
UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Springer Science+Business Media, LLC

Editors
David Gries

Fred B. Schneider

UNDERGRADUATE TEXTS IN COMPUTER SCIENCE

Beidler, Data Structures and Algorithms

Bergin, Data Structure Programming

Brooks, Problem Solving with Fortran 90

Dandamudi, Introduction to Assembly Language Programming

Grillmeyer, Exploring Computer Science with Scheme

Jalote, An Integrated Approach to Software Engineering, Second Edition

Kizza, Ethical and Social Issues in the Information Age

Kazen, Automata and Computability

Merritt and Stix, Migrating from Pascal to C++

Pearce, Programming and Meta-Programming in Scheme

Zeigler, Objects and Systems

Sivarama P. Dandamudi

Introduction to Assembly
Language Programming

From 8086 to Pentium Processors

With 63 Illustrations

i Springer

Sivarama P. Dandamudi
School of Computer Science
Carleton University
1125 Colonel By Drive
Ottawa, K1S 5B6
Canada

Series Editors
David Gries
Fred B. Schneider
Department of Computer Science
Cornell University
Upson Hall
Ithaca, NY 14853-7501
USA

Library of Congress Cataloging-in-Publication Data
Dandamudi, Sivarama P., 1955-

Introduction to assembly language programming : from 8086 to
Pentium processors / Sivarama P. Dandamudi.

p. cm. - (Undergraduate texts in computer science)
Includes bibliographical references.
ISBN 978-1-4757-2860-6 ISBN 978-1-4757-2858-3 (eBook)
DOI 10.1007/978-1-4757-2858-3
1. Assembler language (Computer program language).

2. Microprocessing-Programming. I. Title. II. Series.
QA76.73.A8D36 1998
005.265--dc2 98-17534

Printed on acid-free paper.

Pentium® is a registered trademark of Intel Corporation.

© 1998 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. in 1998
Softcover reprint of the hardcover 1 st edition 1998
AII rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher Springer Science+Business Media, LLC .
except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dis similar methodology now known or hereafter developed is forbidden. The use of general descriptive
names, trade names, trademarks, etc., in this publication, even if the former are not especially identified,
is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks
Act, may accordingly be used freely by anyone.

Production managed by Anthony K. Guardiola; manufacturing supervised by Jeffrey Taub.
Photocomposed pages prepared from the author's TeX files.

9 8 7 6 5 432 l

ISBN 978-1-4757-2860-6

To
my wife Sobha

and
my daughter Veda

Preface

There are three main reasons for writing this book. While several assembly
language books are on the market, almost all of them cover only the 8086
processor-a 16-bit processor Intel introduced in 1979. A modem computer
organization or assembly language course requires treatment of a more recent
processor like the Pentium, which is a 32-bit processor in the Intel family. This
is one of the main motivations for writing this book.

There are two other equally valid reasons. The book approaches assembly
language programming from the high-level language viewpoint. As a result,
it focuses on the assembly language features that are required to efficiently
implement high-level language constructs.

Performance is another reason why people program in assembly language.
This is particularly true with real-time application programming. Our treatment
of assembly language programming is oriented toward performance optimiza
tion. Every chapter ends with a performance section that discusses the impact
of specific sets of assembly language statements on the performance of the
whole program. Put another way, this book focuses on performance-oriented
assembly language programming.

Intended Use

This book is intended as an introduction to assembly language programming
using the Intel 80X86 family of processors. We have selected the assembly
language of the Intel 80X86 processors (including the Pentium processor) be
cause of the widespread availability of PCs and assemblers. Both Microsoft
and Borland provide assemblers for the PCs.

Assembly language programming is part of an undergraduate curriculum
in computer science, computer engineering, and electrical engineering depart
ments. This book can be used as a text for those courses that teach assembly
language. It can also be used as a companion text in a computer organiza
tion course for teaching the assembly language. Because of the performance-

viii Preface

oriented assembly language programming style advocated by the book, it is
especially useful in real-time programming courses in engineering.

In addition, it can be used as a text in vocational training courses offered by
community colleges. Because of the teach-by-example style used in the book,
it is also suitable for self-study by computer professionals and engineers.

Prerequisites

The student is assumed to have had some experience in a structured, high-level
language such as C. However, the book does not assume extensive knowledge
of any high-level language-only the basics are needed. Furthermore, it is
assumed that the student has rudimentary background in the software devel
opment cycle, as is obtained in a typical high-level programming course. Of
course, the student is assumed to be familiar with the PC and its operating
system.

Features

Here is a summary of the special features that sets this book apart:

• The book is self-contained and does not assume background in computer
organization. All necessary background material on computer organiza
tion is presented in the book.

• The book uses a methodical organization of chapters for a step-by-step
introduction to the assembly language.

• The book covers all processors in the Intel 80X86 series (from 8086 to
Pentium).

• Extensive examples are used in each chapter to illustrate the points dis
cussed in the chapter. Our objective is not just to explain how an instruc
tion works, but to provide the rationale as to why the instruction has been
designed the way it is. This is the best way of understanding the strengths
and weaknesses of the Intel 80X86 series of processors.

• Procedures are introduced early to encourage modular programming in
developing assembly language programs.

• A set of input and output routines is provided so the student can focus
on developing assembly language programs rather than spending time
in understanding how input and output can be done using the basic I/O
functions provided by the operating system.

• This book does not use fragments of code in examples. All examples are
complete in the sense that they can be assembled and run, giving a better
feeling about how these programs work.

Preface ix

• All examples and other required software are available online (check my
home page for information) to give opportunities for students to perform
hands-on assembly programming.

• Most chapters are written in such a way that each one can be covered in
two or three 60-minute lectures by giving proper reading assignments.
Typically, important concepts are emphasized in the lectures while leav
ing the other material in the book as a reading assignment. Our emphasis
on extensive examples facilitates this pedagogical approach.

• Since performance is one of the two main objectives in using assembly
language, each chapter contains a "Performance" section that discusses
the performance implications of the topics/instructions discussed in that
chapter. This aspect is important in those courses that deal with real
time programming. However, the performance section is completely
independent and can be omitted altogether.

• Inter-chapter dependencies are kept to a minimum to offer maximum
flexibility to instructors in organizing the material. Each chapter clearly
indicates the objectives and provides an overview at the beginning and a
summary at the end.

• Each chapter contains two types of exercises-review and programming
to reinforce the concepts discussed in the chapter.

• The appendices provide special reference material that contains a thor
ough treatment of various topics.

Overview and Organization

The book is divided into four parts. Part I presents introductory topics and
consists of the first three chapters. Chapter 1 provides an introduction to as
sembly language and presents reasons for programming in assembly language.
Chapter 2 presents basics of computer organization with a focus on the Intel
80X86 family of processors. In particular, this chapter gives sufficient details
on the 16- and 32-bit Intel processors so the student can effectively program in
assembly language. Chapter 3 gives an overview of assembly language. After
covering these three chapters, one can write simple stand-alone assembly lan
guage programs without requiring further information from the other chapters.
These three chapters should be covered in the sequence presented in the book.
The amount of time spent on this part can vary depending on the background
of the students.

Part II provides basic topics and consists of five chapters-Chapters 4
through 8. To emphasize the importance of modular programming, proce
dures are introduced early on (in Chapter 4). The other chapters in this part

x Preface

expand on the overview given in Chapter 3. Chapter 5 presents the address
ing modes supported by the Intel 16- and 32-bit processors. This chapter also
contains a detailed discussion of the motivation for providing the various ad
dressing modes. Chapter 6 discusses the arithmetic instructions and the use of
the flags register. Chapters 7 and 8 present conditional and bit manipulation
instructions. A feature of these two chapters is that they explain how high-level
language statements can be implemented using the instructions discussed in
these two chapters. The first two chapters of this part-chapters 4 and 5-
should be covered in some detail for proper grounding in assembly language
programming. However, the remaining three chapters can be studied in any
order. Also, the depth that these three chapters cover can be varied without
sacrificing the effectiveness, depending on the time available and importance
to the course objective.

The remaining five of the thirteen chapters constitute Part III. These chapters
deal with advanced topics. Chapter 9 discuses the string processing instructions
in detail. Macros and conditional assembly directives are discussed in Chap
ter 10. ASCII and BCD arithmetic instructions are presented in Chapter 11.
Chapter 12 takes a detailed look at the interrupt mechanism and input/output
interface. This is an important chapter in computer organization and real-time
system programming courses. The final chapter deals with high-level language
interface, which allows mixed-mode programming in more than one language.
We use C and assembly language to cover the principles involved in mixed
mode programming. The chapters in this part can be covered in any order
the instructor wishes. While most of the topics of this part are optional, a
good, well-rounded course should cover some aspects of macros (Chapter 10),
interrupts (Chapter 12), and high-level language interface (Chapter 13).

The five appendices provide a wealth of reference material needed by the
student. Appendix A primarily discusses the number systems and their internal
representation. Appendix B gives information on the use of 110 routines pro
vided with this book and the assembler software. Debugging is discussed in
Appendix C. Selected Pentium instructions are given in Appendix D. Finally,
Appendix E gives the standard ASCII table.

Acknowledgments

Several people have contributed, either directly or indirectly, in writing this
book. First and foremost, I would like to thank my family for enduring my
preoccupation with this project. My wife Sobha has taken care of our daughter
so that I could spend more time on the book. My daughter Veda, who will be
four in January 1999, contributed in her own way by allowing me to proofread
some of the chapters while playing in her favorite park in Ottawa.

Preface xi

I want to thank Martin Gilchrist, former Senior Editor at Springer-Verlag,
for his positive feedback on the initial proposal and Bill Sanders, Senior Ed
itor, for his continuous and enthusiastic support for the project. I would also
like to express my appreciation to the staff at the Springer-Verlag production
department for converting my ~TE" files into the book in front of you. Some
people directly involved with the book are Fred Bartlett, Anthony Guardiola,
and Chrisa Hotchkiss.

I also express my appreciation to the School of Computer Science and
Carleton University for providing a great atmosphere to complete this project.

Feedback

Works of this nature are never error-free, despite the best efforts of the authors
and others involved in the project. I welcome your comments, suggestions, and
corrections by electronic mail.

Ottawa, Canada
July 1998

Sivarama P. Dandamudi
sivarama~scs.carleton.ca

http://www.scs.carleton.ca/-sivarama

Contents

Preface

I Introductory Topics

1 Introduction
1.1 A User's View of Computer Systems
1.2 What Is Assembly Language?
1.3 Advantages of High-Level Languages.
1.4 Why Program in Assembly Language?
1.5 Typical Applications
1.6 Why Learn Assembly Language? . . .
1.7 Performance: C Versus Assembly Language
1.8 Summary
1.9 Exercises
1.10 Progamming Exercises
1.11 Program Listings . . .

2 Basic Computer Organization
2.1 Basic Components of a Computer System.
2.2 The Processor

2.2.1 The Pentium Processor
2.2.2 The Pentium Registers
2.2.3 The System Clock ..
2.2.4 The Intel 80X86 Processor Family

2.3 Memory
2.3.1 Two Basic Memory Operations .
2.3.2 Types of Memory . . .
2.3.3 Storing Multibyte Data

2.4 Pentium Memory Architecture

vii

1

3
4
6
7
8

10
11
11
14
15
16
17

21
22
23
24
25
30
31
32
33
34
36
37

xiv

2.4.1 Real Mode Memory Architecture . . .
2.4.2 Protected Mode Memory Architecture
2.4.3 Segment Registers
2.4.4 Segment Descriptors . . .
2.4.5 Segment Descriptor Tables
2.4.6 Segmentation Models . . .
2.4.7 Mixed Mode Operation . .
2.4.8 Which Segment Register to Use?

2.5 Input/Output
2.5.1 Accessing I/O Devices

2.6 Performance: Effect of Data Alignment
2.7 Summary
2.8 Exercises
2.9 Progamming Exercises

3 Overview of Assembly Language
3.1 Assembly Language Statements
3.2 Data Allocation
3.3 Where Are the Operands?

3.3.1 Register Addressing Mode
3.3.2 Immediate Addressing Mode
3.3.3 Direct Addressing Mode .
3.3.4 Indirect Addressing Mode

3.4 Data Transfer Instructions
3.4.1 The mov Instruction .. .
3.4.2 Ambiguous Moves: PTR Directive
3.4.3 The xchg Instruction
3.4.4 The xlat Instruction

3.5 Overview of Assembly Language Instructions
3.5.1 Simple Arithmetic Instructions
3.5.2 Conditional Execution
3.5.3 Iteration Instruction .
3.5.4 Logical Instructions.
3.5.5 Shift Instructions .
3.5.6 Rotate Instructions

3.6 Defining Constants
3.6.1 The EQU Directive
3.6.2 The = Directive . .

3.7 Illustrative Examples ...
3.8 Performance: When to Use the xlat Instruction
3.9 Summary

Contents

38
43
44
45
47
48
48
49
50
52
52
55
56
57

S9
60
62
71
72
72
73
74
75
75
77
77
78
78
79
82
85
86
89
90
93
93
94
95

106
108

Contents

3.10 Exercises
3.11 Progamming Exercises

II Basic Topics

4 Procedures and the Stack
4.1 What Is a Stack? ..
4.2 Pentium Implementation of the Stack
4.3 Stack Operations

4.3.1 Basic Instructions . . .
4.3.2 Additional Instructions

4.4 Uses of the Stack
4.4.1 Temporary Storage of Data
4.4.2 Transfer of Control
4.4.3 Parameter Passing

4.5 Procedures
4.6 Assembler Directives for Procedures
4.7 Pentium Instructions for Procedures

4.7.1 How Is Program Control Transferred?
4.7.2 The ret Instruction

4.8 Parameter Passing
4.8.1 Register Method .
4.8.2 Stack Method

:xv

109
112

115

117
118
119
122
122
123
123
124
125
125
125
128
129
129
130
131
131
135

4.8.3 Preserving Calling Procedure State 139
4.8.4 Which Registers Should Be Saved? . 140
4.8.5 Illustrative Examples 142

4.9 Handling a Variable Number of Parameters 149
4.10 Local Variables 153
4.11 Multiple Source Program Modules 159

4.11.1 PUBLIC Directive 160
4.11.2 EXTRN Directive 160

4.12 Performance: Procedure Overheads 163
4.12.1 Stack Versus Registers . . . 164
4.12.2 Comparison of C and Assembly Language Versions 165
4.12.3 Local Variable Overhead 167

4.13 Summary 168
4.14 Exercises 168
4.15 Progamming Exercises 170

xvi Contents

5 Addressing Modes 173
5.1 Simple Addressing Modes 174

5.1.1 Register Addressing Mode 174
5.1.2 Immediate Addressing Mode 175

5.2 Memory Addressing Modes 176
5.2.1 Direct Addressing. 178
5.2.2 Register Indirect Addressing 179
5.2.3 Based Addressing 181
5.2.4 Indexed Addressing 182
5.2.5 Based-Indexed Addressing 183

5.3 Illustrative Examples 184
5.4 Arrays 191

5.4.1 One-Dimensional Arrays 192
5.4.2 Multidimensional Arrays 193
5.4.3 Examples of Arrays 195

5.5 Performance: Usefulness of Addressing Modes . 198
5.6 Summary 201
5.7 Exercises 202
5.8 Progamming Exercises 203

6 Arithmetic Flags and Instructions 207
6.1 Status Flags 208

6.1.1 The Zero Flag. . . 209
6.1.2 The Carry Flag · . 211
6.1.3 The Overflow Flag 214
6.1.4 The Sign Flag ... 217
6.1.5 The Auxiliary Flag 218
6.1.6 The Parity Flag 220
6.1.7 Flag Examples · . 221

6.2 Arithmetic Instructions · . 223
6.2.1 Addition Instructions 223
6.2.2 Subtraction Instructions . 225
6.2.3 Multiplication Instructions 227
6.2.4 Division Instructions 231

6.3 Application Examples 234
6.3.1 PutInt8 Procedure. 235
6.3.2 GetInt8 Procedure 237

6.4 Multiword Arithmetic 241
6.4.1 Addition and Subtraction 241
6.4.2 Multiplication 242
6.4.3 Division 247

Contents

6.5 Performance: Multiword Multiplication
6.6 Summary
6.7 Exercises
6.8 Progamming Exercises

xvii

250
251
252
254

7 Selection and Iteration 257
7.1 Unconditional Jump. 258
7.2 Compare Instruction 262
7.3 Conditional Jumps 263

7.3.1 Jumps Based on Single Flags 263
7.3.2 Jumps Based on Unsigned Comparisons 265
7.3.3 Jumps Based on Signed Comparisons. . 267

7.4 Looping Instructions 269
7.5 Implementing High-Level Language Decision Structures 272

7.5.1 Selective Structures. 272
7.5.2 Iterative Structures 275

7.6 Illustrative Examples 278
7.7 Indirect Jumps 284

7.7.1 Multiway Conditional Statements 286
7.8 Evaluation of logical expressions 289

7.8.1 Full Evaluation 289
7.8.2 Partial Evaluation 289

7.9 Performance: Logical Expression Evaluation. 291
7.10 Summary 293
7.11 Exercises 293
7.12 Progamming Exercises 295

8 Logical and Bit Operations 299
8.1 Logical Instructions 300

8.1.1 The and Instruction 300
8.1.2 The or Instruction . 304
8.1.3 The xor Instruction 306
8.1.4 The not Instruction 310
8.1.5 The test Instruction 310

8.2 Shift Instructions 311
8.2.1 Logical Shift Instructions . 312
8.2.2 Arithmetic Shift Instructions 315
8.2.3 Why Use Shifts for Multiplication and Division? 318
8.2.4 Double Shift Instructions 318

8.3 Rotate Instructions 319
8.3.1 Rotate Without Carry . . 319

xviii

8.3.2 Rotate Through Carry
8.4 Logical Expressions in High-Level Languages

8.4.1 Representation of Boolean Data
8.4.2 Logical Expressions
8.4.3 Bit Manipulation

8.5 Bit Instructions
8.5.1 Bit Test and Modify Instructions
8.5.2 Bit Scan Instructions

8.6 Illustrative Examples
8.7 Performance: Shift Versus Multiplication
8.8 Summary
8.9 Exercises
8.10 Progamming Exercises

III Advanced Topics

9 String Processing
9.1 String Representation

9.1.1 Explicitly Storing String Length
9.1.2 Using a Sentinel Character

9.2 String Instructions
9.2.1 Repetition Prefixes .. .
9.2.2 Direction Flag
9.2.3 String Move Instructions
9.2.4 String Compare Instruction
9.2.5 Scanning a String

9.3 Illustrative Examples
9.4 Testing String Procedures
9.5 Performance: Advantage of String Instructions
9.6 Summary
9.7 Exercises
9.8 Progamming Exercises

10 Macros and Conditional Assembly
10.1 What Are Macros?
10.2 Macros with Parameters ..
10.3 Macros Versus Procedures
10.4 Labels in Macros . .
10.5 Comments in Macros
10.6 Macro Operators ..

Contents

321
323
323
323
325
325
325
326
327
333
334
335
338

341

343
344
344
345
345
346
348
349
352
354
355
368
370
372
373
374

377
378
380
381
385
386
388

Contents xix

10.7 List Control Directives . 392
10.8 Repeat Block Directives 394

10.8.1 REPT Directive . 394
10.8.2 WHILE Directive . 396
10.8.3 IRP and IRPC Directives 397

10.9 Conditional Assembly 400
10.9.1 IF and IFE Directives . . 401
10.9.2 IFDEF and IFNDEF Directives . 403
10.9.3 IFB and IFNB Directives . . 405
10.9.4 IFIDN and IFDIF Directives . . 406

1O.IONested Macros 408
10.11 Performance: Macros Versus Procedures 409
1O.12Summary 413
1O.13Exercises 414
10. 14Progamming Exercises 415

11 ASCII and BCD Arithmetic 417
11.1 ASCII and BCD Representations of Numbers 418

11.1.1 ASCII Representation. . . . 418
11.1.2 BCD Representation 419

11.2 Processing in ASCII Representation 420
11.2.1 ASCII Addition . . . 420
11.2.2 ASCII Subtraction . 422
11.2.3 ASCII Multiplication 423
11.2.4 ASCII Division . . . 423
11.2.5 Example: Multidigit ASCII Addition 424

11.3 Processing Packed BCD Numbers 426
11.3.1 Packed BCD Addition 426
11.3.2 Packed BCD Subtraction 427
11.3.3 Example: Multibyte Packed BCD Addition. 428

11.4 Performance: Decimal Versus Binary Arithmetic 431
11.5 Summary 435
11.6 Exercises 435
11.7 Progamming Exercises 437

12 Interrupts and Input/Output 439
12.1 Introduction 440
12.2 A Taxonomy ofInterrupts 441
12.3 Interrupt Processing 443

12.3.1 Interrupt Processing in Protected Mode. 443
12.3.2 Interrupt Processing in Real Mode . . . 444

xx

12.4 Software Interrupts
12.5 Keyboard Services

12.5.1 Keyboard Description.
12.5.2 DOS Keyboard Services
12.5.3 Extended Keyboard Keys
12.5.4 BIOS Keyboard Services

12.6 Text Output to Display Screen
12.7 Printer Support

12.7.1 DOS Printer Services.
12.7.2 BIOS Printer Support .

12.8 Exceptions
12.9 Hardware Interrupts
12.10Direct Control of 110 Devices.

12.1 0.1 Accessing 110 Ports . .
12.11 Peripheral Support Chips . . .

12.11.1 8259 Programmable Interrupt Controller
12.11.28255 Programmable Peripheral Interface Chip

12.12A Hardware Interrupt Example
12.13 Performance: Polling Versus Interrupts
12.14Summary
12. 15Exercises
12. 16Progamming Exercises

13 High-Level Language Interface
13.1 Why Program in Mixed-Mode?
13.2 Overview
13.3 Calling Assembly Procedures from C

13.3.1 Parameter Passing .
13.3.2 Returning Values ..
13.3.3 Preserving Registers
13.3.4 Publics and Externals
13.3.5 Illustrative Examples

13.4 Calling C Functions from Assembly
13.5 Simplified Calling Mechanisms

13.5.1 The ARG Directive
13.5.2 Extended CALL Instruction.

13.6 Inline Assembly Code
13.7 Summary
13.8 Exercises
13.9 Progamming Exercises

Contents

446

447
447
447
451
454
460
461
462
462
464
469
470
471
472
472
475
477
482
484
485
486

489
490
491
493
493
495
496
497
497
502
505
505
507
509
511
511
513

Contents

IV Appendices 517

A Internal Data Representation 519
A.I Positional Number Systems 520

A.I.l Notation 521
A.2 Number Systems Conversion 523

A.2.1 Conversion to Decimal 523
A.2.2 Conversion from Decimal 525
A.2.3 Conversion among Binary, Octal, and Hexadecimal 527

A.3 Unsigned Integer Representation 530
A.3.1 Arithmetic on Unsigned Integers . 531

A.4 Signed Integer Representation 538
A.4.1 Signed-Magnitude Representation 538
A.4.2 Excess-M Representation. . . . 539
A.4.3 1 's Complement Representation 540
A.4.4 2 's Complement Representation 543

A.5 Floating-Point Representation 545
A.5.1 Fractions 545
A.5.2 Representing Floating-Point Numbers 549
A.5.3 Floating-Point Representation 550

A.6 Character Representation 554
A.7 Summary 556
A.8 Exercises 557
A.9 Progamming Exercises 559

B Assembling and Linking Assembly Language Programs 561
B.1 Structure of Assembly Language Programs 562
B.2 Input/Output Routines 565
B.3 Assembling and Linking ... 570

B.3.1 The Assembly Process 570
B.3.2 Linking Object Files 579

B.4 Summary 580
B.5 Exercises 581
B.6 Progamming Exercises 581

C Debugging Assembly Language Programs 583
C.1 Strategies to Debug Assembly Language Programs 584
C.2 DEBUG 586

C.2.1 Miscellaneous Group 591
C.2.2 An Example. 591

C.3 Turbo Debugger TO 595

xxii

C.4 Code View
C.S Summary .
C.6 Exercises .
C.7 Progamming Exercises

D Pentium Instruction Set
0.1 Pentium Instruction Format

0.1.1 Instruction Prefixes
0.1.2 General Instruction Format

0.2 Selected Pentium Instructions .

E ASCII Character Set

Index

Contents

601
602
603
604

60S
60S
606
607
609

633

637

Part I

Introductory Topics

Chapter 1

Introduction

Objectives

• To introduce assembly language and to explain where it fits in the hier
archy of computer languages

• To discuss the advantages and disadvantages associated with program
ming in assembly language

• To provide motivation to learn assembly language
• To demonstrate the performance advantages of assembly language

Users of a computer system can interact with the system at several different
levels. At the highest level, the interaction could be through an application
program (e.g., a spreadsheet or a word processor). The next two levels use a
programming language to facilitate interaction at a lower level. The hierarchy
of levels is discussed in Section 1.1.

High-level programming languages such as C and PASCAL can be used to
develop modular programs. These languages provide several high-level con
structs (if-then-else, while, etc.) that aid in faster program development
and maintenance. After giving a brief introduction to assembly language in
Section 1.2, we will discuss the main advantages of the high-level languages
in Section 1.3. The advantages of programming in assembly language are
highlighted in Section 1.4.

Section 1.5 identifies some typical application areas that benefit from pro
gramming in assembly language. Section 1.6 discusses some reasons for learn
ing assembly language.

The performance advantage of programming in assembly language over
programming in C is demonstrated in Section 1.7. A summary of the chapter is
given in the last section.

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998

4 Chapter 1 Introduction

1.1 A User's View of Computer Systems

A user's view of a computer system depends on the degree of abstraction pro
vided by the underlying software. Figure 1.1 shows a hierarchy of levels at
which users can interact with a computer system. Moving to the top of the
hierarchy shields the user from the lower-level details. At the highest level, the
user interaction is simply limited to the interface provided by an application
software such as spreadsheet, word processor, etc. The user is expected to have
only a rudimentary knowledge of how to operate the system. Problem solving
at this level, for example, might be composing a letter by using a word processor
application software.

At the next level, problem solving is done in one of the high-level languages
such as C, PASCAL, FORTRAN, BASIC, etc. A user interacting with the sys
tem at this level should have a detailed knowledge of software development
using a high-level language. Typically, these users are application program
mers. Level 4 users are knowledgeable about the application and the high-level
language that they would use to write the application software. They may not,
however, have a very detailed knowledge about the system (unless they are also
involved in developing system software such as device drivers, assemblers, or
operating systems).

Both levels 4 and 5 are system independent, i.e., independent of the partic
ular processor (CPU) used in the system. For example, an application program
written in C can be executed on a system based on an Intel 80X86 CPU or
on a Motorola 680XO CPU without any modification to the source code. All
you have to do is recompile the program with a C compiler native to the target
system. In contrast, software development done at all levels below level 4 is
system dependent.

Assembly language programming is also referred to as low-level program
ming because each assembly language instruction performs a much lower-level
task compared to an instruction in a high-level language. As a consequence,
to perform the same task, assembly language code tends to be much larger
than the equivalent high-level language code. Assembly language instructions
are native to the particular CPU used in the system. For example, a program
written in the 80X86 assembly language cannot be executed on a system based
on a 680XO CPU. Programming in assembly language also requires a detailed
knowledge about the system components such as the CPU, memory, and so on.

Machine language is a close relative of the assembly language. Typically,
there is a one-to-one correspondence between the instructions of assembly lan
guage and the corresponding machine language. The CPU only understands the
machine language, whose instructions consist of a string of 1 's and O's. More
on the assembly and machine languages will be said in the next section.

Section 1.1 A User's View of Computer Systems

Increased
level of

abstraction

Level 5

Application program level

(Spreadsheet, Word Processor)

Level 4

High-level language level

(C, PASCAL, FORTRAN)

------ ---------
Level 3

Assembly language level

Level 2

Machine language level

Levell

Operating system level

Level 0

Hardware level

System
independent

I

1
System

dependent

Figure 1.1 A user's view of various levels of a computer system.

5

Even though assembly language is considered to be a low-level language,
programming in assembly language will not expose you to all the nuts and
bolts of the system. Your operating system (e.g., DOS) hides several of the
low-level details so that the assembly language programmer can breath easy.

6 Chapter 1 Introduction

For example, if you want to read the input given from the system keyboard, you
can rely on the services provided by your operating system to do the job.

Well, ultimately there has to be something to execute the machine language
instructions. This is the system hardware, which consists of digital logic circuits
and the associated support electronics. A detailed discussion of this topic is
beyond the scope of this book.

1.2 What Is Assembly Language?

Assembly language is a low-level programming language with a one-to-one
correspondence between its instructions and the machine language instructions
of a CPU. Assembly language is directly influenced by the instruction set and
architecture of a CPU. The assembly language code must be processed by
an assembler in order to generate the machine language code. An assembler
is a program that translates assembly language code into machine language.
MASM (Microsoft Assembler) and TASM (Borland Turbo Assembler) are the
two popular assemblers for the pc.

Assembly language instructions specify low-level tasks (hence, the name
10w-Ieve1language). Here are some examples from the assembly language of
the Intel 80X86 CPU.

inc result
mav class_size,45
and mask1, 128
add marks ,10

The first instruction increments the variable result. This assembly lan
guage instruction is equivalent to

result++;

in C. The second instruction initializes class_size to 45. The equivalent
statement in C is

class_size = 45;

The third instruction performs the bitwise and operation on mask1 and can be
expressed in C as

mask1 = mask1 & 128;

The last instruction updates marks by adding 10. This is equivalent to

Section 13 Advantages of High-Level Languages 7

marks = marks + 10;

in C.
The above examples illustrate several points:

1. Assembly language instructions are cryptic.
2. Assembly language operations are expressed by using mnemonics (like

and, inc, add etc.).
3. Assembly language instructions are low level. For example, you cannot

write the following:

mov class_size, value
add marks, 10.8

The first instruction is invalid because two variables class_size and
value cannot be used in a single instruction. The second instruction is
not a valid assembly language instruction because real (i.e., fractional)
numbers cannot be used.

You would appreciate the readability of the assembly language instructions
when you look at the equivalent machine language instructions. Here are some
examples:

Assembly language Machine language (in hex)
inc result FF060AOO
mov class_size, 45 C7060C002DOO
and mask, 128 80260E0080
add marks, 10 83060FOOOA

In the above table, machine language instructions are written in the hex
adecimal number system. If you are not familiar with the hexadecimal number
system, consult Appendix A for a detailed discussion of various number sys
tems. It is obvious from these examples that understanding the code of a pro
gram in the machine language is almost impossible. Since there is a one-to-one
correspondence between the instructions of assembly language and machine
language, it is fairly straightforward to translate instructions from assembly
language to the machine language. Assembler is the software that achieves this
code translation. As a result, only a masochist would consider programming in
a machine language.

1.3 Advantages of High-Level Languages

High-level languages such as C are preferred to program applications, as they
provide a convenient abstraction of the underlying system suitable for problem

8 Chapter 1 Introduction

solving. Here are some advantages of programming in a high-level language
rather than in an assembly language.

1. Program development isfaster in a high-level language. Many high-level
languages provide structures (sequential, selection, iterative) that facil
itate program development. Programs written in a high-level language
are relatively small (compared to the equivalent programs written in an
assembly language) and easier to code and debug.

2. Programs written in a high-level language are easier to maintain. Pro
gramming for a new application can take several weeks to several months
and the life cycle of such an application software can be several years.
Therefore, it is critical that software development be done with a view of
software maintainability, which involves activities ranging from fixing
bugs to generating the next version of the software. Programs written
in a high-level language are easier to understand and, when good pro
gramming practices are followed, easier to maintain. Assembly language
programs tend to be lengthy and take more time to code and debug. As
a result, they are also difficult to maintain.

3. Programs written in a high-level language are portable. High-level lan
guage programs contain very few machine-dependent details, and they
can be used with little or no modification on different computer systems.
In contrast, assembly language programs are written for a particular sys
tem and cannot be used for a different system.

To illustrate the differences between programs written in C and assembly
languages, Section 1.7 presents a concrete example that sorts an array of num
bers using the bubble sort algorithm. You can get an idea of how readable and
compact the code written in C is by comparing the bubble_sort procedure
written in C (see Program 1.2) and assembly language (see Program 1.3). A
more detailed discussion is deferred until Section 1.7.

1.4 Why Program in Assembly Language?

While the previous discussion enumerated the disadvantages of assembly lan
guages, there are certain advantages associated with programming in an assem
bly language.

There are two main reasons why programming is still done in assembly
language: (i) efficiency, and (ii) accessibility to system hardware.

Section 1.4 Why Program in Assembly Language? 9

Efficiency refers to how "good" a program is in achieving a given objective.
Here we consider two objectives based on space (space-efficiency) and time
(time-efficiency).

Space-efficiency refers to the memory requirements of a program (i.e., the
size of the code). Program A is said to be more space-efficient if it takes less
memory space than program B to perform the same task. Very often, programs
written in an assembly language tend to be more compact than when written
in a high-level language. You should not confuse the size of source code with
that of the executable code (see Section 1.7 for an example).

Time-efficiency refers to the time taken to execute a program. Obviously a
program that runs faster is said to be better from the time-efficiency point of
view. Programs written in an assembly language tend to run faster than those
written in a high-level language. Section 1.7 demonstrates this advantage of
assembly language through an example.

As an aside, note that we can also define a third objective: how fast a
program can be developed (i.e., write code and debug). This objective is related
to programmer productivity, and assembly language loses the battle to high
level languages as discussed before.

The superiority of assembly language in generating compact code is becom
ing increasingly less important for several reasons. First, the savings in space
pertain only to the program code and not to its data space. Thus, depending
on the application, the savings in space obtained by converting an application
program from some high-level language to an assembly language may not be
substantial. Second, the cost of memory (i.e., cost per bit) has been decreasing
and memory capacity has been increasing. Thus, the size of a program is not
a major hurdle anymore. Finally, compilers are becoming "smarter" in gen
erating code that is both space- and time-efficient. However, there are areas
such as embedded controllers in which space-efficiency is important (see also
Section 1.5).

One of the main reasons for writing programs in assembly language is to
generate a code that is time-efficient. The superiority of assembly language
programs in producing a code that runs faster is a direct manifestation of speci
ficity. That is, assembly language programs contain only the necessary code
to perform the given task. Even here, a "smart" compiler can optimize the
code that can compete well with its equivalent written in an assembly language.
Although the gap is narrowing with improvements in compiler technology, as
sembly language still retains its advantage for now.

The other main reason for writing programs in an assembly language is to
have direct control over system hardware. High-level languages, on purpose,
provide a restricted (abstract) view of the underlying hardware. Because of this,
it is almost impossible to perform certain tasks that require access to the system

10 Chapter 1 Introduction

hardware. For example, writing an interface program (called device driver) to a
new printer on the market almost certainly requires programming in an assembly
language. Since assembly language does not impose any restrictions, you can
have direct control over all of the system hardware. If you are developing
system software (e.g., assembler, linker), you cannot avoid writing programs
in assembly language.

1.5 Typical Applications

We have identified three advantages to programming in an assembly language.

1. Time-efficiency
2. Accessibility to hardware
3. Space-efficiency

Time-efficiency: Applications for which the execution speed is important fall
under two categories:

1. Time convenience (to improve performance)
2. Time critical (to satisfy functionality)

Applications belonging to the first category benefit from time-efficient pro
grams because it is convenient or desirable (but not absolutely necessary for
their operation). For example, a graphics package that scales an object instan
taneously is more pleasant to use than one that takes noticeable time to do the
same.

In time-critical applications, tasks have to be completed within a certain
time period. These applications are called real-time applications. These ap
plications include aircraft navigation systems, process control systems, robot
control software, communications software, and target acquisition (e.g., missile
tracking) software.

Accessibility to hardware: Systems software often requires direct control over
the system hardware. Examples include operating systems, assemblers, com
pilers, linkers, loaders, device drivers, and network interfaces.

Some applications require hardware control as well. The most notable
example is video games. Another example is computer animation.

Space-efficiency: As indicated in Section 1.4, for most systems, compactness
of application code is not a major concern. However, in portable and hand
held devices, code compactness is an important factor. Space-efficiency of a
program is also important in spacecraft control systems.

Section 1.6 Wby Learn Assembly Language? 11

1.6 Why Learn Assembly Language?

Programming in assembly language is a tedious and error-prone process. The
natural preference of a programmer is to program the application in some high
level language. However, there are some good reasons why some applications
cannot be programmed in a high-level language. Even the applications that
require coding in assembly language do not require the whole program to be
written in assembly language. In such instances, part of the program can be
written in assembly language and the rest can be written in some high-level
language. Such programs are referred to as hybrid programs or mixed-mode
programs. Very often, programs that require assembly language are actually
hybrid programs. In Chapter 13, we will discuss how you can write hybrid
programs.

Learning assembly language has both practical and educational purposes.
Even if you do not plan to write in an assembly language, studying it provides
a good understanding of computer systems. When you program in a high
level language such as C, you are shielded from low-level details on purpose
and provided only a "black-box" view of the system. When programming in
assembly language, you need to understand the internal details of the system
(how data is stored, how code can be made time-efficient, and so on). To
understand assembly language is to understand the computer system itself!

This book uses the PC to explore these internal details. The reason for this
is that PCs are popular and their architecture encompasses several important
characteristics to provide a good understanding of some fundamental concepts,
yet simple enough to provide a gentle introduction to computers beyond the
black-box view.

A final reason to learn assembly language is the personal satisfaction that
comes with learning something complex. Sure, learning assembly language
is more difficult than learning C. But assembly language gives you complete
control over the system hardware. It is very easy to write a simple program
in assembly language that can crash the system. Try to achieve the same with
a high-level language! . You feel powerful with assembly language on your
side, making the time spent learning assembly language worth your while. The
insights provided by assembly language would benefit you even when you are
programming in some high-level language.

1.7 Performance: C Versus Assembly Language

We stated in Section 1.4 that one of the main reasons for programming in an
assembly language is to produce a code that runs faster than the corresponding

12 Chapter 1 Introduction

Initial state: 435 1 2
After 1st comparison: 345 1 2 (4 and 3 swapped)
After 2nd comparison: 345 1 2 (no swap)
After 3rd comparison: 3 4 1 5 2 (5 and 1 swapped)

End of first pass: 3 4 1 2 5 (5 and 2 swapped)

Figure 1.2 Actions taken during the first pass of the bubble sort algorithm.

code produced by a high-level language compiler. In this section, we will see
how much better we can do by writing programs in assembly language. As
an example, let us consider the problem of sorting an array of numbers. Our
strategy is to write a sort procedure in C (a representative high-level language)
and in the 80X86 assembly language and compare the time required to sort the
array by these two versions.

There are several algorithms to sort an array of numbers. The particular
algorithm that we are using here is called the bubble sort algorithm. We describe
the algorithm next.

The bubble sort algorithm consists of several passes through the array of
numbers to be sorted in ascending order. Each pass scans the array, performing
the following actions:

• Compare adjacent pairs of data elements

• If they are out of order, swap them.

The algorithm terminates if, during a pass, no data elements are swapped. If at
least a single swap is done during a pass, it will initiate another pass to scan the
array.

Figure 1.2 shows the behavior of the algorithm during the first pass. The
algorithm starts by comparing the first and second data elements (4 and 3).
Since they are out of order, 4 and 3 are interchanged. Next, the second data
element 4 is compared with the third data element 5, and no swapping takes
place as they are in order. During the next step, 5 and 1 are compared and
swapped and finally 5 and 2 are swapped. This terminates the first pass. The
algorithm has performed N - 1 comparisons, where N is the number of data
elements in the array. At the end of the first pass, the largest data element 5 is
moved to its final position in the array.

Figure 1.3 shows the state of the array after each pass. Notice that after
the first pass, the largest number (5) is in its final position. Similarly, after the
second pass, the second largest number (4) moves to its final position, and so

Section 1. 7 Performance: eVen-us Assembly Language

Initial state:
After 1st pass:
After 2nd pass:
After 3rd pass:

After the final pass:

43512
3 4 1 2 5 (5 in its final position)
3 1 2 4 5 (4 in its final position)
1 2 3 4 5 (array in sorted order)
1 2 3 4 5 (final pass to check)

Figure 1.3 Behavior of the bubble sort algorithm.

13

on. This is why this algorithm is called the bubble sort: during the first pass, the
largest element bubbles to the top, the second largest bubbles to the top during
the second pass, and so on. Even though the array is in sorted order after the
third pass, one more pass is required by the algorithm to detect that the array is
sorted.

The number of passes required to sort an array depends on how unsorted the
initial array is. If the array elements are already in sorted order, only a single
pass is required. At the other extreme, if the array is completely unsorted (Le.,
elements are initially in the descending order), the algorithm requires a number
of passes equal to one less than the number of elements in the array.

The main program is shown in Program 1.1 (see page 17). To avoid the influ
ence of 110, we time only the sort procedure. To do this, we use clock () avail
able in C. This function is defined in the time.h header file. When clockO
is invoked, it gives the current clock value in terms of number of clock ticks.
The number of clock ticks per second is defined by CLOCKS_PER_SEC macro.
Thus, to obtain the sort time in seconds, we have to divide the clock ticks by
CLOCKS _PER_SEC.

The bubble_sort procedure given in Program 1.2 (page 18) follows di
rectly the algorithm described here. In our experiments, the array is initialized
in descending order so that the maximum number of passes is required by the
bubble sort algorithm.

In the assembly language version of the program, only the bubble_sort
procedure is written in the assembly language. The assembly language version
of the bubble sort procedure is shown in Program 1.3 on page 19. At this time,
you are not expected to make any sense out of this program. The purpose is to
show the complexity of the assembly language programs.

Space-efficiency
The executable file sizes of the C and assembly language versions of the bubble
sort program are as follows:

14

C version:
Assembly language version:

50,256 bytes
50,208 bytes

Chapter 1 Introduction

As you can see from the above data, there is only a marginal improvement! This
is mainly because the main program is written in C. In contrast, the source file
sizes (shown below) ofthe bubble sort procedure written in C and assembly lan
guage show the low-level nature and complexity of programming in assembly
language.

Bubble sort procedure source code length:
C version: 1,340 bytes

Assembly language version: 1,851 bytes

Time-efficiency
The sort time taken by the C and assembly language versions is shown in Fig
ure 1.4. The programs were run under Borland C++ on an 80486DX2-based
system with a 66 MHz clock. The x-axis is the size of the array and the y-axis
gives the sort time in seconds. Notice that the assembly language version runs
substantially faster and substantiates our claim that programs written in assem
bly language are time-efficient. Be cautioned that the improvement obtained
by writing in assembly language depends on the application, compiler, and the
type of processor, etc.

In practice, assembly language programming is limited to critical sections
of a program. When we say critical, we mean either due to application (as in
real-time applications), or due to performance reasons. For example, if two
sort utilities are on the market-one written in C and the other in assembly
language-the C version would be a commercial flop. Thus, converting the
bubble sort procedure into assembly language is beneficial and justifies the
increased program development cost. On the other hand, writing a procedure
ini t_array to initialize the array in assembly language is a waste of time
and effort, as this procedure is called only once and, therefore, is not a critical
procedure.

1.8 Summary

We introduced assembly language and discussed where it fits in the hierarchy
of computer languages. Our discussion focused on the usefulness of high
level languages such as C vis-a-vis assembly language. We noted that high
level languages are preferred, as their use aids in faster program development,
program maintenance, and portability. Assembly language, however, provides
two chief benefits: faster program execution, and access to system hardware.

Section 1.9 Exercises 15

25

20
.-...
~

"0
§

15 u
0
~
'-'
0 e

10 . .;:::
t:
0

CIl

5

o~~!=~~--~--~--~--~--~
1000 2000 3000 4000 5000 6000 7000 8000

Number of elements

Figure 1.4 Sort time comparison of the bubble sort example: C version uses the bubble_sort
procedure shown in Program 1.2; Assembly language (AL) version replaces the bubble_sort
procedure by the assembly language procedure shown in Program 1.3.

In the final section of the chapter, we used the bubble sort example to illus
trate the advantages and disadvantages of programming in assembly language.

1.9 Exercises

1-1 What is programmer's productivity? Discuss how a programming lan
guage can affect programmer's productivity.

1-2 You are acting as a consultant to New Age Appliances, Inc. The company
is bringing out a new dishwasher. You are asked to design the control
software that should include as many features as possible in order to gain
marketing advantage over competition. Which programming language
would you choose and why?

1-3 From the example programs given in Program 1.2 and Program 1.3, you
can see that the assembly language programs are long and complex. Why,
then, should we learn to program in assembly language?

16 Chapter 1 Introduction

1-4 What is the relationship between assembly language and machine lan
guage? Under what circumstances, if any, do you consider programming
in machine language?

1-5 Why is assembly language called a low-level language and C a high-level
language?

1-6 Why is portability of programs important? When portability is important,
which language-C or assembly language-would you use?

1-7 Accessibility to hardware is touted as one of the reasons for program
ming in assembly language. Discuss why we can't have full control over
hardware by using a high-level language.

1-8 Assume that the array used in the bubble sort program is initialized as
5 1 2 3 4. How many passes over the array are needed for the bubble
sort algorithm to sort the array in ascending order?

1-9 The bubble sort algorithm discussed in Section 1.7 sorts elements in
ascending order. How difficult is it to change this algorithm to sort in
descending order? Suggest the specific changes required to the algorithm.

I-lOWe have stated that assembly language programs tend to produce code
that is space-efficient. However, if you see the code for the bubble sort
procedure, the C version is about a page (see page 18), while the assembly
language version is twice as long (see Program 1.3). Explain the apparent
contradiction.

1.10 Progamming Exercises

I-PI Compile and run the C and assembly language versions of the bubble
sort program on your machine. Compare the timing obtained on your
machine with the data presented in Figure 1.4. After reading Chapter 2,
you should be able to identify some of the reasons for the difference in
the sort times.

I-P2 The objective of this exercise is to study the overhead associated with
procedure calls in C. Towards this end, modify the C bubble sort pro
cedure so that, instead of swapping elements within the procedure, it
calls a procedure-say swap-to exchange two elements. A call to this
procedure

swap (&x[i], &x[i+l]);

replaces the following three lines of code in Program 1.2 given on page 18.

temp = x[i];
x[i] = x[i+l];
x[i+l] = temp;

Section 1.11 Program Listings 17

Compare the sort times of the new program with the sort times obtained
in the last exercise for the original C version. In a later chapter, we will
look at procedure call overhead in assembly language (see Chapter 4).

1.11 Program Listings

This section gives the source code listings of

bblsortm. c main program
bblsortc . c bubble sort procedure-C version

bblsorta. asm bubble sort procedure-Assembly language version

Compilation is straightforward. For example, the command

bcc bblsortm.c bblsortc.c

can be used to compile the C version under Borland C++. Similarly,

bcc bblsortm.c bblsorta.asm

generates the assembly language version.

Program 1.1 bblsortm.c program listing

/***
* This program initializes an array in descending order and *
* uses the bubble sort algorithm to sort the array in ascending *
* order. Array size is given as input to the program. *
***/

#include <stdio.h>
#include <time.h>

#define ARRAY_SIZE 8000

extern void bubble_sort (int*. int);

int main(void)
{

clock_t start. finish;
int value[ARRAY_SIZE];
int i. size;

printf ("Please input the array size: II);

18 Chapter 1 Introduction

}

scanf("%d", &size);

/* initialize the array in descending order */
for (i=O; i<size;i++)

value[i] = size-i;

start = clock();
bubble_sort (value, size);
finish = clock();

printf("Sorting took %f seconds to finish.\n",
«double) (finish-start»/ CLOCKS_PER_SEC);

return 0;

Program 1.2 bblsortc.c procedure listing

/**
* This procedure uses the bubble sort algorithm to sort an *
* array of integers in ascending order. The procedure *
* receives the array and its size as parameters. *
**/

#define UNSORTED 0
#define SORTED 1

void bubble_sort (int x[], int size)
{

int state; /* records SORTED/UNSORTED status */
int end_index; /* number of comparisons to be done */
int i, temp;

/* Assume that the whole array is initially unsorted */
state = UNSORTED;
end_index = size;

while (state == UNSORTED)
{

state = SORTED; /* Now prove that the array
is not sorted */

Section 1.11 Program Listings

}

}

for (i=O; i<end_index; i++)
{

1* pass loop *1

}

1* Look at adjacent pairs of elements and swap
if the second element is less than the first *1

if (x[i] > x[i+l])
{

}

temp x[i];
x [i] x [i+1] ;
x[i+l] = temp;
state = UNSORTED;

Program 1.3 bblsorta.asm procedure listing

COMMENT Bubble sort procedure BBLSORTA.ASM
Objective: To implement the bubble sort algorithm

Inputs: A pointer to the array to be sorted
and its size are received via the stack.

Output: Returns nothing but the array is sorted
in ascending order.

SORTED EQU 0
UNSORTED EQU 1

.MODEL SMALL

. CODE

.486
PUBLIC _bubble_sort
_bubble_sort PROC

; save registers used by the procedure
pusha
mov BP,SP

;CX serves the same purpose as the end_index variable
in the C procedure. CX keeps the number of comparisons

; to be done in each pass. Note that CX is decremented
; by 1 after each pass.
mov CX, [BP+20] load array size into CX
mov BX, [BP+18] ; load array address into BX

19

20

pass:

dec
jz
mov

ex
done
DI,eX

if # of comparisons is zero
then we are done
else start another pass

;DX is used to keep SORTED/UNSORTED status
mov DX , SORTED ; set status to SORTED

Chapter 1 Introduction

;SI points to element X and SI+2 to the next element
mov SI,BX; load array address into SI

;This loop represents one pass of the algorithm.
;Each iteration compares elements at [SI] and [SI+2]
; and swaps them if ([SI]) < ([SI+2]).
mov AX, [SI]
cmp AX, [SI +2]
jg swap

increment:

swap:

done:

;lncrement SI by 2 to point to the next element
add SI,2
dec D1
jnz pass

cmp
je
jmp

DX,SORTED
done
SHORT next_pass

if status remains SORTED
then sorting is done
else initiate another pass

; swap
xchg
mov
mov

elements at [SI] and [SI+2]
AX, [SI+2]
[SI] ,AX
DX,UNSORTED

jmp SHORT increment

; restore registers
popa
ret

set status to UNSORTED

bubble sort ENDP
END

Chapter 2

Basic Computer
Organ ization

Objectives

• To provide a high-level view of computer organization
• To describe the organization of the Intel Pentium processor
• To introduce the memory organization of Pentium
• To discuss briefly how input/output devices are interfaced
• To illustrate the importance of data alignment

Programming in a high-level language does not require a detailed knowledge of
the underlying system hardware. Assembly language programmers, however,
should have some basic understanding of the underlying system architecture. A
high-level view of computer systems, presented in Section 2.1, consists of three
major components: a processor, a memory unit, and input/output (I/O) devices.

The next three sections discuss these three components in detail. Section 2.2
discusses the architecture of the Intel Pentium processor. Sufficient details are
presented here to understand the basic organization of the Pentium processor.

Section 2.3 presents some basic concepts about the memory system. Pen
tium memory organization is described in Section 2.4. It is important for an
assembly language programmer to understand the segmented memory organi
zation supported by Pentium.

Section 2.5 gives a brief overview of how input/output devices such as a
keyboard, display screen, printer, etc. are interfaced to the system. Chapter 12
gives further details on I/O interfacing.

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998

22 Chapter 2 Basic Computer Organization

Section 2.6 discusses how data alignment affects the running time of pro
grams. We use the bubble sort example discussed in Chapter 1 to illustrate the
impact of data alignment. Section 2.7 concludes the chapter with a summary.

2.1 Basic Components of a Computer System

A computer system has three main components: a central processing unit (CPU)
or processor, a memory unit, and input/output (I/O) devices. These three com
ponents are interconnected by a system bus. The term bus is used to represent
a group of electrical signals or the wires that carry these signals. Figure 2.1
shows details of how they are interconnected and what actually constitutes the
system bus. As shown in Figure 2.1, the three major components of the system
bus are the address bus, data bus, and control bus.

The width of address bus determines the amount of physical memory ad
dressable by the processor. The width of data bus indicates the size of the data
transferred between the processor and memory or I/O device. For example,
the 8086 processor has a 20-bit address bus and a 16-bit data bus. The amount
of physical memory that this processor can address is 220 , or 1 MB, and each
data transfer involves at most 16 bits. The Pentium, on the other hand, has 32
address lines and 64 data lines. Thus, Pentium can address up to 232 , or a 4 GB
memory. Furthermore, each data transfer can move 64 bits of data.

The control bus consists of a set of control signals. Typical control signals
include memory read, memory write, I/O read, I/O write, interrupt, interrupt
acknowledge, bus request, and bus grant. These control signals indicate the
type of action taking place on the system bus. For example, when the processor
is writing data into the memory, the memory write signal is asserted. Similarly,
when the processor is reading from an I/O device, the I/O read signal is asserted.

The system memory, also called main memory or primary memory, is used
to store both program instructions and data. I/O devices such as the keyboard,
display screen, printer, modem, etc. are used to provide user interface. I/O
devices are also used to interface with secondary storage devices such as disks.

