, microservices as small deployment units support continuous deliv-
ery, which is employed by many enterprises to increase software quality and to
bring software more rapidly into production.

• There is more than one reason for microservices. Therefore, microservices
 represent an improvement for many areas. Since there is not a single reason for
the introduction of microservices but a number of them, it is more likely that
even very diverse projects will really benefit from switching to microservices in
the end.

Presumably, everybody has already seen large, complex systems. Maybe now is 
the time to develop smaller systems and to profit from the associated advantages. In 
any case there seem to be only very few reasons arguing for monoliths—except for 
their lower technical complexity.

15.4 Conclusion

Introducing microservices makes sense for a number of reasons:

• There is a plethora of advantages (discussed in section 15.1 and Chapter 4).

• The way to microservices is evolutionary. It is not necessary to start adopt-
ing microservices for the whole system from the beginning. Instead, a stepwise
migration is the usual way (section 15.2). Many different approaches can be
chosen in order to profit as quickly as possible from the advantages microser-
vices offer.

• The start is reversible: If microservices prove not to be suitable for a certain
project, they can easily be replaced again.

• Microservices are clearly more than a hype (section 15.3). For being just a
hype they have been in use for too long and have been too broadly adapted.
Therefore, one should at least experiment with microservices—and this books
invites the reader to do just that in many places.
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Try and Experiment

Answer the following questions for an architecture/system you are familiar 
with: 

• Which are the most important advantages of microservices in this context?

• How could a migration to microservices be achieved? Possible approaches:

• Implement new functionalities in microservices

• Enable certain properties (e.g., robustness or rapid deployment) via
suitable technologies

• What could a project look like that tests the introduction of microservices
with as little expenditure as possible?

• In which case would a first project with microservives be a success and the
introduction of microservices therefore sensible?
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