The system bus is the communication medium for data transfer. Such data
transfers are called bus transactions. Some examples of bus transactions are
memory read, memory write, I/O read, I/O write, and interrupt. Depending on
the processor and the type of bus used, there may be other types of transactions.
For example, Pentium supports a burst mode of data transfer in which up to
four 64 bits of data can be transferred in a burst cycle.

Every bus transaction involves a master and a slave. The master is the
initiator of the transaction and the slave is the target of the transaction. For
example, when the CPU wants to read data from the memory, it initiates a bus

Section 2.2 The Processor 23

,
V

A ,
CPU - MEMORY

- A
- ,--- - -V

ADDRESS BUS ,

DATA BUS
1/0

v

CONTROL BUS ,

Figure 2.1 Simplified block diagram of a computer system.

transaction, also called a bus cycle, in which the CPU is the bus master and
memory is the slave. The CPU usually acts as the master of the system bus,
while components like memory are usually slaves. Some components may act
as slaves for some transactions and as masters for other transactions.

When there is more than one master device, which is typically the case,
the device requesting the use of the bus sends a bus request signal to the bus
arbiter using the bus request control line. If the bus arbiter grants the request,
it notifies the requesting device by sending a signal on the bus grant control
line. The granted device, which acts as the master, can then use the bus for
data transfer. The bus-request-grant procedure is called bus protocol. Different
buses use different bus protocols. In some protocols, permission to use the bus
is granted for only one bus cycle; in others, permission is granted until the bus
master relinquishes it.

2.2 The Processor

The CPU or processor acts as the controller of all actions or services provided
by the system. The CPU can be thought of as executing the following cycle
forever:

24 Chapter 2 Basic Computer Organization

1. Fetch an instruction from the memory

2. Decode the instruction (i.e., find out what the instruction is)

3. Execute the instruction (i.e., perform the action specified by the instruc
tion).

This process is often referred to as the fetch-execute cycle, or simply the exe
cution cycle.

This raises several questions. Who provides the instructions to the CPU?
Who places these instructions in the main memory? How does the CPU know
where in the main memory these instructions are located?

When we write programs-whether in a high-level language or in an as
sembly language-we are providing a sequence of instructions to perform a
particular task (i.e., solving a problem). The instructions that we write in
whatever language will eventually be translated by a compiler or assembler to
an equivalent sequence of machine language instructions that the CPU under
stands.

The operating system, which provides instructions to the CPU whenever a
user program is not executing, loads the user program into the main memory.
The operating system then indicates the location of the user program to the CPU
and instructs it to execute the program.

2.2.1 The Pentium Processor

The CPU is the heart of a computer system. The particular CPU used by a
computer system determines the power and personality of the system. The
goal of this section is to provide enough details on the Pentium processor that
you need to know to program in the assembly language. We do not attempt
to provide complete details of Pentium, as most aspects of the internal details
are unimportant to the assembly language programmer. As indicated in the
last section, a program is executed by the CPU by repeatedly performing the
fetch-execute cycle shown in Figure 2.2.

Fetching an instruction from the main memory involves placing the appro
priate address on the address bus and activating the memory read control signal
on the control bus to indicate to the memory unit that an instruction should be
read from that location. The memory unit requires time to read the instruction
at the addressed location. This time is called the access time. The memory then
places the instruction on the data bus. The CPU, after instructing the memory
unit to read, waits until the instruction is available on the data bus and then
reads the instruction.

Section 2.2 The Processor 25

~ execution cycle --:;..j

Fetch ...

~time

Figure 2.2 Execution cycle of a typical computer system.

Decoding involves identifying the instruction that has been fetched from
the memory. To facilitate the decoding process, machine language instructions
follow a particular instruction encoding scheme.

To execute an instruction, the CPU contains hardware consisting of con
trol circuitry and an arithmetic and logic unit (ALU). The control circuitry is
needed to provide timing controls as well as to instruct the internal hardware
components to perform a specific operation. The ALU is mainly responsible for
performing arithmetic operations (such as add, divide) and logical operations
(such as and, or) on data.

In practice, instructions and data are not fetched, most of the time, from the
main memory. There is a high-speed cache memory that provides faster access
to instructions and data than the main memory. For example, Pentium provides
a 16 KB on-chip cache. This is divided equally into data cache and code cache.
The presence of on-chip cache is transparent to application programs-it helps
improve application performance.

2.2.2 The Pentium Registers

Pentium provides several internal registers for the storage of data, control, and
other information. Pentium has ten 32-bit and six 16-bit registers. These
registers are grouped into general, control, and segment registers. The general
registers are further grouped into data, pointer, and index registers.

Data Registers

There are four 32-bit data registers that can be used for arithmetic and logical
operations (see Figure 2.3). These four registers are unique in that they can be
used as:

• four 32-bit registers (EAX, EBX, ECX, EDX), or

• four 16-bit registers (AX, BX, CX, DX), or

26

32-bit registers

t 31

EAX

EBX

ECX

EDX

16 15

AH

BH
CH

DH

Chapter 2 Basic Computer Organization

87

AL
BL
CL

DL

16-bit registers

o t
AX Accumulator

BX Base

CX Counter

DX Data

Figure 2.3 Data registers of the Pentium processor (16-bit registers are shown shaded) .

• eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL)

As shown in Figure 2.3, it is possible to use a 32-bit register and access its
lower half of the data by the corresponding 16-bit register name. For example,
the lower 16 bits of EAX can be accessed by using AX. Similarly, the lower
two bytes can be individually accessed by using the 8-bit register names. For
example, the lower byte of AX can be accessed as AL and the upper byte as
AH.

The data registers can be used without constraint in most arithmetic and
logical instructions. However, some registers have additional special functions
when executing some specific instructions. For example, when performing a
multiplication operation, one of the two data items needed should be in the
EAX, AX, or AL register depending on whether the operation is on 32-bit,
16-bit, or 8-bit data items. Similarly, the ECX or CX register is assumed to
contain the loop count value for the iterative instructions.

Pointer and Index Registers

Figure 2.4 shows the four 32-bit registers in this group. These registers can
be used either as 16-bit registers or 32-bit registers. The two index registers
playa special role in string processing instructions (discussed in Chapter 9). In
addition, they can be used as general-purpose data registers.

The pointer registers are mainly used to maintain the stack. Even though
they can be used as general purpose data registers, they are almost exclusively
used for maintaining the stack. The stack is discussed in Chapter 4.

Section 2.2 The Processor

ESI

EDI

ESP

EBP

31

31

Index Registers

16 15

SI

01

Pointer Registers

16 15

SP

BP

o

o

Source Index

Destination Index

Stack Pointer

Base Pointer

Figure 2.4 Index and pointer registers of the Pentium processor.

Control Registers

27

This group of registers consists of two 32-bit registers: the instruction pointer
register and the flags register. The instruction pointer register is used by the
processor to keep track of the location of the next instruction to be executed
in the memory. In other words, the instruction pointer is kind of a marker to
remember where the next instruction is located. The instruction pointer can be
used either as a 16-bit register (IP), or as a 32-bit register (EIP). IP is used for
16-bit addresses and EIP for 32-bit addresses (see Section 2.4 for details on
memory architecture).

When an instruction is fetched from memory, the instruction pointer is
incremented to point to the next instruction. This register is also modified
during the execution of an instruction that transfers control to another location
in the program (such as a jump instruction, procedure call, or an interrupt).

The flags register can also be considered as either a 16-bit FLAGS register,
or a 32-bit EFLAGS register. The FLAGS register is useful in executing 8086
processor code. The EFLAGS register consists of six status or arithmetic
flags, one control flag, and ten system flags, as shown in Figure 2.5. Bits of
this register can be set (to 1) or cleared (to 0). Pentium provides instructions to
set or clear some flags. For example, the ele instruction clears the carry flag,
while the ste instruction sets it.

The six status flags record certain information about the most recent arith
metic or logical operation. For example, if an arithmetic operation such as

28

EFLAGS

EIP

3
1

Chapter 2 Basic Computer Organization

Flags Register

FLAGS

/r--------~"~--------~,

2 2 2 1 I 1
210987 I 0

Status Flags Control FJags System FJags

CF = Carry Flag OF = Direction Flag TF = Trap Flag

PF = Parity Flag IF = Interrupt Flag

AF = Auxiliary Carry Flag 10PL = I/O Privilege Level

ZF = Zero Flag NT = Nested Task

SF = Sign Flag RF = Resume Flag

OF = Overflow Flag VM = Virtual 8086 Mode

AC = Alignment Check

VIF = Virtual Interrupt Flag

VIP = Virtual Interrupt Pending

10 = 10 Flag

Instruction Pointer

31 16 15 0

IP I

Figure 2.5 Flags and instruction pointer registers of the Pentium processor.

subtraction has resulted in a zero result, the zero flag (ZF) bit would be set (i.e.,
ZF = 1). Chapter 6 discusses the status flags in detail.

The control flag is useful in string operations. This determines whether a
string operation is to scan the string in the forward or backward direction. The
function of the direction flag is described in Chapter 9, which discusses the
string instructions supported by Pentium.

The ten system flags control the operation of the processor. A detailed
discussion of all ten system flags is beyond the scope of this book. Here we
discuss a few flags in this group that are relevant to our objective. The two
interrupt enable flags-the trap enable flag (TF) and the interrupt enable flag
(IF)-are useful in interrupt-related activities. For example, setting the trap
flag causes the processor to single step through a program, which is useful

Section 2.2 The Processor

15

CS

OS

SS

ES

FS

GS

o
Code Segment

Data Segment

Stack Segment

Extra Segment

Extra Segment

Extra Segment

Figure 2.6 The six segment registers of the Pentium processor.

29

in debugging programs. These two flags are covered in Chapter 12, which
discusses the interrupt processing mechanism of Pentium.

The ability to set and clear the identification (lD) flag indicates that the
processor supports the CPUID instruction. The CPUID instruction provides
information to software about the vendor (Intel chips use "GenuineIntel" string),
processor family, model, etc. The virtual-8086 mode (VM) flag, when set,
emulates the programming environment of the 8086 processor.

The last flag that we discuss is the alignment check (AC) flag. When this
flag is set, the processor operates in alignment check mode and generates excep
tions when a reference is made to an unaligned memory address. Section 2.6
provides further information on data alignment and its impact on application
performance.

Segment Registers

The six 16-bit segment registers of Pentium are shown in Figure 2.6. These reg
isters support the segmented memory organization of Pentium. This memory
organization is discussed in detail in Section 2.4. In such a segmented orga
nization, memory is partitioned into segments, where each segment is a small
part of the memory. The processor, at any point in time, can only access up to
six segments of the main memory. The six segment registers point to where
these segments are located in the memory.

Your program is logically divided into two parts: a code part that contains
only the instructions, and a data part that contains only the data operated on
by the instructions in the code part. The code segment (CS) register points to
where your instructions are stored in the main memory, and the data segment

30

o

Chapter 2 Basic Computer Organization

I~ clock ~
I cycle I

time

Figure 2.7 Clock signal of a computer system.

L

(DS) register points to your data segment location. The stack segment (SS)
register points to your program's stack segment (discussed in Chapter 4).

The last three segment registers-ES, GS, and FS-are additional segment
registers that can be used in a similar way as the other segment registers. For
example, if a program's data could not be fit into a single data segment, it is
efficient to use two data segment registers to point to the two data segments that
your program uses.

2.2.3 The System Clock

System clock provides timing signal to synchronize the operation of the system.
A clock is a sequence of 1 's and O's, as shown in Figure 2.7. Clock rate is
measured in number of cycles per second. This number is referred to as Hertz
(Hz). The abbreviation MHz is used for millions of cycles per second.

The system clock defines the speed at which the system is operating. All
operations of the processor take mUltiple clock cycles. For example, transfer
of data from a memory location to Pentium takes three clock cycles. Thus, the
higher the clock rate, the faster the system can work.

Clock period is defined as the length of time taken by one clock cycle.

. 1
Clock penod = ---

Clock rate

For example, a clock rate of 100 MHz yields a clock period of

1
= IOns

100 x 106

If it takes three clock cycles to move data on the system bus (for example,
reading data from a memory location), it takes 3 xl 0 ns = 30 ns.

One way to increase the speed of a computer system is to use a higher clock
rate. For example, if we use a clock of 200 MHz, the time to move a unit of

Section 2.2 The Processor 31

data on the system bus reduces from 30 ns to 15 ns. Clock rates increase with
improvements in technology. The original IBM PC used a clock rate of 4.77
MHz. Current technology allows clock rates higher than 400 MHz.

2.2.4 The Intel 80X86 Processor Family

Intel introduced the 8086 in 1979. It has a 20-bit address bus and a 16-bit data
bus. The 8088 is a less expensive version of the 8086. While the 8088 also has
a 20-bit address bus, it uses only an 8-bit data bus. The 8088, however, uses an
internal 16-bit data bus. The 8088 has a 4-byte instruction queue as opposed to
a 6-byte queue of the 8086.

The 80186 is a faster version of the 8086. It has a 20-bit address bus and
16-bit data bus, but has an improved instruction set. The 80186 was never
widely used in computer systems. The real successor to the 8086 is the 80286,
which was introduced in 1982. It has a 24-bit address bus and hence a 16 MB
memory address space. The data bus is still 16 bits wide, but the 80286 has
memory protection capabilities. It is backward-compatible in that it can run all
of the original 8086-based software.

Intel introduced the first 32-bit CPU-the 80386--in 1985. It has a 32-
bit data bus and a 32-bit address bus. The memory address space has grown
substantially from that of the 80286 (from a 16 MB address space to 4 GB).
Like the 80286, it can run all the programs designed to run on 8086 and 8088
CPUs. In the following year, Intel introduced the 80386SX. The 80386SX is
essentially the same as the 80386 except that it has a 16-bit data bus instead of
a 32-bit data bus. In other words, 80386SX is to 80386 what 8088 is to 8086.

The Intel 80486 was introduced in 1989. This is an improved version of
the 80386. While maintaining the same address and data buses, it combines the
coprocessor functions for performing floating-point arithmetic and includes an
internal cache.

The latest in the family is the Pentium series. It is not named 80586 because
Intel found belatedly that numbers cannot be trademarked! The first Pentium
was introduced in 1993. Pentium is similar to 80486 but uses a 64-bit data
bus. However, the instruction set of Pentium supports 32-bit operands like that
of the 80486. Systems based on Pentium would fall into what is called the
"workstation" category.

The number-crunching capability of a CPU can be enhanced by using spe
cial hardware to perform numeric operations. The 80X87 numeric coprocessor
was designed to work with the 80X86 family CPUs to enhance the number pro
cessing capabilities. The 8087 numeric coprocessor works with the 8086/8088
to provide extensive high-speed numeric processing capabilities. The 8087, for
example, provides about a hundred-fold improvement in execution time com-

32

Address

(in decimal)

232_1

2

o

•
•
•

Chapter 2 Basic Computer Organization

Address

(in hex)

FFFFFFFF

FFFFFFFE

FFFFFFFD

00000002

00000001

00000000

Figure 2.8 Logical view of the system memory.

pared to that of an equivalent function in software on a 5 MHz 8086. The 80287
works with the 80286 and the 80387 with the 80386. The 80486 and Pentium
have built-in numeric processor capabilities and therefore do not need a special
numeric processor.

2.3 Memory

The memory of a computer system consists of tiny electronic switches, with
each switch set in one of two states: open or closed. It is, however, more
convenient to think of these states as 0 and 1 rather than open and closed. A
single such switch can be used to represent two (i.e., binary) numbers: a zero
and a one. Thus, each switch can represent a binary digit or bit, as it is known.
The memory unit consists of millions of such bits. In order to make memory
more manageable, bits are organized into groups of eight bits called bytes.
Memory can then be viewed as consisting of an ordered sequence of bytes.
Each byte in this memory can be identified by its sequence number starting
with 0, as shown in Figure 2.8. This is referred to as the memory address ofthe
byte. Such memory is called byte addressable memory.

Section 2.3 Memory

Address

Read

Write

MEMORY

UNIT

Figure 2.9 Block diagram of the system memory.

33

Data

Pentium can address up to 4 GB (232 bytes) of main memory (see Figure 2.8).
This magic number comes from the fact that the address bus of Pentium has 32
address lines. This number is referred to as the memory address space (MAS).
The memory address space of a system is determined by the address bus width of
the CPU used in the system. The actual memory in a system, however, is always
less than or equal to the memory address space. The amount of memory in a
system is determined by how much of this memory address space is populated
with memory chips.

2.3.1 Two Basic Memory Operations

The memory unit supports two fundamental operations: read and write. The
read operation reads a previously stored data and the write operation stores
a value in memory. Both of these operations require an address in memory
from which to read a value or to which to write a value. In addition, the write
operation requires specification of the data to be written. The block diagram of
the memory unit is shown in Figure 2.9. The address and data of the memory
unit are connected to the address and data buses of the system bus, respectively.
The read and write signals come from the control bus.

Two metrics are used to characterize memory. Access time refers to the
amount of time required by the memory to retrieve the data at the addressed
location. The other metric is the memory cycle time, which refers to the
minimum time between successive memory operations.

The read operation is nondestructive in the sense that one can read a location
of the memory as many times as one wishes without destroying the contents of
that location. The write operation, on the other hand, is destructive, as writing
a value into a location destroys the old contents of that memory location.

34 Chapter 2 Basic Computer Organization

Steps in a typical read cycle

1. Place the address of the location to be read on the address bus
2. Activate the memory read control signal on the control bus
3. Wait for the memory to retrieve the data from the addressed memory

location
4. Read the data from the data bus
5. Drop the memory read control signal to terminate the read cycle.

A simple Pentium read cycle takes three clock cycles. During the first clock
cycle, steps 1 and 2 are performed. Pentium waits until the end of the second
clock and reads the data and drops the read control signal. If the memory is
slower (and therefore cannot supply data within the specified time), the memory
unit indicates its inability to the CPU and the CPU waits longer for the memory
to supply data by inserting wait cycles. Note that each wait cycle introduces
a waiting period equal to one system clock period and thus slows down the
system operation.

Steps in a typical write cycle

1. Place the address of the location to be written on the address bus
2. Place the data to be written on the data bus
3. Activate the memory write control signal on the control bus
4. Wait for the memory to store the data at the addressed location
5. Drop the memory write signal to terminate the write cycle.

As with the read cycle, Pentium requires three clock cycles to perform a
simple write operation. During the first clock cycle, steps 1 and 3 are done.
Step 2 is performed during the second clock cycle. Pentium gives memory
time until the end of the second clock and drops the memory write signal. If
the memory cannot write data at the maximum CPU rate, wait cycles can be
introduced to extend the write cycle to give more time to the memory unit.

2.3.2 Types of Memory

The memory unit can be implemented using a variety of memory chips
different speeds, different manufacturing technologies, and different sizes. The
two basic types of memory are read-only memory and read/write memory.

A basic property of memory systems is, they are random access memories
in that accessing any memory location (for reading or writing) takes the same
time. Contrast this with data stored on a magnetic tape. Access time on the
tape depends on the location of the data.

Section 23 Memory 35

Volatility is another important property of a memory unit. A volatile mem
ory requires power in order to retain its contents. A nonvolatile memory can
retain its values even in the absence of power.

Read-Only Memories

Read-only memory (ROM) allows only read operations to be performed. This
memory cannot be written into by the CPU. The main advantage of ROM is
that it is nonvolatile. Most ROM is factory programmed and cannot be altered.
The term programming in this context refers to writing values into a ROM. This
type of ROM is cheaper to manufacture in large quantities than other types of
ROM. The program that controls the standard input and output functions (called
BIOS), for instance, is kept in ROM.

Other types of ROM include programmable ROM (PROM) and erasable
PROM (EPROM). PROM is useful in situations where the contents of ROM are
not yet fixed. For instance, when the program is still in the development stage,
it is convenient for the designer to be able to program the ROM locally rather
than at the time of manufacture.

In PROM, a fuse is associated with each bit cell. If the fuse is on, the bit
cell supplies a 1 when read. The fuse has to be burned to read a 0 from that bit
cell. When PROM is manufactured, its contents are all set to 1. To program
PROM, selective fuses are burned (to introduce D's) by sending high current.
This is the writing process and is not reversible (i.e., a burned fuse cannot be
restored). EPROM offers further flexibility during system prototyping. Con
tents of EPROM can be erased by exposing them to ultraviolet light for 10-20
minutes. Once erased, EPROM can be reprogrammed again.

ReadlWrite Memory

Read/write memory is commonly referred to as random access memory (RAM),
even though ROM is also random access memory. This terminology is so
entrenched in the literature that we follow it here with a cautionary note that
RAM actually refers to RWM.

Read/write memory can be divided into static and dynamic categories.
Static random access memory (SRAM) retains the data, once written, without
further manipulation so long as the source of power holds its value. SRAM is
typically used for implementing the CPU registers and cache memories.

The bulk of main memory in a typical computer system, however, consists
of dynamic random access memory (DRAM). DRAM is a complex memory
device that uses a tiny capacitor to store a bit. A charged capacitor represents
1 bit. Since capacitors slowly lose their charge due to leakage, they must be

36 Chapter 2 Basic Computer Organization

Table 2.1 A comparison of different memory types

Type of Typical Number of write Volatility
memory access time cycles allowed (power required)
ROM 50-100 ns Oncea No
PROM 50-100 ns Once No
EPROM 50-100 ns Many No
SRAM 10-20 ns Infinite Full
DRAM 50-100 ns Infinite 10%

a at the time of manufacture

refreshed to replace the charges representing 1 bit. A typical refresh period is
about 4 ms. Reading from DRAM involves testing to see if the corresponding
bit cells are charged. Unfortunately, this test destroys the charges on the bit
cells representing 1 bit. Thus, DRAM is a destructive read memory.

For proper operation, a read cycle is followed by a restore cycle. As a result,
the DRAM cycle time, the actual time necessary between accesses, is typically
about twice the read access time, which is the time necessary to retrieve a datum
from the memory. Table 2.1 gives a summary.

SRAM is faster than dynamic memory but it is more expensive. Typical
access time for SRAM is in the 10-20 ns range, whereas that for DRAM is in
the 50-100 ns range. However, DRAM costs about $30-100 per MB, whereas
the corresponding figure for SRAM is $200-400.

2.3.3 Storing Multibyte Data

Storing data often requires more than 8 bits, or a byte. For example, we need
two bytes of memory to store the value of a variable that can take a number in
the range 0 through 65,535. Let us assume that the value to be stored is 39,095.
Its binary equivalent is shown in Figure 2.1 Oa.

How can this 2-byte data be stored in memory at locations 100 and 101?
Figure 2.10 shows two possibilities: least significant byte (Figure 2.1 Ob) or
most significant byte (Figure 2.10c) is stored at location 100. These two byte
ordering schemes are referred to as little endian and big endian. In either
case, we always refer to such multibyte data by specifying the lowest memory
address (100 in this example).

Section 2.4 Pentium Memory Architecture 37

10011000 10110111

(a) 16-bit data

Address

101 ~ 1001 1000

100 ~ 101 101 1 1

(b) Little end ian byte ordering

Address

101 ~ 1 01 101 1 1

100 ~ 1001 1000

(c) Big endian byte ordering

Figure 2.10 Two byte ordering schemes.

Is one byte ordering scheme better than the other? Not really! It is largely
a matter of choice for the designers. The Intel 80X86 processors use the lit
tle endian scheme, while the Motorola 680XOO processors use the big end ian
scheme.

The particular byte ordering scheme used does not pose any problems as
long as you are working with machines that use the same byte ordering scheme.
However, difficulties arise when you want to transfer data between two ma
chines that use different byte ordering schemes. In this case, conversion from
one scheme to the other is required. Pentium provides two instructions to fa
cilitate such conversion: xchg can be used for 16-bit data conversion between
little and big endian schemes, and bswap for 32-bit data. Chapter 3 discusses
these instructions in detail.

2.4 Pentium Memory Architecture

Pentium supports a sophisticated memory architecture. In this section we dis
cuss the architectural features provided under real and protected modes. The
real mode, which uses 16-bit addresses, is provided to run programs written
for 8086. In this mode, Pentium supports the segmented memory architecture.

38 Chapter 2 Basic Computer Organization

Physical address

.. offsel 1----.,......".--1 ,",",or::;--- 11450

(450)

Segment base I-----~ EE--- 11000

(1100)

Figure 2.11 Relationship between logical address and physical address of memory (all numbers
are in hex).

The protected mode, which is the native mode of Pentium, supports both seg
mentation and paging. Paging is useful in implementing virtual memory. One
requires background in the operating system area to understand the concept of
virtual memory. Furthermore, paging is transparent to the application program
but segmentation is not. Therefore, we will not discuss the paging features of
Pentium. The rest of the section describes the segmented memory architecture
in real and protected modes.

2.4.1 Real Mode Memory Architecture

As mentioned, Pentium behaves like a faster 8086 in real mode. The memory
address space ofthe 8086 CPU is 1 MB as its address bus width is 20. To address
a memory location, which stores a byte of data, we need a 20-bit address. The
address of the first location is OOOOOH; the last addressable memory location is
at FFFFFH. Recall that numbers expressed in the hexadecimal number system
are indicated by suffix H (see Appendix A).

Since all registers in the 8086 CPU are only 16 bits wide, the address space
is limited to 216, or 65,536 (64 K) locations. As a consequence, the memory is

Section 2.4 Pentium Memory Architecture 39

organized as a set of segments. Each segment of memory is a linear contiguous
sequence of up to 64 K bytes. In this segmented memory organization, we
have to specify two components to identify a memory location. These are the
segment base and an offset within the specified segment (see Figure 2.11). This
two-component specification is referred to as the logical address. The segment
base specifies the beginning address of a segment in memory and the offset
specifies the address relative to the beginning of the segment. The offset is also
referred to as the effective address. The relationship between the logical and
physical addresses is shown in Figure 2.11.

The mechanism as described here will not completely solve the problem
of addressing a memory address space that requires 20 bit addresses by using
16-bit registers.

Notice from Figure 2.11 that the segment beginning address is 20 bits long
(11000H). So how can we use a 16-bit register to store the 20~bit segment base
address? The trick is to store the most significant 16 bits of the segment base
address and assume that the least significant four bits are all O. In the example,
we would store 1100H as the segment base. The implied four least significant
zero bits are not stored. This trick works but imposes a restriction on where
the segments can begin. Segments can begin only at those memory locations
whose address has the least significant four bits as o. Thus, segments can begin
at OOOOOH, OOOlOH, 0OO20H, ... FFFEOH, FFFFOH. Segments, for example,
cannot begin at 00001H or FFFEEH.

In the segmented memory organization, a memory location can be identified
by its logical address, which consists of specifying the segment it is located in
and the offset within the segment. We use the notation segment: offset to specify
the logical address. For example, 1l00:450H identifies the memory location
(Le., 11450H), as shown in Figure 2.11. The latter value to identify a memory
location is referred to as the physical memory address.

As a programmer, you need to worry about logical addresses only. However,
when the CPU accesses the memory, it has to supply the 20-bit physical memory
address. The conversion of logical address to physical address is straightfor
ward. This translation process, shown in Figure 2.12, involves adding four
least significant zero bits to the segment base value and then adding the offset
value. When using the hexadecimal number system, simply add a zero digit to
the segment base address at the right and add the offset value. As an example,
consider the logical address 1 100: 450H. The physical address is:

11000
+ 450

11450

(add 0 to 16-bit segment base value)
(offset value)
(physical address)

40 Chapter 2 Basic Computer Organization

19 4 3 a
I Segment Register I a a a a I

19 16 15

10 a a a I Offset Value

ADDER

_Jl __
(\
19

2D-bit Physical Memory Address

Figure 2.12 Physical address generation in 8086.

For each logical memory address, there is a unique physical memory ad
dress. The converse, however, is not true. More than one logical address can
refer to the same physical memory address. This is illustrated in Figure 2.13,
where logical addresses 1000:20A9H and 1200:A9H refer to the same physical
address 120A9H. The location 120A9H is mapped to two segments.

In our discussion of segments, we never said anything about the actual size
of a segment. The main factor limiting the size of a segment is the 16-bit offset
value, which restricts the segments to at most 64 K bytes in size. In the real
mode, Pentium sets the size of each segment to exactly 64 K bytes.

Programmers view the memory address space as a group of segments. These
segments are defined by the programmer. At any instance, a program can access
up to six segments. (The 8086 actually supports only four segments-segment
registers FS and GS are not present in the 8086 processor.) Typically two of
these segments contain code (program's instructions) and data (program's data).
The third segment is used for the stack.

If necessary, other segments may be used, for example, to store data, as
shown in Figure 2.14. Assembly language programs typically use at least two
segments--code and stack segments. If the program has data (which almost
all programs do), a third segment is also needed to store data. Those programs
that require additional memory can use the other segments.

Section 2.4 Pentium Memory Architecture

Segme nt 1

120A 9:1-
(20A9)

t base Segmen
(100 0)

Segm ent2

]~~(A9)
Segmen t base

0) (120

41

Figure 2.13 Two logical addresses map to the same physical address (all numbers are in hex).

The six segment registers of Pentium point to the six segments, as shown
in Figure 2.14. There are no restrictions on the segments except that segments
must begin on 16-byte memory boundaries, as described earlier. Except for
this restriction, segments can be placed anywhere in the memory. The segment
registers are independent and segments can be contiguous, disjoint, partially
overlapped, or fully overlapped, as shown in Figure 2.15.

Even though programmers view memory as a group of segments and use the
logical address to specify a memory location, all interactions between the CPU
and the memory unit must use the physical address. We have seen the process
involved in translating a given logical address to the corresponding physical
address (see page 39). Pentium has dedicated hardware to perform the address
translation, as illustrated in Figure 2.12.

Here is a summary of the real mode memory architecture:

• Segments are exactly 64 K bytes in size.

• A segment register contains a pointer to the base of the segment.

• Default operand size and effective addresses are 16 bits long.

42 Chapter 2 Basic Computer Organization

CODE

STACK

CS l"-

SS r--- r DATA

OS
ES --- DATA
FS

L GS
DATA

~ DATA

Figure 2.14 The six segments of the memory system.

(a) Adjacent (b) Disjoint (c) Partially overlapped (d) Fully overlapped

Figure 2.15 Various ways of placing segments in the memory.

Section 2.4 Pentium Memory Architecture 43

Logical
Address

Segment
Translation

32-bit

Linear
Address

Page
Translation

32-bit
Physical
Address

Figure 2.16 Logical to physical address translation process in the protected mode.

• Stack operations use the 16-bit SP register.

• Stack size is limited to 64 KB.
• Paging is not available. Thus, the processor uses the linear address as the

physical address (see Figure 2.16).

Keep in mind that the above list is the default attributes. It is, however, possible
to change some of these defaults. Section 2.4.7 discusses how 32-bit operands
and addresses can be used in the real mode.

2.4.2 Protected Mode Memory Architecture

In protected mode, Pentium supports a more sophisticated segmentation mech
anism in addition to paging. This section focuses on the segmentation features
of the memory architecture.

As described in the previous section, application programs use the logical
addresses, which consists of two components: a segment base, and an offset.
Recall that the offset is also called the effective address. The segment unit trans
lates a logical address into a 32-bit linear address. The paging unit translates
the linear address into a 32-bit physical address, as shown in Figure 2.16. Ifno
paging mechanism is used, the linear address is used as the physical address. It
is the physical address that is passed on to the memory to identify the location
of access in memory. In the remainder of this section, we focus on the segment
translation process only.

The protected mode segment translation process is different from that used
in the real mode. In the real mode, which mimics the 8086 mode of operation,
the physical address is 20 bits long. The physical address is obtained directly
from the contents of the selected segment register and the offset, as illustrated
on page 39. In protected mode, the contents of the segment register are taken
as an index into a segment descriptor table to get a descriptor. The segment
translation process is shown in Figure 2.17. A segment descriptor provides
the 32-bit base address of the segment, its size, and access rights, as shown in
Figure 2.19. To translate a logical address to the corresponding linear address,

44 Chapter 2 Basic Computer Organization

SEGMENT SELECTOR OFFSET

15 3 2 1 0 31 o
INDEX

"" /

DESCRIPTOR TABLE

Segment
{

ACCESS RIGHTS

Descriptor I---__ L_IM_IT __ --l
,,-)-

~ + BASE ADDRESS
f---------I

(
31

32-bit Base Address ~

LINEAR ADDRESS

Figure 2.17 Protected mode address translation.

o

the offset is added to the 32-bit base address. The offset value can be either a
16-bit or a 32-bit number.

2.4.3 Segment Registers

Every segment register has a "visible" part and an "invisible" part, as shown
in Figure 2.18. When we talk about segment registers, we are referring to the
16-bit visible part. The visible part is referred to as the segment selector. There
are direct instructions to load the segment selector. These instructions include
mov, pop, 1ds, 1es, lss, 19s, and lfs. These instructions are discussed
in later chapters. The invisible part of the segment registers is automatically
loaded by the processor from a descriptor table (described next).

Section 2.4 Pentium Memory Architecture

Visible Pan Invisible Pan

Segment Selector Segment Bue Address, Size, Access Rights, etc.

Segment Selector Segment Bue AddJaa, Size, Access Rights, etc.

Segment Selector Segment Bue AddJaa, Size, Access Rights, etc.

Segment Selector Sqment Bue Address. Size, Access Rights, etc.

Segment Selector Segment Bue Address. Size, Ac:cess Rights. etc.

Segment Selector Segment Bue Address, Size. Access Rights. etc.

Figure 2.18 Visible and invisible parts of segment registers.

The segment selector provides three pieces of information:

CS

SS

OS

ES

FS

OS

45

• Index: Index selects a segment descriptor from one of two descriptor
tables-a Local Descriptor Table or a Global Descriptor Table. Since the
index is a 13-bit value, it can select one of 213 = 8192 descriptors from
the selected descriptor table. Since each descriptor, shown in Figure 2.19,
is 8 bytes long, the processor multiplies the index by 8 and adds the result
to the base address of the selected descriptor table. The base address of
the two descriptor tables is contained in registers GDTR and LDTR for
local and global descriptor tables, respectively.

• Table Indicator (TI): This bit indicates whether the local or global de
scriptor table should be used.

o = Global descriptor table
1 = Local descriptor table

• Requester Privilege level (RPL): This field identifies the privilege level
that is useful in providing protected access to data. The smaller the value
of RPL, the higher the privilege level.

2.4.4 Segment Descriptors

A segment descriptor provides the attributes of a segment. These attributes
include a 32-bit base address, a 20-bit segment size, as well as control and
status information, as shown in Figure 2.19. As an application programmer, you
are not concerned with the creation of segment descriptors. Typically, system
software such as compilers, linkers, and loaders, creates segment descriptors.

46

3

31

Chapter 2 Basic Computer Organization

BASE 31:24

2 2 2 2 2 1
432 1 0 9

Ii A

1 1 1 1 1 1
654321

D D
G / !f;~

LIMIT P P S

B
19:16 L

87

TYPE BASE 23:16

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

16 15

Figure 2.19 Segment descriptor.

o

+4

+0

o

Here we provide a brief description of some of the fields shown in Figure 2.19.

• Base Address: The 32-bit base address specifies the starting address of
a segment in the 4 GB physical address space. This 32-bit value is added
to the offset value to form the linear address (see Figure 2.17).

• Granularity (G): This bit indicates whether the segment size value,
described next, should be interpreted in units of bytes or 4 KB. If the
granularity bit is zero, segment size is interpreted in bytes; otherwise, in
units of 4 KB.

• Segment Limit: This is a 20-bit number that specifies the size of the
segment. Depending on the granularity bit, two interpretations are given
to this value:

1. If the granularity bit is zero, the segment size can range from 1 byte
to 1 MB (i.e., 220 bytes), in increments of 1 byte.

2. If the granularity bit is 1, the segment size can range from 4 KB to
4 GB, in increments of 4 KB.

• DIB bit: In a code segment, this bit is called a D bit and specifies the
default size for operands and offsets. If the D bit is 0, default operands
and offsets are assumed to be 16 bits; for 32-bit operands and offsets, the
D bit is set to 1.

In a data segment, this bit is called B bit and controls the size of the stack
pointer and size of the stack. If the B bit is 0, stack operations use the SP
register and the upper bound for the stack is FFFFH. If the B bit is 1, the

Section 2.4 Pentium Memory Architecture 47

ESP register is used for the stack operations with a stack upper bound of
FFFFFFFFH.
Typically, this bit is cleared for the real mode operation and set for the
protected mode operation. Section 2.4.7 describes how 16-bit and 32-bit
operands and addresses can be mixed in a given mode of operation.

• S bit: This bit identifies whether the segment is a system or an application
segment. If the bit is 0, the segment is identified as a system segment;
otherwise, as an application (code or data) segment.

• Descriptor Privilege Level (DPL): This field defines the privilege level
of the segment. It is useful in controlling access to the segment using the
protection mechanisms of the Pentium processor.

• Type: This field identifies the type of segments. The actual interpreta
tions of this field depend on whether the segment is a system or application
segment. For application segments, the type depends on whether the seg
ment is a code or data segment. For a data segment, a type can identify it
as a read-only, read-write, and so on. For a code segment, type identifies
it as an execute-only, execute/read-only, and so on.

• P bit: This bit indicates whether the segment is present or not. If this bit
is 0, the processor generates the segment-not-present exception when a
selector for the descriptor is loaded into a segment register.

2.4.5 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors shown in Fig
ure 2.19. There are three types of descriptor tables:

• The global descriptor table (GOT)
• Local descriptor tables (LOT)

• The interrupt descriptor table (lOT)

All three descriptor tables are variable in size from 8 bytes to 64 KB. They can
contain up to 8 K 8-bit descriptors. As shown in Figure 2.17, the upper 13 bits
of a segment selector are used as an index into the descriptor table. Each table
has an associated register that holds the 32-bit linear base address and a 16-bit
size of the table.

The global descriptor table contains descriptors that are available to all tasks
within the system. There is only one GOT in the system. Typically, the GOT
contains code and data used by the operating system. The local descriptor table
contains descriptors for a given program. There can be several LDTs, each of
which may contain descriptors for code, data, stack, and so on. A segment

48 Chapter 2 Basic Computer Organization

cannot be accessed by a program unless there is a descriptor for the segment in
either the current LDT or GDT.

The two associated registers, LDTR and GDTR, can be loaded using lldt
and 19dt instructions. Similarly, the LDTR and GDTR register values can
be stored by sldt and sgdt instructions. These instructions are used by the
operating system. The interrupt descriptor table is used in interrupt processing
and is discussed in Chapter 12.

2.4.6 Segmentation Models

Remember that the 8086 segments are limited to 64 KB, as the offsets used are
16 bits in length. However, in Pentium, it is possible to span a segment over
the entire physical address space of 4 GB. As a result, we can effectively make
the segmentation invisible by mapping all segment base addresses to zero and
setting the size to 4 GB. Such a model is called flat model and is useful for
programming environments like UNIX.

Another model that uses the capabilities segmentation to the full extent is
the multisegment model. Figure 2.20 shows how the current six segments are
mapped. A program, in fact, can have more than just six segments. In this case,
the segment descriptor table associated with the program will have descriptors
loaded for all the segments defined by the program. However, at any time, only
six of these segments can be active. The active segments are those that have
their segment selectors loaded into the six segment registers. A segment that
is not active can be made active by loading its selector into one of the segment
registers, and the processor automatically loads the associated descriptor (i.e.,
the "invisible part" shown in Figure 2.18). The processor generates a general
protection exception if an attempt is made to access memory beyond the segment
limit.

2.4.7 Mixed Mode Operation

Our previous discussion of the real and protected modes of operation suggests
that we use either 16-bit or 32-bit operands and addresses. The D/B bit indicates
the default size. The questions is, is it possible to mix these two? For instance,
can we use 32-bit registers in a 16-bit mode of operation? The answer is yes!
Pentium provides two size override prefixes-one for the operands and the
other for the addresses-to facilitate such mixed mode programming. Details
on these prefixes are provided in Chapter 5.

Section 2.4 Pentium Memory Architecture 49

CODe

STACK

CS
SS
DS DATA
ES
FS
GS

DATA

DATA

DATA

BASE ADDRESS

Figure 2.20 Segments in a multisegment model.

2.4.8 Which Segment Register to Use?

This discussion applies to both real and protected modes of operation. In
generating a physical memory address, the processor uses different segment
registers depending on the purpose of the memory reference. Similarly, the
offset part of the logical address comes from a variety of sources.

Instruction Fetch: When the memory access is to read a program instruction,
the CS register is used to provide the segment part of the logical address of
the instruction to be fetched. The offset part is supplied either by the IP or
EIP register, depending on whether we are using 16-bit or 32-bit addresses.
Thus, CS:(E)IP always points to the next instruction to be fetched from the
code segment.

Stack Operations: Whenever the processor is accessing the memory to perform
a stack operation such as push or pop, SS register is used for the segment
base address and the offset value comes from either the SP register (for 16-bit

50 Chapter 2 Basic Computer Organization

addresses), or the ESP register (for 32-bit addresses). For other operations on
the stack, the BP or EBP register supplies the offset value. A lot more will be
said about the stack in Chapter 4.

Accessing Data: If the purpose of accessing memory is to read or write data, the
DS register is the default choice for providing the data segment start address.
The offset value comes from a variety of sources depending on the addressing
mode used. Addressing modes are discussed in Chapter 5.

2.5 Input/Output

Input/Output (110) devices provide the means by which a computer system can
interact with the outside world. An 110 device can be a purely input device (e.g.,
keyboard, mouse), a purely output device (e.g., printer, display screen), or both
an input and output device (e.g., disks). Here we present a brief overview of
the 110 device interface. Chapter 12 provides more details on 110 interfaces.

Computers use 110 devices (also called peripheral devices) for two major
purposes-to communicate with the outside world, and to store data. 110 de
vices such as printers, keyboards, and modems are used for communication
purposes and devices like disk drives are used for data storage. Regardless of
the intended purpose of the 110 device, all communications with these devices
must involve the systems bus. However, 110 devices are not directly connected
to the system bus. Instead, there is usually an I/O controller that acts as an
interface between the system and the 110 device.

There are two main reasons for using an 110 controller. First, different
110 devices exhibit different characteristics and, if these devices are connected
directly, the CPU would have to understand and respond appropriately to each
110 device. This would cause the CPU to spend a lot of time interacting with
110 devices and spend less time executing user programs. If we use an 110
controller, this controller could provide the necessary low-level commands and
data for proper operation of the associated 110 device. Often, for complex 110
devices such as disk drives, there are special 110 controller chips available.

The second reason for using an 110 controller is that the amount of electrical
power used to send signals on the system bus is very low. This means that the
cable connecting the 110 device has to be very short (a few centimeters at
most). 110 controllers typically contain driver hardware to send current over
long cables that connect the 110 devices.

110 controllers typically have three types of internal registers-a data regis
ter, a command register, and a status register-as shown in Figure 2.21. When

Section 2.5 Input/Output 51

ADDRESS BUS -\
-V DATA

DATA BUS -\ STATUS J1 1\

-V l'v
1/0 DEVICE

COMMAND v

CONTROL BUS .l\
-V

1/0 CONTROLLER

Figure 2.21 Block diagram of a generic I/O device interface.

the CPU wants to interact with an I/O device, it communicates only with the
associated I/O controller.

To focus our discussion, let us consider printing a character on the printer.
Before the CPU sends a character to be printed, it has to first check the status reg
ister of the associated I/O controller to see whether the printer is online/offline,
busy or idle, out of paper, and so on. In the status register, three bits can be used
to provide this information. For example, bit 4 can be used to indicate whether
the printer is online (1) or offline (0), bit 7 can be used for busy (1) or not busy
(0) status indication, and bit 5 can be used for out of paper (1) or not (0).

The data register holds the character to be printed and the command register
tells the controller the operation requested by the CPU (for example, send the
character in the data register to the printer). The following summarizes the
sequence of actions involved in sending a character to the printer:

• Wait for the controller to finish the last command

• Place a character to be printed in the data register

• Set the command register to initiate the transfer.

The CPU accesses the internal registers of an I/O controller through what are
called I/O ports. An I/O port is simply the address of a register associated with
an I/O controller.

There are two ways of mapping I/O ports. Some CPUs, for example the
Motorola 68000, map I/O ports to memory addresses. This is called memory
mapped I/O. In these systems, writing to an I/O port is similar to writing to
a memory address. Other CPUs, like the Intel Pentium, have an I/O address
space that is separate from the memory address space. This technique is called

52 Chapter 2 Basic Computer Organization

isolated /10. In these systems, to access the 110 address space, special 110
instructions are needed. Pentium provides two instructions-in and out-to
access 110 ports. The in instruction can be used to read from an 110 port and
the out for writing to an 110 port. See Chapter 12 for more details on these
instructions.

Pentium provides 64 KB of 110 address space. This address space can be
used for 8-bit, 16-bit, and 32-bit 110 ports. However, the combination cannot
be more than the 110 address space. For example, we can have 64 K 8-bit ports,
32 K 16-bit ports, 16 K 32-bit ports, or a combination of these that fits the 64 K
address space. As 110 instructions do not go through segmentation and paging
units, the 110 address space refers to the physical address rather than the linear
address.

Systems designed with processors supporting the isolated 110 have the flex
ibility of using either the memory mapped 110 or the isolated 110. Typically,
both strategies are used. For instance, devices like a printer or a keyboard could
be mapped to the 110 space using the isolated 110 strategy; the display screen
could be mapped to a set of memory addresses using the memory-mapped 110.

2.5.1 Accessing YO Devices

As a programmer, you can have direct control on any of the 110 devices (through
their associated 110 controllers) when you program in assembly language. How
ever, it is often a difficult task to access an 110 device without any help. Fur
thermore, it is a waste of time and effort if everyone has to develop their own
routines to access 110 devices (called device drivers). In addition, system re
sources could be abused either intentionally or accidentally. For instance, an
improper disk driver could erase the contents of a disk due to a bug in the driver
routine.

To avoid these problems and to provide a standard way of accessing 110
devices, operating systems provide routines to conveniently access 110 devices.
Typically, access to 110 devices can be obtained from two layers of system
software: the basic 110 system (BIOS), and the operating system. BIOS is
ROM resident and is a collection of routines that control the 110 devices. Both
provide access to routines that control the 110 devices though a mechanism
called interrupts. Interrupts are discussed in detail in Chapter 12.

2.6 Performance: Effect of Data Alignment

Running time of a program is influenced by several factors-some of which are
under the control of the programmer. Other factors that influence the running

Section 2.6 Performance: Effect of Data Alignment 53

time of a program include the clock rate of the system, efficiency of the compiler
used if the program is written in a high-level language, presence of a cache
memory, and so on.

Here we look at the influence of data alignment on the performance of the
bubble sort example discussed in Chapter 1. One of the factors influencing
the sort time is the clock cycles required to fetch data. For example, to fetch
a 32-bit data item in an 8086-based system with a data bus only 16 bits wide
requires two bus cycles. However, in a Pentium-based system, which uses a
64-bit wide data bus, a 32-bit data item can be fetched in a single bus cycle if
the data is properly aligned. In the following we explain the concept of data
alignment using a 16-bit data item accessed on a 16-bit data bus (e.g., in 8086
mode). You can easily generalize this discussion to Pentium's data bus.

A 16-bit data item is said to be aligned (i.e., word-aligned) if it is located
at an even address. For example, a data word located at memory address 120
is aligned because it is located in two contiguous bytes starting at address 120.
On the other hand, a data word located at memory address 135 is unaligned.
A data word that is located at an even address can be fetched in one bus cycle.
If the data word is located at an odd-numbered address, the processor requires
two bus cycles to access the 16-bit data-one byte per bus cycle.

The reason for this peculiar behavior is simple to understand. Since the
memory is byte-addressable, we supply only one address even when accessing
a multibyte data object-such as the int data type in C that requires 16 bits
of storage. The 16-bit data bus that interconnects the CPU and the memory
always supplies the byte that located at an even-numbered address location in
the memory on the lower half of the data bus and the byte at the next location
on the upper half of the data bus, as shown in Figure 2.22. Thus, 16-bit data
that starts at an even address (Le., word-aligned) can be obtained in one bus
cycle. For example, accessing a 16-bit data stored at memory locations 120 and
121 requires only a single bus cycle with the byte at address 120 placed on the
lower half of the data bus and the byte at 121 on the upper half of the data bus.

On the other hand, if the 16-bit data is located at addresses 121 and 122,
the processor fetches the 16 bits located at addresses 120 and 121 during the
first bus cycle, and fetches the 16 bits at addresses 122 and 123 during the next
bus cycle. The processor internally discards the unwanted bytes. Therefore, to
maximize performance, 16-bit data should be word-aligned (Le., stored at even
addresses).

This discussion can be extended to cover other data items. To avoid a
performance penalty, the data should be aligned.

54 Chapter 2 Basic Computer Organization

16-bit wide data bus
(bits 0 - 15) odd-numbered

addressed bytes

CPU Upper half
(bits 8 -15)

MEMORY

3 5 7 byte address

Lower half
(bits 0-7)

even-numbered
addressed bytes

0 2 4 6 byte address

Figure 2.22 Byte-addressable memory interface to the 16-bit data bus.

• 2-byte data: A 16-bit data item is aligned if it is stored at an even ad
dress (i.e., addresses that are multiples of 2). This means that the least
significant bit of the address must be O.

• 4-byte data: A 32-bit data item is aligned if it is stored at an address that
is a multiple of 4. This implies that the least significant two bits of the
address must be O.

• 8-byte data: A 64-bit data item is aligned if it is stored at an address that
is a multiple of 8. This means that the least significant three bits of the
address must be O. This alignment is important for Pentium processors,
as they have a 64-bit wide data bus. On 80486 processors, since their data
bus is 32 bits wide, a 64-bit data item is in two bus cycles and alignment
at 4-byte boundaries is sufficient.

Figure 2.23 shows the impact of word alignment on the sort time. When
the array is not word-aligned, the sort time increases by about 16 percent.
For example, to sort an 8,000 element array, it takes about four seconds more

Section 2.7 Summary 55

30

25

.-..
til
-0 20 c
0
Co)
C1)
til
'-' 15 C1)

e . .:::
1:: 10 0 en

5

0
1000 2000 3000 4000 5000 6000 7000 8000

Number of elements

Figure 2.23 Impact of word alignment on the performance of the bubble sort algorithm.

if the array starts at an odd address (Le., not word-aligned). Except for the
performance penalty, word alignment is totally transparent to software.

The Intel 80X86 family of processors allow aligned and unaligned data
items. Of course, unaligned data causes performance problems. Alignment
constraints of this type are referred to as soft alignment constraints. Because
of the performance penalty associated with unaligned data, some processors,
such as Motorola 68000 and Intel i860, do not allow unaligned data. These
alignment constraints are referred to as hard alignment constraints.

2.7 Summary

Programmers should have some basic knowledge about the processor and the
system architecture in order to effectively program in assembly language. This
chapter has presented the basics of computer organization with a focus on the
Pentium processor.

We started with a high-level view of the system. At this level, a computer
system can be thought of as consisting of three main components: a processor,
a memory unit, and I/O devices.

56 Chapter 2 Basic Computer Organization

We described the architecture of Pentium processors from a programmer's
point of view. This knowledge is necessary, as the assembly language explicitly
refers to the internal registers, and so on.

Pentium can address up to 4 GB of memory. We discussed the memory
architecture of real and protected modes. In real mode, Pentium supports 16-bit
addresses and the memory architecture of the 8086 processor. The protected
mode is the native state of the Pentium processor. In this mode, Pentium
supports both paging and segmentation. Paging is useful in implementing
virtual memory and is not considered here, as it is beyond the scope of this
book. We discussed the segmented memory architecture in detail, as these
details are necessary to program in the assembly language.

We briefly discussed how I/O devices are interfaced to the system. More
details on this topic are provided in Chapter 12.

We also considered the impact of data alignment on the run time of appli
cation programs. By using the bubble sort program discussed in Chapter 1, we
demonstrated the influence of data alignment on the sort time.

2.8 Exercises

2-1 What is the execution cycle?

2-2 What are the main components of the system bus? Describe the func-
tionality of each component.

2-3 What is the purpose of providing various registers in a CPU?

2-4 What are the three address spaces supported by Pentium?

2-5 What is a segment? Why does Pentium support segmented memory
architecture?

2-6 Why is segment size limited to 64 KB in size in the real mode?

2-7 What is the maximum size of a segment in the protected mode?

2-8 We stated that Pentium can access up to six segments at a time. What is
the hardware reason for this limitation?

2-9 Describe the logical to physical address translation process in the real
mode.

2-10 Describe the logical to linear address translation process in the protected
mode.

2-11 Discuss the differences between the segmentation architectures supported
in the real and protected modes.

2-12 If a system uses a 166 MHz clock, what is the clock period?

Section 2.9 Progamming Exercises 57

2-13 If a processor has 16 address lines, what is the physical memory address
space of this processor? Give the address of the first and last addressable
memory locations in hex.

2-14 What are the differences between ROM and RAM?

2-15 Compare and contrast DRAM and SRAM.
2-16 Convert the following logical addresses to physical addresses. All num

bers are in hexadecimal. Assume the real address mode.

(a) lA2B:019A
(b) 2591:10B5

(c) 3911:200
(d) 1l00:ABCD

2-17 Discuss why I/O controllers are used to interface I/O devices to the sys
tem.

2-18 How many memory read cycles are required by the 8086 processor to read
a word (i.e., 16 bits) of data located at the following logical addresses
(all numbers are in hex):

(a) 1234:5678
(b) lABC:755

(c) 9128: 101
(d) 38BO:268

2-19 Repeat the above exercise for a double word (i.e., 32 bits) and byte data.

2.9 Progamming Exercises

2-Pl Write a program in your favorite high-level language to perform logical
address to physical address translation in real mode. Your program should
take a logical address as its input and display the corresponding physical
address. The input consists of two parts: segment value and offset value.
Both are given as hexadecimal numbers.
In Chapter 3, you will be asked to repeat the exercise in assembly lan
guage. The purpose is to compare the time required to write programs
in assembly and high-level languages. Therefore, while working on this
exercise, you should record the amount of time you spend. Make sure to
include the debugging time as well in the comparison.

2-P2 Modify the bubble sort program (C version) given in Chapter 1 to sort an
array of characters. Compare the sort times to sort character and integer
arrays. After you have become proficient in assembly language, come
back to this exercise and give a rational explanation for any difference
between the two.

Chapter 3

Overview of Assembly
Language

Objectives

• To introduce the basics of the Pentium assembly language

• To discuss data allocation statements of the assembly language

• To describe data transfer instructions of Pentium

• To provide an overview of the Pentium instruction set

• To examine how constants are defined in assembly language

• To demonstrate the performance benefits of translation instruction

The objective of this chapter is to review the basics of the Pentium assembly
language. Assembly language statements can either instruct the CPU to per
form a task, or direct the assembler during the assembly process. The latter
statements are called assembler directives. Section 3.1 discusses the format
and types of assembly language statements.

Assemblers provide several directives to reserve storage spacefor variables.
These directives are discussed in Section 3.2. The instructions of the CPU
consist of an operation code to indicate the type of operation to be performed,
and the specification of the data required (also called addressing mode) by the
operation. Section 3.3 describes some basic addressing modes supported by
Pentium.

The instruction set of Pentium can be divided into several groups of in
structions. Section 3.4 discusses the instructions that transfer data, including

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998

60 Chapter 3 Overoiew of Assembly Language

mov, xchg, and xlat instructions. Section 3.5 provides an overview of some of
the Pentium instructions belonging to the other groups. Later chapters discuss
these instructions in more detail.

Section 3.6 describes the assembler directives to define constants-numeric
as well as string constants. Several examples are provided in Section 3.7. The
performance advantage of the translation instruction xlat is demonstrated in
Section 3.8. The chapter concludes with a summary.

3.1 Assembly Language Statements

Assembly language programs are created out of three different classes of state
ments. Statements in the first class tell the CPU what to do. These instructions
are called executable instructions, or instructions for short. Each executable
instruction consists of an operation code (op-code for short). Executable in
structions cause the assembler to generate machine language instructions. As
stated in Chapter 1, each executable statement typically generates one machine
language instruction.

The second class of statements provide information to the assembler on
various aspects of the assembly process. These instructions are called assembler
directives or pseudo-ops. Assembler directives are non-executable and do not
generate any machine language instructions.

The last class of statements, called macros, are used as a shorthand notation
for a group of statements. Macros permit the assembly language programmer
to name a group of statements and refer to the group by the macro name. During
the assembly process, each macro is replaced by the group of statements that
it represents and assembled in place. This process is referred to as macro
expansion. We will use macros to provide the basic input and output capabilities
to stand-alone assembly language programs. Macros are discussed in detail in
Chapter 10.

Assembly language statements are entered one per line in the source file.
Even though up to 128 characters can be used in a line, it is a good practice to
limit a line to 80 characters so that it can be displayed on the screen. Except for a
few statements, most assembly language statements require far fewer characters
than 80.

All three classes of the assembly language statements use the same format:

[label]

ment]
mnemonic [operands] [jcom-

The fields in the square brackets are optional in some statements. As a result
of this format, it is a common practice to align the fields to aid readability

Section 3.1 Assembly Language Statements 61

of assembly language programs. The assembler does not care about spaces
between the fields.

Assembly language statements require more characters per line only be
cause of the comments we add to the code lines. Long comments can always
be broken into multiple lines. Blank lines, comment lines (lines consisting en
tirely of comments), and label lines (lines just containing labels) are acceptable
and should be judiciously used to structure the program in order to improve its
readability and maintainability.

Label: This is an optional field. The label field serves two distinct purposes:
it's used to represent either an identifier or a constant. When a label appears in
an executable instruction, it is used as a marker to identify the instruction. Then,
for example, you can make program execution jump to the labeled instruction.
In this case, label represents the memory address of the instruction. When used
with certain assembler directives like EQU, label represents a constant.

Mnemonic: This is a required field and identifies the purpose of the state
ment. In certain statements, this field is not required. Examples include lines
consisting of a comment, or a label, or a label and a comment.

Operands: Operands specify the data to be manipulated by the statement. The
number of operands required depends on the specific statement or directive. For
instance, executable statements may have zero, one, two, or three operands.

Comment: This is an optional field and serves the same purpose as that in a
high-level language. Comments playa more important role in assembly lan
guage, as it is a low-level language. Assembler ignores all comments. Com
ments begin with a semicolon (;) and extend until the end of the line. Since
the readability of assembly language programs is poor, comments should be
generously added to improve readability. While some authors suggest adding
comments to every line of code, it is good programming practice to explain the
functionality of a group of statements by several lines of comments and then
add brief comments to selected code lines within the group. This is the practice
followed in this book.

Now let us look at some sample assembly language statements.

repeat: inc result ;increment result by 1

The label repeat can be used to refer to this particular statement. The mnemonic
inc indicates increment operation to be done on data stored in memory at a
location referred to by the variable name result. The comment simply ex
plains what the instruction is doing. Adding such self-explanatory comments is

62 Chapter 3 Overoiew of Assembly Language

redundant and we will avoid commenting each line with such trivial comments.
The following assembler directive defines a constant CR. The ASCII carriage
return value is assigned to it by the EQU directive.

CR EQU ODH ;carriage return character

In the previous two examples, label field has two different forms. The label
in the executable instruction is followed by a colon (:) but not in the directive
statement.

A label and other names can be formed from upper and lowercase letters
(a-z, A-Z), digits (0 through 9), and special characters <-, %, ?, $, ., @).

A name may not begin with a digit and if a period is used, it must be the
first character. For example, jump2 and repeat are valid but not go. back and
2_j ump. Other characters may be used in any position. Among the special
characters, the underscore character is frequently used to aid readability. (Un
derscores also playa special role in interfacing with C language-discussed in
Chapter 13.)

A name can have many characters but only the first 31 characters are sig
nificant. Certain reserved words that have special meaning to the assembler are
not allowed as names. These include mnemonics such as inc and EQU.

The assembler is normally case insensitive. For example, labels repeat
and REPEAT are treated the same. The assembler can be made case sensitive by
using an option (e.g., Iml option with TASM). We follow the convention that
the source code is normally in lowercase except for directive mnemonics and
constants defined in the program.

The fields in a statement must be separated by at least one space or tab
character. More spaces and tabs can be used at the programmer's discretion,
but the additional spaces/tabs are ignored by the assembler.

It is good programming practice to use blank lines and spaces to improve
the readability of assembly language programs. As a result, you will rarely see
in this book a statement containing all four fields in a single line. In particular,
we will almost always write labels on a separate line unless doing so destroys
the program structure. Thus, our first example statement would be written as
two statements, as

repeat:
inc result ;increment result by 1

3.2 Data Allocation

In high-level languages, allocation of storage space for variables is done indi
rectly by specifying the data types of each variable used in the program. For

Section 3.2 Data Allocation 63

example, in C the following declarations allocate different amounts of storage
space for each variable.

char
int
float
double

response;
value;
total;
average_value;

1* 1 byte is allocated *1
1* 2 bytes are allocated *1
1* 4 bytes are allocated *1
1* 8 bytes are allocated *1

These variable declarations not only specify the amount of storage required,
but also indicate how the stored bit pattern should be interpreted. As an example,
consider the following two statements in C:

unsigned value_l;
int value_2;

Both variables will have two bytes reserved for storage. However, the bit pattern
stored in them would be interpreted differently. For instance, the bit pattern
(8DB9H)

1000 1101 1011 1001

stored in the two bytes allocated for value_l is interpreted as representing
36,281, while the same bit pattern stored in value_2 would be interpreted as
-29,255.

In assembly language, allocation of storage space is done by the define
assembler directive. The define directive can be used to reserve and initialize
one or more bytes. However, no interpretation (as in C variable declarations)
is attached to the contents of these bytes. It is entirely up to the program to
interpret the bit pattern stored in the space reserved for data.

The general format of a storage allocation statement is

[variable-name] define-directive initial-value [,initial-value], ...

The square brackets indicate optional items. The variable-name is used to
identify the storage space allocated. The assembler associates an offset value
for each variable name defined in the data segment. Note that no colon (:)
follows the variable name (unlike a label identifying an executable statement).

The define directive takes one of the five basic forms:

DB
DW
DD
DQ
DT

Define Byte
Define Word
Define Doubleword
Define Quadword
Define Ten Bytes

;allocates 1 byte
;allocates 2 bytes
;allocates 4 bytes
;allocates 8 bytes
;allocates 10 bytes

Let us look at some examples now.

64 Chapter 3 Overview of Assembly Language

sorted DB 'y'

This statement allocates a single byte of storage and initializes to character y.
Your assembly language program can refer to this data location by its name
sorted. If you just want to reserve storage space without initialization, you
can write

sorted DB ?

You can also use numbers to initialize. For example,

sorted DB 79H

or

sorted DB 1111001B

is equivalent to

sorted DB 'y'

Note that the ASCII value for y is 79H. The following data definition state
ment allocates two bytes of contiguous storage and initializes to 25159.

value DW 25159

The decimal value 25159 is automatically converted to its 16-bit binary equiv
alent (6247H). Since Pentium uses little endian byte ordering (see Chapter 2),
this 16-bit number is stored in memory as

address: x x+1
contents: 47 62

You can also use negative values, as in the following example:

balance DW -29255

Since 2's complement representation is used to store negative values, -29,255
is converted to 8DB9H and is stored as

address: x x+1
contents: B9 8D

The statement

total DD 542803535

would allocate four contiguous bytes of memory and initialize it to 542803535
(205A864FH), as shown below:

address: x
contents: 4F

x+1
86

x+2
5A

x+3
20

Section 3.2 Data Allocation 65

Range of Numeric Operands

The numeric operand of a define directive can take both signed and unsigned
numbers. The valid range depends on the number of bytes allocated. The
following table shows the valid range for the numeric operands:

Directive Valid range

DB -128 to 255 (i.e., _27 to 28 - 1)

DW -32,768 to 65,535 (Le., _215 to 216 - 1)

DD -2,147,483,648 to 4,294,967,295 (i.e., _231 to 232 - 1)
or a short floating-point number (32 bits)

DQ _263 to 264 - 1
or a long floating-point number (64 bits)

Using a constant that is outside the specified range can result either in an
assembler error, or in assigning a wrong value. For example, the statement

byte1 DB 256

causes an assembly time error. In general, the assembler can accept a value
in the range -256 to +255. However, 8 bits are not sufficient for the values
between -256 and -129. Therefore, the assembler converts the number into
2's complement representation using 16 bits and stores the lower byte. For
example,

byte2 DB -200 ; stores 38H

stores 38H because the 2's complement representation of -200 is FF38H.
Similarly, the statement

word1 DW -60000; stores 15AOH

assigns 15AOH because -60000 is outside the range of signed numbers that
can be represented using 16 bits. Therefore, as in the last example, -60000
is converted to its 2's complement equivalent using 32 bits (FFFFI5AOH), and
the lower word is stored.

Short and long floating-point numbers are represented using 32 or 64 bits,
respectively. See Appendix A for details. We can use DD and DQ directives to
assign real numbers, as shown in the following examples:

float1 DD 1.234
real2 DQ 123.456

66 Chapter 3 Overview of Assembly Language

Multiple Definitions

Assembly language programs typically contain several data definition stateme
nts. For example, look at the following assembly language program fragment:

sorted
value
total

DB
DW
DD

'y'
25159
542803535

ASCII of Y = 79H
25159D = 6247H
542803535D = 205A864FH

When several data definition statements are used as above, the assembler
allocates contiguous memory locations for the variables. The memory layout
for the three variables is

address:
contents:

x
79

'-v-'
sorted

x+1 x+2
47 62
'-v-'

value

x+3

:4F
x+4

86 ,
total

x+5
5A

x+6

Multiple data definitions can be abbreviated. For example, the following
sequence of eight DB directives

message DB
DB
DB
DB
DB
DB
DB
DB

can be abbreviated as

message DB

'W'
'E'
'L'
, C'

'0'
'M'
'E'
'! '

'W', 'E', 'L', 'C', '0', 'M', 'E','!'

or even more compactly as

message DB 'WELCOME! '

Here is another example showing how abbreviated forms simplify data
definitions. The definition

message DB 'B'
DB 'y'
DB 'e'
DB ODH
DB OAH

can be written as

20,

Section 3.2 Data Allocation 67

message DB 'Bye',ODH,OAH

Similar abbreviated forms can be used with the other define directives. For
instance, a marks array of size 8 can be defined and initialized to zero by

marks DW 0
DW 0
DW 0
DW 0
DW 0
DW 0
DW 0
DW 0

which can be abbreviated as

marks DW 0, 0, 0, 0, 0, 0, 0, 0

Multiple Initializations

In the previous example, if the class size is 90, it is inconvenient to define the
array as described. The DUP directive allows multiple initializations to the
same value. Using DUP, marks array can be defined as

marks DW 8 DUP (0)

The DUP directive is useful in defining arrays and tables. Here are some
examples using the DUP directive.

table1 DW 10 DUP (?) ;10 words,uninitialized
name 1 DB 30 DUP ('?') ;30 bytes,each byte

; initialized to ?
name2 DB 30 DUP (?) ;30 bytes,uninitialized
message DB 3 DUP ('Bye! ') ;12 by tes, initialized

; to Bye!Bye!Bye!

The DUP directive may also be nested. For example, to allocate storage
space containing

••• ??!! !!! ••• ??!! !!! ••• ??!!!!! ••• ??!!!!!

we can write

stars DB 4 DUP (3 DUP ('.'), 2 DUP ('?'), 5 DUP ('!'))

A two-dimensionallOx5 matrix (10 rows, 5 columns) can be defined as

68 Chapter 3 Overview of Assembly Language

matrix DW 10 DUP (5 DUP (0))

The initialization values of define directives can also be expressions, as shown
in the following example.

DW 1*25

This statement is equivalent to

DW 175

The assembler evaluates such expressions at assembly time and assigns the
resulting value. Use of expressions to specify initial values is not preferred
because it affects the readability of your program. However, there are certain
situations where using an expression actually helps clarify the code. In our
example, if max_marks is representing the sum of seven assignment marks
where each assignment is marked out of 25 marks, it is preferable to use the
expression 7*25 rather than 175. Data definitions are further discussed in
Chapter 10.

Symbol Table

When we allocate storage space using a data definition directive, we usually
associate a symbolic name to refer to it. The assembler, during the assembly
process, assigns an offset value for each symbolic name. For example, consider
the following data definition statements:

. DATA
value DW 0
sum DD 0
marks DW 10 DUP (?)

message DB 'The grade is:' ,0
char1 DB ?

As we have indicated, the assembler assigns contiguous memory space for
the variables. Assembler also uses the same ordering of variables that is present
in the source code. Then, finding the offset values of a variable is a simple
matter of counting the number of bytes allocated to the variables preceding
it. For example, the offset value of marks is 6 because value and sum are
allocated 2 and 4 bytes, respectively. The symbol table for the data segment is
shown in Table 3.1.

Section 3.2 Data Allocation 69

Table 3.1 Symbol table for the example data segment

name offset
value 0
sum 2
marks 6
message 26
chari 40

Table 3.2 Correspondence between Turbo C data types and data definition
directives

Directive C data type
DB char
DW int, unsigned
DD float, long
DQ double
DT Not used to specify a data type but used

to store intermediate float values

Correspondence to C Data Types

The correspondence between the data definition directives and the Turbo C data
types is shown in Table 3.2. Some examples using DB, OW, and DO directives
are shown in Table 3.3.

Two consecutive apostrophes can be used in a string to specify a single
apostrophe, as in

message DB 'John"s'

to reserve 6 bytes of storage and initialize it to John's. TASM and MASM
also allow the use of double quotation marks to specify a string of characters,
as in

message DB "John's' ,

In a string that is delineated by double quotation marks, two consecutive
double quotation marks can be used to stand for a single one. Since double
quotation marks are used to specify strings in C (and is different from the

70

char

char

char

int

int

long

Chapter 3 Overoiew of Assemhly Language

Table 3.3 Some example data definition declarations

C declaration Assembly language data definition

ch_1; ch_1 DB ?

string1[30]; string1 DB 30 DUP (?)

name1 [25] = "John" ; name 1 DB 'John',0,20 DUP (?)

value = 50; value DW 50;

array[20]; array DW 20 DUP (?)

total = 0; total DD °
sense used here to specify a string of characters) we will exclusively use only
apostrophes in this book. .

LABEL Directive

The LABEL directive provides another way to name a memory location without
actually defining any data. The syntax is

name LABEL type

where type specifies the variable type. The standard types BYTE, WORD,
DWORD, QWORD, and TBYTE can be used to label 1-, 2-, 4-, 8-, and to-byte
data.

In the example

. DATA
count LABEL WORD
Lo_count DB 0
Hi_count DB 0
. CODE

mov Lo_count,AL
mov Hi_count,CL

the two bytes of memory Lo_count and HLcount can also be referenced as
a 16-bit number count. We can also individually manipulate the lower and
upper halves of count.

Section 3.3 Where Are the Operands? 71

The LABEL directive is also useful in creating an alias of another data type,
as shown in the following example .

. DATA
byte_count
count OW
. CODE

LABEL
o

BYTE

mov byte_count,CL

If the LABEL directive is not used in this example, we have to use the PTR
directive (discussed in Section 3.4.2) to rewrite the mov statement as

mov BYTE PTR count,CL

3.3 Where Are the Operands?

Assembly language programs can be thought of as consisting of two logical
parts: data and code. Most of the assembly language instructions require spec
ification of the location of the data to be operated on. There are a variety of ways
to specify and find where the operands required by an instruction are located.
These are called addressing modes. This section is a brief overview of some
of the addressing modes required to do basic assembly language programming.
A complete discussion is given in Chapter 5.

An operand required by an instruction may be in anyone of the following
locations:

• in a register internal to the CPU

• in the instruction itself

• in main memory (usually in the data segment)

• at an 110 port (discussed in Chapter 12)

Specification of an operand that is in a register is called register addressing
mode, while immediate addressing mode refers to specifying an operand that is
part of the instruction. A variety of addressing modes are available to specify
the location of an operand residing in memory. The motivation for providing
several addressing modes comes from the need to efficiently support high-level
language constructs. Chapter 5 discusses this issue in detail.

72 Chapter 3 Overoiew of Assembly Language

3.3.1 Register Addressing Mode

In this addressing mode, CPU registers contain the data to be manipulated by
the instruction. For example, the instruction

mov EAX,EBX

requires two operands and both are in the CPU registers. The syntax of the mov
instruction is

mov destination, source

The mov instruction copies contents of source to destination. The contents
of source, however, are not destroyed as a result. Thus,

mov EAX,EBX

copies the contents of the EBX register into the EAX register. Note that the
original contents of EAX are lost. In this example, mov is operating on 32-bit
data. However, the mov instruction can also be used on 16- and 8-bit data, as
shown in the following example:

mov BX,CX
mov AL,CL

Using the register addressing mode is the most efficient way of specifying data
because the data is residing within the CPU and, therefore, no memory access
is required.

3.3.2 Immediate Addressing Mode

In this addressing mode, data is specified as part of the instruction. As a result,
even though the data is in memory, it is located in the code segment, not in
the data segment. This addressing mode is typically used in instructions that
require at least two data items to manipulate. In this case, this mode can only
specify the source operand and immediate data is always a constant, either given
directly or via the EQU directive (discussed in Section 3.6). Thus, instructions
typically use another addressing mode to specify the destination operand.

In the following example,

mov AL,75

the source operand 75 is specified in the immediate addressing mode and the
destination operand is specified in the register addressing mode. Such instruc
tions are said to use mixed mode addressing.

Section 3.3 Where Are the Operands? 73

The remainder of the addressing modes that we discuss here deal with
operands that are located in the data segment. These are called the memory
addressing modes. We discuss two memory addressing modes here: direct and
indirect addressing modes.

3.3.3 Direct Addressing Mode

Operands specified in a memory addressing mode require access to the main
memory (usually to the data segment). As a result, they tend to be slower than
either of the two addressing modes previously described.

Recall that to locate a data item in a data segment, we need two components:
the segment start address and an offset value within the segment. The start
address of the segment is typically found in the DS register. Thus, various
memory addressing modes differ in the way the offset value of data is specified.
The offset value is sometimes referred to as the effective address.

In the direct addressing mode, the offset value is specified directly as part
of the instruction. In an assembly language program, the value is usually
indicated by the variable name of the data item referenced. The assembler will
translate the name into its associated offset value during the assembly process.
To facilitate this translation, assembler maintains a symbol table, which stores
the offset values of all variable names in the assembly language program.

This addressing mode is the simplest of all the memory addressing modes.
A restriction associated with the memory addressing modes is that these can
be used to specify only one operand. The examples that follow assume the
following data definition statements in the program.

response DB

table! DW

name! DB

'Y' jreserves one byte and
j initializes with y

20 DUP (0) jreserves 40 bytes and
j initializes to 0

'Jim Ray' jreserves 7 bytes and
j initializes to Jim Ray

Here are some examples of the mov instruction:

mov AL,response

mov response, 'N'

mov name!, 'K'

jcopies character y into
AL register

jN is written into the
byte represented by
response (Y is lost)

jwrite K as the first
character of name!,
which now reads Kim Ray

74

mov tablel,56

Chapter 3 Overview of Assembly Language

56 is written in the
first two bytes of
table, which contains
56 and zeroes for the
remaining 19 elements

This last statement is equivalent to table1 [0] = 56 in C.

3.3.4 Indirect Addressing Mode

The direct addressing mode can be used in a straightforward way but is limited
to accessing simple variables. For example, it is not useful in accessing the
second element of table1, such as

tablel [1] = 99

The indirect addressing mode remedies this deficiency. In this addressing mode,
the offset or effective address of the data is in one of the general registers. For
this reason, this addressing mode is sometimes referred to as the register indirect
addressing mode.

The indirect addressing mode is not required for variables having only a
single element (e.g., response). But for variables like table1 containing
several elements, the starting address of the data structure can be loaded into,
say, the BX register and then BX acts as a pointer to an element in table 1. By
manipulating the contents of the BX register, we can access different elements
of table1. Remember that we use 16-bit segments where the offset into a
segment is 16 bits long (see Chapter 2).

How do we get the starting address of table1? A statement like

mov BX, tablel

will not work because this statement copies the first element of table 1 into the
BX register. Remember that the symbolic name table1 refers to the offset of
the first element of table 1. The OFFSET directive should be used whenever
the offset (i.e., the effective address) of a variable is needed. Thus,

mov BX,OFFSET tablel

copies the offset of table1 into the BX register. The following code assigns
. 100 to the first element and 99 to the second element of table 1. Note that BX

is incremented by 2 because each element of table1 requires two bytes.

mov
mov
add
mov

BX,OFFSET tablel
[BX] ,100
BX,2
[BX] ,99

copy address of tablel to BX
tablel[O] := 100
BX := BX + 2
tablel[l] := 99

Section 3.4 Data Transfer Instructions 75

Chapter 5 discusses other memory addressing modes that can perform this
task more efficiently. In summary, we have discussed four addressing modes:

addressing mode valid example invalid example
register mov EAX,EBX mov AX,EBX
immediate mov ECX, 155 mov 155,ECX
direct mov tablel,DX mov response,namel
indirect mov [BX] ,EAX mov [BX] , [AX]

The effective address can also be loaded into a register by the lea (load
effective address) instruction. The syntax of this instruction is

lea register,source

Thus,

lea BX,table!

can be used in place of the

mov BX,OFFSET table!

instruction. The difference is that lea computes the offset values at run time,
whereas mov with OFFSET resolves the offset value at assembly time. For this
reason, we will try to use the latter whenever possible. However, lea offers
more flexibility as to the types of source operands. For example, we can write

lea BX , array [SI]

to load BX with the address of an element of array whose index is in the SI
register. However, we cannot write

mov BX,OFFSET array[SI] ; illegal

3.4 Data Transfer Instructions

We now discuss some of the data transfer instructions supported by Pentium.
Specifically, we describe mov, xchg, and xlat instructions. Other data transfer
instructions such' as movsx and movzx are discussed in Chapter 6.

3.4.1 The mov Instruction

We have already introduced the mov instruction, which requires two operands
and has the syntax

76 Chapter 3 Overview of Assembly Language

mov destination, source

The data is copied from source to destination and the source operand
remains unchanged. Both operands should be of the same size. The mov
instruction can take one of the following five forms:

mov register ,register

Restrictions:

• Destination register cannot be CS or (E)IP registers
• Both registers cannot be segment registers

mov register, immediate

Restriction: Register cannot be a segment register

mov memory, immediate
mov register ,memory
mov memory ,register

There is no move instruction to transfer data from memory to memory, as
the Pentium processor does not allow it. However, as we will see in Chapter 9,
memory to memory data transfer is possible when operating on strings.

Here are some example mov statements:

. DATA
response DB 'Y'
table1 DW 20 DUP (0)
name 1 DB 'Jim Ray'

CODE
mov AL,response
mov DX,table1
mov response,'N'
mov name1+4,'K'

Some invalid mov statements are

mov DL,CX ; different operand sizes
mov DS,175 ; immediate value cannot be moved

; into a segment register
mov CS,DX ;destination register cannot be CS
mov ES,DS ;both registers cannot be segment

; registers
mov 715,EAX ;immediate value cannot be

; destination operand

Section 3.4 Data Transfer Instructions 77

3.4.2 Ambiguous Moves: PTR Directive

Moving immediate value into memory sometimes causes ambiguity as to the
type of operand. For example, in the statements

mov 8X,OFFSET tablel
mov S1,OFFSET namel
mov [8X],100
mov [SI] ,100

it is not clear whether a word (2 bytes) or a byte equivalent of 100 is to be
written in the memory. The PTR directive can be used to clarify. WORD PTR
can be used to identify a word operation and BYTE PTR for a byte operation.
Using the PTR directive, we can write

mov WORD PTR [8X],100
mov 8YTE PTR [S1],100

WORD and BYTE are called type specifiers. Some of the type specifiers avail
able are

Type specifier
BYTE
WORD
DWORD
QWORD
TBYTE

3.4.3 The xchg Instruction

Bytes addressed
1
2
4
8
10

The xchg instruction exchanges 8-, 16-, or 32-bit source and destination operands.
The syntax is similar to that of the mov instruction. Some examples are

xchg EAX,EDX
xchg response,CL
xchg total,DX

As in the mov instruction, both operands cannot be located in memory. Thus,

xchg response,namel ; illegal

is invalid.
The xchg instruction is convenient because we do not need a third register

to hold a temporary value in order to swap two values. For example, we need
three mov instructions

78

mov
mov
mov

ECX,EAX
EAX,EDX
EDX,ECX

Chapter 3 Overoiew of Assembly Language

to perform xchg EAX, EDX. Thus, xchg is the most efficient way to exchange
two 8-, 16-, or 32-bit values. This instruction is especially useful in sorting
applications. The xchg instruction is also useful in implementing semaphores
for process synchronization. It is also useful to swap the two bytes of 16-bit
data to perform conversions between little endian and big endian forms, as in
the following example:

xchg AL,AH

Pentium provides the bswap instruction to perform such conversions on a
32-bit data. The format is

bswap 32-bit register

This instruction works only on the data located in a 32-bit register.

3.4.4 The xlat Instruction

The xlat (translate) instruction can be used to perform character translation.
For example, it can be used to translate character codes from ASCII to EBCDIC
and vice versa. The xlat has the form

xlatb

To use the xlat instruction, the BX register must to be loaded with the
starting address of the translation table and AL must contain an index value
into the table. The xlat instruction adds contents of AL to BX and reads
the byte at the resulting address. This byte replaces the index value in the AL
register. Since the 8-bit AL register provides the index into the translation table,
the number of entries in the table is limited to 256. An application of xlat is
given in Example 3.3.

3.5 Overview of Assembly Language Instructions

This section briefly reviews some of the remaining assembly language instruc
tions. The discussion presented here would provide sufficient exposure to the
assembly language so that you can write meaningful assembly language pro
grams.

Section 3.5 Overview of Assembly Language Instructions 79

3.5.1 Simple Arithmetic Instructions

The Pentium family provides several instructions to perform simple arithmetic
operations. In this section, we will describe five instructions to perform addition
and subtraction. We will defer a full discussion until Chapter 6.

The inc and dec Instructions

These instructions can be used to either increment or decrement the operands
by one. The inc (INCrement) instruction adds one to its operand and the
dec (DECrement) instruction subtracts one from its operand. Both of these
instructions require a single operand. The operand can be either in a register
or in memory. It does not make sense to use an immediate operand such as
inc 55 or dec 109.

The general format of these instructions is

inc destination
dec destination

where destination may be an 8-, 16- or 32-bit operand.

inc
dec

BX
DL

increment 16-bit register
; decrement 8-bit register

Let us assume that BX and DL have 1057H and 5AH, respectively. After
executing the above two instructions, BX and DL will have 1058H and 59H,
respectively. If the initial values of BX and DL are FFFFH and OOH, after
executing the two statements the contents of BX and DL are changed to OOOOH
and FFH, respectively.

Consider the following program:

. DATA
count
value

.CODE
inc
dec

DW
DB

move
inc
mov
dec

o
25

count
value
BX,OFFSET
[BX]

count

SI,OFFSET value
[SI]

In the above example,

; unambiguous
; unambiguous

; ambiguous

; ambiguous

80 Chapter 3 Overoiew of Assembly Language

inc
dec

count
value

are unambiguous because the assembler knows from the definition of count
and value that they are WORD and BYTE operands. However,

inc [BX]
dec [8I]

are ambiguous because BX and SI registers merely point to an object in memory
but the actual object type (whether a WORD or BYTE) is not clear. We have
to resort to the PTR directive to clarify, as shown below:

inc WORD PTR [BX]
dec BYTE PTR [8I]

The add Instruction

The add instruction can be used to add two 8-, 16- or 32-bit operands. The
syntax is

add destination,source

As with the mov instruction, add can also take the five basic forms depending
on how the two operands are specified. The semantics of the add instruction
are

destination := (destination) + (source)

As a result, destination loses its contents before the execution of add but
the contents of source remain unchanged. The examples given below assume
the following data definitions:

• DATA
value
count

DB
DW

instruction
add AX,OX
add BL,CH
add value,10H
add OX, count

OFOH
3746H

Before add
source destination

OX = AB62H AX = 1052H
BL = 76H CH = 27H

- value = FOH
count = 3746H OX = C8B9H

The following instructions are invalid:

After add
destination

AX = BBB4H
BL = 90H
value = OOH
OX = FFFFH

Section 3.5 Overoiew of Assembly Language Instructions

add
add
add

AX,BL
[SI] , [01]
value, [BX]

The instruction

add [BX],10

;mismatched operands
;two memory operands
;two memory operands

81

is ambiguous. It should be written as one of the following depending on the
operand size:

add
add
add

In general,

BYTE PTR [BX],10
WORD PTR [BX],10
DWoRD PTR [BX],10

inc EAX

is preferred to

add EAX,l

; for 8-bit operand
; for 16-bitoperand
; for32-bitoperand

as the inc version requires less memory space to store the instruction. However,
both instructions typically execute at about the same speed.

The sub and cmp Instructions

The sub (SUBtract) instruction can be used to subtract two 8-, 16- or 32-bit
numbers. The syntax is

sub destination, source

The source operand is subtracted from the destination operand and the
result is placed in the destination.

destination := (destination) - (source)

Before sub After sub
instruction source destination destination

sub AX,OX OX = AB62H AX = 1052H AX = 64FOH
sub BL,CH CH = 27H BL = 76H BL = 4FH
sub value,10H - value = FOH value = EOH
sub OX, count count = 3746H OX = C8B9H OX = 9173H

82 Chapter 3 Overview of Assembly Language

The cmp (CoMPare) instruction is used to compare two operands (equal, not
equal, and so on). The cmp instruction performs the same operation as the sub
except that the result of subtraction is not saved. Thus, cmp does not disturb
both destination and source operands. While both sub and cmp instructions
take the same number of clocks in most cases, cmp requires one less if the
destination is memory. This is because the cmp instruction does not write the
result in memory, whereas the sub instruction does.

The cmp instruction is used in conjunction with conditional jump instruc
tions for decision making. This is the topic of the next section.

3.5.2 Conditional Execution

The Pentium instruction set contains several branching and looping instructions
to construct programs that require conditional execution. In this section, we
will discuss a subset of these instructions. A detailed discussion can be found
in Chapter 7.

Program execution, by default, proceeds in a sequential manner--execution
of instructions is in the order present in the program. However, programs often
require conditional and looping constructs.

Unconditional Jump

The unconditional jump instruction j mp, as its name implies, tells the processor
that the next instruction to be executed is located at the label that is given as a
part of the instruction. This jump instruction has the form

jmp label

where label identifies the next instruction to be executed. The following
example

mov EAX,l
inc_again:

inc EAX
jmp inc_again
mov EBX,EAX

results in an infinite loop incrementing EAX repeatedly. The instruction

mov EBX,EAX

and all the instructions following it are never executed!
From this example, the jmp instruction appears to be useless. Later, we

will show some examples that illustrate the use of this instruction.

Section 3.5 Overview of Assembly Language Instrnctions 83

Conditional Jump

In conditional jump instructions, program execution is transferred to the target
instruction only when the specified condition is satisfied. The general format
is

j<cond> label

where <cond> identifies the condition under which the target instruction at
label should be executed. Usually, the condition being tested is the result of
the last arithmetic/logic operation. For example, the following code

read_char:
mov OL,O

(code for reading a character into AL)

cmp AL,OOH ;compare the character to CR
je CR_received ; if equal, jump to CR_received
inc CL ; otherwise, increment CL and
jmp read_char ;go back to read another

; character from keyboard
CR_received:

mov OL,AL

reads characters from the keyboard until the carriage return (CR) key is pressed.
The character count is maintained in the CL register. The two instructions

cmp AL,OOH ;OOH is ASCII for carriage return
je CR_received ;je stands for jump on equal

perform the required conditional execution. How does the processor remember
the result of the previous cmp operation when it is executing the j e instruction?
One of the purposes of the flags register is to provide such short term memory
between instructions. Let us look at the actions taken by the processor in
executing these two instructions.

Remember that the cmp instruction subtracts ODH from the contents of the
AL register. While the result is not saved anywhere, the operation sets the zero
flag (ZF = 1) if the two operands are the same. If not, ZF = O. The ZF retains
this value until another instruction that affects ZF is executed. Note that not all
instructions affect all the flags. In particular, the mov instruction does not affect
any of the flags.

Thus, at the time of the j e instruction execution, the processor checks the
ZF and program execution jumps to the labeled instruction if and only if ZF = 1.

84 Chapter 3 Overview of Assembly Language

To cause the jump, Pentium loads the (E)IP register with the target instruction
address. Recall that the (E)IP register always points to the next instruction to
be executed. Therefore, when the character read is CR, instead of fetching the
instruction

inc CL

it will fetch the

mov DL,AL

instruction. Here are some of the conditions tested by conditional jump instruc-
tions:

je jump if equal
jg jump if greater
jl jump if less
jge jump if greater or equal
jle jump if less than or equal
jne jump if not equal

Conditional jumps can also test the values of flags. Some examples are

jz jump if zero (i.e. , if ZF = 1)
jnz jump if not zero (i. e. , if ZF = 0)
jc jump if carry (i. e. , if CF = 1)
jnc jump if not carry (i. e. , if CF = 0)

Example: Consider the following code. The following table shows the actions
taken depending on statement_1.

go_back:
inc AL

cmp AL,BL
statement_1
mov BL,77H

Section 3.5 Overview of Assembly Language Instructions 85

statement_1 AL BL Action taken
je gO_back 56H 56H Program control transferred

to inc AL
jg gO_back 56H 55H Program control transferred

to inc AL
jg go_back 56H 56H No jump; executes the next
jl go_back instruction mov BL,77H
jle go_back 56H 56H Program control transferred
jge go_back to inc AL
jne go_back 27H 26H Program control transferred
jg go_back to inc AL
jge go_back

The conditional jump instructions assume that the operands compared were
treated as signed numbers. There is another set of conditional jump instruc
tions for operands that are unsigned numbers. But until these instructions are
discussed in Chapter 7, the six conditional jump instructions introduced here
are sufficient for writing simple assembly language programs.

3.5.3 Iteration Instruction

Iteration can be implemented with jump instructions. For example, the follow
ing code can be used to execute <loop body> 50 times.

mov CL,50
repeat:

<loop body>

dec CL
jnz repeat ;jumps back to repeat

as long as dec CL does
; not result in CL = 0

Pentium, however, provides a group of loop instructions to support iteration.
Here we describe the basic loop instruction. The syntax of this instruction is

loop target

where target is a label that identifies the target instruction of the jump (repeat
in the above example).

This instruction assumes that the CX register contains a loop count. As a
part of executing the loop instruction, it decrements the CX register and jumps

86 Chapter 3 Overview of Assembly Language

to the target instruction if ex # O. Using this instruction, we can write the
previous example as

mov CX,50
repeat:

<loop body>

loop repeat

3.5.4 Logical Instructions

The Pentium instruction set provides several logical instructions including and,
or, and not. The syntax of these instructions is

and destination, source
or destination, source
not destination

The and and or are binary operators and perform bitwise and and or logical
operations. The not is a unary operator that performs bitwise complement
operations.

The logical and operation sets the destination bit according to the truth table
shown below, depending on the values of the corresponding bits in the source
and destination operands.

Truth table for the and operation
Input bits Output bit

source bi destination bi destination bi
0 0 0
0 1 0
1 0 0
1 1 1

The logical or operation is analogous to the and operation except that it
follows the truth table shown below:

Section 3.5 Overview of Assembly Language Instructions 87

Truth table for the or operation
Input bits Output bit

source bi destination bi destination bi
0 0 0
0 1 1
1 0 1
1 1 1

The logical not operation simply flips the bits (a 1 in input becomes a 0 in the
output, and vice versa), as shown in the following truth table:

Truth table for the not operation
Input bit Output bit

destination bi destination bi
0 1
1 0

Here are some examples explaining their operation (all numbers are ex
pressed in binary).

and AL,BL or AL,BL not AL
AL BL AL AL AL

1010 1110 1111 0000 1010 0000 1111 1110 0101 0001
0110 0011 1001 1100 0000 0000 1111 1111 1001 1100
1100 0110 0000 0011 0000 0010 1100 0111 0011 1001
1111 0000 0000 1111 0000 0000 1111 1111 0000 1111

Logical instructions also set some of the flags and therefore can be used in
conjunction with conditional jump instructions to implement decision making in
assembly language programs. Until we fully discuss the flags in Chapter 6, the
following usage should be sufficient to write and understand assembly language
programs.

In the following example, we test the least significant bit of the data in
the AL register, and the program control is transferred to the appropriate code
depending on the value of this bit.

and AL,OlH
je bit_is_zero

88 Chapter 3 Overview of Assembly Language

<code to be executed
when the bit is one>

jmp skip1
bit_is_zero:

skip1:

<code to be executed
when the bit is zero>

<rest of the code>

To understand how the jump is effective in this example, let us assume that
AL = 1010111OB. The instruction

and AL,01R

would make the result OOH and is stored in the AL register. At the same time,
the logical operation also sets the zero flag (Le., ZF = 1) because the result is
zero. Recall that j e tests the ZF and jumps to the target location if ZF = 1. In
this example, it is more appropriate to use jz (jump if zero). Thus,

jz bit_is_zero

can replace the

je bit_is_zero

instruction. The conditional jump j e is an alias for j z.
A problem with using the and instruction for testing, as used in the previous

example, is that it modifies the destination operand. For instance, in the last
example,

and AL,01R

changes the contents of AL to either 0 or 1 depending on whether the least
significant bit is 0 or 1, respectively.

To avoid this problem, the Pentium instruction set has a test instruction.
The syntax is

test destination,source

The test instruction performs logical bitwise and operations like the and
instruction except that the source and destination operands are not modified in
any way. However, test sets the flags just like the and instruction. Therefore,
we can use

test AL,OlR

instead of

and AL,OlH

in the last example. Like the cmp instruction, test takes one clock less to
execute than and if the destination operand is in memory.

Section 3.5 Overview of Assembly Language Instmctions 89

3.5.5 Shift Instructions

The Pentium instruction set provides several shift instructions. We will discuss
the following two instructions here: shl (SHift Left) and shr (SHift Right).

The shl instruction can be used to left shift a destination operand. Each
shift to the left by one bit position causes the leftmost bit to move to carry flag
(CF), and the vacated rightmost bit is filled with a zero. The bit that was in CF
is lost as a result of the left shift operation.

SHL BI---t--I ++++++++0
Bit Position: 7 6 5 4 3 2 o

The shr instruction works similarly but shifts bits to the right, as shown below:

SHR 0 + + + + + + + + t-G
Bit Position: 7 6 5 4 3 2 o

The general formats of these instructions are

shl destination, count
shl destination,CL

shr destination, count
shr destination,CL

The destination can be an 8-, 16- or 32-bit operand stored either in a register
or in memory. The second operand specifies the number of bit positions to be
shifted. The first format can be used to specify the number of bit positions to
be shifted. count can range from 0 to 31. The second format can be used to
indirectly specify the shift count, which is assumed to be in the CL register.
The CL register contents are not changed by either shl or shr instructions. In
general, the first format is faster!

Even though the shift count can be between 0 and 31, it does not make sense
to use count values of zero or greater than 7 (for an 8-bit operand), or 15 (for a
16-bit operand), or 31 (for a 32-bit operand). As indicated, Pentium does not
allow the specification of shift count to be greater than 31. If a greater value is
specified, Pentium takes only the least significant 5 bits of the number as the
shift count.

Here are some examples.

90 Chapter 3 Overoiew of Assembly Language

Before shift After shift
Instruction ALorAX ALorAX CF

shl AL,l 1010 1110 0101 1100 1
shr AL,l 10101110 0101 0111 0
mav CL,3
shl AL,CL 0110 1101 0110 1000 1
mav CL,5
shr AX,CL 1011 1101 0101 1001 00000101 1110 1010 1

The following code shows another way of testing the least significant bit of
the data in the AL register.

skip!:

shr AL,!
jnc bit_is_zero
<code to be executed
when the bit is one>

jmp skip!

<code to be executed
when the bit is zero>

<rest of the code>

If the bit pattern in the AL register contains a 1 in the least significant bit
position, this bit will be in the carry flag (CF) after the shr instruction has been
executed. We can then use a conditional jump instruction that tests the carry
flag. The jc (jump if carry) would cause the jump if CF = 1, and jnc (jump if
no carry) causes jump only if CF = O.

3.5.6 Rotate Instructions

A drawback with the shift instructions is that the bits shifted out are lost. There
may be situations where we want to keep these bits. The rotate family of
instructions provide this facility. These instructions can be divided into two
types: rotate without involving the carry flag (CF), or through the carry flag.
We will briefly discuss these two types of instructions next.

Rotate Without Carry

There are two instructions in this group:

Section 3.5 Overview of Assembly Language Instructions

rol (ROtate Left)
ror (ROtate Right)

91

The format of these instructions is similar to the shift instructions and is given
below:

rol
rol

destination, count
destination,CL

ror
ror

destination, count
destination,CL

The rol instruction performs left rotation with the bits falling off on the
left placed on the right side, as shown below:

ROL G----+-' 11+ + + +"+ + + ;p
Bit Position: 7 6 5 4 3 2 o

The ror instruction performs right rotation, as shown below:

RDR Lf f f f "f + + +1 +---B
Bit Position: 7 6 5 4 3 2 o

For both of these instructions, the CF will catch the last bit rotated out of
destination. The following examples illustrate the rotate operation.

Before execution After execution
Instruction ALorAX ALorAX CF

rol AL,i 1010 1110 0101 1101 1
ror AL,i 1010 1110 01010111 0
mov CL,3
rol AL,CL 0110 1101 0110 1011 1
mov CL,5
ror AX,CL 1011 11010101 1001 1100 1101 1110 1010 1

As a further example, consider encryption of a byte by interchanging the
upper and lower nibbles (i.e., 4 bits). This can be done either by

ror AL,4

or by

rol AL,4

92 Chapter 3 Overview of Assembly Language

Rotate Through Carry

The instructions

rcl (Rotate through Carry Left)
rer (Rotate through Carry Right)

include the carry flag in the rotation process. That is, the bit that is rotated out
at one end goes into the carry flag and the bit that was in the carry flag is moved
into the vacated bit, as shown below.

Bit Position: 7 6 5 4 3 2 o

RCR Lf f f f f Of f f t=B
Bit Position: 7 6 5 4 3 2 o

Some examples of reI and rer are given next.

Before execution After execution
Instruction ALorAX CF ALorAX CF

reI AL,l 1010 1110 0 0101 1100 1
rer AL,l 1010 1110 1 11010111 0
mov CL,3
reI AL,CL 0110 1101 1 01101101 1
mov CL,5
rer AX,CL 1011 1101 0101 1001 0 10010101 1110 1010 1

The reI and rer instructions provide flexibility in bit rearranging. Fur
thermore, these are the only two instructions that take the carry flag bit as an
input. This feature is useful in multi word shifts. As an example, suppose that
we want to right shift the 64-bit number stored in EDX:EAX (the lower 32 bits
are in EAX) by one bit position. This can be done by

shr EDX,l
rcr EAX,l

The shr instruction moves the least significant bit of EDX to the carry flag.
The rer instruction copies this carry flag value into the most significant bit
of EAX during the rotation process. We will see in Chapter 8 that Pentium
provides two double-precision shift instructions to facilitate shifting of 64-bit
numbers.

Section 3.6 Defining Constants 93

3.6 Defining Constants

Assemblers provide two directives-EQU and =-to define constants, numeric
as well as literal constants. The EQU directive can be used to define numeric
constants and strings, whereas the = directive can be used to define numeric
constants only.

3.6.1 The EQU Directive

The syntax of the EQU directive is

name EQU expression

which assigns the result of the expression to name. This directive serves the
same purpose as #def ine in C. For example, we can use

EQU 90

to assign 90 to NOM_OF _STUDENTS. It is customary to use capital letters for these
names in order to distinguish them from variable names. Then, we can write

to move 90 into the ex register and to compare AX with 90. Defining constants
this way has two advantages:

I. Such definitions increase program readability. This can be seen by com
paring the statement

with

mov CX,90

The first statement clearly indicates that we are moving the class size into
the ex register.

94 Chapter 3 Overview of Assembly Language

2. Multiple occurrences of a constant can be changed from a single place.
For example, if the class size has changed from 90 to 100, we need to
change the value in the EQU statement only. If we didn't use the EQU
statement, we have to scan the source code and make appropriate changes.
A risky and error-prone process!

The operand of an EQU statement can be an expression that evaluates at
assembly time. We can, for example, write

NUM_OF_ROWS
NUM_OF_COLS
ARRAY_SIZE

EQU
EQU
EQU

50
10
NUM_OF_ROWS * NUM_OF_COLS

to define ARRAY _SIZE to be 500. Strings can be defined in a similar fashion as
shown in the following example:

JUMP EQU jmp

Here JUMP is an alias for jmp. Thus, a statement like

will be assembled as

The angle brackets « and >) can be used to define strings that could poten
tially be interpreted as an expression. For example,

EQU

forces the assembler to treat

as a string and will not evaluate it.

A Restriction: The symbols that have been assigned a value or a string cannot be
reassigned another value or string in a given source module. If such redefinitions
are required, you should use = directive, which is discussed next.

3.6.2 The = Directive

The = directive is similar to the EQU directive. The syntax, which is similar to
that of the EQU directive, is

name = expression

Section 3. 7 Illustrative Examples 95

There are two key differences:

1. A symbol that is defined by the = directive can be redefined. Therefore,
the following code is valid.

COUNT = 0

COUNT = 99

2. The = directive cannot be used to assign strings or to redefine keywords
or instruction mnemonics. For example,

JUMP = jmp

is not valid. For these purposes, you should use the EQU directive.

3.7 Illustrative Examples

This section presents five examples that illustrate the use of the assembly lan
guage instructions discussed in this chapter. In order to follow these examples,
you should be able to understand the difference between binary values and
character representations. For example, when using a byte to store a number,
the number 5 is stored as

000001018

On the other hand, character 5 is stored as

001101018

Character manipulation is easier if you understand this difference and the key
characteristics of ASCII, as discussed in Appendix A.

Example 3.1 Displays the ASCII value of the input key in binary

The goal of this example is to illustrate how the logical test instruction can
be used to test a bit. The program reads a key from the keyboard and displays
its ASCII code in binary. It then queries the user as to whether he/she wants to
quit. Depending on the response, the program either requests another character
input from the keyboard, or terminates.

To display the binary value of the ASCII code of the input key, we test
each bit starting with the most significant bit (i.e., leftmost bit). The mask
is initialized to 80H (=10000000B), which tests only the value of the most
significant bit of the ASCII value. If this bit is 0, the code

96 Chapter 3 Overoiew of Assembly Language

test AL,mask

sets the ZF (assuming that the ASCII value is in the AL register). In this case,
a 0 is displayed by directing program flow using the j z instruction. Otherwise,
a 1 is displayed. The mask is then divided by 2, which is equivalent to right
shifting mask by one bit position. Thus, we are ready for testing the second
most significant bit. The process is repeated for each bit of the ASCII value.
The pseudocode of the program is as follows.

mainO
read_char:

display prompt message
read input character into char
display output message text
mask := 80H {AH is used to store mask}
count := 8 {CX is used to store count}
repeat

if « char AND mask) = 0)
then

write 0
else

write 1
end if
mask:= maskl2 {can be done by shr}
count := count - 1

(count = 0)
display query message
read response
if (response = 'Y')
then

goto done
else

goto read_ char
end if

done:
return

end main

The assembly language program shown in Program 3.4 follows the pseudo
code in a straightforward way. Note that Pentium provides an instruction to
perform integer division. However, shr is about 17 times faster than the divide

Section 3. 7 Illustrative Examples 97

instruction to divide a number by 2! More details about the division instructions
are given in Chapter 6.

Program 3.4 Conversion of ASCII to binary representation

1: TITLE Binary equivalent of characters
2: COMMENT I

BINCHAR.ASM

3:
4:
5:
6:

Objective: To print the binary equivalent of
ASCII character code.

Input: Requests a character from keyboard.
Output: Prints the ASCII code of the

7:
8: .MODEL SMALL
9: . STACK 100H

10: . DATA
11: char_prompt
12: out_msg1
13: out_msg2
14: query_msg
15:
16: . CODE
17: INCLUDE io.mac
18: main PROC

input character in binary.

DB 'Please input a character: ',0
DB 'The ASCII code of "',0
DB ", in binary is ',0
DB 'Do you want to quit (yiN): ',0

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:

. STARTUP
read_char:

PutStr
GetCh
nwln
PutStr
PutCh
PutStr
mov
mov

print_bit:
test
jz
PutCh
jmp

print_O:
PutCh

skip1 :
shr

char_prompt
AL

out_msg1
AL
out_msg2
AH,80H
CX,8

AL,AH
print_O

' 1 '
skip1

' 0'

AH,1

request a char. input
read input character

mask byte = 80H
loop count to print 8 bits

test does not modify AL
if tested bit is 0, print it
otherwise, print 1

print 0

right shift mask bit to test
next bit of the ASCII code

98

39:
40:
41 :
42:
43:
44:
45:
46:
47:
48:
49:

done:

main

loop
nwln
PutStr
GetCh
nwln
cmp
jne

. EXIT
ENDP
END

print_bit

query_msg
AL

AL, 'V'
read_char

main

Chapter 3 Overview of Assembly Language

query user whether to terminate
read response

if response is not 'V'
read another character
otherwise, terminate program

Example 3.2 Displays the ASCII value of the input key in hexadecimal

The objective of this example is to show how numbers can be converted
to characters by using character manipulation. This and the next example are
similar to the previous one except that the ASCII value is printed in hex. In
order to get the least significant hex digit, we have to mask off the upper half of
the byte and then perform integer to hex digit conversion. The example shown
below assumes that the input character is L, whose ASCII value is 4CH.

mask off convert

L ~I OlOOl100B up~alf 0000l100B t~ C

Similarly, to get the most significant hex digit we have to isolate the upper
half of the byte and move these 4 bits to the lower half, as shown below:

mask off shift right convert

L ~I OlOOl100B lo~alf OlOOOOOOB 4 p~ons OOOOOlOOB t~ 4

Notice that shifting right by 4 bit positions is equivalent to performing integer
division by 16. The pseudocode of the program shown in Program 3.5 is as
follows:

mainO
read_char:

display prompt message
read input character into char
display output message text
temp:= char
char := char AND FOH {mask off lower half}
char := char/16 { shift right by 4 positions}

{The last two steps can be done by shr }

Section 3. 7 Illustrative Examples

convert char to hex equivalent and display
char := temp {restore char }
char := char AND OFH {mask off upper half}
convert char to hex equivalent and display
display query message
read response
if (response = 'y')
then

goto done
else

goto read_char
end if

done:
return

end main

99

To convert a number between 0 and 15 to its equivalent in hex, we have to
divide the process into two parts depending on whether the number is below
10 or not. The conversion using character manipulation can be summarized as
follows:

if (number:::: 9)
then

write (number + '0')
then

write (number + 'A' - 10)
end if

If the number is between 0 and 9, we have to add the ASCII value for
character 0 to convert it to its equivalent character. For instance, if the number
is 5 (00000101B), it should be converted to character 5, whose ASCII value is
35H (00110101B). Therefore, we have to add 30H, which is the ASCII value
of O. This is done in Program 3.5 by

add AL, '0'

on line 34. If the number is between 10 and 15, we have to convert them to hex
digits between A and F. You can verify that the required translation is achieved
by

number - 10 + ASCII value for character A

In Program 3.5, this is done by

100 Chapter 3 Overview of Assembly Language

add AL,' A'-10

on line 37.

Program 3.5 Conversion to hexadecimal by character manipulation

1: TITLE Hex equivalent of characters HEX1CHAR.ASM
2: COMMENT I
3: Objective: To print the hex equivalent of
4: ASCII character code.
5: Input: Requests a character from keyboard.
6: Output: Prints the ASCII code of the
7 : input character in hex.
8: .MODEL SMALL
9: .STACK 100H

10: . DATA
11: char_prompt
12: out_msgl
13: out_msg2
14: query_msg
15:
16: . CODE
17: .486
18: INCLUDE io.mac
19: main PROC

DB 'Please input a character: ',0
DB 'The ASCII code of "',0
DB '" in hex is ',0
DB 'Do you want to quit (YIN): ',0

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31 :
32:
33:
34:
35:
36:
37:

. STARTUP
read_char:

PutStr
GetCh
nwln
PutStr
PutCh
PutStr
mov
shr
mov

print_digit:
cmp
jg
add
jmp

A_to_F:
add

char_prompt
AL

out_msg1
AL
out_msg2
AH,AL
AL,4
CX,2

AL,9
A_to]
AL, '0'
skip

AL,'A'-10

request a char. input
read input character

save input character in AH
move upper 4 bits to lower half
loop count - 2 hex digits to print

if greater than 9
convert to A through F digits
otherwise, convert to 0 through 9

subtract 10 and add 'A'

Section3.7

38:
39: skip:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50: done:
51:
52: main
53:

Illustrative Examples

PutCh AL
mov AL,AH
and AL,OFH
loop print_digit
nwln
PutStr query_msg
GetCh AL
nwln
cmp AL, 'Y'
jne read_char

. EXIT
ENDP
END main

to convert to A through F

write the first hex digit
restore input character in AL
mask off the upper half byte

query user whether to terminate
read response

if response is not 'Y'
read another character
otherwise, terminate program

101

Example 3.3 Displays the ASCII value of the input key in hexadecimal using
xlat instruction

The objective of this example is to show how the use of xlat simplifies
the solution of the last example. In this example, we use the xlat instruction
to convert an integer value in the range between 0 and 15 to its equivalent hex
digit. The program is shown in Program 3.6. To use xlat we have to construct
a translation table, which is done by the following statement (line 17):

hex_table DB '0123456789ABCDEF'

We can then use the integer value as an index into the table. For example, an
integer value of 10 points to A, which is the equivalent hex digit. In order to
use the xlat instruction, BX should point to the base of the hex_table and
AL should have the integer value between 0 and 15. The rest of the program is
straightforward to follow.

Program 3.6 Conversion to hexadecimal by using the xlat instruction

1: TITLE Hex equivalent of characters HEX2CHAR.ASM
2: COMMENT I
3: Objective: To print the hex equivalent of
4: ASCII character code. Demonstrates
5: the use of xlat instruction.

102 Chapter 3 Overoiew of Assembly Language

6: Input: Requests a character from keyboard.
7: Output: Prints the ASCII code of the
8: input character in hex.
9: .MODEL SMALL

10: .STACK 100H
11: . DATA
12: char_prompt DB 'Please input a character: ',0
13: out_msgl DB 'The ASCII code of "',0
14: out_msg2 DB ", in hex is ',0
15: query_msg DB 'Do you want to quit (YIN): ',0
16: ; translation table: 4-bit binary to hex
17: hex_table DB '0123456789ABCDEF'
18:
19: . CODE
20: .486
21: INCLUDE io.mac
22: main PROC
23: . STARTUP
24:
25:

read_char:

26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46: done:
47:

PutStr
GetCh
nwln
PutStr
PutCh
PutStr
mov
mov
shr
xlatb
PutCh
mov
and
xlatb
PutCh
nwln
PutStr
GetCh
nwln
cmp
jne

. EXIT
48: main ENDP

char_prompt
AL

out_msg2

request a char. input
read input character

AH,AL ; save input character in AH
BX,OFFSET hex_table ; BX := translation table
AL,4 move upper 4 bits to lower half

AL
AL,AH
AL,OFH

AL

query_msg
AL

AL, 'Y'
read_char

replace AL with hex digit
write the first hex digit
restore input character to AL
mask off upper 4 bits

write the second hex digit

query user whether to terminate
read response

if response is not 'Y'
read another character
otherwise, terminate program

49: END main

Section 3. 7 Illustrative Examples 103

Example 3.4 Conversion of lowercase letters to uppercase

This program demonstrates how indirect addressing can be used to access
elements of an array. It also illustrates how character manipulation can be used
to convert lowercase letters to uppercase. The program receives a character
string from the keyboard and converts all lowercase letters to uppercase and
displays the string. Characters other than the lowercase letters are not changed
in any way. The pseudocode of Program 3.7 is as follows:

main 0
display prompt message
read input string
index:= 0
char := string [index]
while (char =I NULL)

if«char ~ 'a') AND (char ~ 'z'»
then

char:= char + 'A' - 'a'
end if
display char
index:= index + 1
char := string [index]

end while
end main

You can see from Program 3.7 that the compound condition if requires two
cmp instructions (lines 27 and 29). Also the program uses the BX register in
indirect addressing mode and always holds the pointer value of the character to
be processed. In Chapter 5 we will see a better way of accessing elements of
an array. The end of the string is detected by

cmp
je

AL,O
done

; check if AL is NULL

and is used to terminate the while loop (lines 25 and 26).

Program 3.7 Conversion to uppercase by character manipulation

104 Chapter 3 Overview of Assembly Language

1: TITLE uppercase conversion of characters
2: COMMENT I

TOUPPER. ASM

3: Objective: To convert lowercase letters to
4: corresponding uppercase letters.
5: Input: Requests a character string from keyboard.
6: Output: Prints the input string in uppercase.
7: .MODEL SMALL
8: .STACK 100H
9: . DATA

10: name_prompt
11: out_msg
12: in_name

DB 'Please type your name: ',0
DB 'Your name in capitals is: ',0
DB 31 DUP (?)

13:
. CODE
INCLUDE io.mac
main PROC

. STARTUP
PutStr name_prompt
GetStr in_name,31

request character string
read input character string

14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

nwln
PutStr
mov

out_msg
BX,OFFSET in_name ; BX := address of in_name

process_char:
mov
cmp
je
cmp
jl

29: cmp
30: jg
31: lower_case:

AL, [BX]
AL,O
done
AL, 'a'
not_lower_case
AL, 'z'
not_lower_case

32: add AL,'A'-'a'
33: not_lower_case:
34: PutCh AL
35: inc BX
36: jmp process_char
37: nwln
38: done:
39: . EXIT
40: main
41:

ENDP
END main

move the char. to AL
if it is the NULL character
conversion done
if (char < 'a')
not a lowercase letter
if (char > 'z')
not a lowercase letter

convert to uppercase

write the character
BX points to next char.
go back to process next char.

Example 3.5 Sum of the individual digits of a number

Section 3. 7 Illustrative Examples 105

The last example shows how decimal digits can be converted from their
character representations to equivalent binary. The program receives a number
(maximum 10 digits) and displays the sum of the individual digits of the input
number. For example, if the input number is 45213, the program displays
15. Since ASCII assigns a special set of contiguous values to the to-digit
characters, it is straightforward to get their numerical value (as discussed in
Appendix A). All we have to do is to mask off the upper half of the byte, as is
done in Program 3.8 by

and AL,OFH

Alternatively, we can also subtract the character code for 0

sub AL, '0'

instead of masking the upper half byte. For the sake of brevity, we leave writing
the pseudocode of Program 3.8 as an exercise.

Program 3.8 Sum of individual digits of a number

1: TITLE Add individual digits of a number ADDIGITS.ASM
2: COMMENT I
3: Objective: To find the sum of individual digits of
4: a given number. Shows character to binary
5: conversion of digits.
6: Input: Requests a number from keyboard.
7: Output: Prints the sum of the individual digits.
8: .MODEL SMALL
9: .STACK 100H

10: . DATA
11:
12:
13:
14:

number_prompt
out_msg
number

15: . CODE
16: INCLUDE io.mac

PROC

DB 'Please type a number «11 digits): ',0
DB 'The sum of individual digits is: ',0
DB 11 DUP (7)

17: main
18: . STARTUP
19:
20:
21:
22:
23:
24:

PutStr number_prompt
GetStr number,ll
nwln

; request an input number
read input number as a string

mov
sub

repeat_add:

BX,OFFSET number ; BX := address of number
:= 0 -- DL keeps the sum DX,DX ; DX

106

25:
26:
27:
28:
29:
30:
31:
32: done:
33:
34:
35:
36:

mov
cmp
je
and
add
inc
jmp

AL, [BX]
AL,O
done
AL,OFH
DL,AL
BX
repeat_add

PutStr out_msg
Putlnt DX
nwln
. EXIT

Chapter 3 Overoiew of Assembly Language

move the digit to AL
if it is the NULL character

sum is done
mask off the upper 4 bits
add the digit to sum
increment BX to point to next digit
and jump back

write sum

37: main ENDP
38: END main

3.8 Performance: When to Use the xlat Instruction

The xlat instruction is convenient to perform character conversions. Proper
use of xlat will produce an efficient assembly language program. In this
section, we demonstrate by means of two examples when xlat is beneficial
from the performance point of view.

In general, xlat is not really useful if, for example, there is a straightforward
method or a "formula" for the required conversion. This is true for conversions
that exhibit a regular structure. An example of this type of conversion is the case
conversion between uppercase and lowercase letters in ASCII. As you know,
the ASCII encoding makes this conversion rather simple. Experiment 1 takes
a look at this type of example.

The use of the xlat instruction, however, produces efficient code if the con
version does not have a regular structure. Conversion from EBCDIC to ASCII
is one example that can benefit from using the xlat instruction. Conversion
to hex is another example, as shown in Examples 3.2 and 3.3. This example
is used in Experiment 2 to show the performance benefit that can be obtained
from using the xlat instruction for the conversion.

Experiment 1
In this experiment, we show how using the xlat instruction for case conver
sion of letters deteriorates the performance. We have transformed the code of
Example 3.4 to a procedure that can be called from a C main program that
keeps track of the time (see Chapter 1 for details about the C main program).
All interaction with the display is suppressed for these experiments. This case

Section 3.8 Performance: When to Use the xlat Instruction 107

conversion procedure is called several times to convert a string of lowercase
letters. The string length is fixed at 75 characters.

We have used two versions of the case conversion procedure. The first
version does not use the xlat instruction for case conversion. Instead, it uses
the statement

add AL,'A'-'a'

as shown in Program 3.7.
The other version uses the xlat instruction for case conversion. In order

to do so, we have to set up the following conversion table in the data section:

upper_table DB 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

Furthermore, after initializing BX to upper_table, the following code

sub AL,' a'
xlat upper_table

replaces the code

add AL,'A'-'a'

You can clearly see the disadvantage of the xlat version of the code. First
of all, it requires additional space to store the translation table upper_table.
More important than this is the fact that the xlat version requires additional
time. Note that the add and sub instructions take the same amount of time to
execute. Therefore, the xlat version requires additional time to execute xlat,
which generates a memory read to get the byte from upper_table located in
the data segment.

The performance superiority of the first version (Le., the version that does
not use the xlat instruction) is clearly shown in Figure 3.1. In this plot, the
x-axis gives the number of thousands of times the case conversion procedure is
called to convert a lowercase string of 75 characters. The data shows that the
use of xlat deteriorates the performance by about 30 percent! For reasons we
have discussed previously, this is clearly a bad example for the use of the xlat
instruction.

Experiment 2
We now use the hex conversion examples of Section 3.7 to show the benefits
of the xlat instruction. As shown in Example 3.2, without using the xlat,
we have to test the input number to see if it falls in the range of 0-9 or 10-15.
However, such testing and hence the associated overhead can be avoided by
using a translation table along with xlat.

108

,....,
til

"C
§
C)
Q)
til
'-"
Q)

e
''::
c: sa
til

~
>
§
u

Chapter 3 Overview of Assembly Language

4

3

2

1

O~---r--~----r---'----r---'----~--~--~--~

o 20 40 60 80 100 120 140 160 180 200

Number of calls (in thousands)

Figure 3.1 Performance of the case conversion program.

The two programs of Examples 3.2 and 3.3 have been converted to C callable
procedures as in the last experiment. Each procedure receives a string and
converts the characters in the input string to their hex equivalents. However,
the hex code is not displayed. The input test string in this experiment consists
of lowercase and uppercase letters, digits, and special symbols for a total of 75
characters.

The data presented in Figure 3.2 clearly demonstrates the benefit of using
the xlat in this example. The procedure that uses xlat is about 80 percent
faster!

The moral of the story is that judicious use of assembly language instructions
is necessary in order to realize the benefits of the assembly language.

3.9 Summary

The structure of the stand-alone assembly language program is described in
Appendix B. In this chapter, we presented the basics of programming in the
Pentium assembly language.

We discussed two types of assembly language statements:

Section 3.10 Exercises 109

.-.,
ell
"0
§
u
cu
ell
'-"
cu e

'J::
s::
.9
ell

ti
> s::
0
U

10

8

6

4

2

O~~~---.----.---.----.---.----r---'----r--~

o 20 40 60 80 100 120 140 160 180 200

Number of calls (in thousands)

Figure 3.2 Performance of the hex conversion program.

1. Executable statements that instruct the CPU as to what to do
2. Assembler directives that facilitate the assembly process

Assembler directives to allocate storage space for data variables and to
define numeric and string constants were discussed in detail. An overview
of the Pentium instruction set was also presented. While we have discussed
in detail the data transfer instructions, there was only a brief review of the
remaining instructions of the Pentium instruction set. A detailed discussion of
these instructions is provided in later chapters.

We also demonstrated the performance advantage of the xlat instruction
under certain conditions. The results show that judicious use of the xlat
instruction provides significant performance advantages for character conver
sions.

3.10 Exercises

3-1 Why aren't assembler directives executed by the CPU?
3-2 What is the difference between the following two data definition state

ments?

110 Chapter 3 Overview of Assembly Language

intl
int2

DB
DW

2 DUP (?)

?

3-3 For each of the following statements, what is the amount of storage space
reserved (in bytes)? Also indicate the initialized data. Verify your an
swers using your assembler.

(a) table DW 100 DUP (-1)
(b) nest1 DB 5 DUP (2 DUP ('%'), 3 DUP ('$'))
(c) nest2 DB 4 DUP (5 DUP (2 DUP (1),3 DUP (2)))
(d) value DW -2300
(e) count DW 40000
(f) msgl DB 'Finder"s fee is:',O
(g) msg2 DB 'Finder"s fee is:',O
(h) msg3 DB 'Sorry! Invalid input.',ODH,OAH,O

3-4 What is an addressing mode? Why does Pentium provide several ad
dressing modes?

3-5 We discussed four addressing modes in this chapter. Which addressing
mode is the most efficient one? Explain why.

3-6 Can we use the immediate addressing mode in the inc instruction? Jus
tify your answer.

3-7 Discuss the pros and cons of using the lea instruction as opposed to
using the mov instruction along with the OFFSET assembler directive.

3-8 Use the following data definitions to answer this question:

. DATA
numl DW 100
num2 DB 225
charl DB 'y'
num3 DD 0

Identify whether the following instructions are legal or illegal. Explain
the reason for each illegal instruction.

(a) mov EAX,EBX
(c) mov BL,numl
(e) mov charl,num2
(g) add 75,EAX
(i) sub charl,'A'
(k) xchg AL,23

(b)

(d)

(0
(h)

(j)

(1)

3-9 Assume that the registers are initialized to

EAX = 12345D, EBX = 9528D
EeX = -1275D, EDX = -3001D

mov
mov
mov
cmp
xchg
inc

EAX,num2
DH,charl
IP,numl
75,EAX
AL,num2
num3

Section 3.10 Exercises 111

What is the destination operand value (in hex) after executing the follow
ing instructions: (Note: Assume that the four registers are initialized as
shown above for each question.)

(a) add EAX,EBX
(c) and EAX,EDX
(e) not EDX
(g) shl EAX,CL
(i) shr EAX,CL
(k) add ECX,DX

(b)

(d)

(f)
(h)

(j)
(1)

sub
or
shl
shr
sub
sub

AX,CX
BX,AX
BX,2
BX,2
CX,BX
DX,CX

3-10 In each of the following code fragments, state whether mov AX, 10 or
mov BX, 1 is executed:

(a)

mov
sub
cmp
jge
mov
jmp

jumpl:
mov

skipl:

(c)
mov
mov
and
jz
mov
jmp

jumpl :
mov

skipl :

CX,5
DX,DX
DX,CX
jumpl
BX,l
skipl

AX,10

CX,15BAH
DX,8244H
DX,CX
jumpl
BX,l
skipl

AX,10

(b)

mov
mov
shr
cmp
je
mov
jmp

jumpl:
mov

skipl:

(d)

mov
not
mov
cmp
jg
mov
jmp

jumpl:
mov

skipl :

CX,5
DX,10
DX,l
CX,DX
jumpl
BX,l
skipl

AX,10

CX,5
CX
DX,10
CX,DX
jumpl
BX,l
skipl

AX,10

3-11 Describe in one sentence what the following code is accomplishing in
terms of number manipulation:

(a) (b)

(c)

not
add

AX
AX,l

(d)

not
inc

AX
AX

112 Chapter 3 Overview of Assembly Language

sub AH,AH sub AH,AH
sub OH,OH sub OH,OH
mov OL,AL mov OL,AL
add OX,OX mov CL,3
add OX,OX shl OX,CL
add OX,AX shl AX,l
add OX,OX add OX,AX

3-12 Do you need to know the initial contents of the AX register in order to
determine the contents of the AX register after executing the following
code? If so, explain why. Otherwise, find the AX contents.

(a)

mov
not
or

OX,AX
AX
AX,OX

(b)

mov
not
and

OX,AX
AX
AX,OX

3.11 Progamming Exercises

3-Pl Modify the program of Example 3.1 so that, in response to the query

00 you want to quit (YIN):

the program terminates only if the response is Y or y; continues with a
request for another character only if the response to the query is N or n;
otherwise, repeats the query.

3-P2 Modify the program of Example 3.1 to accept a string and display the
binary equivalent of the input string. As in the example, the user should
be queried about program termination.

3-P3 Modify the addigi ts . asm program such that it accepts a string from
the keyboard consisting of digit and nondigit characters. The program
should display the sum of the digits present in the input string. All
nondigit characters should be ignored. For example, if the input string is

ABC1?5wy76:-2

the output of the program should be

sum of individual digits is: 21

3-P4 Write an assembly language program to encrypt digits as shown below:

input digit:
encrypted digit:

o 1 2 3 4 5 6 7 8 9
4 6 9 5 0 3 187 2

Section 3.11 Progamming Exercises 113

Briefly discuss whether or not you would use the xlat instruction. Your
program should accept a string consisting of digit and nondigit charac
ters. The encrypted string should be displayed in which only the digits
are affected. Then the user should be queried whether helshe wants to
terminate the program. If the response is either 'y' or 'Y' you should ter
minate the program; otherwise, you should request another input string
from the keyboard.
The encryption scheme given here has the property that when you encrypt
an already encrypted string, you get back the original string. Use this
property to verify your program.

3-P5 Using only the assembly language instructions discussed so far, write a
program to accept a number in hexadecimal form and display the decimal
equivalent of the number. A typical interaction of your program is (user
input shown in bold):

Please input a positive number in hex (4 digits max.): AI0F
The decimal equivalent of Al OFH is 41231
Do you want to terminate the program (YIN): Y

You should refer to Appendix A for an algorithm to convert from base b
to decimal.
Hints:

1. Required multiplication can be done by the shl instruction.

2. Once you have converted the hex number into the equivalent in
binary using the algorithm of Appendix A, you can use the Putlnt
routine to display the decimal equivalent.

3-P6 Repeat the previous exercise with the following modifications: the input
number is given in decimal and the program displays the result of (integer)
dividing the input by 4. You should not use the GetInt routine to read
the input number. Instead, you should read the input as a string using
GetStr. A typical interaction of the program is (user input is shown in
bold):

Please input a positive number «65,535): 41231
41231/4 = 10307

Do you want to terminate the program (YIN): Y

Remember that the decimal number is read as a string of digit characters.
Therefore, you will have to convert it to binary form to store internally.
This conversion requires mUltiplication by 10 (see Appendix A). We
haven't discussed mUltiplication instruction yet (and you should not use it
even if you are familiar with it). But there is a way of doing multiplication

114 Chapter 3 Overoiew of Assembly Language

by lOusing only the instructions discussed in this chapter. (If you have
done the exercises of this chapter, you already know how!)

3-P7 Write a program that reads an input number (given in decimal) between
o and 65,535 and displays the hexadecimal equivalent. You can read the
input using GetInt routine. As with the other programming exercises,
you should query the user for program termination.

3-P8 Modify the above program to display the octal equivalent instead of the
hexadecimal equivalent of the input number.

3-P9 This is the assembly language counterpart of the Chapter 2 exercise.
Write a complete assembly language program to perform logical-address
to physical-address translation. Your program should take a logical ad
dress as its input and display the corresponding physical address. The
input consists of two parts: segment value and offset value. Both are
given as hexadecimal numbers. You can assume 16-bit segments and
data.
In Chapter 2, you have written the same program in your favorite high
level language. The purpose is to compare the time required to write
programs in assembly and high-level languages. Therefore, as you did
for the Chapter 2 exercise, you should note the time spent on the exercise.
Compare and contrast your experience in using assembly and high-level
languages. Make sure to include the debugging time as well in the com
parison.

Part II

Basic Topics

Chapter 4

Procedures and the Stack

Objectives

• To introduce the stack and its implementation in Pentium

• To describe stack operations and the use of the stack
• To present procedures and parameter passing mechanisms
• To introduce separate assembly of source program modules

• To discuss procedure overheads

Chapter 3 gave an overview of assembly language programs. Starting with this
chapter, we will discuss the constructs and instructions of the Pentium assembly
language in detail. We start our discussion with procedures. A procedure is an
important programming construct that facilitates modular programming. The
stack plays an important role in procedure invocation and execution. Section 4.1
introduces the stack concept and the next section discusses how the stack is
implemented in Pentium. Stack operations-push and pop--are discussed in
Section 4.3. Section 4.4 discusses stack uses.

After a brief introduction to procedures (Section 4.5), assembly language
directives for writing procedures are discussed in Section 4.6. Section 4.7
presents the Pentium instructions for procedure invocation and return. Param
eter passing mechanisms are discussed in detail in Section 4.8. Stack plays an
important role in parameter passing. Using the stack it is relatively straight
forward to pass a variable number of parameters to a procedure (discussed in
Section 4.9). The issue of local variable storage in procedures is discussed in
Section 4.10.

While short assembly language programs can be stored in a single file, real
application programs are likely to be broken into several files, called modules.

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998

118 Chapter 4 Procedures and the Stack

~ 1003

~ 1002 1002

~~ 1001 1001

~I 1000 I 1000 1000 1000

Empty After After After After
stack inserting inserting inserting inserting

1000 1001 1002 1003

Figure 4.1 An example showing stack growth-numbers 1000 through 1003 are inserted in
ascending order. The arrow points to the top-of-stack.

The issues involved in writing and assembling multiple source program modules
are discussed in Section 4.11.

While modular programming encourages the use of procedures, there is
a certain overhead associated with the use of procedures. This overhead is
quantified in Section 4.12. The last section provides a summary of the chapter.

4.1 What Is a Stack?

Conceptually, a stack is a last-in-first-out (LIFO) data structure. The operation
of a stack is analogous to the stack of trays you find in cafeterias. The first tray
removed from the the stack of trays would be the last tray that had been placed
on the stack. There are two operations associated with a stack-insertion and
deletion. If we view the stack as a linear array of elements, both insertion
and deletion operations are restricted to one end of the array. Thus, the only
element that is directly accessible is the element at the top-of-stack (TOS). In
stack terminology, insert and delete operations are referred to as push and pop
operations, respectively.

There is another data structure-the queue-that you are familiar with in
your day-to-day activities. A queue can be considered as a linear array with
insertions done at one end of the array and deletions at the other end. Thus, a
queue is a first-in-first-out (FIFO) data structure.

As an example of a stack, let us assume that we are inserting numbers 1000
through 1003 into a stack in ascending order. The state of the stack can be
visualized as shown in Figure 4.1. The arrow points to the top-of-stack. When

Section 4.2 Pentium Implementation of the Stack 119

1003 ~

1002 1002

1001 1001 ~,-___ --, Empty

1000 1000 ~ I 1000 ~ __ s_ta_ck __

Initial
stack

After
removing

1003

After
removing

1002

After
removing

1001

After
removing

1000

Figure 4.2 An example showing deletion of data items from a stack. The arrow points to the
top-of-stack.

the numbers are deleted from the stack, the numbers will come out in the reverse
order of insertion. That is, 1003 is removed first, then 1002, and so on. After
the deletion of the last number, the stack is said to be in the empty state (see
Figure 4.2).

In contrast, a queue maintains the order. Suppose that the numbers 1000
through 1003 are inserted into a queue as in the stack example. When removing
the numbers from the queue, the first number to enter the queue would be the
one to come out first. Thus, the numbers deleted from the queue would maintain
their insertion order.

4.2 Pentium Implementation of the Stack

The set of memory locations reserved in the stack segment is used for im
plementing the stack. The registers SS and (E)SP are used to implement the
Pentium stack. If 16-bit address size segments are used as we do in this book,
SP is used as the stack pointer; ESP is used for 32-bit address size segments.
In the rest of the chapter, we focus on 16-bit segments.

The top-of-stack, which points to the last item inserted into the stack, is
indicated by SS:SP, with the SS register pointing to the beginning of the stack
segment, and the SP register giving the offset value of the last item inserted
relative to the beginning of the stack segment.

The Pentium stack implementation characteristics are:

• Only words (i.e., 16-bit data) or doublewords (i.e., 32-bit data) are saved
on the stack, never a single byte.

120 Chapter 4 Procedures and the Stack

--------- r------ ---------TOS--

SP
(256)

??

??

??

??

??

??

??

TOS--

SP
(254)

21

AB

??

??

??

??

??

21

AB

7F

BD

32

T~pT
9A

??
SS~ ?? SS~ ??

(250) I
SS~ ??

---------Empty stack
(256 bytes)

(a)

~
After pushing

21ABH

(b)

~
After pushing
7FBD329AH

(c)

Figure 4.3 Stack implementation in Pentium-SS:SP points to the top-of-stack.

• The stack grows toward lower memory addresses. Since we graphically
represent memory with addresses increasing from the bottom of a page
to top, we say that the stack grows "downward."

• Top-of-stack (TOS) always points to the last data item placed on the stack.
TOS, which is represented by SS:SP, always points to the lower byte of
the last word data inserted into the stack.

The statement

.STACK 100H

creates an empty stack as shown in Figure 4.3a, and allocates 256 (i.e., 100H)
bytes of memory for stack operations. When the stack is initialized, TOS points
to a byte just outside the reserved stack area. It is an error to read from an empty
stack as this causes a stack underflow.

When a data item is pushed onto the stack, the SP is first decremented by
2 and then the word data is stored at SS:SP. Since Pentium is a little endian, a

Section 4.2 Pentium Implementation o/the Stack

21

AB

7F

BO

32

9A

11

11

~
Initial stack

(two data items)

(8)

TOS~

SP
(254)

SS~

21

AB

7F

BO

32

9A

11

11

~
After removing
7FB0329AH

(b)

TOS~

SP
(252)

SS~

21

AB

56

89

32

9A

11

11

~
After pushing

5689H

(c)

Figure 4.4 An example showing stack insert and delete operations.

121

higher-order byte is stored in the higher memory address. For instance, when
we push the data word 21ABH, the stack expands by 2 bytes and the SP is
decremented by 2 to point to the last data item, as shown in Figure 4.3b. The
stack shown in Figure 4.3c results when we expand the stack further by 4 more
bytes by pushing a doubleword 7FBD329AH onto the stack.

The stack full condition is indicated by the zero offset value (i.e., the SP
register is OOOOH). If we try to insert a data item into a full stack, stack overflow
occurs. Both stack underflow and overflow are programming errors and should
be handled with care.

Retrieving a 32-bit data item from the stack causes the offset value to in
crease by four to point to the next data item on the stack. For example, if we
retrieve a doubleword from the stack shown in Figure 4.4a, we get 7FBD329AH
from the stack and SP is updated, as shown in Figure 4.4h. Notice that the four
memory locations retain their values. However, since TOS is updated, these
four locations will be used to store the next data value pushed onto the stack,
as shown in Figure 4.4c.

122 Chapter 4 Procedures and the Stack

Table 4.1 Stack operations on 16- and 32-bit data

push source16 SP:= SP - 2 (SS:SP):= SP is first decremented by 2 to modify TOS.
source16 Then the 16-bit data from source16 is copied

onto the stack at the new TOS. The stack
expands by 2 bytes.

push source32 SP:= SP - 4 (SS:SP):= SP is first decremented by 4 to modify TOS.

pop dest16

pop dest32

source32 Then the 32-bit data from source32 is copied
onto the stack at the new TOS. The stack
expands by 4 bytes.

dest16 := (SS:SP) SP:= The data item located at TOS is copied to
SP + 2 dest16. Then SP is incremented by 2 to

update TOS. The stack shrinks by 2 bytes.

dest32 := (SS:SP) SP:= The data item located at TOS is copied to
SP + 4 dest32. Then SP is incremented by 4 to

update TOS. The stack shrinks by 4 bytes.

4.3 Stack Operations

4.3.1 Basic Instructions

The stack data structure allows two basic operations: insertion of a data item
into the stack (called the push operation), and deletion of a data item from the
stack (called the pop operation). Pentium allows these two operations on word
or doubleword data items. The syntax is

push source
pop destination

The operand of these two instructions can be a 16- or 32-bit general-purpose
register, segment register, or a word or doubleword in memory. In addition,
source for the push instruction can be an immediate operand of size 8, 16, or
32 bits. Table 4.1 summarizes the two stack operations.

On an empty stack created by

.STACK 100H

the following statements

push 21ABH
push 7FBD329AH

Section 4.4 Uses a/the Stack 123

would result in the stack shown in Figure 4.4a. Executing the following state
ment

pop EBX

on this stack would result in the stack shown in Figure 4.4h with the register
EBX receiving 7FB0329AH.

4.3.2 Additional Instructions

Pentium supports two special instructions for stack manipulation. These in
structions can be used to save and restore the flags and the set of general-purpose
registers.

Stack Operations on Flags

The push and pop operations cannot be used to save and retrieve the flags
register. For this, Pentium provides two special versions of these instructions:

pushf
popf

(push 16-bit flags)
(pop 16-bit flags)

These instructions do not need any operands. For operating on 32-bit flags
register (EFLAGS), we can use pushfd and popfd instructions.

Stack Operations on All General-Purpose Registers

Pentium also provides special pusha and pop a instructions to save and restore
the eight general-purpose registers. The pusha saves the 16-bit general-purpose
registers AX, ex, OX, BX, SP, BP, SI, and 01. These registers are pushed in the
order specified. The last register pushed is the 01 register. The popa restores
these registers except that it will not copy the SP value (Le., the SP value is not
loaded into the SP register as a part of popa instructions). The corresponding
instructions for 32-bit registers are pushad and popad. These instructions are
useful in procedure calls, as explained in Section 4.8.2.

4.4 Uses of the Stack

A stack is used for three main purposes: (i) as a scratch pad to temporarily store
data, (ii) for transfer of program control, and (iii) for passing parameters during
a procedure call.

124 Chapter 4 Procedures and the Stack

4.4.1 Temporary Storage of Data

A stack can be used as a scratch pad to store data on a temporary basis. For
example, consider exchanging contents of two 32-bit variables that are in the
memory-value1 and value2. We cannot use

xchg valuel,value2 ; illegal

because both operands of xchg are in the memory. The following code

mov EAX,valuel
mov EBX,value2
mov valuel,EBX
mov value2,EAX

works, but it uses two 32-bit registers. This code requires four memory opera
tions. However, due to the limited number of general-purpose registers, finding
spare registers that can be used for temporary storage is nearly impossible in
almost all programs. Here is a better solution that does not require any spare
registers.

xchg EAX,valuel
xchg EAX,value2
xchg EAX,valuel

Note that, even though the EAX register is used in this code, its value is
preserved. This code, however, requires six memory operations-two for each
xchg instruction. Using the stack, the exchange can be done by

push value 1
push value2
pop value 1
pop value2

Notice that the above code does not use any general-purpose registers and
requires only four memory operations. Another point to note is that push and
pop instructions allow movement of data from (data segment) memory to (stack
segment) memory. Recall that, normally, the mov instruction does not allow
data transfer from memory to memory. Stack operations are an exception!

The stack is also frequently used as a scratch pad to save and restore registers.
The necessity often arises when we need to free up a set of registers so they can
be used by the current code. This is often the case with procedures (discussed
in Section 4.8). The following code shows an example that frees up EBX and
ECX registers by saving their contents on the stack. After using the registers,
their original values are restored from the stack.

Section 4.5 Procedures

;save EBX and EeX registers on the stack
push EBX
push EeX

EBX and EeX registers
can now be used

;restore EBX and EeX registers from the stack
pop EeX
pop EBX

125

Because the stack is a LIFO data structure, the sequence of pop instructions is
a mirror image of the push instruction sequence.

It should be clear from these examples that the stack grows and shrinks dur
ing the course of a program execution. It is important to allocate enough storage
space for the stack, as stack overflow and underflow could cause unpredictable
results--often causing system errors.

4.4.2 Transfer of Control

The previous discussion concentrated on how we, as programmers, can use the
stack to store data temporarily. The stack is also used by some instructions
to store data temporarily. In particular, when a procedure is called, the return
address of the instruction that follows the procedure call instruction is stored
on the stack so that the control can be transferred back to the calling program at
the end of procedure execution. A detailed discussion on this topic is presented
in Section 4.7.

4.4.3 Parameter Passing

Another important use of the stack is to act as a medium to pass parameters to
the called procedure. The stack is extensively used by high-level languages to
pass parameters. A discussion on the use of the stack for parameter passing is
deferred until Section 4.8.

4.5 Procedures

A procedure is a logically self-contained unit of code designed to perform a
particular task. These are sometimes referred to as subprograms and play an
important role in modular program development. In high-level languages such

126 Chapter 4 Procedures and the Stack

as Pascal, there are two types of subprograms: procedures and functions. There
is a strong similarity between a Pascal function and a mathematical function.
Each function receives a list of arguments and performs a computation based on
the arguments passed onto it and returns a single value. Procedures also receive
a list of arguments just like functions. However, procedures, after performing
their computation based on the values of the arguments, may return zero or more
results back to the calling procedure. In C language, both these subprogram
types are combined into a single function construct.

In the C function

int sum (int x, int y)
{

return (x + y);
}

the parameters x and y are called formal parameters and the function body is
defined based on these parameters. When this function is called (or invoked)
by a statement like

total = sum (number 1 , number2);

the actual parameters-number1 and number2-are used in the computation
of the function sum.

There are two types of parameter passing mechanisms: call-by-value and
call-by-reference. In the call-by-value mechanism, the called function (sum
in our example) is provided only the current value of the arguments for use
by the function. Thus, in this case, the values of these actual parameters are
not changed in the called function-these values can only be used like in a
mathematical function. In our example, the sum function is invoked by using
the call-by-value mechanism, as we simply pass the values of number1 and
number2 to the called function sum.

In the call-by-reference mechanism, the called function actually receives
the addresses (i.e., pointers) of the parameters from the calling function. The
function can change the contents of these parameters-and these changes will
be seen by the calling function-by directly manipulating the actual parameter
storage space. For instance, the following swap function

void swap (int *a, int *b)
{

}

int temp;
temp = *a;
*a = *b;
*b = temp;

Section 4.5 Procedures 127

assumes that swap receives the addresses of the two parameters from the calling
function. Thus, we are using the call-by-reference mechanism for parameter
passing. Such a function can be invoked by

swap (&data1, &data2);

Often both types of parameter passing mechanisms are used in the same
function. As an example, consider finding the roots of the quadratic equation

ax2 +bx +c = 0

The two roots are defined as

-b + ..!b2 - 4ac
rootl = -------

2a

-b - ..!b2 - 4ac
root2 = -------

2a

The roots are real if b2 ~ 4ac, and imaginary otherwise.
Suppose that we want to write a function that receives a, b, and c and returns

the values of the two roots (if real) and indicates whether the roots are real or
imaginary.

int roots (double a, double b, double c,
double *root1, double *root2)

{

}

int root_type = 1;
if (4 * a * c <= b * b){ /* roots are real */

*rootl = (-b + sqrt(b*b - 4*a*c»/(2*a);
*root2 = (-b - sqrt(b*b - 4*a*c»/(2*a);

}

else /* roots are imaginary */
root_type = 0;

return (root_type);

The function roots receives parameters a, b, and c by the call-by-value mech
anism, and the parameters rootl and root2 by the call-by-reference mecha
nism. A typical invocation of roots is

root_type = roots (a, b, c, &root1, &root2);

In summary, procedures receive a list of parameters, which may be passed
either by the call-by-value or the call-by-reference mechanism. If more than
one result is to be returned back by a called procedure, the call-by-reference
parameter passing mechanism should be used.

128 Chapter 4 Procedures and the Stack

4.6 Assembler Directives for Procedures

Assemblers provide two directives to define procedures in the assembly lan
guage: PROC and ENDP. The PROC directive (stands for PROCedure) signals
the beginning of a procedure, and ENDP (END Procedure) indicates the end
of a procedure. Both these directives take a label that is the name of the proce
dure. In addition, the PROC directive may optionally include NEAR or FAR
to indicate whether the procedure is a NEAR procedure or a FAR procedure.
The general format is

proc-name PRDe NEAR

to define a near procedure, and

proc-name PRDe FAR

to define a far procedure.
A procedure is said to be a near procedure if the calling and called procedures

are both located in the same code segment. On the other hand, if the calling and
called procedures are located in two different code segments, they are called far
procedures. Near procedures involve intrasegment calls, while far procedures
involve intersegment calls. Here we restrict our attention to near procedure
calls.

When NEAR or FAR is not included in the PROC directive, the procedure
definition defaults to NEAR procedure. Thus, the following two statements
define a near procedure:

proc-name PRDe NEAR

or

proc-name PRDe

A typical procedure definition is

proc-name PRDe

<procedure body>

proc-name ENDP

where proc-name in both PROC and ENDP statements must match.

Section 4. 7 Pentium Instructions for Procedures 129

4.7 Pentium Instructions for Procedures

Pentium provides call and ret (return) instructions to write procedures in
assembly language. The call instruction can be used to invoke a procedure,
and has the format

call proc-name

where proc-name is the name of the procedure to be called. The assembler
replaces proc-name by the offset value of the first instruction of the called
procedure.

4.7.1 How Is Program Control Transferred?

The offset value provided as a part of the call instruction is not the absolute
value (Le., offset is not relative to the start of the code segment pointed to by the
CS register), but a relative displacement in bytes from the instruction following
the call instruction. Look at the following example.

offset machine code
(in hex) (in hex)

main PROC

cs:OOOA E8000C call sum
cs:OOOO 8B08 mov BX,AX

main ENOP

sum PROC
cs:0019 55 push BP

sum ENOP

avg PROC

cs:0028 E8FFEE call sum
cs:002B 8BOO mov OX,AX

avg ENOP

The call instruction of main is located at CS:OOOAH and the next instruc
tion at CS:OOODH. The first instruction of the procedure sum is at CS:0019H in

130 Chapter 4 Procedures and the Stack

the code segment. After the call instruction has been fetched, the IP register
points to the next instruction to be executed (see Chapter 2) Le., IP = OOODH.
This is the instruction that should be executed after completing the execution
of sum. The processor makes a note of this by pushing the contents of the IP
register onto the stack.

Now, to transfer control to the first instruction of the sum procedure, the IP
register would have to be loaded with the offset value of the

push BP

instruction in sum. To do this, the processor adds the 16-bit relative displace
ment found in the call instruction to the contents of the IP register. Proceed
ing with our example, the machine language encoding of the call instruction,
which requires three bytes, is E8000CH. The first byte E8H identifies that the
instruction is the call (Le., opcode), and the next two bytes provide a (signed)
relative displacement in bytes. In this example, it is the difference between
0019H (offset of the push BP instruction in sum) and OOODH (offset of the in
struction mov BX,AX in main). Therefore, 0019H-000DH = OOOCH. Adding
this difference to the contents of the IP register (after fetching the call instruc
tion) leaves the IP register pointing to the first instruction of sum.

Note that the procedure call in main is a forward call, and therefore the rela
tive displacement is a positive number. As an example of a backward procedure
call, let us look at the sum procedure call in the avg procedure. In this case,
the program control has to be transferred back. That is, the displacement is a
negative value. Following the explanation given in the last paragraph, the dis
placement is 00 19H - 002BH = FFEEH. Since negative numbers are expressed
in 2's complement notation, FFEEH corresponds to -12H (Le., -18D), which
is the displacement value in bytes.

The following is a summary of the actions taken during a near procedure
call.

sp:=sp - 2
(SS:SP) := IP

; push return address onto the stack

P := IP + relative displacement ; update IP to point to the procedure

The relative displacement is a signed 16-bit number to accommodate both for
ward and backward procedure calls.

4.7.2 The ret Instruction

The ret (return) instruction is used to transfer control from the called procedure
to the calling procedure. Return transfers control to the instruction following
the call (instruction mov BX,AX in the example given on page 129). How

Section 4.8 Parameter Passing 131

will the processor know where this instruction is located? Remember that the
processor made a note of this when the call instruction was executed. As a part
of executing the ret instruction, the return address from the stack is recovered.
The actions taken during the execution of the ret instruction are:

IP := (SS:SP)
SP :=SP+2

; pop return address at TOS into IP
; update TOS by adding 2 to SP

An optional integer may be included in the ret instruction, as in

ret 6

The details on this optional number are covered in Section 4.8.2, which
discusses the stack-based parameter passing mechanism.

4.8 Parameter Passing

Parameter passing in assembly language is different and more complicated than
that used in high-level languages. In assembly language, the calling procedure
first places all the parameters needed by the called procedure in a mutually
accessible storage area (usually registers or memory). Only then can the pro
cedure be invoked. There are two common methods depending on the type
of storage area used to pass parameters: register method or stack method. As
their names imply, the register method uses general-purpose registers to pass
parameters, while the stack is used in the other method.

4.8.1 Register Method

In the register method, the calling procedure places the necessary parameters in
the general-purpose registers before invoking the procedure. Next, let us look
at a couple of examples before considering the advantages and disadvantages
of passing parameters using the register method.

Example 4.1 Parameter passing by call-by-value using registers

In this example, two parameter values are passed to the called procedure via
the general-purpose registers. The procedure sum receives two integers in ex
and OX registers and returns the sum of these two integers via AX. No check
is done to detect the overflow condition. The program, shown in Program 4.9,
requests two integers from the user and displays the sum on the screen.

Program 4.9 Parameter passing by caU-by-value using registers

132 Chapter 4 Procedures and the Stack

1: TITLE Parameter passing via registers
2: COMMENT I

PROCEX1.ASM

3: Objective: To show parameter passing via registers
4: Input: Requests two integers from the user.
5: Output: Outputs the sum of the input integers.
6: .MODEL SMALL
7: .STACK 100H
8: . DATA
9: prompt_msgl DB

10: prompt_msg2 DB
'Please input the first number: ',0
'Please input the second number: ',0
'The sum is ',0 11: sum_msg

12:
DB

13: . CODE
14: INCLUDE io.mac
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

main

done:

main

PROC
. STARTUP
PutStr
GetInt
nwln
PutStr
GetInt
nwln
call
PutStr
PutInt
nwln

. EXIT
ENDP

prompt_msgl
CX

prompt_msg2
DX

sum
sum_msg
AX

request first number
CX := first number

request second number
DX := second number

returns sum in AX
display sum

32:
33:
34:
35:
36:
37:

--

38:
39:

,
;Procedure sum receives two integers in CX and DX.
; The sum of the two integers is returned in AX.
j---
sum PROC

mov AX,CX sum := first number
add AX,DX sum := sum + second number
ret

40: sum ENDP
41: END main

Example 4.2 Parameter passing by call-by-reference using registers

Section 4.8 Parameter Passing 133

1 :
2:
3:
4:
5:
6:

This example shows how parameters can be passed by call-by-reference
using the register method. The program requests a character string from the
user and displays the number of characters in the string (Le., string length). The
string length is computed by the function str _len. This function receives a
pointer to the string in the BX register and returns the string length in the AX
register. The main procedure executes

mov BX,OFFSET string

to place the address of string in BX (line 23) before invoking the procedure on
line 24. The str _len procedure scans the input string for the NULL character
while keeping track of the number of characters in the string. The pseudocode
is shown below:

str _len (string)
index:= 0
length:= 0
while (string[index] i= NULL)

index := index + I
length:= length + 1 { AX is used for string length}

end while
return (length)

end str_Ien

The program listing is given in Program 4.10. Note that even though the
procedure modifies the BX register during its execution, it restores the original
value of BX (pointing to the string) by saving its value initially on the stack
(line 37) and restoring it (line 46) before returning to the main procedure.

Program 4.10 Parameter passing by call-by-reference using registers

TITLE Parameter passing via registers
COMMENT I

PROCEX2.ASM

Objective: To show parameter passing via registers
Input: Requests a character string from the user.

Output: Outputs the length of the input string.

7: BUF_LEN EQU 41 string buffer length
8: .MODEL SMALL
9: .STACK 100H

10: . DATA

134

11:
12:
13:
14:

string DB
prompt_msg DB
length_msg DB

15: . CODE
16: INCLUDE io.mac

main PROC
. STARTUP

Chapter 4 Procedures and the Stack

BUF_LEN DUP (?) jinput string < BUF_LEN chars.
'Please input a string: ',0
'The string length is ',0

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:

PutStr prompt_msg request string input
GetStr string,BUF_LEN read string from keyboard
nwln
mov BX,OFFSET string j BX := string address
call str_Ien returns string length in AX
PutStr length_msg display string length
PutInt AX
nwln

done:
. EXIT

main ENDP

e __ _ ,
jProcedure str_Ien receives a pointer to a string in BX.
j String length is returned in AX.
j---
str_Ien PROC

37: push BX
38: sub AX,AX j string length := 0
39: repeat:
40: cmp BYTE PTR [BX],O j compare with NULL char.
41: je str len_done if NULL we are done
42: inc AX else, increment string length
43: inc BX point BX to the next char.
44: jmp repeat and repeat the process
45: str_Ien_done:
46: pop BX
47: ret
48: str_Ien ENDP
49: END main

Section 4.8 Parameter Passing 135

Pros and Cons of the Register Method

The register method has its advantages and disadvantages. These are summa
rized here.

Advantages

1. The register method is convenient and easier to pass a small number of
parameters.

2. This method is also faster because all the parameters are available in
registers.

Disadvantages

1. The main disadvantage is that only a few parameters can be passed by
using registers, as there are a limited number of general-purpose registers
available in the CPU.

2. Another problem is that the general-purpose registers are often used by
the calling procedure for some other purpose. Thus, it is necessary to
temporarily save the contents of these registers on the stack to free them
for use in parameter passing before calling a procedure, and restore them
after returning from the called procedure. In this case, it is difficult to
realize the second advantage listed above, as the stack operations involve
memory access.

4.8.2 Stack Method

In this method of parameter passing, all parameters required by a procedure
are pushed onto the stack before the procedure is called. As an example, let us
consider passing the two parameters required by the sum procedure shown in
Program 4.9. This can be done by

push number 1
push number2
call sum

The stack would look as shown below after executing the call instruction, which
automatically pushes the IP contents onto the stack.

136 Chapter 4 Procedures and the Stack

??

number1

number2
TOS
SP~ IP

Since the parameter values are buried inside the stack, first we have to pop
the IP value to read the required two parameters. This, for example, can be
done by

pop AX
pop BX
pop ex

in the sum procedure. Since we have removed the return address (lP) from the
stack, we will have to restore it by

push AX

so that TOS is pointing to the return address.
The main problem with this code is that we need to set aside general-purpose

registers to copy parameter values. This means that the calling procedure cannot
use these registers for any other purpose. Worse still, what if you want to pass
10 parameters? One way to free up registers is to copy the parameters from the
stack to local data variables, but this is impractical and inefficient!

The best way to get parameter values is to leave them on the stack and
read them off the stack as needed. Since the stack is a sequence of memory
locations, SP+2 points to number2, and SP+4 to number1. Unfortunately, in
16-bit addressing mode

mov BX, [SP+2]

is not allowed. However, we can increment SP by 2 and use SP in indirect
addressing mode, as shown below:

add SP,2
mov BX, [SP]

A problem with this solution is that it is very cumbersome, as we have to
remember to update SP to point to the return address on the stack before the
end of the procedure.

Section 4.8 Parameter Passing 137

In 32-bit addressing mode, we can use ESP with a displacement to point to
a parameter on the stack. For instance,

mov BX, [ESP+2]

can be used, but this causes another problem. The stack pointer register is
modified by push and pop stack instructions. As a result, the relative offset
changes with the stack operations performed in the called procedure. This is
not a desirable situation.

There is a better alternative-we can use the BP register instead of SP to
specify an offset into the stack segment. For example, we can copy the value
of number2 into the AX register by

mov BP,SP
mov AX, [BP+2]

This is the usual way of pointing to the parameters on the stack. Since
every procedure uses the BP register itself to access parameters, the BP register
should be preserved. Therefore, we should save the contents of the BP register
before executing the

mov BP,SP

statement. We, of course, use the stack for this. Note that

push BP
mov BP,SP

causes the parameter displacement to increase by 2 bytes, as shown below.

??

number1

number2

IP

BP,SP ~ BP

Before returning from the procedure

pop BP

BP+6

BP+4

BP+2

138 Chapter 4 Procedures and the Stack

restores the original value of BP and the resulting stack state is shown below.

??

number1

number2

SP~ IP

The ret statement discussed in Section 4.7.2 causes the return address to
be placed in the IP register, and the stack after ret is shown below.

??

number1

SP~ number2

Now the problem is that the 4 bytes of the stack occupied by the 2 parameters
are no longer useful. One way to free the 4 bytes of stack storage is to increment
SP by 4 after the call statement, as shown below.

push number 1
push number2
call sum
add SP,4

For example, the Turbo C compiler uses this method to clear parameters
from the stack. The above assembly language code segment corresponds to the

sum(number2, numberl);

function call in C.
Rather than adjusting the stack by the calling procedure, the called proce

dure can also clear the stack. Note that we cannot write

sum PROC

Section 4.8 Parameter Passing

add SP,4
ret

sum ENDP

139

because when ret is executed, SP should point to the contents of IP on the
stack.

The solution lies in the optional operand that can be specified in the ret
statement. The format is

ret optional-value

which results in the following sequence of actions:

IP := (SS:SP)
SP := SP + 2 + optional-value

The optional-value should be a number (Le., immediate). Since the purpose
of the optional-value is to discard the parameters pushed onto the stack before
the execution of the corresponding call instruction, this operand usually takes
a positive value.

Who Should Clean up the Stack?

We have discussed two ways of discarding the unwanted parameters on the
stack:

1. clean-up done by the calling procedure, or
2. clean-up done by the called procedure.

If procedures require a fixed number of parameters, there is no apparent
advantage of one method over the other. Mostly, it is a question of personal
choice or conforming to an existing convention. In this book, we follow the
convention that parameter discarding is done by the called procedure.

4.8.3 Preserving Calling Procedure State

It is important to preserve the contents of the registers across a procedure call.
The necessity for this is illustrated by the following code.

mov eX,count
repeat:

call compute

loop repeat

140 Chapter 4 Procedures and the Stack

The code invokes the compute procedure count times. The ex register main
tains the number of remaining iterations. Recall that as a part of the loop
instruction execution, the ex register is decremented by 1 and, if not 0, starts
another iteration.

Suppose, now, that the compute procedure uses the ex register during its
computation. Then, when compute returns control back to the calling program,
ex would have changed and the program logic would be incorrect.

Since there are a limited number of registers and registers should be used
for writing efficient code, registers should be preserved. The stack is used to
save registers temporarily.

4.8.4 Which Registers Should Be Saved?

The answer to this question is simple: Save those registers that are used by
the calling procedure but changed by the called procedure. This leads to the
following question: Which procedure, the calling or the called, should save the
registers?

Usually, one or two registers are used to return a value by the called proce
dure. Therefore, such register(s) do not have to be saved. For example, in Turbo
e, an integer e function returns the result in the AX register; if the function
returns a long int data type result, which requires 32 bits, both the AX and
DX registers are used to return the result.

In order to avoid the selection of the registers to be saved, we could save,
blindly, all registers each time a procedure is invoked. For instance, we could
use the pusha instruction (see page 123). But such an action may result in
unnecessary overhead, as pusha takes five clocks to push all eight registers,
whereas an individual register push instruction takes only one clock. Recall
that producing efficient code is an important motivation for using assembly
language!

If the calling procedure were to save the necessary registers, it needs to know
the registers used by the called procedure. This causes two serious difficulties:

1. Program maintenance would be difficult because, if the called proce
dure is modified later on and a different set of registers are used, every
procedure that calls this procedure would have to be modified.

2. Programs tend to be longer because if a procedure is called several times,
we have to include the set of instructions to save and restore the registers
each time the procedure is called.

For these reasons, we assume that the called procedure saves the registers that
it uses and restores them back before returning to the calling procedure. This
also conforms to modular program design principles.

Section 4.8 Parameter Passing 141

When to Use pusha

The pusha instruction is useful in certain instances, but not all! We identify
two instances where pusha is not useful. First, what if some of the registers
saved by pusha are used for returning results? For instance, Turbo C uses the
AX register for returning a 16-bit result and the DX:AX register pair for a 32-bit
result. In this case pusha is not really useful, as popa destroys the result to
be returned to the calling procedure. Second, since pusha takes five clocks
whereas a single push takes only a single clock, pusha is efficient only if you
want to save more than four registers. In some instances where you want to
save only one or two registers, it may be worthwhile to use a push instruction.
Of course, the other side of the coin is that pusha improves readability of code
and reduces memory required for the instructions.

When pusha is used to save registers, it modifies the offset of the parame
ters. Note that

pusha
mov BP,SP

causes the stack state, shown below, to be different from that shown on page 137.
You can see that the offset of number 1 and number2 increases.

??

number1

number2

IP

AX

ex
DX

BX

5P

BP

51

BP,5P~ DI

BP+20

BP + 18

BP + 16

BP + 14

BP + 12

BP + 10

BP+8

BP+6

BP +4

BP+2

142 Chapter 4 Procedures and the Stack

4.8.5 Illustrative Examples

In this section, we use three examples to illustrate the use of the stack for
parameter passing.

Example 4.3 Parameter passing by call-by-value using the stack

This is the stack counterpart of Example 4.1, which passes two integers to the
procedure sum. The procedure returns the sum of these two integers in the AX
register, as in Example 4.1. The program listing is given in Program 4.11.

The program requests two integers from the user. It reads the two numbers
into the ex and DX registers using GetInt (lines 19 and 22). Since the stack
is used to pass the two numbers, we have to place them on the stack before
calling the sum procedure (see lines 24 and 25). When the control is transferred
to sum, the state of the stack is:

??

number1

number2

SP~ IP

As discussed in Section 4.8.2, the BP register is used to access the two
parameters from the stack. Therefore, we have to save BP itself on the stack
(line 39), which changes the stack to:

??

number1

number2

IP

BP,SP ~ BP

BP + 6

BP+4

BP+2

The original value of BP is restored at the end of the procedure (line 43).
Accessing the two numbers follows the explanation given in Section 4.8.2. Note

Section 4.8 Parameter Passing 143

that the first number is at BP+6, and the second one at BP+4. As in Example 4.1,
no overflow check is done by sum. Control is returned to main by

1 :
2:
3:
4:
5:
6:
7:
8:

ret 4

because sum has received two parameters requiring a total space of 4 bytes in
the stack.

Program 4.11 Parameter passing by call-by-value using the stack

TITLE Parameter passing via the stack
COMMENT I

PROCEX3.ASM

Objective: To show parameter passing via the stack
Input: Requests two integers from the user.

Output: Outputs the sum of the input integers.
.MODEL SMALL
.STACK 100H
. DATA

9: prompt_msg1 DB
10: prompt_msg2 DB

'Please input the first number: ',0
'Please input the second number: ',0
'The sum is ',0 11: sum_msg

12:
DB

13: .CODE
14: INCLUDE io.mac
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

main

done:

main

PROC
. STARTUP
PutStr
GetInt
nwln
PutStr
GetInt
nwln
push
push
call
PutStr
PutInt
nwln

. EXIT
ENDP

prompt_msg1
CX

prompt_msg2
OX

CX
OX
sum
sum_msg
AX

request first number
CX := first number

request second number
OX := second number

place first number on stack
place second number on stack
returns sum in AX
display sum

144 Chapter 4 Procedures and the Stack

34: ;---
35: ;Procedure sum receives two integers via the stack.
36: ; The sum of the two integers is returned in AX.
37: ;---
38: sum
39:
40:
41 :
42:
43:
44:
45: sum
46:

PROC
push BP we will use BP, so save it
mov BP,SP
mov AX, [BP+6] sum := first number
add AX, [BP+4] sum := sum + second number
pop BP restore BP
ret 4 return and clear parameters
ENDP
END main

Example 4.4 Parameter passing by call-by-reference using the stack

This example shows how the stack can be used for parameter passing using
the call-by-reference mechanism. The procedure swap receives two pointers to
two characters and interchanges them. The program, shown in Program 4.12,
requests a string from the user and displays the input string with the first two
characters interchanged. In preparation for calling swap, the main procedure
places the addresses of the first two characters of the input string on the stack
(lines 24-27). The swap procedure, after saving the BP register as in the last
example, can access the pointers of the two characters at BP+4 and BP+6. Since
the procedure uses the BX register, we save it on the stack as well. Note that,
once the BP is pushed onto the stack and the SP value is copied to BP, the
two parameters (i.e., the two character pointers in this example) are available at
BP+4 and BP+6, irrespective of the other stack push operations in the procedure.

Program 4.12 Parameter passing by call-by-reference using the stack

1 : TITLE Parameter passing via the stack PROCSWAP.ASM
2: COMMENT I
3: Objective: To show parameter passing via the stack
4: Input: Requests a character string from the user.
5: Output: Outputs the input string with the first
6: two characters swapped.
7:
8: BUF_LEN EQU 41 ; string buffer length
9: .MODEL SMALL

Section 4.8 Parameter Passing

10: . STACK 100H
11: . DATA
12:
13:
14:
15:

string DB
prompt_msg DB
output_msg DB

BUF_LEN DUP (?) ;input string < BUF_LEN chars.
'Please input a string: ',0

16: . CODE
17: INCLUDE io.mac
18:
19: main PROC
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:

done:

main

. STARTUP
PutStr
GetStr
nwln
mov
push
inc
push
call
PutStr
PutStr
nwln

. EXIT
ENDP

'The swapped string is: ',0

prompt_msg
string,BUF_LEN

AX,OFFSET string
AX
AX
AX
swap
output_msg
string

request string input
read string from the user

; AX := string[O] pointer
push string[O] pointer on stack
AX := string[1] pointer
push string[1] pointer on stack
swaps the first two characters
display the swapped string

36: ;---
37: ;Procedure swap receives two pointers (via the stack) to
38: ; characters of a string. It exchanges these two characters.
39: ;---
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

swap PROC
push
mov
push
; swap
mov
xchg
mov
xchg
mov
xchg
; swap
pop
pop

BP
BP,SP
BX

begins here.
BX, [BP+6]
AL, [BX]
BX, [BP+4]
AL, [BX]
BX, [BP+6]
AL, [BX]

ends here
BX
BP

save BP - procedure uses BP
copy SP to BP
save BX - procedure uses BX

Because of xchg, AL is preserved.
BX := first character pointer

BX := second character pointer

BX := first character pointer

restore registers

145

146 Chapter 4 Procedures and the Stack

54: ret 4 return and clear parameters
55: swap ENDP
56: END main

Example 4.5 Bubble sort procedure

This program requests a set of up to 20 nonzero integers from the user and
displays them in sorted order. The input can be terminated earlier by typing a
zero.

The logic of the main program is straightforward. The read_loop (lines
26-34) reads the input integers. Since the CX is initialized to MAX_SIZE, which
is set to 20 in this program, the read_loop iterates a maximum of twenty times.
The reading of input integers can also be terminated by typing a zero. The zero
input condition is detected and the loop is terminated by statements on lines 29
and 30.

The bubble_sort procedure receives the size of the array to be sorted and
a pointer to the array. These two parameters are pushed onto the stack (lines 36
and 37) before calling the bubble_sort procedure. The print_loop (lines
41-47) displays the sorted array.

Bubble sort: A detailed description of the bubble sort algorithm is given in
Chapter 1. Here we present the pseudocode for the bubble_sort procedure:

bubble_sort (arrayPointer, arraySize)
status := UNSORTED
#comparisons := arraySize
while (status = UNSORTED)

#comparisons:= #comparisons - 1
status := SORTED
for (i = 0 to #comparisons)

if (array[i] > array[i+ 1])
swap ith and (i + l)th elements of the array
status := UNSORTED

end if
end for

end while
end bubble_sort

The CX register is used to keep track of the number of comparisons, and
DX maintains the status information. The SI register points to the ith element
of the input array.

Section 4.8 Parameter Passing 147

The while loop condition is tested by lines 92-94. The for loop body
corresponds to lines 79-90 and 96-101. The rest of the code follows the pseu
docode. Note that the array pointer is available in the stack at BP+ 18 and its
size at BP+20, as we use pusha to save all registers. Also note that this program
uses only the 16-bit addressing modes.

Program 4.13 Bubble sort procedure

1: COMMENT I Bubble sort procedure BBLSORT.ASM
2: Objective: To implement the bubble sort algorithm
3: Input: A set of non-zero integers to be sorted.
4: Input is terminated by entering zero.
5: Output: Outputs the numbers in ascending order.
6: CRLF EQU ODH,OAH
7: MAX_SIZE EQU 20
8: .MODEL SMALL
9: .STACK 100H

10: . DATA
11: array DW MAX_SIZE DUP (?) ; input array for integers
12: prompt_msg DB 'Enter non-zero integers to be sorted.',CRLF
13: DB 'Enter zero to terminate the input.',O
14: output_msg DB 'Input numbers in ascending order:',O
15:
16: . CODE
17: .486
18: INCLUDE io.mac
19: main PROC
20: . STARTUP
21: PutStr prompt_msg
22: nwln

mov
mov
sub

read_loop:

BX,OFFSET array
CX,MAX_SIZE
DX,DX

23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

GetInt AX
nwln
cmp
je
mov
add
inc
loop

AX,O
stop_reading
[BX] ,AX
BX,2
DX
read_loop

request input numbers

; BX := array pointer
CX := array size
number count := 0

read input number

if the number is zero
no more numbers to read
copy the number into array
BX points to the next element
increment number count
reads a max. of MAX_SIZE numbers

148

35:
36:
37:
38:
39:

stop_reading:
push
push
call
PutStr

DX
OFFSET array
bubble sort
output_msg

Chapter 4 Procedures and the Stack

push array size onto stack
place array pointer on stack

display sorted input numbers
40: nwln
41:
42:
43:
44:
45:
46:
47:

mov
mov

print_loop:
PutInt
nwln
add
loop

48: done:
49: . EXIT
50: main ENDP

BX,OFFSET array
eX,DX ex := number count

[BX]

BX,2
print_loop

51: ;---
52: ;This procedure receives a pointer to an array of integers
53: ; and the size of the array via the stack. It sorts the
54: ; array in ascending order using the bubble sort algorithm.
55: ;---
56:
57:
58:
59:
60:
61 :
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

SORTED EQU 0
UNSORTED EQU 1
bubble_sort PROe

pusha
mov BP,SP

;ex serves the same purpose as the end_index variable
in the e procedure. ex keeps the number of comparisons

; to be done in each pass. Note that ex is decremented
; by 1 after each pass.
mov ex, [BP+20] load array size into ex
mov BX, [BP+18] ; load array address into BX

next_pass:
dec ex if# of comparisons is zero
jz sort_done then we are done
mov DI,eX else start another pass

74: ;DX is used to keep SORTED/UNSORTED status
75: mov DX, SORTED ; set status to SORTED
76:
77: ;SI points to element X and SI+2 to the next element
78: mov SI,BX ; load array address into SI

Section 4.9 Handling a Variable Number of Parameters

79: pass:
80: ;This loop represents one pass of the algorithm.
81: ;Each iteration compares elements at [SI] and [SI+2]
82: ; and swaps them if ([SI]) < ([SI+2]).
83: mov AX, [SI]
84: cmp AX, [SI+2]
85: jg swap
86: increment:
87: ;Increment SI by 2 to point to the next element
88: add SI,2
89: dec 01
90: jnz pass
91:
92:
93:
94:
95:
96: swap:

cmp
je
jmp

OX, SORTED
sort_done
next_pass

if status remains SORTED
then sorting is done
else initiate another pass

97: ; swap elements at [SI] and [SI+2]
98: xchg AX, [S1+2]
99: mov [SI],AX

100: mov OX, UNSORTED set status to UNSORTED
101:
102:

jmp

103: sort_done:
104: popa
105: ret

increment

4
106: bubble_sort ENDP
107: END main

return and clear parameters

4.9 Handling a Variable Number of Parameters

149

In the C language, some procedures can accept a variable number of parame
ters. The input and output functions scanf and printf are the two common
procedures with a variable number of parameters. In this case, the called pro
cedure does not know the number of parameters passed onto it. Usually, the
first parameter in the parameter list specifies the number of parameters passed.
This parameter should be pushed onto the stack last so that it is just below the
return address independent of the number of parameters passed.

In assembly language procedures, a variable number of parameters can
be easily handled by the stack method of parameter passing. Only the stack

ISO Chapter 4 Procedures and the Stack

size imposes a limit on the number of parameters that can be passed. The
next example illustrates the use of the stack in passing a variable number of
parameters in assembly language programs.

Example 4.6 Passing a variable number of parameters via the stack

In this example, the procedure variable_sum receives a variable number
of integers via the stack. The actual number of integers passed is the last
parameter pushed onto the stack before calling the procedure. The procedure
finds the sum of the integers and returns this value in the AX register.

The main procedure in Program 4.14 requests input from the user. Only
nonzero numbers are accepted as valid input (entering a zero terminates the in
put). The read_number loop (lines 25-32) reads input numbers using GetInt
and pushes them onto the stack. The ex register keeps a count of the number
of input values, which is passed as the last parameter (line 34) before calling
the variable_sum procedure. The state of the stack at line 56 (after pushing
BP) is shown below:

parameter N

parameter N-1

N parameters

BP+8 parameter 2

BP+6 parameter 1

BP+4 N Number of parameters

BP +2 IP

BP,SP BP

The variable_sum procedure first reads the number of parameters passed
onto it from the stack at BP+4 into the ex register. The add_loop (lines 63-
66) successively 'reads each integer from the stack and computes their sum in
AX. Note that, on line 64, we used a segment override prefix. If we write

add AX, [BX]

Section 4.9 Handling a Variable Number of Parameters 151

the contents of BX is treated as the offset value into the data segment. However,
our parameters are located in the stack segment. Therefore, it is necessary to
indicate that the offset in BX is relative to SS (and not DS). The segment override
prefixes-CS:, DS:, ES:, FS:, GS:, andSS:-can be placed in front ofa memory
operand to indicate accessing a segment other than the default segment.

In this example, we have deliberately used BX to illustrate the use of seg
ment override prefixes. We could have used BP itself to access the parameters.
For example, the code

add BP,6
sub AX,AX

add_loop:
add AX, [BP]
add BP,2
loop add_loop

can replace the code at lines 60-66. A disadvantage of this modified code is
that, since we have modified BP, we no longer can access, for example, the
parameter count value in the stack. For this example, however, this method
works fine. A better way is to use an index register to represent the offset
relative to BP. We defer this discussion until Chapter 5, which discusses the
addressing modes of Pentium.

Another interesting feature is that the parameter space on the stack is cleared
by main. Since a variable number of parameters is passed, we cannot use ret
to clear the parameter space. This is done in main by lines 37-39. The CX is
first incremented to include the parameter count (line 37). The byte count of
the parameter space is computed on line 38. This value is added to SP to clear
the parameter space (line 39).

Program 4.14 Program to illustrate passing a variable number of parameters

1: TITLE Variable # of parameters passed via stack VARPARA.ASM
2: COMMENT I
3: Objective: To show how variable number of parameters
4: can be passed via the stack
5: Input: Requests variable number of non-zero integers.
6: A zero terminates the input.
7: Output: Outputs the sum of input numbers.
8: CRLF EQU ODH,OAH ; carriage return and line feed
9: .MODEL SMALL

10: .STACK 100H
11: . DATA

152 Chapter 4 Procedures and the Stack

12: prompt_msg DB 'Please input a set of non-zero integers. ',CRLF
'You must enter at least one integer.',CRLF
'Enter zero to terminate the input.',O

13: DB
14: DB
15: sum_msg DB 'The sum of the input numbers is: ',0
16:
17: . CODE
18: INCLUDE io.mac
19:
20: main PROC
21: . STARTUP
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:

PutStr
nwln
sub CX,CX

request input numbers

CX keeps number count
read_number:

GetInt
nwln
cmp
je
push
inc

AX

AX,O
stop_reading
AX
CX

jmp read_number

read input number

if the number is zero
no more numbers to read
place the number on stack
increment number count

stop_reading:
push CX ; place number count on stack
call variable_sum ; returns sum in AX
; clear parameter space on the stack
inc CX increment CX to include count
add CX,CX CX := CX * 2 (space in bytes)
add SP,CX update SP to clear parameter

space on the stack
PutStr sum_msg display the sum
PutInt AX
nwln

done:
. EXIT

main ENDP

--,
;This procedure receives variable number of integers via the
; stack. The last parameter pushed on the stack should be
; the number of integers to be added. Sum is returned in AX.
;---
variable_sum

push
mov

PROC
BP
BP,SP

save BP - procedure uses BP
copy SP to BP

Section 4.10 Local Variables

56:
57:
58:

push
push

59: mov
60: mov
61: add
62: sub
63: add_loop:
64: add
65: add
66: loop
67:
68: pop

BX
ex

ex, [BP+4]
BX,BP
BX,6
AX,AX

AX,SS: [BX]
BX,2
add_loop

ex
69: pop BX
70: pop BP

save BX and ex

ex := # of integers to be added

BX := pointer to first number
sum := 0

sum : = sum + next number
BX points to the next integer
repeat count in ex

restore registers

71: ret parameter space cleared by main
72: variable_sum ENDP
73: END main

4.10 Local Variables

153

So far in our discussion we have not considered how local variables can be used
in a procedure. To focus our discussion, consider the following C code.

int compute(int a, int b)
{

int temp, N;

}

The variables temp and N are local variables that come into existence when the
procedure compute is invoked and disappear when the procedure terminates.
Thus, these local variables are dynamic. We could reserve space for the local
variables in a data segment. However, such space allocation is not desirable for
two reasons:

1. Space allocation done in the data segment is static and remains active
even when the procedure is not.

2. More importantly, is does not work with recursive procedures (i.e., pro
cedures that call themselves).

154 Chapter 4 Procedures and the Stack

For these reasons, space for local variables is reserved on the stack. For the C
function, the stack may look like:

BP

BP-2

BP-4

a

b

IP

old BP

temp

N

} Parameters

Return address

} Local variables
<: SP

The information stored in the stack-parameters, return address, old BP
value, and local variables-is collectively called the stack frame. In high
level languages, it is also referred to as the activation record (because each
procedure activation requires all this information). The BP value is referred
to as the frame pointer (FP). Once the BP value is known, we can access all
items of data present in the stack frame. For example, parameters a and bean
be accessed at BP+6 and BP+4, respectively. Local variables temp and N, for
example, can be accessed at BP-2 and BP-4, respectively.

To aid program readability, we can use the EQU directive to name the stack
locations. Thus, we can write

mev BX,a
mev temp,AX

instead of

mev BX, [BP+6]
mev [BP-2],AX

after establishing temp and a labels by using the EQU directive, as shown
below.

a EQU WORD PTR [BP+6]
temp EQU WORD PTR [BP-2]

We will now look at two examples-both compute Fibonacci numbers.
However, one example uses registers for local variables, while the other uses
the stack. Section 4.12 compares the performance of these two versions.

Section 4.10 Local Variables 155

Example 4.7 Fibonacci number computation using registers for local vari
ables

The Fibonacci sequence of numbers is defined as

fib(l) = 1
fib(2) = 1
fib(n) = fib(n - 1) + fib(n - 2) for n > 2

In other words, the first two numbers in the Fibonacci sequence are 1. The
subsequent numbers are obtained by adding the previous two numbers in the
sequence. Thus,

1, 1,2,3,5,8, 13,21,34, ...

is the Fibonacci sequence of numbers.
In this and the next example, we will write a procedure to compute the

largest Fibonacci number that is less than or equal to a given input number.
The main procedure requests this number and passes it on to the fibonacci
procedure.

The fibonacci procedure keeps the last two Fibonacci numbers in local
variables. These are mapped to registers AX and BX. The higher of the two
Fibonacci numbers is kept in BX. The fib_loop successively computes the
Fibonacci number until it is greater than or equal to the input number. Then,
the Fibonacci number in AX is returned to the main procedure.

Program 4.15 Fibonacci number computation with local variables mapped to registers

1: TITLE Fibonacci numbers (register version)
2: COMMENT I

PROCFIB1.ASM

3:
4:
5:
6:
7:
8:

Objective: To compute Fibonacci number using registers
for local variables.

Input: Requests a positive integer from the user.
Output: Outputs the largest Fibonacci number that

is less than or equal to the input number.

9: .MODEL SMALL
10: .STACK 100H
11: . DATA
12:
13:
14:

prompt_msg DB
output_msgl DB

DB

'Please input a positive number (>1): ',0
'The largest Fibonacci number less than '
'or equal to ',0

IS6 Chapter 4 Procedures and the Stack

15: output_msg2 DB
16:

is ',0

17: . CODE
18: INCLUDE io.mac
19:
20: main PROC
21: . STARTUP
22:
23:
24:
25:
26:
27:
28:
29:
30:

PutStr
GetInt
nwln
call
PutStr
PutInt

fibonacci
output_msgl
OX

PutStr output_msg2
PutInt AX
nwln

request input number
OX := input number

display Fibonacci number

31: done:
32: . EXIT
33: main ENDP
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

--,
;Procedure fibonacci receives an integer in OX and computes
; the largest Fibonacci number that is less than or equal to
; the input number. The Fibonacci number is returned in AX.
._--,
fibonacci PROC

push BX
; AX maintains the smaller of the last two Fibonacci

numbers computed; BX maintains the larger one.
mov AX,l initialize AX and BX to
mov BX,AX first two Fibonacci numbers

fib_loop:
add AX,BX compute next Fibonacci number
xchg AX,BX maintain the required order
cmp BX,DX compare with input number in OX
jle fib_loop if not greater, find next number
; AX contains the required Fibonacci number
pop BX
ret

54: fibonacci ENDP
55: END main

Section 4.10 Local Variables 157

Example 4.8 Fibonacci number computation using the stack for local vari
ables

In this example, we use the stack for storing the two Fibonacci numbers. The
variable fib_Io corresponds to fib(n - 1), and fib_hi to fib(n).

The code

push BP
mov BP,SP
sub SP,4

saves the BP value and copies the SP value into BP as usual. It also decrements
SP by 4, thus creating 4 bytes of storage space for the two local variables f ib_Io
and fib_hi. At this point, the stack allocation is:

BP+4 ??

BP+2 IP Return address

BP BP

BP-2 FIB_LO
} Local variables

BP-4 FIB_HI EO sp

The two local variables can be accessed at BP-2 and BP-4. The two
EQU statements, on lines 39 and 40, conveniently establish labels to these two
locations. The space allocated for the local variables is cleared by

mov SP,BP

on line 60. The rest of the code follows the logic of Example 4.7.

Program 4.16 Fibonacci number computation with local variables mapped to the stack

1: TITLE Fibonacci numbers (stack version)
2: COMMENT I

PROCFIB2.ASM

3:
4:
5:
6:

Objective: To compute Fibonacci number using the stack
for local variables.

Input: Requests a positive integer from the user.
Output: Outputs the largest Fibonacci number that

158 Chapter 4 Procedures and the Stack

7: is less than or equal to the input number.
8: .MODEL SMALL
9: .STACK 100H

10: . DATA
11: prompt_msg DB
12: output_msgl DB
13: DB

'Please input a positive number (>1): ',0
'The largest Fibonacci number less than '
'or equal to ',0

14: output_msg2 DB ' is ',0
15:
16: . CODE
17: INCLUDE io.mac
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

main

done:

main

PROC
. STARTUP
PutStr
GetInt
nwln
call
PutStr
PutInt
PutStr
PutInt
nwln

. EXIT
ENDP

prompt_msg
OX

fibonacci
output_msgl
DX
output_msg2
AX

request input number
OX := input number

print Fibonacci number

34: ;---
35: ;Procedure fibonacci receives an integer in OX and computes
36: ; the largest Fibonacci number that is less than the input
37: ; number. The Fibonacci number is returned in AX.
38: ;---
39: FIB_LO EQU WORD PTR [BP-2]
40: FIB_HI EQU WORD PTR [BP-4]
41: fibonacci PROC
42: push BP
43: mov BP , SP
44: sub SP,4 ; space for local variables
45: push BX
46: ; FIB_LO maintains the smaller of the last two Fibonacci
47: numbers computed; FIB_HI maintains the larger one.
48: mov FIB_LO,l initialize FIB_LO and FIB_HI to
49: mov FIB_HI, 1 first two Fibonacci numbers
50: fib_loop:

Section 4.11 Multiple Source Program Modules 159

51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:

mov
mov
add
mov
mov
cmp
jle
i AX
pop
mov
pop

AX,FIB_HI compute next Fibonacci number
BX,FIB_LO
BX,AX
FIB_LO,AX
FIB_HI,BX
BX,OX i compare with input number in OX
fib_loop i if not greater, find next number

contains the required Fibonacci number
BX
SP,BP
BP

i clear local variable space

62: ret
63: fibonacci ENOP
64: ENO main

4.11 Multiple Source Program Modules

In the program examples we have seen so far, the entire assembly language
source program is in a single file. This is fine for short example programs.
Real application programs, however, tend to be large consisting of hundreds
of procedures. Rather than keeping such massive source programs in a single
file, it is advantageous to break it into several small pieces, where each piece of
source code is stored in a separate file or module. There are three advantages
associated with multimodule programs:

• The chief advantage is that, after modifying a source module, it is only
necessary to reassemble that module. On the other hand, if you keep only
a single file, the whole file has to be reassembled!

• Making modifications to the source code is easier with several short files.

• It is safer to edit a short file; any unintended modifications to the source
file are limited to a single short file.

If we want to separately assemble modules, we have to precisely specify the
intermodule interface. For example, if a procedure is called in the current
module but is defined in another module, we have to state that fact so that the
assembler will not flag such procedure calls as errors. Assemblers provide two
directives-PUBLIC and EXTRN-to facilitate separate assembly of source
modules. These two directives are discussed in the following sections. A
simple example follows this discussion.

160 Chapter 4 Procedures and the Stack

4.11.1 PUBLIC Directive

The PUBLIC directive makes the associated label(s) public and therefore avail
able for other modules of the program. The format is

PUBLIC labell, label2, ...

Almost any label can be made public. These include procedure names, memory
variables, and equated labels, as shown in the following example.

PUBLIC error_msg, total, sample

• DATA
error_msg
total

. CODE

sample PROC

sample ENDP

DB "Out of range! ",0
OW 0

Note that when you make a label public, it is not necessary to specify the type
oflabel!

4.11.2 EXTRN Directive

The EXTRN directive can be used to tell the assembler that certain labels are
not defined in the current source file (i.e., module), but are defined in other
modules. Thus the assembler leaves "holes" in the corresponding .obj file
that the linker will fill in later on. The format is

EXTRN label:type

where label is a label that is made public by a PUBLIC directive in some other
module. The type specifies the type of label, some of which are listed below:

Section 4.11 Multiple Source Program Modules

Type
UNKNOWN
BYTE
WORD
DWORD
QWORD
FWORD
TBYTE
PROC

NEAR
FAR

Description
Undetermined or unknown type
Data variable (size is 8 bits)
Data variable (size is 16 bits)
Data variable (size is 32 bits)
Data variable (size is 64 bits)
Data variable (size is 6 bytes)
Data variable (size is 10 bytes)
A procedure name
(Near or Far according to .MODEL)
A near procedure name
A far procedure name

161

The PROC type should be used for procedure names if simplified segment
directives (.MODEL, .STACK, ...) are used. In this case, appropriate procedure
type is automatically included. For example, when the .MODEL is SMALL, the
PROC type defaults to NEAR type. Assuming the labels error _msg, total,
and sample are made public, as in the last example, the following example
code makes them available in the current module .

. MODEL SMALL

EXTRN error_msg:BYTE, total:WORD
EXTRN sample:PROC

Note that the directive is spelled EXTRN (not EXTERN)!

Example 4.9 A two module example to find string length

We now present a simple example that reads a string from the user and dis
plays the string length (Le., number of characters in the string). The source code
consists of two procedures: main, and string_length. The main procedure
is responsible for requesting and displaying string length information. It uses
GetStr, PutStr, and Putlnt I/O routines. The string_length procedure
computes the string length. The entire source program is split between two
modules: the main procedure is in the module1. asm file, and the procedure
string_length is in the module2. asm file. A listing of module1. asm is
given in Program 4.17. Notice that on line 16, we declare string_length as
an externally defined procedure by using the EXTRN directive.

Program 4.17 The main procedure defined in mudule1. asm calls the sum procedure defined
in module2. asm

162 Chapter 4 Procedures and the Stack

1: TITLE Multimodule program for string length MODULE1.ASM
2: COMMENT I
3: Objective: To show parameter passing via registers
4: Input: Requests two integers from keyboard.
5: Output: Outputs the sum of the input integers.
6: BUF_SIZE EQU 41 ; string buffer size
7: .MODEL SMALL
8: .STACK 100H
9: . DATA

10: prompt_msg DB
11: length_msg DB
12: stringl DB
13:
14: . CODE
15: INCLUDE io.mac

'Please input a string: ',0
'String length is: ',0
BUF_SIZE DUP (?)

16: EXTRN string_Iength:PROC
17 : main PROC
18: . STARTUP
19:
20:

PutStr prompt_msg
GetStr stringl,BUF_SIZE

request a string
read string input

21: nwln
mov
call

BX,OFFSET stringl
string_length

BX := string pointer
returns string length in AX

22:
23:
24:
25:
26:

PutStr length_msg
PutInt AX

; display string length

nwln
27: done:
28: . EXIT
29: main ENDP
30: END main

Program 4.18 This module defines the sum procedure called by main

1: TITLE
2: COMMENT

String length procedure MODULE2.ASM

3: Objective: To write a procedure to compute string
4: length of a NULL terminated string.
5: Input: String pointer in BX register.
6: Output: Returns string length in AX.
7: .MODEL SMALL
8: . CODE

Section 4.12 Performance: Procedure Overheads 163

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

PUBLIC string_length
string_length PROC

; all registers except AX are preserved
push SI save SI
mov SI,BX SI := string pointer

repeat:
cmp BYTE PTR [SI] ,0 is it NULL?
je done if so, done
inc SI else, move to next character
jmp repeat and repeat

done:
sub SI,BX compute string length
mov AX,SI return string length in AX
pop SI restore SI
ret

string_length ENDP
END

Program 4.18 shows a listing of module2 . asm. This module consists of a
single procedure. By using the PUBLIC directive, we make this procedure pub
lic (line 9) so that other modules can use this procedure. The string_length
procedure receives a pointer to a NULL-terminated string in BX and returns
the length of the string in AX. The procedure preserves all registers except for
AX. Note that the END statement (last statement) of this module does not have
a label, as this is not the procedure that begins the program execution.

We can assemble each source code module separately producing the cor
responding.obj files. We can then link the .obj files together to produce a
single . exe file. For example, using Turbo Assembler, the following sequence
of commands will produce the executable file.

TASM modulel +-- Produces modulel. obj
TASM module2 +-- Produces module2. obj
TLINK module1+module2+io +-- Produces modulel. exe

TASM, by default, assumes the . asm extension and TLINK assumes the. obj
extension. The above sequence assumes that you have io. obj in your current
directory. If you are using Microsoft Assembler, replace TASM with MASM
and TLINK with LINK.

4.12 Performance: Procedure Overheads

As we have seen, procedures facilitate modular programming. However, there
is a price to pay in terms of procedure invocation and return overheads. Pa-

164 Chapter 4 Procedures and the Stack

rameter passing contributes additional overhead when procedures are used. In
addition, allocation of storage for local variables can also significantly affect
the performance. In this section, we will quantify these overheads using the
bubble sort and Fibonacci examples.

4.12.1 Stack Versus Registers

Figure 4.5 shows the performance of the assembly language bubble sort proce
dure (AL-originalline) discussed in this chapter, as well as in Chapter 1. In this
procedure, which does not use a separate swap procedure, swapping is done by

; AX contains the element pointed to by 81
xchg AX, [81+2]
mov [81],AX

where SI and SI+2 point to the elements of the array to be interchanged. This
code requires a total of three memory accesses (two for the xchg and one for
the mov instruction). It is straightforward to see that exchange of two values in
memory requires four memory accesses (two reads and two writes). Here we are
accomplishing the exchange using only three memory accesses by exploiting
the fact that one of the elements is in the AX register. The code does not
preserve the contents of the AX register. This is fine here because AX does not
have anything useful. However, when we write a general swap procedure, it is
good programming practice to preserve the registers. Let us, then, suppose that
we want to preserve the contents of AX. Then we have to modify the two lines
of code as

xchg AX, [81+2]
xchg AX, [8I]
xchg AX, [81+2]

The above code interchanges the two elements while preserving the contents
of AX. The code, however, requires six memory accesses. Thus, compared to
the original code, the modified code requires three additional memory accesses.
The performance impact of the additional memory accesses is significant, as
shown in Figure 4.5 (AL-modified line).

The two versions that we have discussed so far have not used a separate
swap procedure. When a procedure is used to swap two elements, performance
deteriorates further (see AL-register and AL-stack lines). The AL-register and
AL-stack lines represent the performance of the assembly language version in
which registers and stack are used for parameter passing, respectively. The
performance difference between AL-modified and AL-register lines closely
approximates the call/return overhead associated with the swap procedure call.

Section 4.12 Performance: Procedure Overheads 165

60

50

........
<Il

40 '"0
§
Co)
U
<Il
'-' 30 e .::
-g 20
I'll

10

0
1000 2000 3000 4000 5000 6000 7000 8000

Number of elements

Figure 4.5 Perfonnance of the four assembly language versions of the bubble sort.

The perfonnance difference between the AL-stack and AL-register quantifies
the additional overhead to pass parameters via the stack.

4.12.2 Comparison of C and Assembly Language Versions

The question that naturally arises is: How does the assembly language version
compare with the C version? Figure 4.6 shows the perfonnance of the C and
assembly language versions of the bubble sort. All three versions use a swap
procedure to exchange two elements. The AL-register line represents perfor
mance of an optimized version of the code used in Figure 4.5. In this version,
the contents of the AX register are not preserved. This factor alone contributes
significant improvement in the execution time (compare AL-register lines in
Figures 4.5 and 4.6).

The stack version of the assembly language code is also optimized by not
preserving the AX register. The stack code is further optimized by using the ESP
register to access the parameters from the stack. The AL-stack line represents
perfonnance of the assembly language program that uses the following swap
procedure:

swap_proc PROC

166 Chapter 4 Procedures and the Stack

4O~--~

...... 30
'" "0
C
0
to)
II)

'" '-" 20 II) e . .-::
'g
fI:l

10

o~~~~--~--~~--~-J
1000 2000 3000 4000 5000 6000 7000 8000

Number of elements

Figure 4.6 Performance comparison of C and assembly language versions of the bubble sort.

push SI
push DI
mov SI, [ESP+6]
mov DI, [ESP+8]
mov AX, [DI]
xchg AX, [SI]
mov [D!] ,AX
pop DI
pop 8I
ret 4

swap_proc ENDP

Note that to use the stack pointer register to access the parameters, we have
to use a 32-bit addressing mode (i.e., cannot use the SP register). It is also
interesting to note that if we use the BP register to access the parameters as
we have done in several examples, the performance is similar to that of the C
version.

As you can see from the data presented in Figures 4.5 and 4.6 (compare the
AL-register and AL-stack lines of Figure 4.5 with the C line of Figure 4.6), if

Section 4.12 Performance: Procedure Overheads 167

4.---,

3

2

O~~--_r----~r_----,_----~------r_----~----_;

o 100 200 300 400 500 600 700

Number of calls (in thousands)

Figure 4.7 Local variable overhead: registers versus stack.

we don't write assembly language programs carefully, we may end up with a
program that is worse than its high-level language counterpart!

4.12.3 Local Variable Overhead

Last, we use the Fibonacci example to study the performance impact of keeping
local variables in registers as opposed to storing them on the stack.

The Fibonacci procedures given in Programs 4.15 and 4.16 are used to
measure the execution time to compute the largest Fibonacci number that is
less than or equal to 25,000. The results are shown in Figure 4.7. The x-axis
represents the number of calls to the procedure (varied from 1 to 700,000). The
execution time increases by approximately 60 percent when the local variable
storage is moved from the registers to the stack. Because of this performance
impact, compilers always try to keep the local variables that are most frequently
accessed by a procedure in registers.

168 Chapter 4 Procedures and the Stack

4.13 Summary

The stack is a last-in-first-out (LIFO) data structure that plays an important
role in procedure invocation and execution. It supports two operations: push
and pop. Only the element at the top-of-stack is directly accessible through
these operations. The stack segment is used for implementing the stack. The
top-of-stack is represented by SS:SP. In the Pentium implementation, the stack
grows toward lower memory addresses (i.e., grows downward).

The stack serves three main purposes: temporary storage of data, transfer
of control during a procedure call and return, and parameter passing.

When writing procedures in assembly language, parameter passing has to
be explicitly handled. Parameter passing can be done by using registers or via
the stack. While the register method is efficient, the stack-based method is more
general. Also, when parameters are passed via the stack, it is straightforward
to handle a variable number of parameters. Using the bubble sort example, we
demonstrated the various overheads associated with procedure invocations and
return and parameter passing.

As with parameter passing, local variables of a procedure can be stored
either in registers or in the stack. Due to the limited number of registers avail
able, only a few local variables can be mapped to registers. While stack avoids
this limitation of the registers, it is slow. We demonstrated using the Fibonacci
examples the advantage of mapping local variables to registers.

Real application programs are unlikely to be short to keep them in a single
file. It is advantageous to break large source programs into more manageable
chunks of code and keep them in several files (i.e., modules) rather than in one
large file. We discussed how such multimodule programs can be written and
assembled into a single executable file.

4.14 Exercises

4-1 What are the defining characteristics of a stack?

4-2 Discuss the differences between a queue and a stack.

4-3 What is top-of-stack? How is it represented in Pentium?

4-4 What is stack underflow? Which stack operation can cause stack under-
flow?

4-5 What is stack overflow? Which stack operation can cause stack overflow?

4-6 What are the main uses of the stack?

4-7 Can we invoke a procedure through the call instruction without the pres
ence of a stack segment? Explain.

Section 4.14 Exercises 169

4-8 What is the main difference between a near procedure and a far procedure?
4-9 What are the two most common methods of parameter passing? Identify

circumstances under which each method is preferred.
4-10 What are the disadvantages of passing parameters via the stack?
4-11 Can we pass a variable number of parameters using the register parameter

passing method? Explain the limitations and the problems associated
with such a method.

4-12 In passing a variable number of parameters via the stack, why is it nec-
essary to push the parameter count last?

4-13 Why are local variables of a procedure not mapped to a data segment?
4-14 How is storage space for local variables created in the stack?
4-15 A swap procedure can exchange two elements (pointed to by SI and DI)

of an array using

xchg AX, [01]
xchg AX, [S1]
xchg AX, [01]

The above code preserves the contents of the AX register. This code
requires six memory accesses. Can we do better than this in terms of the
number of memory accesses if we save and restore AX using push and
pop stack operations?

4-16 The bubble sort example discussed in this chapter used a single source
file. In this exercise you are asked to split the source code of this program
into two modules: the main procedure in one module, and the bubble
sort procedure in the other. Then assemble and link this code to produce
the . exe file. Verify the correctness of the program.

4-17 Verify that the following procedure is equivalent to the string_length
procedure given in Section 4.11. Which procedure is better and why?

string_length1 PROe
push BX
sub AX,AX

repeat:
cmp BYTE PTR [BX],O
je done
inc AX
inc BX
jmp repeat

done:
pop BX
ret

string_length1 ENDP

170 Chapter 4 Procedures and the Stack

4.15 Progamming Exercises

4-PI Write an assembly language program that reads a set of integers from
the keyboard and displays their sum on the screen. Your program should
read up to twenty integers (except zero) from the user. The input can be
terminated by entering a zero or by entering twenty integers. The array
of input integers is passed along with its size to the sum procedure, which
returns the sum in the AX register. Your sum procedure need not check
for overflow.

4-P2 Write a procedure max that receives three integers from main and returns
the maximum of the three in AX. The main procedure requests the three
integers from the user and displays the maximum number returned by the
max procedure.

4-P3 Extend the last exercise to return both maximum and minimum of the
three integers received by your procedure minmax. In order to return the
minimum and maximum values, your procedure minmax also receives
two pointers from main to variables min_int and max_into

4-P4 Extend the last exercise to handle a variable number of integers passed to
the minmax procedure. The main procedure should request input integers
from the user. Positive or negative values, except zero, are valid. Entering
a zero terminates the input integer sequence. The two values returned by
the procedure are displayed by main.

4-P5 Write a procedure to perform string reversal. The procedure reverse
receives a pointer to a character string (terminated by a NULL character)
and reverses the string. For example, if the original string is

slap

the reversed string should read

pals

The main procedure should request the string from the user. It should
also display the reversed string as output of the program.

4-P6 Write a procedure locate to locate a character in a given string. The
procedure receives a pointer to a NULL terminated character string and
the character to be located. When the first occurrence of the character is
located, its position is returned to main. If no match is found, a negative
value is returned. The main procedure requests from the user a character
string and a character to be located and displays the position of the first
occurrence of the character returned by the locate procedure. If there
is no match, a message should be displayed to that effect.

Section 4.15 Progamming Exercises 171

4-P7 Write a procedure that receives a string via the stack (i.e., string pointer
is passed to the procedure) and removes all leading blank characters in
the string. For example, if the input string passed is (u indicates a blank
character)

u u u u uReaduumyulips.

it will be modified by removing all leading blanks as

. Readuumyulips.

4-P8 Write a procedure that receives a string via the stack (i.e., string pointer
is passed to the procedure) and removes all leading and duplicate blank
characters in the string. For example, if the input string passed is (u
indicates a blank character)

u u u u uReadu u umyu u U U ulips.

it will be modified by removing all leading and duplicate blanks, as

Readumyulips.

4-P9 Write a program to read a number (consisting of up to 28 digits) and
display the sum of the individual digits. Do not use GetInt to read the
input number-read it as a sequence of characters. A sample input and
output of the program is:

input: 123456789
output: 45

4-PlO Write a procedure to read a string representing a person's name from the
user in the format

first -nameuMlulast-name

and displays the name in the format

last-name,ufirst -nameuMI

where u indicates a blank character. As indicated, you can assume that
the three names-first name, middle initial, and last name-are separated
by single spaces.

4-PII Modify the last exercise to work on an input that can contain multiple
spaces between the names. Also, display the name as in the last exercise
but with the last name in all capital letters.

Chapter 5

Addressing Modes

Objectives

• To discuss in detail the various addressing modes supported by Pentium

• To illustrate the usefulness of these addressing modes in supporting high
level language features

• To describe how arrays are implemented and manipulated in assembly
language

• To demonstrate the effectiveness of the advanced addressing modes

In assembly language, specification of data required by instructions can be
done in a variety of ways. In Chapter 3 we discussed four different ways of
specifying the operands. These are the register, immediate, and direct and
indirect addressing modes. The last two addressing modes specify operands
in memory. However, operands located in memory can be specified in several
other ways. Section 5.1 describes the register and immediate addressing modes.
Section 5.2 provides a detailed discussion of the various memory addressing
modes supported by Pentium. Section 5.3 gives examples to illustrate the use
of these addressing modes.

Arrays are important to organize a collection of related data. While one
dimensional arrays are straightforward to implement, multidimensional arrays
are more involved. Section 5.4 discusses these issues in detail. Section 5.4.3
gives some examples to illustrate the use of addressing modes in processing
one- and two-dimensional arrays.

Section 5.5 demonstrates the usefulness of the advanced addressing modes.
The chapter ends with a summary.

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998

174

Addressing Modes

/I~
Register Immediate Memory

/~
Direct
[disp)

Indirect

7~

Chapter 5 Addressing Modes

Register Indirect
[Base)

Based
[Base + disp)

Indexed
[(Index' scale) + disp)

Based-Indexed

/~
Based-Indexed Based-Indexed

with no scale factor with scale factor
[Base + Index + disp) [Base + (Index' scale) + disp)

Figure 5.1 Addressing modes of Pentium for 32-bit addresses.

5.1 Simple Addressing Modes

The majority of assembly language instructions require specification of operands
to be used as input data for the instruction and specification of the location where
the result should be placed. The specification of the location of data is called
the data addressing mode. Pentium provides several data addressing modes.
A brief discussion of some basic addressing modes is given in Chapter 3. As
discussed in Chapter 3, there are three fundamental addressing modes: register
mode, immediate mode, and memory mode (see Figure 5.1).

Specification of operands located in memory can be done in a variety of
ways, as shown in Figure 5.1. In previous chapters, we used only the direct and
register indirect memory addressing modes to specify memory data. The re
mainder of this section discusses the register and immediate addressing modes.
Memory addressing modes supported by Pentium are discussed in Section 5.2.

5.1.1 Register Addressing Mode

An instruction is said to be using the register addressing mode if both source and
destination operands are located in the CPU registers. Here are some example
instructions that use the register addressing mode:

mov EAX,EDX
add AL,eH
inc BX

Section 5.1 Simple Addressing Modes 175

The register addressing mode is the most efficient way of specifying source
and destination operands for two reasons:

• The operands are in the registers and no memory access is required.
• Instructions using the register mode tend to be shorter, as only 3 bits

are needed to identify a register. In contrast, we need at least 16 bits to
identify a memory location.

As a consequence, good compilers attempt to place frequently accessed
data items in registers. As an example, consider the following pseudocode:

total:= 0
for (i = 1 to 400)

total = total + marks[i]
end for

Even if the compiler allocates memory for variables i and total, it should
move these variables to registers for the duration of the for loop. At the end
of the loop, the values from the assigned registers can be written back to the
memory. This arrangement is more efficient than accessing variables i and
total directly from memory during each iteration.

5.1.2 Immediate Addressing Mode

In this addressing mode, the operand is stored as part of the instruction. As
suggested in our previous discussion (see Chapter 3), this mode imposes several
restrictions:

• This addressing mode is typically used with instructions that require at
least two operands to manipulate. There are exceptions, however! For
instance, the push instruction, which takes only a single operand, allows
specification of an immediate value.

• This addressing mode can only be used to specify the source operand.
• Another addressing mode is required to specify the destination operand.

Also, the immediate operand, which is stored along with the instruction,
resides in the code segment-not in the data segment. Here are some examples:

mov AL,55
mov EDX,12345

This addressing mode is also faster to execute an instruction because the
operand "immediately" follows the instruction in memory. Consequently, the
operand is fetched into the instruction queue along with the instruction during
the instruction fetch cycle. This prefetch, therefore, reduces the time required
to get the operand from memory.

176

Register Indirect
[BX] [BP] [81] [01]

Memory

/~
Indirect Oirect

[disp]

7~
Based

[BX + disp]
[BP + disp]

Indexed
[81 + disp]
[01 + disp]

Chapter 5 Addressing Modes

Based-I ndexed

/~
Based-I ndexed

with no displacement
[BX + 81] [BP + 81]
[BX + 01] [BP + 01]

Based-Indexed
with displacement
[BX + 81 + disp]
[BX + 01 + disp]
[BP + 81 + disp]
[BP + 01 + disp]

Figure 5.2 Memory addressing modes for 16-bit addresses.

5.2 Memory Addressing Modes

Pentium offers several addressing modes to access operands located in mem
ory. The primary motivation for providing different addressing modes is to
efficiently support high-level language constructs and data structures. The ac
tual memory addressing modes available depend on the address size used (16
bits or 32 bits). Address size of 16 bits support segments of 64 KB, while 4 GB
segments can be used with 32-bit address size. The different memory address
ing modes available for 16-bit address size are the same as those supported by
the 8086. Figure 5.2 shows the default memory addressing modes available for
16-bit address size. Pentium supports a more flexible set of addressing modes
for 32-bit addresses. These addressing modes are shown in Figure 5.1 and are
summarized below:

Segment + Base + (Index * Scale) + displacement

CS EAX EAX No displacement
SS EBX EBX 2 8-bit displacement
DS ECX ECX 4 32-bit displacement
ES EDX EDX 8
FS ESI ESI
GS ED! ED!

EBP EBP
ESP

Section 5.2 Memory Addressing Modes 177

Table 5.1 Differences between 16-bit and 32-bit addressing

I 16-bit addressing I 32-bit addressing

Base register BX EAX, EBX, ECX, EDX
BP ESI, EDI, EBP, ESP

Index register SI EAX, EBX, ECX, EDX
01 ESI, EDI, EBP

Scale factor None 1,2,4,8
Displacement 0, 8, 16 bits 0,8,32 bits

The main differences between 16-bit and 32-bit addressing are summarized
in Table 5.1. How does the processor know whether to use 16-bit or 32-bit
addressing? It uses the 0 bit in the CS segment descriptor to determine if the
address is 16 bits or 32 bits long. As discussed in Chapter 2, if the 0 bit is 0, the
default size for operands as well as addresses is 16 bits. The 0 bit is 1 for 32
bit operands and addresses. It is, however, possible to override these defaults.
Pentium provides two size override prefixes:

66H Operand size override prefix
67H Address size override prefix

By using these prefixes, we can mix 16- and 32-bit data and addresses. Re
member that our assembly language programs use 16-bit data and addresses.
This, however, does not restrict us from using 32-bit data and addresses. For
example, when we write

mov AX,123

the assembler generates the following machine language code:

88 0078

However, when we use a 32-bit operand, as in

mov EAX,123

the following code is generated by the assembler:

66 I 88 00000078

Notice that the operand size override prefix (66H) is automatically inserted by
the assembler.

178 Chapter 5 Addressing Modes

The greatest benefit of the address size override prefix is that we can use all
the addressing modes provided for 32-bit addresses with 16-bit addresses. For
instance, we can use a scale factor, as in the following example:

mov AX, [EBX+ESI*2]

The assembler automatically inserts the address size override prefix (67H), as
shown below:

67 I 8S 04 73

It is also possible to mix both override prefixes as demonstrated by the
following example. The assembly language statement

mov EAX,[EBX+ESI*2]

causes the assembler to insert both operand and address size override prefixes,
as shown here:

66 I 67 I 8S 04 73

Remember that with 16-bit addresses, our segments are limited to 64 KB. Even
though we have used 32-bit registers EBX and ESI in the last two examples,
offsets into the segment are still limited to 64 KB (i.e., offset should be less
than or equal to FFFFH). The processor generates a general protection fault if
this value is exceeded. In summary, the address size prefix only allows us to
use the additional addressing modes of Pentium with 16-bit addresses.

5.2.1 Direct Addressing

This is the simplest of the addressing modes available to access data from mem
ory. Recall that accessing a data item that is located in the memory involves
specifying the current data segment base address and an offset within the seg
ment. The offset is often referred to as the effective address. By default, the
DS register identifies the data segment. The various data addressing modes to
access a memory data item specify the offset value of the data item.

In the direct addressing mode, effective address of a data item is specified
as part of the instruction. The Pentium instruction set does not allow the speci
fication of both operands in direct addressing mode. As a result, instructions in
high-level languages involving more than one variable could require a sequence
of assembly language instructions. For example, the following C code

could be translated by a compiler into a sequence of four directly addressed
assembly language instructions:

Section 5.2 Memory Addressing Modes 179

mov EAX, assign_marks
add EAX, test_marks
add EAX,exam_marks
mov total_marks,EAX

Even though we are using variable names in the above examples, the assembler
will actually replace these variables by their offset values during the assembly
process.

In general, direct addressing can be used to access simple variables. The
main drawback of this addressing mode is that it is not useful to access complex
data structures like arrays and records that are permitted in high-level languages
such as C.

5.2.2 Register Indirect Addressing

When an operand is specified by the register indirect addressing mode, the
effective address of the operand is placed in a general-purpose register. For 16-
bit segments, only BX, BP, SI, and DI registers are allowed to hold an effective
address. For 32-bit segments, all eight 32-bit registers (Le., EAX, EBX, ECX,
EDX, ESI, EDI, EBP, and ESP) can be used. This mode is called register
indirect mode because the effective address of the operand is not found directly
from the instruction but indirectly through a register. The fact that a register is
holding the offset is indicated by enclosing it within square brackets [], as in

add AX, [BX]

This is different from

add AX,BX

which implies that the second operand is in BX. While 16-bit addressing restricts
us to use only four 16-bit registers (Le., BX, BP, SI, and DI), all eight 32-bit
registers can be used by using the address size override prefix. For instance

mov AX, [ECX]

is valid, but not

mov AX,[CX] ; not valid

Default Segments Referenced

The register indirect addressing mode can be used to specify data items that are
located either in the data segment or in the stack segment.

180 Chapter 5 Addressing Modes

16-bit Addresses: By default, effective address in registers BX, SI, or DI is
taken as the offset value into the data segment (Le., relative to the DS segment
register). On the other hand, if the BP register is used, by default, the offset
is used to access a data item from the stack segment (Le., relative to the SS
segment register). As we have seen in Chapter 4, BP is frequently used in the
register indirect addressing mode to access parameter values from the stack in
procedure calls.

32-bit Addresses: By default, effective address in registers EAX, EBX, ECX,
EDX, ESI, and EDI is relative to the DS data segment. The SS stack segment
is used if EBP and ESP registers are used.

In both cases, stack operations such as push and pop refer to the stack
segment. In addition, the destination of string instructions uses the ES data
segment register (see Chapter 9 for details on string instructions).

Overriding Default Segments

These default segment assignments can be overridden by a segment override
prefix. For example,

add AX,SS:[BX]

can be used to access a data item from the stack whose offset relative to the SS
register is given in the BX register. In a similar manner, the BP register can be
used as an offset into the data segment by

add AX,DS:[BP]

The CS, ES, FS, and GS segment registers can also be used to override the
default association, even though the CS register is not used frequently. (See
Chapter 7 for an example that uses the CS overriding prefix.) To summarize,
Pentium provides the following segment override prefixes:

2EH CS segment override prefix
36H SS segment override prefix
3EH DS segment override prefix
26H ES segment override prefix
64H FS segment override prefix
65H as segment override prefix

You cannot use these override prefixes to affect the default segment association
in the following cases:

• Destination of string instructions always uses the ES segment.

Section 5.2 Memory Addressing Modes 181

• Stack push and pop instructions always use the SS segment.

• Instruction fetches always use the CS segment.

The register indirect addressing mode is useful in accessing variables that
contain more than one element such as an array. Furthermore, this addressing
mode also provides a fundamental capability by which data can be accessed
from a pointer passed on to a procedure. The remaining three addressing modes
provide further refinements that are useful in supporting some high-level lan
guage features.

5.2.3 Based Addressing

In the based addressing mode, one of the registers (as described in the last
subsection) acts as a base register in computing the effective address of an
operand. The effective address is computed by adding the contents of the
specified base register with a signed displacement value given as a part of the
instruction. For 16-bit addresses, the signed displacement is either an 8-bit or
a 16-bit number. For 32-bit addresses, it is either an 8-bit or a 32-bit number.

The same default segment associations discussed in the last subsection
apply. Of course, a segment override prefix can be used to specify some other
segment association.

Based addressing provides a convenient way to access individual elements
of a structure. Typically, a base register can be set up to point to the base of
the structure and the displacement can be used to access an element within the
structure. For example, consider the following record of a course schedule:

course number integer
course title character string
term offered single character
room number character string
enrollment limit integer
number registered integer

Total storage per record

2 bytes
38 bytes
1 byte
5 bytes
2 bytes
2 bytes

50 bytes

In this example, suppose we want to find the number of spaces left in a
particular course. We can let the BX register point to the base address of
the corresponding course record and use displacement to read the number of
students registered and the enrollment limit for the course to compute the desired
answer. This is illustrated in Figure 5.3.

This addressing mode is also useful in accessing arrays whose element size
is not 2, 4, or 8 bytes. In this case, the displacement can be set equal to the

182

SSA + 100

SSA + 50

SSA

displacement
46 bytes

Structure Starting Address

~

Enrollment

registered

Room #

Term

Title

Course #

Enrollment

registered

Room #

Term

Title

Course #

~

Chapter 5 Addressing Modes

2

2

5 Second course record
(50 bytes)

38

2

2

2

5 First course record
(50 bytes)

38

2

Figure 5.3 Course record layout in memory.

offset to the beginning of the array, and the base register holds the offset of a
specific element relative to the beginning of the array.

5.2.4 Indexed Addressing

In this addressing mode, the effective address is computed as

(Index * scale factor) + signed displacement

For 16-bit addresses, no scaling factor is allowed (see Table 5.1 on page 177).
For 32-bit addresses, a scale factor of 2, 4, or 8 can be specified. Of course, we
can use a scale factor in the 16-bit addressing mode by using an address size
override prefix.

Section 5.2 Memory Addressing Modes 183

The indexed addressing mode is often used to access elements of an array.
The beginning of the array is given by the displacement, and the value of the
index register selects an element within the array. The scale factor is particularly
useful to access arrays of elements whose size is 2, 4, or 8 bytes.

The following are valid instructions using the indexed addressing mode to
specify one of the operands.

add AX, [01+20]
mav AX,marks_table[ESI*4]
add AX,table1[SI]

In the second instruction, the assembler would supply a constant displacement
that represents the offset of marks_ table in the data segment. When using this
notation, which is typical, you should note that ESI represents an index into the
array. If no scale factor is used as in the last instruction, SI should hold a value
that represents the difference in bytes between the beginning of the array and
the offset of the element being accessed. For example, if table1 is an array
of integers, where each integer requires 2 bytes of storage, to refer to the tenth
element, the SI register should have 18. When using a scale factor, we avoid
such byte counting!

5.2.5 Based-Indexed Addressing

Based-Indexed with No Scale Factor

In this addressing mode, the effective address is computed as

Base + Index + signed displacement

The displacement can be a signed 8-bit or 16-bit number for 16-bit addresses;
it can be a signed 8-bit or 32-bit number for 32-bit addresses.

This addressing mode is useful in accessing two-dimensional arrays with
the displacement representing the offset to the beginning of the array. This mode
can also be used to access arrays of records where the displacement represents
the offset to a field in a record. In addition, we can use this addressing mode
to access arrays passed on to a procedure. In this case, the base register could
point to the beginning of the array, while an index register can be used to store
the offset to a specific element.

Assuming that BX points to table1, we can use the code

mav AX, [BX+SI]
cmp AX, [BX+SI+2]

to compare two successive elements of table 1. This type of code is particularly
useful if the table1 pointer is passed as a parameter.

184 Chapter 5 Addressing Modes

Based-Indexed with Scale Factor

In this addressing mode, the effective address is computed as

Base + (Index * scale factor) + signed displacement

This addressing mode provides an efficient indexing mechanism into a two
dimensional array when the element size is 2, 4, or 8 bytes.

5.3 Illustrative Examples

We now present two examples to illustrate the usefulness of the various address
ing modes. The first example sorts an array of integers using the insertion sort
algorithm, and the other example implements a binary search to locate a data
value in a sorted array. Example 5.1 uses only the 16-bit addressing modes (see
Figure 5.2), while Example 5.2 uses both 16-bit and 32-bit addressing modes.
The insertion sort procedure that uses 16-bit as well as 32-bit addressing modes
is given in Section 5.5 (see Program 5.23 on page 200).

Example 5.1 Sorting an integer array using the insertion sort

This example requests a set of integers from the user and displays these
numbers in sorted order. The main procedure reads a maximum of MAX.SIZE
integers (lines 23-30). It accepts only non-negative numbers. Entering a neg
ative number terminates the input (lines 26 and 27).

The main procedure passes the array size and pointer (lines 32-36) to the
insertion sort procedure. The remainder of the main procedure displays the
sorted array returned by the sort procedure. Note that the main procedure uses
the indirect addressing mode on lines 28 and 43.

There are several sorting algorithms to sort an array of numbers. We have
used the bubble sort algorithm in Chapter 1. Here we will use another sorting
algorithm-the insertion sort. The basic principle behind the insertion sort is
simple: insert a new number into the sorted array in its proper place. To apply
this algorithm, start with an empty array. Then insert the first number. Now the
array is in sorted order with just one element. Next insert the second number in
its proper place. This results in a sorted array of size two. Repeat this process
until all the numbers are inserted. The pseudocode for this algorithm, shown
below, assumes that the array index starts with 0 as in C.

insertion_sort (array, size)
for (i = 1 to size-I)

temp := array[i]

Section 5.3 Illustrative Examples

j:= i-I
while «temp < arrayul) AND (j ::: 0»

arrayU+ 1] := arrayul
j :=j - 1

end while
arrayU+1] := temp

end for
end insertion_sort

185

Here, index i points to the number to be inserted. The array to the left of i
is in sorted order. The numbers to be inserted are the ones located at or to the
right of index i. The next number to be inserted is at i. The implementation of
the insertion sort procedure, shown in Program 5.19, follows the pseudocode.

Program 5.19 Insertion sort

1: TITLE Sorting an array by insertion sort
2: COMMENT I
3: Objective: To sort an integer array using insertion sort.
4: Input: Requests numbers to fill array.
5: Output: Displays sorted array.
6: .MODEL SMALL
7: .STACK 100H
8: . DATA
9: MAX_SIZE

10: array
11: input_prompt
12:
13: out_msg
14:
15: . CODE
16: .486
17: INCLUDE io.mac
18: main PROC

EQU 100
DW MAX_SIZE DUP (?)
DB 'Please enter input array: '
DB '(negative number terminates input)' ,0
DB 'The sorted array is:',O

19: . STARTUP
20: PutStr input_prompt; request input array
21 : mov BX, OFFSET array
22: mov CX, MAX_SIZE
23: array_loop:
24: GetInt AX read an array number
25: nwln
26: cmp AX,O negative number?

186

27: jl
28: mov
29: add
30: loop
31: exit_loop:

mov
sub
shr
push
push
call
PutStr
nwln
mov

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

mov
display_loop:

45:
46:
47: done:
48:
49: main
50:

PutInt
nwln
add
loop

. EXIT
ENOP

exit_loop
[BX] ,AX
BX,2
array_loop

Chapter 5 Addressing Modes

if so, stop reading numbers
otherwise, copy into array
increment array address
iterates a maximum of MAX_SIZE

OX,BX
OX, OFFSET
OX,l
OX

OX keeps the actual array size
array ; OX := array size in bytes

divide by 2 to get array size
push array size & array pointer

OFFSET array
insertion_sort
out_msg display sorted array

ex,ox
BX,OFFSET array

[BX]

BX,2
display_loop

51:
52:
53:
54:
55:

e __ _ ,
This procedure receives a pointer to an array of integers

; and the array size via the stack. The array is sorted by
; using insertion sort. All registers are preserved.
--•

56: SORT_ARRAY EQU [BX]
57: insertion_sort PROe
58: pusha
59: mov
60: mov
61: mov
62: mov
63: for_loop:

BP,SP
BX, [BP+18]
ex, [BP+20]
SI,2

save registers

copy array pOinter
copy array size
array left of SI is sorted

64: ; variables of the algorithm are mapped as follws:
65: ; OX temp, SI = i, and 01 = j
66: mov OX, SORT_ARRAY [SI] ; temp := array[i]
67: mov OI,SI ; j := i-l
68: sub 0I,2
69 : while_loop:
70: cmp OX, SORT_ARRAY [01] temp < array[j]

Section 5.3 Illustrative Examples 187

71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:

jge exit_while_loop
; array [j+l] := array[j]
mov AX, SORT_ARRAY [Dl]
mov SORT_ARRAY [Dl+2] ,AX
sub Dl,2 j := j-l
cmp Dl,O ; j >= 0
jge while_loop

exit_while_loop:
; array [j+l] := temp
mov SORT_ARRAY[Dl+2],DX
add Sl,2 i := i+l
dec ex
cmp eX,l if ex = 1, we are done
jne for_loop

sort_done:
popa restore registers
ret 4

insertion_sort ENDP
END main

Since the sort procedure does not return any value back to the main program
in registers, we can use pusha (line 58) and popa (line 86) to save and restore
registers. As pusha saves all eight 16-bit registers on the stack, the offset is
appropriately adjusted to access the array size and array pointer parameters
(lines 60 and 61).

The while loop is implemented by lines 69-78, while the for loop is
implemented by lines 63-84. Note that the array pointer is copied to BX (line
60), and line 56 assigns a convenient label to this. We have used the based
indexed addressing mode on lines 66, 70, and 73 without any displacement and
on lines 74 and 80 with displacement. Based addressing is used on lines 60 and
61 to access parameters from the stack.

Example 5.2 Binary search procedure

Binary search is an efficient algorithm to locate a value in a sorted array.
The search process starts with the whole array. The value at the middle of the
array is compared with the number we are searching for; if there is a match, its
index is returned. Otherwise, the search process is repeated either on the lower
half (if the number is less than the value at the middle), or on the upper half
(if the number is greater than the value at the middle). The pseudocode of the
algorithm is shown below.

188

binary _search (array, size, number)
lower:= 0
upper := size - 1
while (lower:::: upper)

middle := (lower + upper)/2
if (number = array [middle])
then

return (middle)
else

Chapter 5 Addressing Modes

if (number < array [middle])
then

upper:= middle - 1
else

lower:= middle + 1
end if

end if
end while
return (0) {number not found}
end binary_search

The listing of the binary search program is given in Program 5.20. The
main procedure is similar to that in the last example. The lower and upper
index variables are mapped to the AX and ex registers. The number to be
searched is stored in DX and the array pointer is in the BX register. Register
SI keeps the middle index value.

Program S.20 Binary Search

1: TITLE Binary search of a sorted integer array BIN_SRCH.ASM
2: COMMENT I
3: Objective: To implement binary search of a sorted
4:
5:
6:
7:
8:

integer array.
Input: Requests numbers to fill array and a

number to be searched for from user.
Output: Displays the position of the number in

the array if found; otherwise, not found
9: message.

10: .MODEL SMALL
11 : . STACK 100H
12: . DATA

Section 5.3 Illustrative Examples

EQU 100 13: MAX_SIZE
14: array DW MAX_SIZE DUP (?)
15: input_prompt
16:

DB 'Please enter input array (in sorted order): '
DB '(negative number terminates input)',O

17: query_number DB 'Enter the number to be searched: ',0
18: out_msg DB
19: not_found_msg DB
20: query_msg DB
21:

'The number is at position ',0
'Number not in the array!' ,0
'Do you want to quit (YIN): ',0

22: . CODE
23: .486
24: INCLUDE io.mac
25: main PROC

. STARTUP 26:
27:
28:
29:
30:

PutStr input_prompt
nwln
sub
mov

31: array_loop:

ESI,ESI
CX,MAX_SIZE

32: GetInt AX
nwln
cmp
jl

AX,O
exit_loop
array [ESI*2] ,AX
SI

request input array

set index to zero

read an array number

negative number?
if so, stop reading numbers
otherwise, copy into array

increment array index

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:

mov
inc
loop array_loop ; iterates a maximum of MAX_SIZE

exit_loop:
read_input:

PutStr
GetInt
nwln

query_number
AX

request number to be searched for
read the number

push AX push number, size & array pointer
push SI
push OFFSET array
call binary_search
; binary_search returns in AX the position of the number
; in the array; if not found, it returns O.
cmp AX,O number found?
je not found if not, display number not found
PutStr out_msg else, display number position
PutInt AX
jmp user_query

55: not_found:
56: PutStr not_found_msg

189

190

57:
58:
59:
60:
61:
62:
63:

user_query:
nwln
PutStr
GetCh
nwln
cmp
jne

query_msg
AL

AL, 'Y'
read_input

Chapter 5 Addressing Modes

query user whether to terminate
read response

if response is not 'Y'
repeat the loop

64: done: otherwise, terminate program
65: . EXIT
66: main ENOP
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
77:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

100:

j---
This procedure receives a pointer to an array of integers,
the array size, and a number to be searched via the stack.
It returns in AX the position of the number in the array
if found; otherwise, returns O.
All registers, except AX, are preserved.

e __ _ ,
binary_search

push
mov
push
push
push
push
sub
mov
mov
mov
sub
dec

while_loop:
cmp
ja
sub
mov
add
shr
cmp
je
jg

lower_half:
dec
mov

PROC
BP
BP,SP
EBX
ESI
ex
OX
EBX,EBX
BX, [BP+4]
CX, [BP+6]
OX, [BP+8]
AX,AX
CX

AX,CX
end_while
ESI,ESI
SI,AX
SI,CX
SI,1
OX, [EBX+ESh2]
search_done
upper_half

SI
CX,SI

; save registers

EBX := 0
copy array pointer
copy array size
copy number to be searched
lower := 0
upper := size-1

;lower > upper?

middle := (lower + upper)/2

number array[middle]?

middle := middle-1
upper := middle-1

Section 5.4 Arrays 191

101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:

jmp while_loop
upper_half:

inc SI middle := middle+l
mov AX,SI lower := middle+1
jmp while_loop

end_while:
sub AX,AX number not found (clear AX)
jmp skipl

search_done:
inc SI position := index+l
mov AX,SI return position

skipl:
pop OX restore registers
pop ex
pop ESI
pop EBX
pop BP
ret 6

binary_search ENOP
END main

Since the binary search procedure returns a value in the AX register, we
cannot use the pusha instruction as in the last example. This example also
demonstrates how some of the 32-bit addressing modes can be used with 16-bit
segments. For example, on line 95, we use a scale factor of 2 to convert the
index value in SI to byte count. Also, a single comparison (line 95) is sufficient
to test multiple conditions (Le., equal to, greater than, or less than). If the
number is found in the array, the index value in SI is returned via AX (line
111).

5.4 Arrays

Arrays are useful in organizing a collection of related data items, such as test
marks of a class, salaries of employees, etc. We have used arrays of characters to
represent strings. Such arrays are one-dimensional-only a single subscript is
necessary to access a character in the array. Next we discuss one-dimensional
arrays. High-level languages support multidimensional arrays. Multidimen
sional arrays are discussed in Section 5.4.2.

192 Chapter 5 Addressing Modes

5.4.1 One-Dimensional Arrays

A one-dimensional array of test marks can be declared in C as

int test_marks [10];

In C, the subscript always starts at zero. Thus, the mark of the first student is
given by test_marks [0] and that of the last student by test_marks [9] .

In Pascal, however, we can specify a lower bound value for the subscript.
An example declaration of test marks in Pascal is

test_marks: ARRAY[l .. 10] OF Integers;

Array declaration in high-level languages specifies the following four attributes:

• Name of the array (test_marks)

• Number of the elements (10)

• Element size (2 bytes)
• Index range (0-9 in eversion, 1-10 in Pascal version)

From this information, the amount of storage space required for the array can
be easily calculated. Storage space in bytes is given by

Storage space = number of elements * element size in bytes

In our example, it is equal to 10*2 = 20 bytes. In assembly language, arrays are
implemented by allocating the required amount of storage space. For example,
test_marks can be declared as

DW 10 DUP (?)

An array name can be assigned to this storage space. But that is all the support
you get in assembly language! It is up to you as a programmer to "properly"
access the array taking into account the element size and the range of subscripts.

You need to know how the array is stored in memory in order to access
elements of the array. For one-dimensional arrays, representation of array in
memory is rather direct-array elements are stored linearly in the same order as
shown in Figure 5.4. In the remainder of this section, we will use the convention
used for arrays in C, i.e., subscripts are assumed to begin with o.

To access an element of an array, you need to know its displacement value
in bytes relative to the beginning of the array. Since you know the element
size in bytes, it is rather straightforward to compute the displacement from the
subscript value.

displacement = subscript * element size in bytes

Section 5.4 Arrays 193

high memory
t-- tesCmarks[9] -

I- tesCmarks[8] -

t-- tescmarks[7] -

t-- tesCmarks[6] -

I- test_marks[5] -

I- tesCmarks[4] -

I- test_ marks[3] -

t-- test_marks[2] -

t-- tesCmarks[1] -

low memory
I- tesCmarks[O] -

~ tesCmarks

Figure 5.4 One-dimensional array storage representation.

For example, to access the sixth student's mark (i.e., subscript is 5), you have to
use 5*2= 10 as the displacement value into the test_marks array. Section 5.4.3
presents an example that computes the sum of a one-dimensional integer array.
If the array element size is 2, 4, or 8 bytes, we can use a scale factor to avoid
computing displacement in bytes.

5.4.2 Multidimensional Arrays

Programs often require arrays of more than one dimension. For example, we
need a two-dimensional array of size 50 x 3 to store test marks of a class of
fifty students getting three tests during a semester. For most programs, arrays
of up to three dimensions are adequate. In this section, we will discuss how
two-dimensional arrays are represented and manipulated in assembly language.
Our discussion can be generalized to higher dimension arrays.

For example, a 5 x 3 array to store test marks can be declared in C as

int class_marks [5] [3] j 1* 5 rows and 3 columns *1

Storage representation of such arrays is not as direct as that for one-dimensional
arrays. Since the memory is one-dimensional (i.e., linear array of bytes), we
need to transform the two-dimensional structure to a one-dimensional structure.
This transformation can be done in one of two common ways:

194 Chapter 5 Addressing Modes

high memory high memory

I- class_marks[4,2] - I- class_marks[4,2] -

I- class_marks[4,1] - I- class_marks[3,2] -

I- class_marks[4,O] - I- class_marks[2,2] -

f- class_marks[3,2] - I- class_marks[1,2] -

f- class_marks[3,1] - f- class_marks[O,2] -

- class_marks[3,O] - I- class_marks[4,1] -

I- class_marks[2,2] - I- class_marks[3,1] -

r- class_marks[2,1] - f- class_marks[2,1] -

I- class_marks[2,O] - I- class_marks[1,1] -

I- class_marks[1,2] - I- class_marks[O,1] -

-- class_marks[1,1] - I- class_marks[4,O] -

f- class_marks[1,O] - f- class_marks[3,O] -

f- class_marks[O,2] - I- class_marks[2,O] -

I- class_marks[O,1] - I- class_marks[1,O] -

I- class_marks[O,O] - I- class_marks[O,O] -

low memory low memory

(a) Row-major order (b) Column-major order

Figure 5.5 Two-dimensional array storage representation.

• Order the elements of the array row by row starting with the first row
• Order the elements of the array column by column starting with the first

column.

The first method, called the row-major ordering, is shown in Figure 5.5a.
Row-major ordering is used in most high-level languages including C and Pas
cal. The other method, called the column-major ordering, is shown in Fig
ure 5.5b. Column-major ordering is used in Fortran. In the remainder of this
section, we focus on the row-major ordering scheme.

Why do we need to know the underlying storage representation? When you
are using a high-level language, you really do not have to bother about the stor-

Section 5.4 Arrays 19S

1: TITLE
2: COMMENT

age representation of the arrays. Access to arrays is provided by subscripts
one subscript for each dimension of the array. However, when using assembly
language, you need to know the storage representation in order to access indi
vidual elements of the array for reasons discussed next.

In assembly language, we can allocate storage space for the class_marks
array as

DW 5*3 DUP (?)

This statement simply allocates 30 bytes required to store the array. Now we
need a formula to translate row and column subscripts to the corresponding
displacement. In C language, which uses row-major ordering and subscripts
start with zero, we can express displacement of an element at row i and column
jas

displacement = (i * COLUMNS + J) * ELEMENT _SIZE

where COLUMNS is the number of columns in the array and ELEMENT _SIZE
is the number of bytes required to store an element. For example, the displace
ment of class_marks [3,1] is (3*3+ 1)*2 = 20. The next section gives some
examples to illustrate how two-dimensional arrays are manipulated.

5.4.3 Examples of Arrays

This section presents two examples to illustrate array manipulation of one- and
two-dimensional arrays. These examples also demonstrate the use of advanced
addressing modes in accessing multidimensional arrays.

Example 5.3 Finding the sum of a one-dimensional array

This example shows how one-dimensional arrays can be manipulated. Pro
gram 5.21 finds the sum of the test_marks array and displays the result.

Program 5.21 The sum of a one-dimensional array

Sum of a long integer array ARA Y _SUM. ASM

3: Objective: To find sum of all elements of an array.
4: Input: None
5: Output: Displays the sum.
6: .MODEL SMALL
7: .STACK 100H

196 Chapter 5 Addressing Modes

8: . DATA
9: test_marks

10: NO_STUDENTS
11: sum_msg

DD 90,50,70,94,81,40,67,55,60,73
EQU ($-test_marks)/4 ; number of students
DB 'The sum of test marks is: ',0

12:
13: . CODE
14: .486
15: INCLUDE io.mac
16: main PROC
17: . STARTUP
18: mov CX,NO_STUDENTS

EAX,EAX
ESI,ESI

loop iteration count
sum := 0 19: sub

20: sub array index := 0
21: add_loop:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33: main
34:

mov EBX,test_marks[ESI*4]
PutLInt EBX
nwln
add
inc
loop

EAX,test_marks[ESI*4]
ESI

PutStr sum_msg
PutLInt EAX
nwln
. EXIT
ENDP
END main

Each element of the test_marks array, declared on line 9, requires 4
bytes. The array size NO_STUDENTS is computed on line lOusing the predefined
location counter symbol $. The predefined symbol $ is always set to the current
offset in the segment. Thus, on line 10, $ points to the byte after the array
storage space. Therefore, ($-test_marks) gives the storage space in bytes
and dividing this by four gives the number of elements in the array. We are
using the indexed addressing mode on lines 22 and 25 where a scale factor of
4 is used. Remember that scale factor is only allowed in the 32-bit mode. As a
result, we have to use ESI rather than the SI register.

Example 5.4 Finding the sum of a column in a two-dimensional array

Consider the class_marks array representing test scores of a class. For
simplicity, assume that there are only five students in the class. Also, assume

Section 5.4 Arrays 197

that the class is given three tests. As we have discussed before, we can use
a 5x3 array to store the marks. Each row represents the three test marks of
a student in the class. The first column represents the marks of the first test,
the second column represents the marks of the second test, and so on. The
objective of this example is to find the sum of the last test marks for the class.
The program listing is given in Program 5.22.

Program S.22 The sum of a column in a two-dimensional array

1: TITLE Sum of a column in a 2-dimensional array TEST_SUM.ASM
2: COMMENT I
3: Objective: To demonstrate array index manipulation
4: in a two-dimensional array of integers.
5: Input: None
6: Output: Displays the sum.
7: .MODEL SMALL
8: .STACK 100H
9: . DATA

10:
11:
12:
13:
14:
15:
16:
17:
18:

NO_ROWS
NO_COLUMNS
NO_ROW_BYTES
class_marks

19: sum_msg

. CODE

.486
INCLUDE io.mac
main PROC

EQU 5
EQU 3
EQU NO_COLUMNS * 2 number of bytes per row
DW 90,89,99
DW 79,66,70
DW 70,60,77
DW 60,55,68
DW 51,59,57

DB 'The sum of the last test marks is: ',0
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

. STARTUP
mov
sub
; ESI
sub
mov

sum_loop:
add
add

CX,NO_ROWS ; loop iteration count
AX,AX ; sum := 0

:= index of class_marks[0,2]
EBX,EBX
ESI,NO_COLUMNS-l

AX, class_marks [EBX+ESI*2]
EBX,NO_ROW_BYTES

198

34:
35:
36:
37:
38:
39: done:
40:
41: main
42:

Chapter 5 Addressing Modes

loop sum_loop

PutStr sum_msg
PutInt AX
nwln

. EXIT
ENDP
END main

To access individual test marks, we use based-indexed addressing with a
displacement on line 32. Note that even though we have used

class_marks [EBX+ESI*2]

it is translated by the assembler as

[EBX+(ESI*2)+constant]

where the constant is the offset of class_marks. For this to work, EBX
should store the offset of the row in which we are interested. For this reason,
after initializing EBX to zero to point to the first row (line 29), NO_RaW_BYTES
is added in the loop body (line 33). The ESI register is used as a column index.
This works for row-major ordering.

5.5 Performance: Usefulness of Addressing Modes

The objectives of this section are to show the usefulness of the various memory
addressing modes and the pitfalls of mixing 16-bit and 32-bit addressing modes.

Experiment 1

The objective of this experiment is to show the performance advantage of the
various 16-bit addressing modes. In Program 5.19, we have used based-indexed
addressing with and without displacement. For example, the two statements on
lines 73 and 74 are equivalent to

mov AX, [BX+DI]
mov [BX+DI+2],AX

By using a displacement value of 2, we could use the same two registers to
access the next element in the array. We will not have this kind of flexibility if

Section 5.5 Performance: Usefulness of Addressing Modes 199

10

8
...-...
'" J:>e.. "0
§ 6 &"~ u
<I)

"o$>~~ J:>e..~ '" '-"'
<I) o~'i bX,,\" ~ e 4 ";: ~~
~
til

2

o~~~=-~~~--~~--J
1000 2000 3000 4000 5000 6000 7000 8000

Number of elements

Figure 5.6 Performance impact of 16-bit addressing modes on the insertion sort.

we use only the indirect addressing mode. To see the relative performance, we
have rewritten the insertion sort procedure discussed in Section 5.3 with only
direct and register indirect addressing modes. We, however, have not modified
how the parameters are accessed from the stack.

The performance implications of these changes is shown in Figure 5.6. The
x-axis shows the size of the array and the y-axis gives the corresponding sort
time. The performance of the procedure given in Program 5.19 is represented
by the "all 16-bit modes" line, while the other line represents the performance
of the modified version as discussed here. The data presented in this figure
show that using only direct and register indirect addressing modes deteriorates
performance of the insertion sort by about 20 percent!

Experiment 2

The goal of this experiment is to demonstrate the overheads associated with
mixing 16-bit and 32-bit addressing modes. Remember that, by default, we
use 16-bit operands and addresses. Thus, using 32-bit operands or addresses
involves using size override prefixes-an overhead. To quantify this overhead,

200 Chapter 5 Addressing Modes

10

~~~ 

" 8 .'!..~ 
.-.. 'Y~'" 
'" ~'? "t:I r:: '?Io~ 
0 6 b-e.) ~ d) 

'" o.~":> '-' 
d) .:<..~" e b!O~ .p 4 ~ , 
1::: o~~ 0 
rn 

2 

o~~~~--~--~--~--~~ 
1000 2000 3000 4000 5000 6000 7000 8000 

Number of elements 

Figure 5.7 Performance impact of mixing 16-bit and 32-bit addressing modes on the insertion 
sort. 

we have written the insertion sort procedure using both 16-bit and 32-bit ad
dressing modes (see Program 5.23). 

As shown in Program 5.23, all instructions of the while_loop, except for 
the j ge instructions, have either an operand override prefix or an address size 
override prefix. Since decoding a prefix takes a clock cycle, the performance 
suffers for this application, as shown in Figure 5.7. Because of such overheads, 
Intel suggests using a 16-bit operand and addresses for 16-bit segments, and 
32-bit operands and addresses for 32-bit segments as much as possible! In this 
book, for pedagogical reasons, we write programs that use 16-bit as well as 
32-bit operands and addressing modes. 

Program 5.23 Insertion sort procedure with 32-bit addressing modes 

1: ;-----------------------------------------------------------
2: This procedure receives a pointer to an array of integers 
3: ; and the array size via the stack. The array is sorted by 
4: ; using insertion sort. All registers are preserved. 
5: ;-----------------------------------------------------------



Section 5.6 Summary 

6: SORT_ARRAY EQU [EBX] 
7: insertion_sort PROe 
8: pushad 
9: mov BP.SP 

10: sub EBX,EBX 

save registers 

11: mov BX, [BP+34] copy array pointer 
12: mov ex, [BP+36] copy array size 
13: mov ESl,l array left of ESl is sorted 
14: for_loop: 
15: ; variables of the algorithm are mapped as follows: 
16: ; DX = temp, ESl = i, and EDl = j 
17: mov DX, SORT_ARRAY [ESl*2] ; temp := array[i] 
18: mov EDl,ESl ; j := i-l 
19: dec EDI 
20 : while_loop: 
21: cmp DX,SORT_ARRAY[EDl*2] temp < array[j] 
22: jge exit_while_loop 
23: ; array[j+l] := array[j] 
24: mov AX, SORT_ARRAY [EDl*2] 
25: mov SORT_ARRAY[EDl*2+2],AX 
26: dec EDl j := j-l 
27: cmp EDl,O ; j >= 0 
28: jge while_loop 
29: exit_while_loop: 
30: ; array[j+l] := temp 
31: mov SORT_ARRAY[EDI*2+2],DX 
32: inc ESl i := i+l 
33: dec 
34: cmp 
35: jne 
36: sort_done: 
37: popad 
38: ret 

ex 
eX,l 
for_loop 

4 
39: insertion_sort ENDP 
40: 

5.6 Summary 

if ex = 1, we are done 

restore registers 

201 

Addressing mode refers to the specification of data or operands required by 
an assembly language instruction. We discussed the various addressing modes 
supported by Pentium. There are a variety of ways in which a memory operand 



202 Chapter 5 Addressing Modes 

can be specified. We showed by means of examples how the various 16-bit 
and 32-bit addressing modes are useful in supporting features of high-level 
languages. We demonstrated by means of insertion sort that proper use of the 
advanced addressing modes can result in a better program-both in terms of 
improved readability and reduced execution time. We also showed the pitfalls 
in mixing 16-bit and 32-bit operands and addressing modes. 

Arrays are useful to represent a collection of related data. In high-level 
languages, programmers do not have to worry about the underlying storage 
representation used to store arrays in memory. However, when manipulating 
arrays in assembly language, it is necessary to know how the arrays are stored in 
memory. This is so because accessing individual elements of an array involves 
computing the corresponding displacement value. While there are two common 
ways of storing a multidimensional array-row-major or column-major order
most high-level languages, including C and Pascal, use the row-major order. We 
presented examples to illustrate the manipulation of one- and two-dimensional 
arrays. 

5.7 Exercises 

5-1 Explain why the register addressing mode is the most efficient of all the 
addressing modes supported by Pentium. 

5-2 Discuss the restrictions imposed by the immediate addressing mode. 

5-3 Where (i.e., which segment) is the data, specified by the immediate ad
dressing mode, stored? 

5-4 Describe all of the 16-bit addressing modes that you can use to specify 
an operand that is located in memory. 

5-5 Describe all of the 32-bit addressing modes that you can use to specify 
an operand that is located in memory. 

5-6 What are the differences between direct and register indirect addressing 
modes? 

5-7 Which registers can be used in register indirect addressing mode? Also 
specify the default segments associated with each register used in this 
mode. 

5-8 When is it necessary to use segment override prefix? 

5-9 When is it necessary to use operand size override prefix? 

5-10 When is it necessary to use address size override prefix? 

5-11 Is there a fundamental difference between based and indexed addressing 
modes? 



Section 5.8 Progamming Exercises 203 

5-12 What additional flexibility does the based-indexed addressing mode have 
over based or indexed addressing modes? 

5-13 Given the following declaration of table 1 

table1 DW 10 DUP (0) 

fill in the blanks in the following code: 

mov SI, _______ ; SI := displacement of 5th element 
(i.e., table1[4] in C) 

mov AX,table1[SI] 
cmp AX, _______ ; compare 5th and 4th elements 

5-14 What is the difference between row-major and column-major orders for 
storing multidimensional arrays in memory? 

5-15 In manipulating multidimensional arrays in assembly language, why is 
it necessary to know their underlying storage representation? 

5-16 How is class_marks in Program 5.22 stored in memory-row-majoror 
column-major order? 

5-17 How would you change the class_marks declaration in order to store 
it in column-major order? 

5-18 Assuming that subscripts begin with 0, derive a formula for the displace
ment (in bytes) of the element in row i and column j in a two-dimensional 
array stored in column-major order. 

5-19 Suppose that the array A is a two-dimensional array stored in row-major 
order. As in Pascal, assume that a low value can be specified for each 
subscript. Derive a formula to express the displacement (in bytes) of 
A[i ,j]. 

5.8 Progamming Exercises 

5-P1 What modifications would you make to the insertion sort procedure dis
cussed in Section 5.3 to sort the array in descending order? Make the 
necessary modifications to the program and test it for correctness. 

5-P2 Modify Program 5.21 to read array input data from the user. Your program 
should be able to accept up to twenty five nonzero numbers from the user. 
A zero terminates the input. An error should be reported if more than 
twenty five numbers are given. 

5-P3 Modify Program 5.22 to read marks from the user. The first number of 
the input indicate the number of students in the class (i.e., number of 
rows), and the next number represents the number of tests given to the 
class (i.e., number of columns). Your program should be able to handle 



204 Chapter 5 Addressing Modes 

up to twenty students and five tests. Report error when exceeding these 
limits. 

5-P4 Write a complete assembly language program to read two matrices A and 
B and display the result matrix C, which is the sum of A and B. Note that 
the elements of C can be obtained as 

C[i, j] = A[i, j] + B[i, j] 

Your program should consist of a main procedure that calls the read_matrix 
procedure twice to read data for A and B. It should then call the matrix_add 
procedure, which receives pointers to A, B, C, and size of the matrices. 
Note that both A and B should have the same size. The main procedure 
calls another procedure to display C. 

5-P5 Write a procedure to perform matrix multiplication of matrices A and 
B. The procedure should receive pointers to the two input matrices A of 
size 1 x m, B of size m x n, the product matrix C, and values I, m, and 
n. Also, the data for the two matrices should be obtained from the user. 
Devise a suitable user interface to input these numbers. 

5-P6 Modify the program of the last exercise to work on matrices stored in 
column-major order. 

5-P7 Write a program to read a matrix (maximum size lOx 10) from the user 
and display the transpose of the matrix. To obtain the transpose of matrix 
A, write rows of A as columns. Here is an example: 
If the input matrix is 

[ ~~ !~ ~~ ~~] 
34 56 78 90 
45 67 89 10 

the transpose of the matrix is 

[ 
12 23 34 45] 
34 45 56 67 
56 67 78 89 
78 89 90 10 

5-P8 Write a program to read a matrix (maximum size lOx 15) from the user 
and display the subscripts of the maximum element in the matrix. Your 
program should consist of two procedures: main is responsible for read
ing the input matrix and for displaying the position of the maximum 
element. Another procedure mat_max is responsible for finding the po
sition of the maximum element. Parameter passing should be done via 



Section 5.8 Progamming Exercises 

the stack. For example, if the input matrix is 

[ 
12 34 56 78] 
23 45 67 89 
34 56 78 90 
45 67 89 10 

the output of the program should be: 

The maximum element is at [2,3]. 

205 

5-P9 Write a program to read a matrix of integers and perform cyclic permu
tation of rows and display the result matrix. Cyclic permutation of a 
sequence ao, aI, a2,"" an-I is defined as aI, a2,···, an-I, ao. Apply 
this process for each row of the matrix. Your program should be able to 
handle up to 12 x 15 matrices. If the input matrix is 

the permuted matrix is 

[;; !~ ~~ ~~] 
34 56 78 90 
45 67 89 10 

[ 
34 56 78 12] 
45 67 89 23 
56 78 90 34 
67 89 10 45 

5-PlO Generalize the last exercise to cyclically permute by a user-specified 
number of elements. 

5-Pll Write a complete assembly language program to do the following: 

• Read the names of students in a class into a one-dimensional array 

• Read test scores of each student into a two-dimensional marks array 

• Output a letter grade for each student in the format: 

student name letter grade 

You can use the following information in writing your program: 

• Assume that the maximum class size is 20 

• Assume that the class is given four tests of equal weight (i.e., 25 
points each) 

• Test marks are rounded to the nearest integer so you can treat them 
as integers 



206 Chapter 5 Addressing Modes 

• Use the following table to convert percentage marks (i.e, sum of all 
four tests) to a letter grade: 

Marks range grade 
85 -100 A 
70- 84 B 
60- 69 C 
50- 59 D 
0-49 F 

5-P12 Modify the program for the last exercise to also produce a class summary 
stating the number of students receiving each letter grade in the following 
format: 
A = number of students receiving A 
B = number of students receiving B 
C = number of students receiving C 
D = number of students receiving D 
F = number of students receiving F 

5-P13 If we are given a square matrix (i.e., a matrix with the number of rows 
equal to the number of columns), we can classify it as the diagonal matrix 
if only its diagonal elements are nonzero; as upper triangular matrix if 
all the elements below the diagonal are 0; as lower triangular matrix if 
all elements above the diagonal are O. Some examples are: 
Diagonal matrix: 

[ 2~ 
0 0 j] 87 0 
0 97 
0 0 

Upper triangular matrix: 

[ 
19 26 35 

98 ] 0 78 43 65 
0 0 38 29 
0 0 0 82 

Lower triangular matrix: 

[~ 
0 0 

5~ ] 38 0 
65 28 89 
87 56 67 

Write an assembly language program to read a matrix and output the type 
of matrix. 



Chapter 6 

Arithmetic Flags and 
Instructions 

Objectives 

• To discuss the significance of the six status flags 

• To describe in detail the arithmetic instructions of the Pentium instruction 
set 

• To illustrate how multiword arithmetic operations are done 

• To demonstrate the performance implications of various ways of per
forming multiplication 

The focus of this chapter is to discuss the arithmetic instructions of Pentium. 
All arithmetic operations affect some of the flags. In particular, there are six 
flags--called status flags--that are updated by most arithmetic instructions. 
These flags monitor the outcome of an arithmetic operation. For example, the 
zero flag is set if the outcome of an arithmetic operation is zero. Arithmetic 
flags are discussed in Section 6.1. 

Pentium provides arithmetic instructions to perform addition, subtraction, 
multiplication, and division. While add and subtract instructions work on both 
signed and unsigned data, multiplication and division require separate instruc
tions for signed and unsigned data. Details about the arithmetic instructions 
are provided in Section 6.2. Some example applications are presented in Sec
tion 6.3. 

The arithmetic instructions can only be used on 8-,16-, or 32-bit operands. 
Section 6.4 discusses how the basic four arithmetic operations can be performed 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



208 Chapter 6 Arithmetic Flags and Instructions 

for numbers that use mUltiple words (for example, 64 bits). Performance issues 
are discussed in Section 6.5 and the chapter concludes with a summary. 

6.1 Status Flags 

Six flags in the flags register, described in Chapter 2, are used to monitor the 
outcome of the arithmetic, logical, and related operations. By now you are 
familiar with the purpose of some of these flags. The six flags are the zero flag 
(ZF), carry flag (CF), overflow flag (OF), sign flag (SF), auxiliary flag (AF), 
and parity flag (PF). These six flags are referred to as the status flags. 

When an arithmetic operation is performed, some of the flags are updated 
(set or cleared) to indicate certain properties of the result of that operation. For 
example, if the result of an arithmetic operation is zero, the zero flag is set (i.e., 
ZF = 1). Once a flag is set or cleared, it remains in that state until another 
instruction changes its value. 

Note that not all assembly language instructions affect all the flags. Some 
instructions affect all six status flags, while other instructions affect none of 
the flags. And there are other instructions that affect only a subset of the flags. 
For example, the arithmetic instructions add and sub affect all six flags, while 
inc and dec instructions affect all but the carry flag. The may, push and pop 
instructions, on the other hand, do not affect any of the flags. 

Here is an example illustrating how the zero flag changes with instruction 
execution. 

; initially, assume that ZF is 0 
mov AL,55H ZF is still 0 
sub 

push 
mov 
pop 
mov 
inc 

AL,55H 

BX 
BX,AX 
OX 
ex,o 
ex 

result is zero 
Thus, ZF is set 
ZF remains 1 
ZF remains 1 
ZF remains 1 
ZF remains 1 
result is 1 

(ZF = 1) 

Thus, ZF is cleared (ZF = 0) 

As you have seen before, these flags are tested either singly or in combination 
to affect the flow control of a program. Chapter 7 discusses the conditional 
jump instructions in more detail. 

In understanding the workings of these status flags, you should know how 
signed and unsigned integers are represented. At this point, it is a good idea to 
review the material presented in Appendix A. 



Section 6.1 Status Flags 209 

6.1.1 The Zero Flag 

The purpose of the zero flag is to indicate whether the execution of the last 
instruction that affected the zero flag has produced a zero result. If the result 
was zero, ZF = 1; otherwise, ZF = O. This is slightly confusing! You may want 
to take a moment to see through the confusion. 

While it is fairly intuitive to understand how the sub instruction can affect 
the zero flag, it is not so obvious with other instructions. The following examples 
show some typical cases. 

The following code 

mov AL,OFH 
add AL,OF1H 

sets the zero flag (i.e., ZF = 1). This is because, after executing the add in
struction, AL would contain zero (all eight bits zero). In a similar fashion, the 
following code 

mov AX,OFFFFH 
inc AX 

also sets the zero flag. The same is true of the following code segment: 

mov AX,l 
dec AX 

Related Instructions 

j z jump if zero Uump if ZF = 1) 
j nz jump if not zero Uump if ZF = 0) 

Usage 

There are two main uses of the zero flag: (i) to test equality, and (ii) to count to 
a preset value. 

Testing Equality 

The cmp instruction is often used to do this. Recall that cmp performs subtrac
tion. The main difference between cmp and sub is that cmp does not store the 
result of the subtraction. Instead, the subtract operation is performed only to 
set the status flags. 

Here are some examples: 

cmp char, '$' ZF = 1 if char is $ 



210 Chapter 6 Arithmetic Flags and Instmetions 

Similarly, two registers can be compared to see if they both have the same value. 

cmp AX,BX 

Counting to a Preset Value 

Another important use of the zero flag is shown below. Consider the following 
code: 

sum:= 0 
for (i = 1 to M) 

for U = 1 to N) 
sum:= sum + 1 

end for 
end for 

The equivalent in the assembly language can be written as follows (assuming 
that both M and N are ::: 1): 

sub AX,AX ; AX:= 0 (AX stores sum) 
mov DX,M 

outer_loop: 
mov eX,N 

inner_loop: 
inc AX 
loop inner_loop 
dec DX 
jnz outer_loop 

exit_loops: 
mov sum,AX 

In the above example, inner loop count is placed in the CX register so that 
we can use the loop instruction to iterate. The loop instruction is equivalent 
to 

dec ex 
jnz inner_loop 

The above two instruction sequences are surprisingly more efficient than the 
loop instruction! More on this topic in Chapter 7. Incidentally, the loop 
instruction does not affect any of the flags! So the loop instruction is not 
strictly equivalent to the dec and jnz instruction sequence given above. 

Since we have two nested loops to handle, we are forced to use another 
register to keep count of the outer loop iterations, and we use the dec instruction 



Section 6.1 Status Flags 211 

and the zero flag to see if the outer loop has been repeated M times. Again, 
this code is more efficient than initializing the OX register to one and using the 
following code 

inc OX 
cmp OX,M 
jle outer_loop 

instead of 

dec OX 
jnz outer_loop 

6.1.2 The Carry Flag 

The carry flag records the fact that the result of an arithmetic operation on 
unsigned numbers is out of range (too big or too small) to fit the register or 
memory location. Consider the example 

mov AL,OFH 
add AL,OF1H 

The addition of OFH and FIH would produce a result of 100H that requires 9 
bits to store, as shown below. 

00001111B (OFH = 150) 
11110001B (FIH = 2410) 

1 OOOOOOOOB (I00H = 2560) 

Since the destination register AL is only 8 bits long, the carry flag would be set 
to indicate that the result is too big to be held in the AL register. 

To understand when the carry flag is set, it is helpful to remember the range 
of unsigned numbers that can be represented. The range is given below for easy 
reference. 

size 
8 bits 
16 bits 
32 bits 

range 
o to 255 

o to 65,535 
o to 4,294,967,295 

Any operation that produces a result that is outside this range sets the carry flag 
to indicate an underflow or overflow condition. It is obvious that any negative 
result is out of range, as illustrated by the following example. 

mov 
sub 

AX, 12AEH 
AX,12AFH 

iAX := 47820 
iAX := 47820 - 47830 



212 Chapter 6 Arithmetic Flags and Instructions 

Executing the above code will set the carry flag because 12AFH - 12AFH 
produces a negative result (i.e., the subtract operation generates a borrow), 
which is too small to be represented using unsigned numbers. Thus, the carry 
flag indicates this underflow condition. 

Executing the code 

mov AL,OFFH 
inc AL 

or the code 

mov AX,O 
dec AX 

does not set the carry flag as we might expect because the inc and dec instruc
tions do not affect the carry flag. 

Related Instructions 

Conditional jumps: 

j e jump if carry Uump if CF = 1) 
j ne jump if not carry Uump if CF = 0) 

In addition to the conditional jump instructions that test the carry flag, there 
are three special instructions that directly manipulate the carry flag. There are: 

ste set carry flag 
ele clear carry flag 
eme complement carry flag 

sets CF to 1 
clears CF to 0 
inverts CF value 

All three instructions affect only the carry flag and have no effect on the 
other flags. These three instructions are useful in conjunction with the rotate 
instructions reI and rer. An example that uses ste and ele instructions is 
given on page 221. 

Usage 

The carry flag is useful in several situations: 

• To propagate carry or borrow in multiword addition or subtraction oper
ations. 

• To detect the overflow/underflow condition. 

• To test a bit using the shift/rotate family of instructions. 



Section 6.1 Status Flags 213 

To Propagate CarrylBorrow 

The assembly language arithmetic instructions can operate on 8-, 16-, or 32-bit 
data. If two operands that are more than 32 bits each are to be added, the addition 
has to proceed in steps by adding 32 bits at a time. The following example shows 
how we can add two 64-bit unsigned numbers. For convenience, we use the 
hex representation. 

1 +- carry from lower 32 bits 
x = 3710 26A8 1257 9AE7H 
Y 489B A321 FE60 4213H 

7FAB C9CA 10B7 DCFAH 

To accomplish this, we first add the least significant (lower halt) 32 bits 
of the two operands. This produces the lower half of the result. This addition 
operation could potentially produce a carry that should be added to the upper 32 
bits of the input. The second add operation performs the addition of the most 
significant (upper halt) 32 bits and any carry generated by the previous addition. 
This operation produces the upper half of the 64-bit result. Section 6.4.1 gives 
an example to add two 64-bit numbers. 

Similarly, adding two 128-bit numbers involves a four-step process, where 
each step adds 32 bits. The sub and other operations also require multiple steps 
when the data size is more than 32 bits. 

To Detect an OverflowlUnderflow Condition 

In the previous example ofx+y, if the second addition has produced a carry, the 
result is too big to be held by 64 bits. In this case, the carry flag would be set 
to indicate the overflow condition. It is up to the programmer to handle such 
error conditions. 

Testing a Bit 

When using shift and rotate instructions (introduced in Chapter 3), the bit that 
has been shifted or rotated out is captured in the carry flag. This bit can be 
either the most significant bit (in the case of left shift or rotate), or the least 
significant bit (in the case of right shift or rotate). Once the bit is in the carry flag, 
conditional execution of code is possible using the conditional jump instructions 
that test the carry flag-j c (jump on carry), and jnc (jump if no carry). 



214 Chapter 6 Arithmetic Flags and Instructions 

Why inc and dec Do Not Affect the Carry Flag 

We have stated that the inc and dec instructions do not affect the carry flag. 
The rationale for this is two-fold: 

1. The instructions inc and dec are typically used to maintain iteration or 
loop count. Using 32 bits, the number of iterations can be as high as 
4,294,967,295. This number is sufficiently large for most applications. 
What if we need a count that is greater than this? Do we have to use 
the add instead of the inc instruction? This leads to the second, and the 
main, reason. 

2. The condition detected by the carry flag can also be detected by the zero 
flag. Why? Because inc and dec change the number only by 1. For 
example, suppose that the ECX register has reached its maximum value 
4,294,967,295 (FFFFFFFFH). If we then execute 

inc EeX 

we will normally expect the carry flag to be set to 1. But inc does not 
affect the carry flag. However, we can detect this condition by noting 
that ECX = 0, which sets the zero flag. Thus, setting the carry flag is 
really redundant for these instructions. 

6.1.3 The Overflow Flag 

The overflow flag, in some respects, is the carry flag counterpart for the signed 
number arithmetic. The main purpose of the overflow flag is to indicate whether 
or not an operation on signed numbers has produced a result that is out of range. 
It is helpful to recall the range of numbers that can be represented using 8, 16, 
and 32 bits. For convenience, the range of the numbers is given below: 

size 
8 bits 
16 bits 
32 bits 

Executing the code 

mov 
add 

AL,72H 
AL,OEH 

range 
-128 to +127 

-32,768 to +32,767 
-2,147,483,648 to +2,147,483,647 

72H = 1140 
OEH = 140 

will set the overflow flag to indicate that the result 80H (128D) is too big 
to be represented as a signed number using only 8 bits. The AL register will 
contain 80H, the correct result if the two 8-bit operands were treated as unsigned 



Section 6.1 Status Flags 215 

numbers. But AL contains an incorrect answer for 8-bit signed numbers (80H 
represents -128 in signed representation, not + 128 as is required). 

Here is another example using the sub instruction. The AX register is 
initialized to -5, which is FFFBH in 2's complement representation using 16 
bits. 

mov 
sub 

AX,OFFFBH 
AX,7FFDH 

AX ;= -5 
subtract 32,765 from AX 

Execution of the above code will set the overflow flag as the result 

(-5)-(32,765) = -32,770 

which is too small to be represented as a 16-bit signed number. 
Note that the result will not be out of range (and hence the overflow flag 

will not be set) when we are adding two signed numbers of opposite sign or 
subtracting two numbers of the same sign. 

Signed or Unsigned: How Does the System Know? 

The values of the carry and overflow flags depend on whether the operands are 
unsigned or signed numbers. Given that a bit pattern can both be treated as 
representing a signed and an unsigned number, a question that naturally arises 
is: How does the system know how your program is interpreting a given bit 
pattern? The answer is that the processor does not have a clue whether a given 
bit pattern represents a signed or an unsigned number. It is up to your program 
logic to interpret a given bit pattern correctly. The processor, however, assumes 
both interpretations and sets the carry and overflow flags. For example, when 
executing 

mov AL,72H 
add AL,OEH 

the processor treats 72H and OEH as unsigned numbers. And since the result 
80H (128) is within the range of 8-bit unsigned numbers (0 to 255), the carry 
flag is cleared (i.e., CF = 0). At the same time, 72H and OEH are also treated as 
representing signed numbers. Since the result 80H (128) is outside the range 
of 8-bit signed numbers (-128 to + 127), the overflow flag is set. 

Thus, after executing the above two lines of code, CF = 0 and OF = 1. It is 
up to your program logic to take whatever flag is appropriate. If you are indeed 
representing unsigned numbers, disregard the overflow flag. Since the carry 
flag indicates a valid result, no exception handling is needed. 

mov AL,72H 



216 Chapter 6 Arithmetic Flags and Instructions 

add AL,OEH 
jc overflow 

no_overflow: 
(no overflow code here) 

overflow: 
(overflow code here) 

If, on the other hand, 72H and OEH are representing 8-bit signed numbers, 
your program logic can disregard the carry flag value. Since the overflow flag 
is 1, your program logic will have to handle the overflow condition. 

mov AL,72H 
add AL,OEH 
jo overflow 

no_overflow: 
(no overflow code here) 

overflow: 
(overflow code here) 

Related Instructions 

Conditional jumps: 

j 0 jump on overflow Uump if OF = 1) 
jno jump on no overflow Uump if OF = 0) 

In addition, a special software interrupt instruction 

into interrupt on overflow 

is provided that tests the overflow flag. Interrupts are discussed in Chapter 12. 

Usage 

The main purpose of the overflow flag is to indicate whether an arithmetic 
operation on signed numbers has produced an out -of-range result. The overflow 
flag is also affected by shift, multiply, and divide operations. More details on 
some of these instructions can be found in later sections of this chapter. 



Section 6.1 Status Flags 217 

6.1.4 The Sign Flag 

As the name implies, the sign flag indicates the sign of the result of an operation. 
Therefore, it is useful only when dealing with signed numbers. Recall that the 
most significant bit is used to represent the sign of a number: 0 if positive and 
1 if negative. The sign flag gets a copy of the sign bit of the result produced by 
an arithmetic or a related operation. The following sequence of instructions 

mov AL,15 
add AL,97 

will clear the sign flag (Le., SF = 0) because the result produced by add is a 
positive number: 1120 (which in binary is 01110000, where the leftmost bit 
representing the sign is zero). 

The result produced by 

mov AL,15 
sub AL,97 

is a negative number and will set the sign flag to indicate this fact. Remember 
that negative numbers are represented in 2's complement notation (see Ap
pendix A). As discussed in Appendix A, the subtract operation can be treated 
as the addition of the corresponding negative number. Thus, 15-97 is treated as 
15+(-97), where, as usual, -97 is expressed in 2's complement form. There
fore, after executing the above two instructions, the AL register will contain 
AEH, as shown below. 

00001111B 
+ 10011111B 

10101110B 

(8-bit signed form of 15) 
(8-bit signed form of -97) 

Since the sign bit of the result is 1, the result is negative and is in 2's 
complement form. You can easily verify that AEH is the 8-bit signed form of 
-82, which is the correct answer. 

Related Instructions 

Conditional jumps: 

j s jump on sign (jump if SF = 1) 
jns jump on no sign (jump if SF = 0) 

The j s instruction causes the jump if the last instruction that updated the sign 
flag produced a negative result. The jns instruction causes the jump if the 
result was non-negative. 



218 Chapter 6 Arithmetic Flags and Instructions 

Usage 

The main use of the sign flag is to test the sign of the result produced by arith
metic and related instructions. Another use for the sign flag is in implementing 
counting loops that should iterate until (and including) the control variable is 
zero. For example, consider the following code: 

for (i = M downto 0) 
<loop body> 

end for 

This can be implemented without using cmp instruction as follows: 

mov eX,M 
for_loop: 

<loop body> 

dec ex 
jns for_loop 

If we do not use the j ns instruction, we have to use in its place 

cmp ex,o 
jl for_loop 

From the user point of view, a sign bit of a number can easily be tested by 
using either a logical instruction or a shift instruction. Compared to the other 
three flags we have discussed so far, the sign flag is used relatively infrequently 
in user programs. However, the processor uses the sign flag when executing 
conditional jump instructions on signed numbers (details are in Chapter 7). 

6.1.5 The Auxiliary Flag 

The auxiliary flag indicates whether an operation has produced a result that has 
generated a carry out of or borrow into the low-order four bits of 8-, 16-, or 
32-bit operands. In computer jargon, four bits are referred to as a nibble. The 
auxiliary flag is set if there is such a carry or borrow; otherwise it is cleared. 

In the following example 

mov AL,43 
add AL,94 

the auxiliary flag is set to 1 because there is a carry out of bit 3, as shown below: 



Section 6.1 Status Flags 

1 -E- carry generated from lower to upper nibble 
430 = 00101011B 
940 = 01011110B 

1370 = 10001001B 

219 

You can verify that executing the following code will clear the auxiliary 
flag. 

mov AL,43 
add AL,S5 

Since the following instruction sequence 

mov AL,43 
sub AL,92 

generates a borrow into the low-order 4 bits, the auxiliary flag is set. On the 
other hand, the instructions 

mov AL,43 
sub AL,S7 

clear the auxiliary flag. 

Related Instructions 

There are no conditional jump instructions that test the auxiliary flag. However, 
arithmetic operations on numbers expressed in decimal form or binary coded 
decimal form (instead of the standard binary form) use the auxiliary flag. Some 
related instructions are 

aaa ASCII adjust for addition 
aas ASCII adjust for subtraction 
aam ASCII adjust for multiplication 
aad ASCII adjust for division 
daa Decimal adjust for addition 
das Decimal adjust for subtraction 

More details on these instructions are given in Chapter 11. 

Usage 

The main use of this flag is in performing arithmetic operations on BCD numbers 
(see Chapter 11 for details on the BCD number representation). Also, see 
Chapter 11 for details on related instructions such as daa, das, etc. 



220 Chapter 6 Arithmetic Flags and Instructions 

6.1.6 The Parity Flag 

This flag indicates the parity of the 8-bit result produced by an operation; if this 
result is 16 or 32 bits long, only the low-order 8 bits are considered to set or 
clear the parity flag. The parity flag is set if the byte contains an even number 
of 1 bits; if there is an odd number of 1 bits, it is cleared. In other words, the 
parity flag indicates an even parity condition of the byte. 

Thus, executing the code 

mov AL,53 
add AL,89 

will set the parity flag because the result contains an even number of 1 's (four 
1 bits), as shown below. 

530 = 00110101B 
890 = 01011001B 

1420 = 10001110B 

The instruction sequence 

mov AX,23994 
sub AX,9182 

on the other hand, clears the parity flag, as the low-order 8 bits contain an odd 
number of 1 's (five 1 bits), as shown below. 

239940 = 01011101 10111010B 
+ -91820 = 11011100 00100010B 

148130 = 00111001 11011100B 

Related Instructions 

Conditional jumps: 

j p jump on parity (jump if PF = 1) 
jnp jump on no parity (jump if PF = 0) 

The j p instruction causes the jump if the last instruction that updated the parity 
flag produced an even parity byte; the j np instruction causes the jump for an 
odd parity byte. 

Usage 

This flag is useful for writing data encoding programs. As a simple example, 
consider transmission of data via modems using the 7 -bit ASCII code. To 



Section 6.1 Status Flags 221 

detect simple errors during data transmission, a single parity bit is added to the 
7-bit data for a total of 8 bits. Assume that we are using even-parity encoding. 
That is, every 8-bit character code transmitted will contain an even number of 
1 bits. Then, the receiver can count the number of 1 's in each received byte 
and flag transmission error if the byte contains an odd number of 1 bits. Such 
a simple encoding scheme can detect single bit errors (in fact, it can detect an 
odd number of single bit errors). 

To encode, the parity bit is set or cleared depending on whether the remain
ing 7 bits contain an odd or even number of 1 's, respectively. For example, if 
we are transmitting character A, whose 7-bit ASCII representation is 41H, we 
set the parity bit to 0 so that there are an even number of 1 'so The parity bit is 
shown as the most significant bit in the following examples. 

A = 01000001 

For character C, the parity bit is set because its 7-bit ASCII code is 43H. 

C = 11000011 

Here is a procedure that encodes the 7-bit ASCII character code present 
in the AL register. The most significant bit (i.e., eighth bit from the right) is 
assumed to be zero. 

parity_encode PROC 
shl AL 
jp parity_zero 
stc 
jmp move_parity_bit 

parity_zero: 
cIc 

move_parity_bit: 
rcr AL 

parity_encode ENDP 

6.1.7 Flag Examples 

Table 6.1 gives some examples of add and sub instructions and how they 
affect the flags. Updating of ZF, SF, and PF is easy to understand. The ZF is 
set whenever the result is zero; SF is simply a copy of the most significant bit 
of the result; and PF is set whenever there is an even number of 1 's in the result. 
In the rest of this section, we will focus on the carry and overflow flags. 

Example 1 performs -5-123. Noting that -5 is represented internally as FBH 
(=2510), subtracting 123 (=7BH) leaves 80H (=1280) in AL. Since the result 



222 Chapter 6 Arithmetic Flags and Instructions 

Table 6.1 Examples illustrating the effect on flags 

Code AL CF ZF SF OF PF 
Example 1 mov AL,-5 

sub AL,123 80H 0 0 1 0 0 
Example 2 mov AL,-5 

sub AL,124 7FH 0 0 0 1 0 
Example 3 mov AL,-5 

add AL,132 7FH 1 0 0 1 0 
add AL,l 80H 0 0 1 1 0 

Example 4 sub AL,AL OOH 0 1 0 0 1 
Example 5 mov AL,127 

add AL,129 OOH 1 1 0 0 1 

is within the range of unsigned 8-bit numbers, CF is cleared. For the OF, the 
operands are interpreted as signed numbers. Since the result is -128D, OF is 
also cleared. 

Example 2 subtracts 124D from -5. For reasons discussed in the previous 
example, the CF is cleared. The OF, however, is set because the result is 
-129D, which is outside the range of signed 8-bit numbers. 

In Example 3, the first add statement adds 132 to -5. However, when treating as 
unsigned numbers, 132 is actually added to 251 D, which results in a number that 
is greater than 255D. Therefore, CF is set. When treating as signed numbers, 
132D is internally represented as 84H (=-124D). Therefore, the result -129D 
is smaller than -128D. Therefore, the OF is also set. As a result of executing 
the first add instruction, AL will contain 7FH. The second add instruction 
increments 7FH. This sets the OF but not CF. 

Example 4 causes the result to be zero irrespective of the contents of the AL 
register. This sets the zero flag. Also, since the number of 1 's is even, PF is 
also set in this example. 

The last example adds 127D to 129D. Treating them as unsigned numbers, the 
result 256D is just outside the range, and sets CF. However, if we treat them as 
representing signed numbers, 129D is stored internally as 81 H (=-127). The 
result, therefore, is zero and the OF is cleared. 



Section 6.2 Arithmetic Instructions 223 

6.2 Arithmetic Instructions 

Pentium provides several instructions to perform 8-, 16-, and 32-bit addition, 
subtraction, multiplication, and division. Here is a look at the set of assembly 
language arithmetic instructions that we will be discussing next. 

Addition: add, adc, inc 
Subtraction: sub, sbb, dec, neg, cmp 
Multiplication: mul, imul 
Division: di v, idi v 
Related instructions: c bW, cwd, cdq, cwde, movsx, movzx 

There are a few other arithmetic instructions that operate on decimal numbers. 
These are covered in Chapter 11. 

6.2.1 Addition Instructions 

The basic add instruction has the format 

add destination, source 

which performs the following action: 

destination := destination + source 

The add instruction can take one of the five different forms depending 
on how the source and destination operands are specified. Recall that most 
two-operand instructions like add can be written in one of the five forms (see 
Chapter 3): 

add register, register 
add register, immediate 
add memory, immediate 
add register, memory 
add memory, register 

As stated in Chapter 3, there are some restrictions on which registers can be 
used to specify the operands. Since these restrictions are common to all two
operand instructions that we discuss, we will not specifically mention them with 
each instruction. 

Addition is a commutative operation. That is, it does not matter whether 
you write a+b or b+a. Therefore, the instruction 

add AX,BX 



224 Chapter 6 Arithmetic Flags and Instructions 

is equivalent to the instruction 

add BX,AX 

except for the fact that the result is stored in a different register. In this sense, 
the add instruction itself is not "commutative." 

The add instruction works with both signed and unsigned numbers and 
affects all six status flags. Table 6.1 on page 222 gives some examples. 

The second version of the addition instruction is the adc (add with carry) 
instruction. This instruction has the general format 

adc destination, source 

and the semantics of this instruction are 

destination := destination + source + CF 

The only difference between add and adc is that the adc instruction adds the 
contents of the carry flag (CF). The adc instruction is useful in performing 
addition of long multiword numbers (i.e., numbers that take more than 32 bits). 
The three instructions that manipulate the carry flag-stc, clc, and cmc-are 
useful in conjunction with instructions like adc. 

The last instruction that performs addition is the single-operand inc in
struction with the following format: 

inc destination 

where the destination operand can be either in a register or in memory. The 
operand of the inc instruction is treated as an unsigned number. For the sake 
of completeness, we state the action taken by inc as 

destination := destination + 1 

In general, 

inc BX 

is preferred to 

add BX,1 

because the inc instruction requires less memory space, even though both take 
one clock cycle to execute. The two instructions, however, are not exactly 
equivalent even though they both produce the same result. The chief differ
ence is that the inc instruction does not affect the carry flag, whereas the add 
instruction does (see page 214). 

As an example, consider the following two code fragments: 



Section 6.2 Arithmetic Instrnctions 225 

add version inc version 

clc clc 
mov eX,OFFFFH mov eX,OFFFFH 
add eX,1 inc ex 
jc add_one jz add_one 

add_one: add_one: 
inc DX inc DX 

The add version can either use j c or j z to detect overflow, whereas the inc 
version should use j z. 

6.2.2 Subtraction Instructions 

There are three subtract instructions corresponding to the add, adc, and inc 
instructions discussed in the last section. These are the sub, sbb, and dec 
instructions. The general format of the sub instruction is 

sub destination, source 

which performs the following action: 

destination := destination - source 

The actual subtract operation is implemented by negating the source operand 
and then adding it to the destination operand. Thus, the actions performed by 
the sub instruction are 

destination := destination + (-source) 

Since the subtract operation is noncommutative, proper specification of 
source and destination operands is important even for correct operation. Like 
the add instruction, the sub instruction works with both the signed and unsigned 
integers. It also affects all six status flags (see Table 6.1 on page 222). 

The second subtract instruction sbb (subtract with borrow) is the adc coun
terpart. The syntax is 

sbb destination, source 

and the semantics are 

destination := destination - source - eF 



226 Chapter 6 Arithmetic Flags and Instructions 

The second subtract operation is done only if CF is 1. As in the sub 
instruction, the subtract operation is replaced by addition of the corresponding 
negative operands. This instruction works both on unsigned and signed binary 
numbers and updates all six status flags. This instruction is useful in performing 
subtract operation on numbers that are longer than 32 bits. 

The third instruction dec (decrement) is a single-operand instruction with 
the following syntax: 

dec destination 

It subtracts one from the destination 

destination := destination - 1 

The operand is treated as an unsigned number. This instruction, like the inc 
instruction, updates all status flags except the carry flag. 

The next instruction that we discuss is the neg (negate) instruction, which 
is also a single-operand instruction. The instruction 

neg destination 

subtracts the destination operand from O. Thus, this instruction effectively 
reverses the sign of an integer and is meaningful only with signed numbers. 

destination := 0 - destination 

neg updates all six status flags. The carry flag is always set except when the 
operand is zero, in which case it is cleared. 

There is a slight problem when negating the smallest number that can be 
represented. Recall that, with 8 bits we can represent signed integers in the range 
-128 to + 127. What happens if we try to negate -128, as in the following 
example: 

mov AL,-128 
neg AL 

Since + 128 is out of range, the overflow flag will be set and there will be no 
change in the operand value (it remains -128). A similar situation arises with 
16- and 32-bit operands. 

With add and neg instructions, we can implement 

sub destination, source 

as a sequence of 

neg source 
add destination, source 



Section 6.2 Arithmetic Instmctions 227 

However, the former is more efficient and convenient. Furthermore, it aids in 
program readability. 

The last instruction emp (compare) has the format 

cmp destination, source 

which effectively subtracts the source operand from the destination operand but 
does not affect any of the two operands, as shown below: 

destination - source 

The flags are updated as if the sub operation has been performed. The main pur
pose of the emp instruction is to update the flags so that a subsequent conditional 
jump instruction can test these flags. More will be said about this instruction 
in Chapter 7, which discusses the branching and iterative instructions available 
in the Pentium assembly language. 

6.2.3 Multiplication Instructions 

Multiplication is more complicated than the addition and subtraction operations 
for two reasons: 

1. First, mUltiplication produces double-length results. For example, if the 
two operands are 8 bits each, the result requires 16 bits. To convince 
you that this is indeed the case, consider multiplying two 8-bit numbers. 
Assuming unsigned representation, FFH (2550) is the maximum number 
that the source operands can take. Thus, the multiplication produces the 
maximum result, as shown below. 

11111111 x 
(2550) 

11111111 
(2550) 

1111111011111111 
(650250) 

Similarly, you can verify that multiplication of two 16-bit numbers re
quires 32 bits to store the result, and two 32-bit numbers require 64 bits 
for the result. 

2. Second, unlike the addition and subtraction operations, multiplication 
of signed numbers should be treated differently from that of unsigned 
numbers. This is because the resulting bit pattern depends on the type of 
input, as illustrated by the following example. 

We have already seen that treating FFH as the unsigned number results in 
multiplying 2550 x 2550. 



228 Chapter 6 Arithmetic Flags and Instructions 

11111111 x 11111111 = 1111111011111111 

Now, what if FFH is representing a signed number? In this case, FFH is 
representing -1 D and the result should be 1, as shown below. 

11111111 x 11111111 = 00000000 00000001 

As you can see, the resulting bit patterns are different for the two cases. 

Thus, Pentium provides two multiplication instructions-one for unsigned 
numbers, and the other for signed numbers. We first discuss the unsigned 
multiplication instruction, which has the format 

mul source 

The source operand can be in a general-purpose register or in memory. Imme
diate operand specification is not allowed. Thus, 

mul 10 ; invalid 

is an invalid instruction. The mul instruction works on 8-, 16-, and 32-bit 
unsigned numbers. 

If the source operand is a byte, it is multiplied by the contents of the AL 
register. The 16 bit result is placed in the AX register, as shown below. 

High-order 8 bits Low-order 8 bits 

~x 
If the source operand is a word, it is multiplied by the contents of the AX 

register and the doubleword result is placed in the DX and AX register pair, 
with the AX register holding the lower-order 16 bits, as shown below. 

High-order 16 bits Low-order 16 bits 

~x 
If the source operand is a double word, it is multiplied by the contents of 

the EAX register and the 64-bit result is placed in the EDX and EAX register 
pair, with the EAX register holding the lower-order 32 bits, as shown below. 



Section 6.2 Arithmetic Instntctions 229 

High-order 32 bits Low-order 32 bits 

~x ~ ~ 
The mul instruction affects all six status flags. However, it updates only the 

carry and overflow flags. The remaining four flags are undefined. The carry 
and overflow flags are set if the upper half of the result is nonzero; otherwise, 
they are both cleared. 

Setting of the carry and overflow flags does not indicate an error condition. 
Instead, this condition implies that AH, DX, or EDX contains significant digits 
of the result. 

For example, the following code 

mov AL,tO 
mov DL,25 
mul DL 

will clear both the carry and the overflow flags, as the result of the mul is 250D, 
which can be stored in the AL register (and the AH register contains 00000000). 
On the other hand, executing 

mov AL,10 
mov DL,26 
mul DL 

will set the carry and overflow flags indicating that the result is more than 255D. 
The multiplication instruction that works on signed numbers is imul (Inte

ger multiplication) and has the same format l as the mul instruction 

imul source 

The behaviour of the imul instruction is similar to that of the mul instruction. 
The only difference to note is that the carry and overflow flags are set if the 
upper half of the result is not the sign extension of the lower half. To understand 
the sign extension in signed numbers, consider the following example. 

We know that -66D is represented using 8 bits as 

10111110 

Now, suppose that we can use 16 bits to represent the same number. Using 16 
bits, -66 is represented as 

'The imul instruction supports several other formats, including specification of an immediate value. We do not 
discuss these details-see Intel's Pentium Developer's Manual for details. 



230 Chapter 6 Arithmetic Flags and Instructions 

1111111110111110 

The upper 8 bits are simply sign-extended (i.e., the sign bit is copied into these 
bits), and doing so does not change the magnitude. 

Following the same logic, the positive number 66, represented using 8 bits 
as 

01000010 

can be sign-extended to 16 bits by 

0000000001000010 

As with the mul instruction, setting of the carry and overflow flags does not 
indicate an error condition; it simply indicates that the result requires double 
length to store. 

Here are some examples of the imul instruction. Execution of 

mov DL,OFFH DL := -1 
mov AL,42H ; AL := 66 
imul DL 

causes the result 

1111111110111110 

to be placed in the AX register. The CF and OF are cleared, as the AH is the 
sign extension of AL. This is also the case of the following code: 

mov DL,OFFH 
mov AL,OBEH 
imul DL 

which produces the result 

0000000001000010 

DL := -1 
; AL := -66 

(+66D) 

in the AX register. Since the AH register is the sign extension of the AL register, 
both the carry and overflow flags are cleared. 

In contrast, both flags are set for the following code: 

mov DL,25 DL := 25 
mov AL,OF6H; AL := -10 
imul DL 

which produces the result 

1111111100000110 (-250D) 



Section 6.2 Arithmetic Instructions 231 

6.2.4 Division Instructions 

The division operation is even more complicated than the multiplication for two 
reasons: 

1. Division generates two result components-quotient and remainder. 

2. In multiplication, by using double-length registers, no overflow occurs. 
In division, divide overflow is a real possibility and Pentium generates a 
special software interrupt when a divide overflow occurs. 

As with multiplication, two versions of the divide instruction are provided to 
work on unsigned and signed numbers. 

di v source (unsigned) 
idi v source (signed) 

The source operand specified in the instruction is used as the divisor. Both 
instructions can work on 8-, 16-, or 32-bit numbers. All six status flags are 
affected and are undefined. None of the flags are updated. We will first consider 
the unsigned version. 

If the source operand is a byte, the dividend is assumed to be in the AX 
register and 16 bits long. After division, the quotient is returned in the AL 
register and the remainder in the AH register, as shown below. 

16-bit dividend 

Quotient Remainder 

and 

Divisor 

For a word-size operand, the dividend is assumed to be 32 bits long and in 
the DX and AX registers (upper 16 bits in DX). After the division, the 16-bit 
quotient will be in AX and the 16-bit remainder in DX, as shown below. 



232 Chapter 6 Arithmetic Flags and Instructions 

32-bit dividend 

Quotient Remainder 

and 

Divisor 

For a 32-bit operand, the dividend is assumed to be 64 bits long and in the 
EDX and EAX registers (upper 32 bits in EOX). After the division, the 32-bit 
quotient will be in EAX and the 32-bit remainder in EOX, as shown below. 

64-bit dividend 

Quotient Remainder 

~ and ~ 
Divisor 

Example 6.1 8-bit division 

This example considers 8-bit division of 251/ 12 = 20 with 11 as the remain
der. The following code 

mav 
mav 
div 

AX,OOFBH 
CL,OCH 
CL 

AX := 2510 
OL := 120 

will leave 14H (200) in the AL register and OBH (110) as the remainder in the 
AH register. 000000 

Example 6.2 16-bit division 

Now, let us look at 16-bit division. Consider 5147/300 = 17, with 47 as the 
remainder. The following code 

mav 
mav 
mav 
div 

OX,O 
AX, 141BH 
CX,012CH 
CX 

clear OX 
AX := 51470 
CX := 3000 



Section 6.2 Arithmetic Instructions 233 

will leave 0012H (170) in AX and 002FH (470) in OX as the remainder of the 
division. 000000 

Now let us tum our attention to the signed division operation. The idi v 
instruction has the same format and behaviour as the unsigned di v instruction 
including the registers used for the dividend, quotient, and remainder. 

The idi v instruction introduces a slight complication when the dividend 
is a negative number. For example, assume that we want to perform a 16-bit 
division of -251 by 12. Since -251 = FFI4H, the AX register is set to FFI4H. 
However, the OX register has to be initialized to FFFFH by sign-extending the 
AX register. If OX were set to OOOOH as we did in the unsigned di v operation, 
the dividend 0000FF14H is treated as a positive number 653000. The 32-bit 
equivalent of - 251 is FFFFFF 14H. Also, for a positive dividend, the OX should 
have OOOOH. 

To aid sign extension in instructions like the idi v operation, Pentium pro
vides several instructions. 

cbw (convert byte to word) 
cwd (convert word to double word) 
cdq (convert double word to quad word) 

These instructions take no operands. The first instruction can be used to sign
extend the AL register into the AH register and is useful with the 8-bit idi v 
instruction. The cwd instruction sign extends AX into the OX register and is 
useful with the 16-bit idiv instruction. The cdq instruction sign extends EAX 
into EOX. In fact, both cwd and cdq use the same opcode 99H, and the operand 
size determines whether to sign-extend the AX or EAX registers. 

For completeness, we mention three other related instructions. The cwde 
instruction sign extends AX into EAX much like the cbw instruction. Just 
like the cwd and cdq, the same opcode 98H is used for both cbw and cwde 
instructions. The operand size determines which one should be applied. Note 
that cwde is different from cwd in that the cwd instruction uses the OX:AX 
register pair, whereas cwde uses the EAX register as the destination. 

Pentium also provides the following two move instructions: 

movsx dest, src (move sign-extended src to dest) 
movzx dest, src (move zero-extended src to dest) 

In both these instructions, dest has to be a register, while the src operand 
can be in either a register or memory. If the source is an 8-bit operand, the 
destination has to be either a 16- or 32-bit register. If the source is a 16-bit 
operand, the destination must be a 32-bit register. 



234 Chapter 6 Arithmetic Flags and Instructions 

Here are some examples of the idi v instruction along with cbw and cwd 
instructions. 

Example 6.3 Signed 8-bit division 

The following sequence of instructions will perform a signed 8-bit division 
of -95 by 12. 

mov AL,OA1H AL := -95 
cbw AH := FFH 
mov CL,OCH CL := 12 
idiv CL 

The idi v instruction will leave F9H (-70) in AL and F5H (-110) in the AH 
register as the remainder of the division. 000000 

Example 6.4 Signed 16-bit division 

This example considers 16-bit division. Suppose that we want to divide 
- 51470 by 3000. The following sequence 

mov AX,OEBE5H AX := -51470 
cwd OX := FFFFH 
mov CX,012CH CX := 3000 
idiv CX 

will perform this division and leaves FFEFH (-170) in AX and FFD1H (-470) 
in OX as the remainder. 000000 

6.3 Application Examples 

To demonstrate the application of the arithmetic instructions and flags, we write 
two procedures to input and output signed 8-bit integers in the range of -128 
to + 127. These procedures are: 

GetInt8 Reads a signed 8-bit integer from the keyboard 
into the AL register 

PutInt8 ~isplays a signed 8-bit integer that is in the AL 
register 

The following two subsections describe these procedures in detail. 



Section 6.3 Application Examples 235 

6.3.1 Putlnt8 Procedure 

Our objective here is to write a procedure that displays the signed 8-bit integer 
in the AL register. In order to do this, we have to separate individual digits of 
the number to be displayed and convert them to its ASCII representation. The 
steps involved are illustrated by the following example, which assumes that 
AL = 108D. 

separate 1 ---+ convert to ASCII ---+ 31 H ---+ display 
separate 0 ---+ convert to ASCII ---+ 30H ---+ display 
separate 8 ---+ convert to ASCII ---+ 38H ---+ display 

As you can see, separating individual digits is the heart of the procedure. 
This step is surprisingly simple! All you have to do is repeatedly divide by 10, 
as shown below (for a related discussion, see Appendix A): 

108/10 
10/10 
1110 

quotient 
10 
1 
o 

remainder 
8 
o 
1 

The only problem with this step is that the digits come out in the reverse 
order. Therefore, we need to buffer them before displaying. The pseudocode 
for the PutInt8 procedure is as follows: 

PutInt8 (number) 
if (number is negative) 
then 

display '-' sign 
number := -number {reverse sign} 

end if 
index:= 0 
repeat 

quotient := numberllO {integer division} 
remainder:= number % 10 {% is modulo operator} 
buffer[index] := remainder + 30H 
{save the ASCII character equivalent of remainder} 
index : = index + 1 
number:= quotient 

(number = 0) 
repeat 

index : = index - 1 
display digit at buffer[index] 

(index = 0) 
end Put Int8 



236 Chapter 6 Arithmetic Flags and Instructions 

Program 6.24 The PutInt8 procedure to display an 8-bit signed number (in get put . asm file) 

1 : 
2: 
3: 
4: 

i-----------------------------------------------------------
;Put1nt8 procedure displays a signed 8-bit integer that is 
;in AL register. All registers are preserved. 
------------------------------------------------------------, 

5: Put1nt8 PROC 
6: push BP 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

mov 
sub 
push 
push 
push 
test 
jz 

14: negative: 

BP,SP 
SP,3 
AX 
BX 
SI 
AL,80H 
positive 

15: PutCh '-' 
16: neg AL 
17: positive: 
18: 
19: 
20: repeat: 

mov 
sub 

BL,10 
SI,SI 

local buffer space 

negative number? 

sign for negative numbers 
convert to magnitude 

divisor = 10 
SI := 0 (SI pOints to buffer) 

21: sub AH,AH AH := 0 (AX is the dividend) 
22: div BL 
23: ; AX/BL leaves AL:= quotient & AH := remainder 
24: add AH, '0' convert remainder to ASCII 
25: mov [BP+SI-3],AH copy into the buffer 
26: inc SI 
27: cmp 
28: jne 
29: display_digit: 
30: dec 
31: mov 
32: PutCh 
33: jnz 
34: display_done: 
35: pop 
36: pop 
37: pop 
38: 
39: 
40: 

mov 
pop 
ret 

AL,O 
repeat 

SI 

quotient = zero? 
if so, display the number 

AL,[BP+SI-3] ; display digit pointed by SI 
AL 
display_digit ; if SI<O, done displaying 

81 
BX 
AX 
8P,BP 
BP 

restore registers 

clear local variable space 



Section 6.3 Application Examples 237 

41: Putlnt8 ENDP 

The PutInt8 procedure shown in Program 6.24 follows the logic of the pseu
docode. Some points to note are: 

• Buffer is considered as a local variable. Thus, we reserve 3 bytes in the 
stack (see line 8). 

• The code 

test AL,80H 
jz positive 

tests whether the number is negative or positive. Remember that the sign 
bit (the leftmost bit) is 1 for a negative number. 

• Reversing sign is done by the 

neg AL 

instruction on line 16. 

• Note that we have to initialize AH with 0 (line 21), as the di v instruction 
assumes a 16-bit dividend in the AX register when the divisor is an 8-bit 
number. 

• Conversion to ASCII character representation is done on line 24 using 

add AH, '0' 

• SI is used as the index into the buffer, which starts at [BP-3]. Thus, 
[BP+SI-3] points to the current byte in the buffer (line 31). 

• The repeat while condition (index = 0) is tested by 

jnz display_digit 

on line 33. 

6.3.2 GetIntS Procedure 

The Get Int8 procedure reads a signed integer and returns the number in the AL 
register. Since only 8 bits are used to represent the number, the range is limited 
to -128 to + 127 (both inclusive). The key part of the procedure converts a 
sequence of input digits received in character form to its binary equivalent. The 
conversion process, which involves repeated multiplication by 10, is illustrated 
for the input number 158. 



238 

input digit 
initial value 
'1' (31H) 
'5' (35H) 
'8' (38H) 

Chapter 6 Arithmetic Flags and Instructions 

numeric value number:= number * 10 + numeric value 
o 

1 0*10+1 = 1 
5 1*10+5 = 15 
8 15*10+8 = 158 

The pseudocode of the GetInt8 procedure is as follows: 

GetInt80 
read input character into char 
if «char = '-') OR (char = '+'» 
then 

sign:= char 
read the next character into char 

end if 
number:= char - '0' {convert to numeric value} 
count := 2 {number of remaining digits to read} 

repeat 
read the next character into char 
if (char "# carriage return) 
then 

number := number * 10 + (char - '0') 
else 

goto convert_done 
end if 
count:= count - 1 

(count = 0) 
convert_done: 

{check for out-of-range error} 
if «number> 128) OR «number = 128) AND (sign "# ' - '») 
then 

out of range error 
set carry flag 

else {number is OK} 
clear carry flag 

end if 
if (sign = '-') 
then 

number = -number {reverse sign} 
end if 

end GetInt8 



Section 6.3 Application Examples 239 

Program 6.25 The GetInt8 procedure to read a signed 8-bit integer (in getput. asm file) 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

._----------------------------------------------------------, 
;GetInt8 procedure reads an integer from the keyboard and 
;stores its equivalent binary in AL register. If the number 
;is within -128 and +127 (both inclusive), CF is cleared; 
; otherwise, CF is set to indicate out-of-range error. 
;No error check is done to see if the input consists of 
;digits only. All registers are preserved except for AX. 
._----------------------------------------------------------, 

9: CR 
10: 

EQU OOH 

11: 
12: 

Getlnt8 PROC 
push 
push 
push 
sub 
sub 

13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 

get_next_char: 

sign: 

26: digit: 

GetCh 
cmp 
je 
cmp 
jne 

mov 
jmp 

27: sub 
28: mov 
29: sub 
30: mov 
31: mov 
32: convert_loop: 
33: GetCh 
34: cmp 
35: je 
36: sub 
37: mul 
38: add 
39: loop 
40: convert_done: 

BX 
CX 
OX 
OX,OX 
BX,BX 

OL 
OL, '-' 
sign 
OL, '+' 
digit 

BH,OL 
get_next_char 

AX,AX 
BL,10 
OL, '0' 
AL,OL 
CX,2 

OL 
OL,CR 
convert done 
OL, '0' 
BL 
AX,OX 
convert_loop 

save registers 

OX := 0 
BX := 0 

read input from keyboard 
is it negative sign? 
if so, save the sign 
is it positive sign? 
if not, process the digit 

BH keeps sign of input number 

AX := 0 
BL holds the multiplier 
convert ASCII to numeric 

maximum two more digits to read 

carraige return? 
if so, done reading the number 
else, convert ASCII to numeric 
multiply total (in AL) by 10 
and add the current digit 



240 

41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 

cmp 
ja 
jb 
cmp 
jne 

AX,128 
out_of_range 
number_OK 
BH, ,-, 

out_of_range 

Chapter 6 Arithmetic Flags and Instructions 

if AX > 128, number out of range 
if AX < 128, number is valid 
AX = 128. Must be a negative; 
otherwise, an invalid number 

number_OK: 
cmp 
jne 
neg 

BH, '-' 
number_done 
AL 

number negative? 
if not, we are done 
else, convert to 2's complement 

number_done: 
clc CF := 0 (no error) 
jmp done 

out_of_range: 
stc 

done: 
pop 
pop 
pop 
ret 

OX 
CX 
BX 

CF := 1 (range error) 

restore registers 

Getlnt8 ENOP 

The assembly language code for the Get Int8 procedure is given in Program 6.25. 
The procedure uses GetCh to read input digits into the DL register. 

• The character input digits are converted to their numeric equivalent by 
subtracting '0' on line 29. 

• The multiplication is done on line 37, which produces a 16-bit result in 
AX. Note that the numeric value of the current digit (in DX) is added 
(line 38) to detect the overflow condition rather than the 8-bit value in 
DL. 

• When the conversion is done, AX will have the absolute value of the 
input number. Lines 41-45 perform the out-of-range error check. To do 
this check, the following conditions are tested: 

AX> 128 
AX= 128 

=> out of range 
=> input must be a negative number to be a 

valid number; otherwise, out of range 

• If the input is a negative number, the value in AL is converted to 2's 
complement representation by using the neg instruction (line 49). 

• The ele (clear CF) and ste (set CF) instructions are used to indicate the 
error condition (lines 51 and 54). 



Section 6.4 Multiword Arithmetic 241 

6.4 Multiword Arithmetic 

The arithmetic instructions like add, sub, and mul work on 8-, 16- or 32-bit 
operands. What if an application requires numbers larger than 32 bits? Such 
numbers obviously require arithmetic to be done on multiword operands. In 
this section, we provide an introduction to multiword arithmetic by discussing 
how the basic four arithmetic operations-addition, subtraction, multiplication, 
and division-are done on unsigned 64-bit integers. 

6.4.1 Addition and Subtraction 

Addition and subtraction operations on multi word operands are straightforward. 
Let us first look at the addition operation. We start the addition process by adding 
the rightmost 32 bits of the two operands. In the next step, the next 32 bits are 
added along with any carry generated by the previous addition. Remember that 
the adc instruction can be used for this purpose. 

The procedure add64 (in arith64. asm file), for example, performs addi
tion of two 64-bit numbers in EBX:EAX and EDX:ECX. The result is returned 
in EBX:EAX. The overflow condition is indicated by setting the carry flag. 

Program 6.26 Addition of two 64-bit numbers 

1: ;-----------------------------------------------------------
2: ;Adds two 64-bit numbers received in EBX:EAX and EDX:ECX. 
3: ;The result is returned in EBX:EAX. Overflow/undeflow 
4: ;conditions are indicated by setting the carry flag. 
5: ;Other registers are not disturbed. 
6: ;-----------------------------------------------------------
7: add64 PROC 
8: add EAX,ECX 
9: adc EBX,EDX 

10: ret 
11: add64 ENDP 

The 64-bit subtraction is also simple and similar to the 64-bit addition. For 64-
bit subtraction, substitute sub for add and sbb for adc in the add64 procedure. 



242 Chapter 6 Arithmetic Flags and Instructions 

6.4.2 Multiplication 

Multiplication of multiword operands is not as straightforward as addition and 
subtraction. In this section, we will give two procedures to multiply two un
signed 64-bit numbers. The first one uses the longhand multiplication (see 
Appendix A). The second procedure uses the mul instruction. 

Longhand Multiplication 

This procedure tests bits of the multiplier from right to left and "appropriately" 
adds the multiplicand depending on whether the bit tested is 1 or O. The fol
lowing algorithm is a modification of the basic longhand multiplication. The 
final 128-bit product is in P:A. 

P:=O 
A := multiplier 
B := multiplicand 
count:= 64 
while (count> 0) 

if (LSB of A = 1) 
then 

P:=P+B 
CF := carry generated by P + B 

else 
CF:=O 

end if 
shift right CF:P:A by one bit position 
{LSB of multiplier is not used in the rest of the algorithm} 

count:= count - 1 
end while 

Remember that multiplying two 64-bit numbers A and B yields a 128-bit 
number. To implement the algorithm for multiplying two unsigned n-bit num
bers, we need three n-bit registers. We could use the memory but using memory 
slows down multiplication operation substantially. Since we are interested in 
multiplying two 64-bit numbers, we have enough general-purpose registers for 
use by the algorithm. 

To see the workings of the algorithm, let us trace the steps for two 4-bit 
numbers A = 13D and B = 5D. The table below shows the contents of CF:P:A 
after the addition and the shift operations. 



Section 6.4 Multiword Arithmetic 243 

AfterP + B After the shift 
initial state ? 0000 1101 - - -

iteration 1 0 0101 1101 ? 0010 1110 
iteration 2 0 0010 1110 ? 0001 0111 
iteration 3 0 0110 0111 ? 0011 0011 
iteration 4 0 1000 0011 ? 0100 0001 

For more information on multiword arithmetic operations, see the excellent 
appendix by Goldberg in Computer Architecture: A Quantitative Approach by 
Hennessy and Patterson. This algorithm and the division algorithm given in the 
next section are based on the procedures given in this text. 

Program 6.27 Multiplication of two 64-bit numbers using the longhand mUltiplication algorithm 

1: ;-----------------------------------------------------------
2: ;Multiplies two 64-bit unsigned numbers A and B. The input 
3: ;number A is received in EBX:EAX and B in EDX:ECX registers. 
4: ;The 128-bit result is returned in EDX:ECX:EBX:EAX registers. 
5: ;This procedure uses longhand multiplication algorithm. 
6: ;Preserves all registers except EAX, EBX, ECX, and EDX. 
7: ;-----------------------------------------------------------
8: ; local variable COUNT EQU WORD PTR [BP-2] 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

mult64 PROC 
push 
mov 
sub 
push 
push 
mov 
mov 
sub 
sub 
mov 

step: 
test 
jz 
add 
adc 

shiftl : 
rcr 
rcr 

BP 
BP,SP 
SP,2 
ESI 
EDI 
ESI,EDX 
EDI,ECX 
EDX,EDX 
ECX,ECX 
COUNT, 64 

AX,l 
shiftl 
ECX,EDI 
EDX,ESI 

EDX,l 
ECX,l 

local variable 

SI:DI := B 

P := 0 

count = 64 (64-bit number) 

LSB of A is 1? 
if not, skip add 
Otherwise, P := P+B 

shift right P and A 



244 

29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 

rcr 
rcr 

dec 
jnz 

EBX,1 
EAX,1 

COUNT 
step 

; restore registers 
pop EDI 
pop ESI 
mov SP,BP 
pop BP 

Chapter 6 Arithmetic Flags and Instructions 

if COUNT is not zero 
repeat the process 

clear local variable space 

39: ret 
40: mult64 ENDP 

The procedure mul t64 (in the ari th64. asm file) implements this algo
rithm to multiply two unsigned 64-bit numbers. The two numbers are received 
in EBX:EAX and EDX:ECX. The 128-bitresult is returned in EDX:ECX:EBX:EAX. 

• The procedure uses the ESI:EDI register to store the 64-bit multiplicand 
B. The multiplier A is mapped to EBX:EAX and p to EDX:ECX. 

• A local variable COUNT is used. It is accessible at [BP-2]. The EQU 
statement on line 8 establishes a convenient label to refer to it. 

• The while loop is implemented by lines 21-33. The if condition is 
implemented by the test instruction on line 22. 

• The 64-bit addition ofP+B is done by lines 24-25. These two statements 
are similar to the code given in the add64 procedure. 

• Right shiftofCF:P:A is done by the four 16-bit rcr statements (lines 27-
30). Note that the test instruction (line 22) clears the carry flag indepen
dent of the result. Therefore, if the LSB of A is zero, CF is zero during 
the right shift process. 

Using the mul Instruction 

We will now look at an alternative procedure that uses the 32-bit mul instruction 
for multiplying two unsigned 64-bit integers. The input number A can be con
sidered as consisting of AO and At, with AO representing the lower-order 32 bits 
and At the higher-order 32 bits. Similarly, BO and Bt represent components 
of B. Now we can use the mul instruction to multiply these 32-bit components. 
The algorithm is as follows: 



Section 6.4 Multiword Arithmetic 245 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

temp:= AO x BO 
result:= temp 
temp := Al x BO 
temp := left shift temp value by 32 bits 
{the shift operation replaces zeroes on the right} 
result := result + temp 
temp:= AO x Bl 
temp := left shift temp value by 32 bits 
{the shift operation replaces zeroes on the right} 
result := result + temp 
temp:= Al x Bl 
temp := left shift temp value by 64 bits 
{the shift operation replaces zeroes on the right} 
result := result + temp 

The procedure mul t64w follows the above algorithm in a straightforward 
fashion. The procedure, like the mul t64 procedure, receives the two 64-bit 
operands in EBX:EAX and EDX:ECX register pairs. The 128-bit result is 
returned in registers EDX:ECX:EBX:EAX. It uses a 128-bit local variable for 
storing the result. Note that the result is divided into four components and the 
EQU statements on lines 9-12 assign labels to them. 

Program 6.28 Multiplication of two 64-bit numbers using the mul instruction 

;-----------------------------------------------------------
;Multiplies two 64-bit unsigned numbers A and B. The input 
;number A is received in EBX:EAX and B in EDX:ECX registers. 
;The 64-bit result is returned in EDX:ECX:EBX:EAX registers. 
;It uses mul instruction to multiply 32-bit numbers. 
;Preserves all registers except EAX, EBX, ECX, and EDX. 
------------------------------------------------------------, 
; local variables 
RESULT3 EQU DWORD PTR [BP-4] ; most significant 32 bits of result 
RESULT2 EQU DWORD PTR [BP-8] 
RESULT 1 EQU DWORD PTR [BP-12] 
RESULTO EQU DWORD PTR [BP-16]; least significant 32 bits of result 

14: mult64w PROC 
15: push BP 
16: mov BP,SP 



246 

17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 

sub SP,16 
push ESI 
push EDI 
mov EDI,EAX 
mov ESI,EBX 
mov EBX , EDX 
; multiply AO and BO 
mov EAX,ECX 
mul EDI 
mov RESULTO,EAX 

27: mov RESULT1,EDX 
28: ; multiply Ai and BO 
29: mov EAX,ECX 
30: mul ESI 
31: add RESULT1,EAX 
32: adc EDX,O 
33 : mov RESUL T2 ,EDX 

Chapter 6 Arithmetic Flags and Instructions 

local variables for the result 

ESI:EDI := A 

EBX:ECX := B 

34: sub EAX, EAX store 1 in RESULT3 if a carry 
35: rcl EAX ,1 was generated 
36: mov RESULT3,EAX 
37: ; multiply AO and Bl 
38: mov EAX,EBX 
39: mul EDI 
40: add RESULT1,EAX 
41 : adc RESUL T2 ,EDX 
42 : adc RESUL T3 ,0 
43: ; multiply Ai and Bl 
44: mov EAX,EBX 
45: mul ESI 
46: add RESULT2,EAX 
47 : adc RESUL T3 'EDX 
48: ; copy result to the registers 
49: mov EAX,RESULTO 
50 : mov EBX, RESUL T1 
51: mov ECX,RESULT2 
52: mov EDX,RESULT3 
53: ; restore registers 
54: pop EDI 
55: pop ESI 
56: 
57: 

mov 
pop 

58: ret 
59: mult64w ENDP 

SP,BP 
BP 

clear local variable space 



Section 6.4 Multiword Arithmetic 247 

6.4.3 Division 

There are several division algorithms to perform n-bit unsigned integer di
vision. Here we describe and implement what is called the "non-restoring" 
division algorithm. The division operation, unlike the multiplication operation, 
produces two results: a quotient and a remainder. Thus when dividing two n-bit 
integers-A by B-the quotient and the remainder are n-bits long as well. 

To implement the division algorithm, we need an additional register P that 
is n+ 1 bits long. The algorithm consists of testing the sign of P and, depending 
on the sign of P, either adding or subtracting B from P. Then P:A is left shifted 
while manipulating the rightmost bit of A. After repeating these steps n times, 
the quotient is in A and the remainder is in P. The pseudocode of the algorithm 
is given below. 

p:=o 
A:= dividend 
B := divisor 
count:= 64 
while (count> 0) 

if (P is negative) 
then 

else 

shift left P:A by one bit position 
P:= P+ B 

shift left P:A by one bit position 
p :=p - B 

end if 
if (P is negative) 
then 

set low-order bit of A to 0 
else 

set low-order bit of A to 1 
end if 

count := count - 1 
end while 
if (P is negative) 

P:=P+B 
end if 

After executing the algorithm, the quotient is in A and the remainder is in P. 



248 Chapter 6 Arithmetic Flags and Instrnctions 

An implementation of this division algorithm is given in Program 6.29. 
The procedure, like mul t64, receives a 64-bit dividend in EBX:EAX and a 
64-bit divisor in the EDX:ECX register pairs. The quotient is returned in the 
EBX:EAX register pair and the remainder in the EDX:ECX register pair. If 
the divisor is zero, the carry is set to indicate overflow error; the carry flag is 
cleared otherwise. 

The P register is mapped in div64 to SIGN:EDX:ECX, where SIGN is 
a local variable that is used to store the sign of P. The code on lines 20-23 
checks if the divisor is zero. If zero, the carry flag is set (line 24) and the 
control is returned. As in mul t64, the procedure uses rcl to left shift the 65 
bits consisting of SIGN:EDX:ECX:EBX:EAX. The rest of the code follows the 
algorithm. 

Program 6.29 Division of two 64-bit numbers 

1: ;-----------------------------------------------------------
2: ;Oivides two 64-bit unsigned numbers A and B (i.e., A/B). 
3: ;The number A is received in EBX:EAX and B in EOX:ECX registers. 
4: ;The 64-bit quotient is returned in EBX:EAX registers and 
5: ;the remainder is retuned in EOX:ECX registers. 
6: ;Oivide by zero error is indicated by setting 
7: ;the carry flag; carry flag is cleared otherwise. 
8: ;Preserves all registers except EAX, EBX, ECX, and EDX. 
9: ;-----------------------------------------------------------

10: ; local variables 
11: SIGN EQU BYTE PTR [BP-l] 
12: BIT_COUNT EQU BYTE PTR [BP-2] 
13: div64 PROC 
14: push BP 
15: mov BP,SP 
16: sub SP,2 local variable space 
17: push ESI 
18: push EOI 
19: ; check for zero divisor in OX:CX 
20: cmp ECX,O 
21: 
22: 
23: 
24: 
25: 
26: 
27: 

jne 
cmp 
jne 
stc 
jmp 

non_zero: 
mov 

non_zero 
EOX,O 
non_zero 

SHORT skip 

ESI,EDX 

if zero, set carry flag 
to indicate error and return 

SI:OI := B 



Section 6.4 Multiword Arithmetic 249 

28: mov EDI,ECX 
29: sub EDX,EDX P := 0 
30: sub ECX,ECX 
31: mov SIGN,O 
32: mov BIT_COUNT,64 ; BIT_COUNT := # of bits 
33: next_pass: ; ****** main loop iterates 64 times ****** 
34: test SIGN,1 if P is positive 
35: jz P_positive jump to P_positive 
36: P_negative: 
37: reI EAX,1 right shift P and A 
38: reI EBX,1 
39: reI ECX,1 
40: reI EDX,1 
41 : reI SIGN,1 
42: add ECX,EDI P := P + B 
43: ade EDX,ESI 
44: ade SIGN,O 
45: jmp test_sign 
46: P_positive: 
47: reI EAX,1 right shift P and A 
48: reI EBX,1 
49: reI ECX,1 
50: reI EDX,1 
51 : reI SIGN,1 
52: sub ECX,EDI P := P + B 
53: sbb EDX,ESI 
54: sbb SIGN,O 
55: test_sign: 
56: test SIGN,1 if P is negative 
57: jnz bitO set lower bit of A to 0 
58: bit1: else, set it to 1 
59: or AL,1 
60: jmp one_pass_done set lower bit of A to 0 
61: bitO: 
62: and AL,OFEH set lower bit of A to 1 
63: jmp one_pass_done 
64: one_pass_done: 
65: dec BIT_COUNT iterate for 32 times 
66: jnz next_pass 
67: div_done: division completed 
68: test SIGN,1 if P is positive 
69: jz div_wrap_up we are done 
70: add ECX,EDI otherwise, P := P + B 
71: ade EDX,ESI 



250 Chapter 6 Arithmetic Flags and Instructions 

72: div_wrap_up: 
73: clc clear carry to indicate no error 
74: skip: 
75: pop ED! restore registers 
76: pop ESI 
77: mov SP,BP clear local variable space 
78: pop BP 
79: ret 
80: div64 ENDP 

6.5 Performance: Multiword Multiplication 

We have discussed two methods for performing multiplication. Let us now look 
at the performance implications of these methods. 

Experiment 1 

We have presented a general multiplication algorithm based on longhand mul
tiplication in Section 6.4.2. The alternative algorithm uses the mul instruction. 
Figure 6.1 shows the performance of these methods for performing 

264 - 1 x 264 - 1 

As you can see, the mul instruction version is more than five times as fast. This 
is expected, as the longhand version performs multiplication on a bit-by-bit 
basis. This algorithm is suitable for implementation in hardware but not in 
software. 

Experiment 2 

In this experiment, we want to see if we can do better than the mul instruction 
for some specific values of multipliers. In particular, we would like to see 
if multiplication by 10 can be done any faster than using the mul instruction. 
Multiplication by 10 can be done using only additions. Such multiplication, for 
example, is needed in the GetInt8 procedure. Suppose we want to mUltiply 
contents of AL (say X) by 10. This can be done as follows: 

sub AH,AH AH := 0 
mov BX,AX BX := X 
add AX,AX AX := 2X 
add AX,AX AX := 4X 
add AX,BX AX := 5X 



Section 6.6 Summary 251 

20~----------------------------------------~ 

'" 

115 
ell 
'-" 

roul instruction 

0~=::::=:=====:=J 
o 100 200 300 400 500 600 700 

Number of calls (in thousands) 

Figure 6.1 Performance of two procedures for multiplying two 64-bit numbers. 

add AX,AX ; AX := lOX 

Figure 6.2 shows the performance of the these two versions for multiplying 
232 - 1 by 10. The add instruction version is about twice as fast. In Chapter 8 
we will show that special multiplications by a power of 2 (often required for 
conversion of numbers from octal or hexadecimal systems) can be efficiently 
done by shift instructions. 

6.6 Summary 

The status flags register the outcome of arithmetic and logical operations. Of 
the six status flags, zero flag, carry flag, overflow flag, and sign flag are the most 
important. The zero flag records whether the result of an operation is zero or 
not. The sign flag monitors the sign of the result. The carry and overflow flags 
record the overflow conditions of the arithmetic operations. The carry flag is 
set if the result on unsigned data is out of range; the overflow flag is used to 
indicate the out-of-range condition on signed data. 

The instruction set of Pentium includes instructions for addition, subtrac
tion, multiplication, and division. While add and subtract instructions work on 



252 

,--. 
CIl 
"0 
§ 
u 
C1) 
CIl 
'-' 

~ 
.,tl 

c:: 
0 

",tl 
::s 
u 
C1) 

>< 
~ 

Chapter 6 Arithmetic Flags and Instructions 

2.0 

1.6 

1.2 

0.8 

0.4 

0.0 
0 100 200 300 400 500 600 700 

Number of calls (in thousands) 

Figure 6.2 Performance of multiplication of a 32-bit number by 10. 

both unsigned and signed data, separate instructions are required for signed and 
unsigned data for performing mUltiplication and division. 

The arithmetic instructions of Pentium can operate on 8-, 16-, and 32-bit 
operands. If numbers are represented using more than 32 bits, we need to devise 
methods for performing the arithmetic operations on multiword operands. We 
discussed how multiword arithmetic operations can be implemented. 

We demonstrated that multiplication by special values (for example, mul
tiplication by 10) can be done more efficiently by using addition. Chapter 8 
discusses how the shift operations can be used to implement multiplication by 
a power of 2. Such multiplication is often required to convert numbers from 
octal or hexadecimal number systems to the decimal system. 

6.7 Exercises 

6-1 What is the significance of the carry flag? 

6-2 What is the significance of the overflow flag? 

6-3 Suppose the sign flag is not available. Is there a way to detect the sign of 
a number? Is there more than one way? 



Section 6. 7 Exercises 

6-4 When is the parity flag set? What is a typical application for it? 
6-5 Fill in the blanks in the following table: 

AL CF ZF SF OF PF 
mov AL,127 
add AL,-128 
mov AL,127 
sub AL,-128 
mov AL,-1 
add AL,1 
mov AL,127 
inc AL 
mov AL,127 
neg AL 
mov AL,O 
neg AL 

253 

You do not have to fill the lines with the mov instruction. The AL column 
represents the AL value after executing the corresponding instruction. 

6-6 When subtracting two numbers, suppose the carry flag is set. What does 
it imply in terms of the relationship between the two numbers? 

6-7 In the last example, suppose the overflow flag is set. What does it imply 
in terms of the relationship between the two numbers? 

6-8 Is it possible to set both the carry and zero flags? If so, give an example 
that could set both these flags; otherwise, explain why not. 

6-9 Is it possible to set both the overflow and zero flags? If so, give an 
example that could set both these flags; otherwise, explain why not. 

6-10 When the zero flag is set, the parity flag is also set. The converse, however, 
is not true. Explain with examples why this is so. 

6-11 The zero flag is useful in implementing countdown loops (loops in which 
the counting variable is decremented until zero). Justify the statement by 
means of an example. 

6-12 The inc and dec instructions do not affect the carry flag. Explain why 
it is really not required. 

6-13 Suppose the add instruction is not available. Show how we can use the 
adc instruction to implement the add instruction. Of course, you can use 
other instructions as well. 

6-14 Suppose the adc instruction is not available. Show how we can use the 
add instruction to implement the adc instruction. Of course, you can use 
other instructions as well. 



254 Chapter 6 Arithmetic Flags and Instructions 

6-15 Show how you can implement multiplication by 12 by using four addi-
tions. You can use registers fot temporary storage. 

6-16 What is the use of the neg instruction? 
6-17 Show how you can implement the neg instruction with an add instruction. 
6-18 Explain why multiplication requires two separate instructions to work on 

signed and unsigned data. 
6-19 We have stated in Section 6.2.4 on page 231 that if we use double-length 

registers, multiplication does not result in an overflow. Justify this state
ment for 8-, 16-, and 32-bit operands. 

6.8 Progamming Exercises 

6-Pl The Putlnt8 procedure has used repeated division by 10. Alternatively, 
you can display an 8-bit number by first dividing it by 100 and displaying 
the quotient, then dividing the remainder generated by 10 and displaying 
the quotient and the remainder (in that order). Modify the PutInt8 
procedure to incorporate this method. Discuss the pros and cons of the 
two methods. 

6-P2 Write a program to mUltiply a two-dimensional matrix in the following 
way: multiply all elements in row i by (_I)i i. That is, multiply row 1 
by -I, row 2 by +2, row 3 by -3, and so on. Your program should be 
able to read matrices of size up to lOx 10. You should query the user 
for number of rows, number of columns, and then the actual element 
values. The values of matrix elements should be within the range of 
the signed 8-bit numbers (i.e., between -128 to + 127). Internally, use 
words to store the number so that there will not be overflow problems with 
the multiplication. Make sure to do proper error checking. For example, 
asking for more than 10 rows or columns, entering an out-of-range value, 
etc. 

6-P3 We know that 

N x (N + 1) 
1+2+3+ ... +N= 2 

Write a program that requests N as input and computes the lefthand side 
and the righthand side of the equation and verifies that they are equal and 
displays the result. 

6-P4 Write a program to read a set of test scores as input and that outputs the 
truncated average value (i.e., discard any fraction generated). The input 
test scores cannot be negative. So use this condition to terminate the 
input. Furthermore, assume that the first number entered is not the test 



Section 6.8 Progamming Exercises 255 

score but the maximum score that can be obtained for that test. Use this 
information to display the average test score as a percent. For example, 
if the average is 18 and the maximum obtainable test score is 20, the 
percent average is 90 percent. 

6-P5 Modify the above program to round the average test score. For example, 
if the average is 15.55, it should be rounded to 16. 

6-P6 Modify the average test score program to display the fractional part as 
well. Display the average test score in the dd. dd format. 

6-P7 Write a program to convert temperature from Celsius to Fahrenheit. The 
formula is 

9 
F = 5 x C +32 

6-P8 Write a program to read the length L, width W, and height H of a box 
from input and that displays the volume and surface area of the box. 

volume = L x W x H 
surface volume = 2 x (L x H + L x W + W x H) 



Chapter 7 

Selection and Iteration 

Objectives 

• To discuss unconditional and conditional jump instructions 

• To describe the loop family of instructions 

• To explore how this set of instructions can be used to implement high
level language decision structures 

• To explain full and partial evaluation of logical expressions and their 
performance implications 

Modern high-level languages like C and Pascal provide a variety of decision 
structures. These structures include selection structures such as if constructs 
and iterative structures such as while and for loop constructs. 

Assembly language, being a low-level language, does not provide these 
structures directly. However, assembly language provides several basic in
structions that can be used to construct these high-level language selection 
and iteration structures. These instructions include the unconditional jump, 
compare, conditional jump, and loop. A detailed description of these assembly 
language instructions is given in the first four sections. 

Section 7.5 discusses how the jump, compare, and loop instructions can 
be used to implement high-level language selection and iteration structures. 
After giving some examples in Section 7.6, we will describe the indirect jump 
instruction and its use in implementing multi way switch or case statements in 
Section 7.7. 

Section 7.8 describes the two common methods of evaluating Boolean ex
pressions, and their performance impact is discussed in Section 7.9. The chap
ter concludes with a summary. 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



258 Chapter 7 Selection and Iteration 

7.1 Unconditional Jump 

The unconditional jump (j mp) instruction, as its name implies, unconditionally 
transfers control to the instruction located at the target address. The general 
format, as we have seen before, is 

jmp target 

There are several versions of the jmp instruction depending on how the target 
address is specified and where the target instruction is located. 

Specification of Target 

There are two distinct ways by which the target address of the jmp instruction 
can be specified: direct and indirect. The vast majority of jumps are of the 
direct type. Therefore, we focus our attention on direct jump instruction types 
and briefly discuss indirect jumps in Section 7.7. 

Direct Jumps 

In direct jump instruction, the target address is specified directly as a part of 
the instruction. In the following code fragment 

mov ex,!o 
jmp eX_init done 

init ex 20: 
mov eX,20 

eX_init_done: 
mov AX,eX 

repeat! : 
dec ex 

jmp repeat! 

both the jmp instructions directly specify the target. Recall that as an assembly 
language programmer, you only specify the target address by using a label and 
let the assembler figure out the exact value by using its symbol table. 

The instruction 

jmp eX_init done 



Section 7.1 Unconditional Jump 259 

transfers control to an instruction that follows it. This is called aforward jump. 
On the other hand, the instruction 

jmp repeat1 

is a backward jump, as the control is transferred to an instruction that precedes 
the jump instruction. 

Relative Address 

The address that is specified in a jump instruction is not the absolute address 
of the target instruction. Rather, it specifies the relative displacement in bytes 
between the target instruction and the instruction following the jump instruction 
(and not from the jump instructions itself!). 

In order to see why this is so, we have to understand how jumps are executed. 
Recall that the IP register always points to the next instruction to be executed 
(see Chapter 2). Thus, after fetching the jmp instruction, the IP is automatically 
advanced to point to the instruction following the jmp instruction. Execution 
of jmp involves changing the IP from where it is currently pointing to the 
target instruction location. This is achieved by adding the difference (Le., 
relative displacement) to the IP contents. This works fine because the relative 
displacement is a signed number-a positive displacement implies a forward 
jump and a negative displacement indicates a backward jump. 

The specification of relative address as opposed to the absolute address of 
the target instruction is appropriate for dynamically relocatable code (i.e., for 
position-independent code). 

The following code 

forever: jmp forever 

is a valid statement that results in an infinite loop. Incidentally, this is a backward 
jump. 

Where Is the Target? 

If the target of a jump instruction is located in the same segment as the jump it
self, it is called an intrasegment jump; if the target is located in another segment, 
it is called an intersegment jump. 

Our previous discussion has assumed an intrasegment jump. In this case, 
the jmp simply performs the following action: 

IP:= IP + relative-displacement 



260 Chapter 7 Selection and Iteration 

In the case of an intersegmentjump, calledfar jump, the CS is also changed 
to point to the target segment, as shown below: 

CS := target-segment 
IP := target-offset 

Both target-segment and target-offset are specified directly in the instruction. 
Thus, for 16-bit segments, the instruction encoding for the intersegment jump 
takes 5 bytes: one byte for the specification of the opcode, 2 bytes for the 
target-segment, and another 2 bytes for the target-offset specification. 

The majority of jumps are of the intrasegment type. Therefore, Pentium 
provides two ways to specify intrasegment jumps depending on the distance of 
the target location from the instruction following the jump instruction-that is, 
depending on the value of the relative displacement. 

If the relative displacement, which is a signed number, can fit in a byte, 
a jump instruction can be encoded by using just two bytes: one byte for the 
opcode, and the other for the specification of the relative displacement. This 
means that the relative displacement should be within -128 to + 127 (the range 
of a signed 8-bit number). This form is called short jump. 

If the target is outside this range, 2 or 4 bytes are used to specify the relative 
displacement. 2-byte displacement is used for 16-bit segments, and 4-byte 
displacement for 32-bit segments. As a result, the jump instruction requires 
either 3 or 5 bytes to encode in the machine language. This form is called near 
jump. 

If you want to use the short jump form, you can inform the assembler of 
your intention by using the operator SHORT, as shown below: 

jmp SHORT CX_init_done 

The question that naturally arises at this point is: What if the target is not 
within -128 or + 127 bytes? The assembler will inform you with an error 
message that the target can't be reached with a short jump. 

In fact, specification of SHORT in a statement like 

jmp SHORT repeat! 

in the example code on page 258 is redundant, as the assembler can automati
cally select the SHORT jump, if appropriate, for all backward jumps. However, 
with forward jumps, the assembler needs your help. This is because the assem
bler does not know the relative displacement of the target when it must decide 
whether to use the short form. Therefore, use the SHORT operator only for 
forward jumps if appropriate. 

Example 7.1 Example encodings of short and near jumps 



Section 7.1 Unconditional Jump 261 

8 0005 
9 0007 

10 OOOA 
11 
12 0000 
13 0010 
14 
15 0013 
16 
17 0015 
18 0016 

84 OOOB 
85 0000 
86 
87 OOEO 
88 
89 00E3 

EB OC jmp SHORT CX_init_done 
B9 OOOA mov CX,10 
EB 07 90 jmp CX_init_done 

init_CX_20: 
B9 0014 mov CX,20 
E9 0000 jmp near_jump 

CX_init_done: 
8B Cl mov AX,CX 

repeat 1 : 
49 dec CX 
EB FO jmp repeat 1 

EB 03 jmp SHORT short_jump 
B9 FFOO mov CX, OFFOOH 

short_jump: 
BA 0020 mov OX, 20H 

near_jump: 
E9 FF27 jmp init_CX_20 

Figure 7.1 Example encoding of jump instructions. 

Figure 7.1 shows some example encodings for short and near jump instruc
tions. The forward short jump on line 8 is encoded in the machine language as 
EB OC, where EB represents the opcode for the short jump. The relative offset 
to target CX_init_done is OCH. From the code, it can be seen that this is the 
difference between the address of the target (address 0013H) and the instruction 
following the jump instruction on line 9 (address 0007H). Another example of 
a forward short jump is given on line 84. 

The backward instruction on line 18 also uses the short jump form. In this 
case, the assembler can decide whether the short or near jump is appropriate. 
The relative offset is given by FDH (= -3D), which is the offset from the 
instruction following the jump instruction at address 18H to repeat 1 at 15H. 

For near jumps, the opcode is E9H, and the relative offset is a 16-bit signed 
integer. The relative offset of the forward near jump on line lOis OODOH, which 



262 Chapter 7 Selection and Iteration 

is equal to OOE3H - 0013H. The relative offset of the backward near jump on 
line 89 is given by OOOOH - OOE6H = FF27H, which is equal to -2170. 

The jump instruction encoding on line 10 requires some explanation. Since 
this is a forward jump and we have not specified that it could be a short jump, 
assembler reserves 3 bytes for a near jump (the worst case scenario). At the 
time of actual encoding, the assembler knows the target location and therefore 
uses the short jump version. Thus, EB 07 represents the encoding, and the third 
byte is not used and contains some rogue data. 000000 

7.2 Compare Instruction 

Implementation of decision structures of high-level languages like if-then or 
the if-then-else structure in assembly language is a two step process: 

1. An arithmetic or comparison instruction updates one or more of the arith
metic flags 

2. A conditional jump instruction causes selective execution of the appro
priate code fragment based on the values of the flags. 

The compare (emp) instruction has the format 

cmp destination, source 

which effectively subtracts the source operand from the destination operand but 
does not affect any of the operands, as shown below: 

destination - source 

The flags are updated as if the sub operation has been performed. The main pur
pose of the emp instruction is to update the flags so that a subsequent conditional 
jump instruction can test these flags. 

Example 7.2 Some examples of the compare instruction 

The four flags that are useful in establishing a relationship «, :::, >, etc.) 
between two integers are CF, ZF, SF, and OF. Table 7.1 gives some examples 
of executing the 

cmp AL,DL 

instruction. Recall that the CF is set if the result is out of range when treating 
the operands as unsigned numbers. For this example, this range is 0 to 2550. 



Section 73 Conditional Jumps 263 

Table 7.1 Some examples of cmp AL, DL 

AL OL CF ZF SF OF PF AF 
56 57 1 0 1 0 1 1 
200 101 0 0 0 1 1 0 
101 200 1 0 1 1 0 1 
200 200 0 1 0 0 1 0 

-105 -105 0 1 0 0 1 0 
-125 -124 1 0 1 0 1 1 
-124 -125 0 0 0 0 0 0 

Similarly, the OF is set if the result is out of range for signed numbers (which, 
for this example, is -1280 to + 1270). 

In general, the value of ZF and SF can be obtained in a straightforward way. 
Therefore, let us focus on the carry and overflow flags. In the first example, 
since 56-57 = -1, CF is set but not OF. The second example is not so sim
ple. Treating the operands in AL and OL as unsigned numbers, 200-101 = 99, 
which is within the range of unsigned numbers. Therefore, CF = O. However, 
when treating 2000 (= C8H) as a signed number, it represents -560. There
fore, compare perfonns -56-101 = -157, which is out of range for signed 
numbers resulting in setting OF. We will leave verification of the rest of the 
examples as an exercise. 000000 

7.3 Conditional Jumps 

Conditional jump instructions can be divided into three groups: 

1. Jumps based on the value of a single arithmetic flag 

2. Jumps based on unsigned comparisons 

3. Jumps based on signed comparisons. 

7.3.1 Jumps Based on Single Flags 

The Pentium instruction set provides two conditional jump instructions-one 
for jumps if the flag tested is set, and the other for jumps when the tested flag is 
cleared-for each arithmetic flag except the auxiliary flag. These instructions 
are summarized in Table 7.2. 



264 Chapter 7 Selection and Iteration 

Table 7.2 Jumps based on single flag value 

Mnemonic Meaning Jumps if 
Testing for zero: 

JZ jump if zero ZF= 1 
je jump if equal 

jnz jump if not zero ZF=O 
jne jump if not equal 

jcxz jump ifCX = 0 CX=O 
(no flags tested) 

Testing for carry: 
jc jump if carry CF= 1 

jnc jump if no carry CF=O 
Testing for overflow: 

jo jump if overflow OF= 1 
jno jump if no overflow OF=O 

Testing for sign: 
js jump if (negative) sign SF= 1 

Jns jump if no (negative) sign SF=O 
Testing for parity: 

jp jump if parity PF= 1 
jpe jump if parity is even 

jnp jump if not parity PF=O 
jpo jump if parity is odd 

As shown in Table 7.2, the jump instructions that test the zero and parity 
flags have aliases (e.g., je is an alias for jz). These aliases are provided to 
improve program readability. For example, 

if (count = 100) 
then 

<statementl> 
end if 

can be written in the assembly language as 

cmp count, 100 



Section 7.3 Conditional Jumps 265 

jz Sl 

Sl: 
<statementl code here> 

But our use of j z is not conveying that we are testing for equality. This meaning 
is better conveyed by 

cmp count, 100 
je Sl 

Sl: 
<statementl code here> 

The assembler, however, treats both j z and j e as synonymous instructions. 
The only surprising instruction in Table 7.2 is the j cxz instruction. This 

instruction does not test any flag but tests the contents of the ex register for 
zero. It is often used in conjunction with the loop instruction. Therefore, we 
postpone our discussion of this instruction to Section 7.4, which discusses the 
loop instruction. 

7.3.2 Jumps Based on Unsigned Comparisons 

When comparing two numbers 

cmp numl,num2 

it is necessary to know whether these numbers nu.ml and nu.m2 are representing 
singed or unsigned numbers in order to establish a relationship between them. 
As an example, assume that AL = 10110111B and DL = 0110111OB. Then the 
statement 

cmp AL,DL 

should appropriately update flags to yield that AL > DL if we are treating 
their contents as representing unsigned numbers. This is because, in unsigned 
representation, AL = 183D and DL = 110D. However, if the contents of AL 
and DL registers are treated as representing signed numbers, AL < DL as the 



266 Chapter 7 Selection and Iteration 

Table 7.3 Jumps based on unsigned comparison 

Mnemonic Meaning condition tested 
je jump if equal ZF= 1 
jz jump if zero 
jne jump if not equal ZF=O 
jnz jump if not zero 
ja jump if above CF=OandZF=O 
jnbe jump if not below or equal 
jae jump if above or equal CF=O 
jnb jump if not below 
jb jump if below CF= 1 
jnae jump if not above or equal 
jbe jump if below or equal CF= 1 orZF= 1 
jna jump if not above 

AL register is storing a negative number ( - 730), and the OL register is storing 
a positive number (+ 1100). 

Note that when using a cmp statement like 

cmp num.l. num.2 

we are always comparing numl to num2 (e.g., numl < num2, numl > num2, 
etc.). There are six possible relationships between two numbers: 

numl = num2 
num 1 =1= num2 
numl > num2 
numl 2: num2 
numl < num2 
numl ~ num2 

For the unsigned numbers, the carry and the zero flags record the necessary 
information in order to establish one of the above six relationships. 

The six conditional jump instructions (along with six aliases) and the flag 
conditions tested are shown in Table 7.3. Notice that "above" and "below" 
are used for > and < relationships for the unsigned comparisons, reserving 
"greater" and "less" for signed comparisons, as we shall see next. 



Section 7.3 Conditional Jumps 267 

Table 7.4 Examples with Snuml > Snum2 

Snwn1 Snwn2 ZF OF SF 
56 55 0 0 0 
56 -55 0 0 0 

-55 -56 0 0 0 
55 -75 0 1 1 

7.3.3 Jumps Based on Signed Comparisons 

The = and =f. comparisons work with either signed or unsigned numbers, as 
we essentially compare the bit pattern for a match. For this reason, j e and j ne 
also appear in Table 7.5 for signed comparisons. 

For signed comparisons, three flags record the necessary information: the 
sign flag (SF), the overflow flag (OF), and the zero flag (ZF). Testing for = and 
=f. simply involves testing whether the ZF is set or cleared, respectively. With 
the singed numbers, establishing < and > relationships is somewhat tricky. 

Let us assume that we are executing the cmp instruction 

cmp Snuml,Snum2 

Conditions for Snuml > Snum2 

Table 7.4 shows several examples in which Snwn1 > Snwn2 holds. 
It appears from these examples that Snwn1 > Snwn2 if 

ZF OF SF 
000 

or 
o 1 1 

That is, ZF = 0 and OF = SF. We cannot use just OF = SF because if two 
numbers are equal, ZF = 1 and OF = SF = O. In fact, these conditions do 
imply the "greater than" relationship between Snwn1 and Snwn2. As shown in 
Table 7.5, these conditions are tested for the jg conditional jump. 

Conditions for Snuml < Snum2 

Again, as in the previous case, we develop our intuition by means of a few 
examples. Table 7.6 shows several examples in which the Snwn1 < Snwn2 
holds. 



268 Chapter 7 Selection and Iteration 

Table 7.S Jumps based on signed comparison 

Mnemonic Meaning condition tested 
je jump if equal ZF== 1 
jz jump if zero 
jne jump if not equal ZF== 0 
jnz jump if not zero 
jg jump if greater ZF == 0 and SF == OF 
jnle jump if not less or equal 
jge jump if greater or equal SF== OF 
jnl jump if not less 
jl jump if less SF =J OF 
jnge jump if not greater or equal 
jle jump if less or equal ZF == 1 or SF =J OF 
jng jump if not greater 

Table 7.6 Examples with Snuml < Snum2 

Snuml Snum2 ZF OF SF 
55 56 0 0 1 

-55 56 0 0 1 
-56 -55 0 0 1 
-75 55 0 1 0 

It appears from these examples that Snuml < Snum2 if 

ZF OF SF 
o 0 1 

or 
o 1 o 

That is, ZF == 0 and OF =J SF. In this case, ZF == 0 is redundant and the condition 
reduces to OF =J SF. As indicated in Table 7.5, this is the condition tested by 
the j 1 conditional jump instruction. 



Section 7.4 Looping Instructions 269 

A Note on Conditional Jumps 

All conditional jump instructions are encoded into the machine language using 
only 2 bytes (like the short jump instruction). As a consequence, all jumps 
should be short jumps. That is, the target instruction of a conditional jump must 
be 128 bytes before or 127 bytes after the instruction following the conditional 
jump instruction itself. 

What if the target is outside this range? 
If the target is not reachable by using a short jump, you can use the following 
trick to overcome this limitation of the conditional jump instructions. 

In the instruction sequence 

target: 

cmp 
je 
mov 

AX,BX 
target 
eX,10 

target is not a short jump 

if target is not reachable by short jump, it should be replaced by 

target: 

skipl : 

cmp 
jne 
jmp 

AX,BX 
skipl 
target 

mov eX,10 

skipl is a short jump 

What we have done here is negated the test condition (j e becomes j ne) and 
used an unconditional jump to transfer control to target. Recall that jmp has 
short as well as near versions. 

7.4 Looping Instructions 

Instructions in this group use the CX or ECX register to maintain repetition 
count. The CX register is used if the operand size is 16 bits; ECX is used for 
32-bit operands. In the following discussion, we assume that the operand size 
is 16 bits. The three loop instructions decrement the CX register before testing 
it for zero. Decrementing CX does not affect any of the flags. The format of 
these instructions along with the action taken is shown below. 



270 Chapter 7 Selection and Iteration 

Mnemonic Meaning Action 
loop target loop CX:=CX-l 

ifCX # 0 
jump to target 

loope target loop while equal CX:=CX -1 
loopz target loop while zero if (CX # 0 and ZF = 1) 

jump to target 
loopne target loop while not equal CX:=CX -1 
loopnz target loop while zero if (CX # 0 and ZF =0) 

jump to target 

The destination specified in these instructions should be reachable by a 
short jump. This is a consequence of using 2 byte encoding with a single byte 
indicating the relative displacement, which should be within -128 to + 127. 

The use of loop instruction is straightforward to understand; however, the 
other two loop instructions require some explanation. These instructions are 
useful in writing loops for applications that require two termination conditions. 
The following example illustrates this point. 

Example 7.3 A loop example 

Let us say that we want to write a loop that reads a string of characters from 
the user. The character input can be terminated either when the buffer is full, 
or when the user types a carriage return (CR) character, whichever occurs first. 

CR EQU 
SIZE EQU 
. DATA 
buffer 
. CODE 

mov 
mov 

DB 

read_more: 
GetCh 
mov 
inc 
cmp 
loopne 

ODH 
81 

SIZE DUP (?) 

BX,OFFSET buffer 
CX,SIZE 

AL 
[BX] ,AL 
BX 
AL,CR 
read_more 

buffer for string input 

BX points to buffer 
buffer size in CX 

see if char input is CR 



Section 7.4 Looping Instructions 271 

We use loopne to test the two conditions for terminating the read loop. 
000000 

A problem with the above code is that if CX is initially 0, the loop attempts 
to read 216 or 655360 characters from the user unless terminated by typing a 
CR character. This is not what we want! 

The instruction j cxz provides a remedy for this situation by testing the CX 
register. The syntax of this instruction is 

jcxz target 

which tests the CX register and if it is zero, control is transferred to the target 
instruction. Thus, it is equivalent to 

cmp CX,O 
jz target 

except that j cxz does not affect any of the flags, while the cmp/ j z combination 
affects the status flags. If the operand size is 32 bits, we can use the j ecxz 
instruction instead of j cxz. Both instructions, however, use the same opcode 
E3H. The operand size determines the register-CX or ECX-used. 

By using this instruction, the previous example can be written as 

mov 
mov 
jcxz 

read_more: 
GetCh 
mov 
inc 

BX,OFFSET buffer 
CX,SIZE 
read_done 

AL 
[BX] ,AL 
BX 

cmp AL,CR 
loopne read_more 

read_done: 

BX points to buffer 
; buffer size in CX 

see if char input is CR 

Notes on Execution Times of loop and j cxz Instructions 

1. The functionality of the loop instruction can be replaced by 

dec CX 
jnz target 

Surprisingly, the loop instruction is slower than the corresponding dec/ j nz 
instruction pair. The loop instruction takes five or six clocks depending 



272 Chapter 7 Selection and Iteration 

on whether the jump is taken or not. The dec/ j nz instruction pair takes 
only two clocks. Of course, the loop instruction is better for program 
readability. 

2. Similarly, the j cxz instruction takes five or six clocks, whereas the equiv
alent 

cmp CX,O 
jz target 

takes only 2 clocks. Thus, for code optimization, these complex instruc
tions should be avoided. 

7.5 Implementing High-Level Language Decision Structures 

In this section, we see how the jump and loop instructions can be used to 
implement high-level language selective and iterative structures. 

7.5.1 Selective Structures 

The selective structures allow the programmer to select from alternative ac
tions. Most high-level languages provide the if-then-else construct that 
allows selection from two alternative actions. The generic format of this type 
of construct is 

if (condition) 
then 

true-alternative 
else 

false-alternative 
end if 

The true-alternative is executed when the condition is true; otherwise, thefalse
alternative is executed. In C, the format is 

if (condition) 
{ 

} 

else 
{ 

statement-Tl 
statement-T2 

statement-Tn 



Section 7.5 Implementing High-Level Language Decision Structures 

statement-F1 
statement-F2 

statement-Fn 
}; 

273 

We now consider some example C statements and the corresponding as
sembly language code generated by the Turbo C compiler. 

Example 7.4 An if example with a relational operator 

Consider the following C code, which assigns the larger of value1 and 
value2 to bigger. All three variables are declared as integers (int data type). 

if (value1 > value2) 
bigger = value1; 

else 
bigger = value2; 

The Turbo C compiler generates the following assembly language code (we 
have embellished the code a little to improve readability): 

mov AX,value1 
cmp AX,value2 
jle else_part 

then_part: 
mov AX,value1 redundant 
mov bigger ,AX 
jmp SHORT end_ if 

else_part: 
mov AX,value2 
mov bigger,AX 

end_ if: 

As you can see from this example, the condition testing is done by a pair 
of compare and conditional jump instructions. The label then_part is really 
not needed but included to improve readability of the code. The first statement 
in the then_part is redundant, but Turbo C generates it anyway. D D D D D D 

Example 7.5 An if example with an and logical operator 

The following code tests whether ch is a lower case character or not. The 
condition in this example is a compound condition of two simple conditional 
statements connected by logical and operator. 



274 Chapter 7 Selection and Iteration 

if «ch >= 'a') tt (ch <= 'z')) 
ch = ch - 32; 

(Note: && stands for the logical and operator in C.) The corresponding assembly 
language code generated by Turbo C is (the variable ch is mapped to the DL 
register): 

cmp DL, 'a' 
jb not_lower_case 
cmp DL, 'z' 
ja not_lower_case 

lower_case: 
mov AL,DL 
add AL,224 
mov DL,AL 

not_lower_case: 

The compound condition is implemented by two pairs of compare and condi
tional jump instructions. Notice that ch - 32 is implemented as addition of 
-32. Also, you will see redundancy in the code generated by the compiler. An 
advantage of writing in assembly language is that we can avoid such redundan
cies. 000000 

Example 7.6 An if example with an or logical operator 

As a last example, consider the following code with a compound condition 
using the logical or operator: 

if «index < 1) I I (index> 100)) 
index = 0; 

(Note: I I stands for the logical or operator in C.) The assembly language code 
generated is 

cmp eX,l 
jl zero_index 
cmp eX,100 
jle end_if 

zero index: 
xor eX,ex ex := 0 

end_if : 



Section 7.5 Implementing High-Level Language Decision Structures 275 

Turbo C maps the variable index to the CX register. Also, the code uses the 
exclusive-or (xor) logical operator to zero CX. This'logical operator is dis
cussed in Chapter 8. 000000 

7.5.2 Iterative Structures 

High-level languages like C and Pascal provide several looping constructs. 
These include while, repeat-until, and for loops. Here we will briefly 
look at how we can implement these iterative structures using the assembly 
language instructions. 

While Loop 

The while loop tests a condition before executing the loop body. For this 
reason, this loop is called the pretest loop or the entry-test loop. The loop body 
is executed repeatedly as long as the condition is true. 

Example 7.7 Example while loop 

Consider the following example code in C: 

while(total < 700) 
{ 

<loop body> 
} 

Turbo C generates the following assembly language code: 

jmp while_cond 
while_body: 

< instructions for 
while loop body > 

while_cond: 
cmp BX,700 
jl while_body 

end_while: 

The variable total is mapped to the BX register. An initial unconditional jump 
transfers control to while_cond to test the loop condition. 000000 



276 Chapter 7 Selection and Iteration 

Repeat-Until Loop 

This is a post-test loop or exit-test loop. This iterative construct tests the repeat 
condition after executing the loop body. Thus, the loop body is executed at 
least once. 

Example 7.S Repeat-until example 

Consider the following C code: 

do 
{ 

} 
<loop body> 

while (number> 0); 

The Turbo C compiler generates the following assembly language code: 

< instructions for 
do-while loop body > 

cond_test: 
or D1,D1 
jg loop_body 

end_do_while: 

The variable number is mapped to the DI register. To test the loop condition, 
it uses or rather than the cmp instruction. 000000 

For Loop 

The for loop is also called the counting loop because it iterates a fixed number 
of times. The Pascal version of the f or loop is a simple counting loop, whereas 
the f or loop in C is much more flexible and powerful. Here we consider only 
the counting f or loops. 

Example 7.9 Upward counting for loop 



Section 7.5 Implementing High-Level Language Decision Structures 

for (i=O; i<SIZE; i++) /*for(i=OtoSIZE-l)*/ 
{ 

<loop body> 
}; 

Turbo C generates the following assembly language code: 

xor 
jmp 

loop_body: 

SI,SI 
SHORT for_cond 

< instructions for 
the loop body > 

inc 
for_cond: 

cmp 
jl 

SI 

SI,SIZE 
loop_body 

277 

As with the while loop, an unconditional jump transfers control to for _ cond 
to first test the iteration condition before executing the loop body. The counting 
variable i is mapped to the SI register. 000000 

Example 7.10 Downward counting for loop 

for (i = SIZE-i; i >= 0; i--) 
{ 

<loop body> 
}; 

/* for (i = SIZE-l downto 0) */ 

Turbo C generates the following assembly language code: 

mov 
jmp 

loop_body: 

SI,SIZE-l 
SHORT for_cond 

< instructions for 
the loop body > 

dec SI 
for_cond: 

or SI,SI 



278 Chapter 7 Selection and Iteration 

jge 

The counting variable i is mapped to the SI register and or is used to test if i 
has reached zero. 000000 

7.6 Illustrative Examples 

In this section, we will present two examples to show the use of the selection 
and iteration instructions discussed in this chapter. The first example uses linear 
search for locating a number in an unsorted array, and the second example sorts 
an array of integers using the selection sort algorithm. 

Example 7.11 Linear search of an array of integers 

In this example, the user is asked to input an array of non-negative integers 
and then query whether a given number is in the array or not. The program uses 
a procedure that implements linear search to locate a number in an unsorted 
array. 

The main procedure initializes the input array by reading a maximum of 
MAX_SIZE number of non-negative integers into the array. The user, however, 
can terminate input by entering a negative number. The loop instruction, 
with ex initialized to MAX_SIZE (line 28), is used to iterate a maximum 
of MAX_SIZE times. The other loop termination condition (i.e., input of a 
negative number) is tested on lines 32 and 33. The rest of the main program 
queries the user for a number and calls the linear search procedure to locate the 
number. This process is repeated as long as the user appropriately answers the 
query. 

The linear search procedure receives a pointer to an array, its size, and 
the number to be searched via the stack. The search process starts at the first 
element of the array and proceeds until either the element is located or the array 
is exhausted. We use the loopne to test these two conditions for termination 
of the search loop. The ex is initialized (line 83) to the size of the array. In 
addition, a compare (line 88) tests if there is a match between the two numbers. 
If so, the zero flag is set and loopne terminates the search loop. If the number 
is found, the index of the number is computed (lines 92 and 93) and returned 
in AX. 

Program 7.30 Linear search of an integer array 



Section 7.6 Illustrative Examples 

1: TITLE 
2: COMMENT 

Linear search of integer array 

3: Objective: To implement linear search of an integer 
4: array; demonstrates the use of loopne. 
5: Input: Requests numbers to fill array and a 
6: number to be searched for from user. 
7: Output: Displays the position of the number in 
8: the array if found; otherwise, not found 
9: message. 

10: .MODEL SMALL 
11: .STACK 100H 
12: . DATA 
13: MAX_SIZE 
14: array 
15: input_prompt 
16: 
17: query_number 

EQU 100 
DW MAX_SIZE DUP (?) 
DB 'Please enter input array: ' 
DB '(negative number terminates input) ',0 
DB 'Enter the number to be searched: ',0 

18: out_msg DB 
19: not_found_msg DB 
20: query_msg DB 
21: 

'The number is at position ',0 
'Number not in the array! ',0 
'Do you want to quit (YIN): ',0 

22: .CODE 
23: INCLUDE io.mac 
24: main PROC 
25: 
26: 
27: 
28: 
29: 
30: 
31: 

. STARTUP 
PutStr 
mov 
mov 

array_loop: 
GetInt 
nwln 

32: cmp 
33: jl 
34: mov 
35: inc 
36: inc 
37: loop 
38: exit_loop: 
39: 
40: 
41: 
42: 
43: 
44: 

mov 
sub 
sar 

read_input: 
PutStr 
GetInt 

input_prompt ; request input array 
BX,OFFSET array 
CX,MAX_SIZE 

AX 

AX,O 
exit_loop 
[BX] ,AX 
BX 
BX 
array_loop 

read an array number 

negative number? 
if so, stop reading numbers 
otherwise, copy into array 
increment array address 

iterates a maximum of MAX SIZE 

DX,BX DX keeps the actual array size 
DX,OFFSET array ; DX := array size in bytes 
DX,1 divide by 2 to get array size 

query_number 
AX 

request number to be searched for 
read the number 

279 



280 

45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 

Chapter 7 Selection and Iteration 

nwln 
push 
push 
push 
call 

AX push number, size & array pointer 
DX 
OFFSET array 
linear_search 

; linear_search returns in AX the position of the number 
; in the array; if not found, it returns O. 
cmp AX,O number found? 
je not_found if not, display number not found 
PutStr out_msg else, display number position 
PutInt AX 

56: jmp SHORT user_query 
57: not_found: 
58: PutStr not_found_msg 
59: 
60: 
61: 
62: 
63: 
64: 
65: 

user_query: 
nwln 
PutStr 
GetCh 
nwln 
cmp 
jne 

66: done: 
67: . EXIT 
68: main ENDP 

69: 

query_msg 
AL 

AL, 'Y' 
read_input 

query user whether to terminate 
read response 

if response is not 'Y' 
repeat the loop 
otherwise, terminate program 

70: ;-----------------------------------------------------------
71: This procedure receives a pointer to an array of integers, 
72: the array size, and a number to be searched via the stack. 
73: If found, it returns in AX the position of the number in 
74: the array; otherwise, returns O. 
75: All registers, except AX, are preserved. 
76: ;-----------------------------------------------------------
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 

linear_search 
push 
mov 
push 
push 
mov 
mov 
mov 
sub 

search_loop: 
add 
cmp 

PROC 
BP 
BP,SP 
BX 
CX 
BX, [BP+4] 
CX, [BP+6] 
AX, [BP+8] 
BX,2 

BX,2 
AX, [BX] 

save registers 

copy array pointer 
copy array size 
copy number to be searched 
adjust index to enter loop 

update array index 
compare the numbers 



Section 7.6 Illustrative Examples 281 

89: 
90: 
91: 
92: 
93: 

loopne search_loop 
mov AX,O ; set return value to zero 
jne number_not_found; modify it if number found 
mov AX, [BP+6] copy array size 
sub AX,eX compute array index of number 

94: number_not_found: 
95: pop ex restore registers 
96: pop BX 
97: 
98: 

pop 
ret 

BP 
6 

99: linear_search ENDP 
100: END main 

Example 7.12 Sorting of an array of integers using the selection sort algorithm 

The main program is very similar to that in the last example, except for 
the portion that displays the sorted array. The sort procedure receives a pointer 
to the array to be sorted and its size via the stack. It uses the selection sort 
algorithm to sort the array in ascending order. The basic idea is as follows: 

1. Search the array for the smallest element 
2. Move the smallest element to the first position by exchanging values of 

the first and smallest element positions 

3. Search the array for the smallest element from the second position of the 
array 

4. Move this element to position 2 by exchanging values as in step 2 
5. Continue this process until the array is sorted. 

The selection sort procedure implements the following pseudocode: 

selection_sort (array, size) 
for (position = 0 to size-2) 

min_value := array [position] 
min_position:= position 
for (j = position+ 1 to size-I) 

if (arrayU] < min_value) 
then 

min_value := arrayU] 
min_position:= j 

end if 
end for 



282 

1 : 
2: 
3: 
4: 
5: 
6: 

7: 
8: 

if (position =1= min_position) 
then 

Chapter 7 Selection and Iteration 

array[min_position] := array [position] 
array [position] := min_value 

end if 
end for 

end selection_sort 

The selection sort procedure shown in Program 7.31 implements this pseu
docode with the following mapping of variables: position is maintained in 
SI, and DI is used for the index variable j. min_value is maintained in DX 
and min_posi tion in AX. The number of elements to be searched for finding 
the minimum value is kept in ex. 

Program 7.31 Sorting of an array of integers using the selection sort algorithm 

TITLE Sorting an array by selection sort 
COMMENT I 

Objective: To sort an integer array using selection sort. 
Input: Requests numbers to fill array. 

Output: Displays sorted array. 
.MODEL SMALL 
.STACK 100H 
. DATA 

9: MAX_SIZE 
10: array 

EQU 100 
DW MAX_SIZE DUP (?) 

11: input_prompt 
12: 

DB 'Please enter input array: ' 

13: out_msg 
14: 

DB '(negative number terminates input)' ,0 
DB 'The sorted array is:',O 

15: . CODE 
16: .486 
17: INCLUDE io.mac 
18: main PROC 

. STARTUP 19 : 
20: 
21: 
22: 

PutStr input_prompt; request input array 
mov BX,OFFSET array 
mov CX,MAX_SIZE 

23: array_loop: 
24: GetInt AX 
25: 
26: 

nwln 
cmp AX,O 

read an array number 

negative number? 



Section 7.6 Illustrative Examples 

27: jl exit_loop 
[BX] ,AX 
BX,2 
array_loop 

if so, stop reading numbers 
otherwise, copy into array 
increment array address 
iterates a maximum of MAX SIZE 

28: mov 
29: add 
30: loop 
31: exit_loop: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 

mov 
sub 
sar 
push 
push 
call 
PutStr 
nwln 

DX,BX 
DX,OFFSET 
DX,1 
DX 

DX keeps the actual array size 
array ; DX := array size in bytes 

divide by 2 to get array size 
push array size & array pointer 

OFFSET array 
selection_sort 
out_msg display sorted array 

40: mov eX,DX 
41: mov BX,OFFSET array 
42: display_loop: 
43: Putlnt [BX] 
44: 
45: 
46: 

nwln 
add 
loop 

BX,2 
display_loop 

47: done: 
48: . EXIT 
49: main ENDP 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 

j-----------------------------------------------------------
This procedure receives a pointer to an array of integers 

; and the array size via the stack. The array is sorted by 
; using the selection sort. All registers are preserved. 
;-----------------------------------------------------------
SORT_ARRAY EQU [BX] 
selection_sort PROe 

pusha 
mov 
mov 
mov 
sub 

BP,SP 
BX, [BP+18] 
ex, [BP+20] 
SI,SI 

sort_outer_loop: 
mov DI,SI 

save registers 

copy array pointer 
copy array size 
array left of SI is sorted 

; DX is used to maintain the minimum value and AX 
; stores the pointer to the minimum value 
mov DX,SORT_ARRAY[SI]; min. value is in DX 
mov AX,SI AX := pointer to min. value 
push ex 
dec ex size of array left of SI 

283 



284 Chapter 7 Selection and Iteration 

71: sort_inner_Ioop: 
72: add D1 ,2 ; move to next element 
73: cmp DX , SORT_ARRAY [D1] ; less than min. value? 
74: jle skip1 ; if not, no change to min. value 
75: mov DX,SORT_ARRAY[D1] else, update min. value (DX) 
76: mov AX,D1 & its pointer (AX) 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 

skip1: 

skip2: 

loop 
pop 
cmp 
je 
mov 
mov 
xchg 
mov 

add 
dec 
cmp 
jne 
popa 
ret 

sort_inner_Ioop 
ex 
AX,S1 AX = S1? 
skip2 if so, element at S1 is its place 
D1,AX otherwise, exchange 
AX,SORT_ARRAY[S1] exchange min. value 
AX, SORT_ARRAY [D1] ; & element at S1 
SORT_ARRAY[S1] ,AX 

S1,2 
ex 
eX,l 

4 

move S1 to next element 

if ex = 1, we are done 

; restore registers 

93: selection_sort ENDP 
94: END main 

7.7 Indirect Jumps 

So far, we have used only the direct jump instruction. In direct jump, the target 
address (i.e., its relative offset value) is encoded into the jump instruction itself 
(see Figure 7.1 on page 261). We now look at indirect jumps. We limit our 
discussion to jumps within a segment. 

In an indirect jump, the target address is specified indirectly either through 
memory or a general-purpose register. Thus, we can write 

jmp ex 

if the ex register contains the offset of the target. In indirect jumps, the target 
offset is the absolute value (unlike the direct jumps, which use a relative offset 
value). The next example shows how indirect jumps can be used with a jump 
table stored in memory. 

Example 7.13 An example with an indirect jump 



Section 7. 7 Indirect Jumps 285 

The objective here is to show how we can use the indirect jump instruction. 
To this end, we show a simple program that reads a digit from the user and 
prints the corresponding choice represented by the input. The listing is shown 
in Program 7.32. An input between 0 and 9 is valid. Any other input to the 
program may cause the system to hang up or crash. The input 0 through 2 
produces a simple message to indicate the class selection. Other digit inputs 
terminate the program. 

In order to use the indirect jump, we have to build a jump table of pointers 
(see lines 11-20). The input digit is converted to act as an index into this table 
and is used in the indirect jump instruction (line 40). Since the range of the 
index value is not checked, an input like a produces an index value that is outside 
the range of the jump table. This can lead to unexpected system behavior. In 
one of the exercises, you are asked to remedy this problem. 

Program 7.32 An example demonstrating the use of the indirect jump 

1: TITLE Sample indirect jump example IJUMP.ASM 
2: COMMENT I 
3: Objective: To demonstrate the use of indirect jump. 
4: Input: Requests a digit character from the user. 
5: WARNING: Typing any other character may 
6: crash the system! 
7: Output: Appropriate class selection message. 
8: .MODEL SMALL 
9: . STACK 100H 

10: . DATA 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21 : 
22: 
23: 
24: 
25: 
26: 

jump_table 

prompt_msg 
msg_O 
msg_1 
msg_2 
msg_default 

OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 
OW 

DB 
DB 
DB 
DB 
DB 

code for_O indirect jump pointer table 
code_for_1 
code_for_2 
default code default code for digits 3-9 
default_code 
default_code 
default_code 
default_code 
default_code 
default_code 

'Type a character (digits ONLY): , ,0 
'Economy class selected.',O 
'Business class selected.',O 
'First class selected.',O 
'Not a valid code!',O 



286 Chapter 7 Selection and Iteration 

27: 
28: . CODE 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 

INCLUDE io.mac 
main PROC 

. STARTUP 
read_again: 

PutStr prompt_msg 
sub AX,AX 
GetCh AL 
nwln 
sub AL, '0' 
mov SI,AX 
add SI,SI 
jmp jump_table [SI] 

test_termination: 
cmp AL,2 
ja done 
jmp read_again 

code_for_O: 
PutStr msg_O 
nwln 

request a digit 
AX := ° 
read input digit and 

convert to numeric equivalent 
SI is index into jump table 
SI := SI * 2 

; indirect jump based on SI 

48: jmp 
49: code_for_1: 

test_termination 

50: PutStr msg_1 
51: nwln 
52: jmp test_termination 
53: code_for_2: 
54: PutStr msg_2 
55: nwln 
56: jmp test_termination 
57: default_code: 
58: PutStr msg_default 
59: nwln 
60: 
61: done: 
62: 

jmp test_termination 

. EXIT 
63: main ENDP 
64: END main 

7.7.1 Multiway Conditional Statements 

In high-level languages, a two- or three-way conditional execution can be con
trolled easily by using if statements. For large multiway conditional execution, 



Section 7. 7 Indirect Jumps 287 

writing the code with nested if statements is tedious and error prone. High
level languages like C and Pascal provide a special construct for multi way 
conditional execution. In this section we look at the C switch construct for 
multi way conditional execution. Pascal provides the case statement for the 
same purpose. 

Example 7.14 Multiway conditional execution in C 

As an example of the switch statement, consider the following code: 

switch (ch) 
{ 

case '0': 

case '1': 

case '2': 

case '3': 

default: 

} 

count [0]++; 1* increment count[O] *1 
break; 

count [1]++; 
break; 

count [2]++; 
break; 

count [3] ++ ; 
break; 

count [4]++; 

The semantics of the switch statement are as follows: If character ch is 0, 
execute count [0] ++ statement. The break statement is necessary to escape 
out of the switch statement. Similarly, if ch is 1, count [1] is incremented, 
and so on. The default case statement is executed if ch is not one of the 
values specified in other case statements. 

Turbo C produces the assembly language code shown in Figure 7.2. The 
jump table is constructed in the code segment (lines 31-34). As a result, the 
CS segment override prefix is used in the indirect jump statement on line 11. 
Register BX is used as an index into the jump table. Since each entry in the 
jump table is two bytes long, BX is multiplied by two using shl on line 10. 

000000 



288 Chapter 7 Selection and Iteration 

1 : _main PROC NEAR 
2: 
3: 
4: mov AL,ch 
5: cbw 
6: sub AX,48 48 = ASCII for ° 
7: mov BX,AX 
8: cmp BX,3 
9: ja default 

10: shl BX,1 ; BX := BX * 2 
11: jmp WORD PTR CS:jump_table[BX] 
12: case_O: 
13: inc WORD PTR [BP-10] 
14: jmp SHORT end_switch 
15: case_1 : 
16: inc WORD PTR [BP-8] 
17: jmp SHORT end_switch 
18: case_2: 
19: inc WORD PTR [BP-6] 
20: jmp SHORT end switch 
21: case_3: 
22: inc WORD PTR [BP-4] 
23: jmp SHORT end switch 
24: default: 
25: inc WORD PTR [BP-2] 
26: end_switch: 
27: 
28: 
29: _main ENDP 
30: jump_table LABEL WORD 
31: DW case_O 
32: DW case_1 
33: DW case_2 
34: DW case_3 
35: 
36: 

Figure 7.2 Assembly language code for full evaluation. 



Section 7.8 Evaluation of logical expressions 289 

7.8 Evaluation of logical expressions 

Typically, logical expressions involve more than one logical operator. Logical 
expressions can be evaluated in one of two ways: (l) by full evaluation, or (2) 
by partial evaluation. Each of these two methods is discussed next. 

7.S.1 Full Evaluation 

In this method of evaluation, the entire logical expression is evaluated before 
assigning a value (true or false) to the expression. Full evaluation is used in 
Pascal. 

For example, in full evaluation, the following expression 

if «X ::=: 'a') AND (X ~ 'z'» OR «X::=: 'A') AND (X ~ 'Z'» 

is evaluated by evaluating all four relational terms and then applying the logical 
operators. For example, the Turbo Pascal compiler generates the assembly 
language code shown in Figure 7.3 for the above logical expression. 

7.S.2 Partial Evaluation 

The final result of a logical expression can be obtained without completely 
evaluating it. Two rules aid in this. 

1. In an expression of the form 

condl AND cond2 

the outcome is known to be false if one input is false. For example, if 
we follow the convention of evaluating the logical expression from left 
to right, as soon as we know that condl is false, we can assign false to 
the entire logical expression. Only when condl is true do we need to 
evaluate cond2 to know the final value of the logical expression. 

2. Similarly, in an expression of the form 

condl OR cond2 

the outcome is known if condl is true. The evaluation can stop at that 
point. We need to evaluate cond2 only if condl is false. 

This method of evaluation is used in C. The partial evaluation assembly lan
guage code for the previous logical expression (produced either by the Turbo 
Pascal compiler with an option or by the Turbo C compiler) is shown in Fig
ure 7.4. The code does not use any logical instructions. Instead, the conditional 



290 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 

Chapter 7 Selection and Iteration 

cmp ch, 'Z' 
mov AL,O 
ja skipl 
inc AX 

skipl : 
mov DL,AL 
cmp ch, 'A' 
mov AL,O 
jb skip2 
inc AX 

skip2: 
and AL,DL 
mov CL,AL 
cmp ch, 'z' 
mov AL,O 
ja skip3 
inc AX 

skip3: 
mov DL,AL 
cmp ch, 'a' 
mov AL,O 
jb skip4 
inc AX 

skip4: 
and AL,DL 
or AL,CL 
or AL,AL 
je skip_if 
« if body here » 

skip_if: 
« code following the if » 

Figure 7.3 Assembly language code for full evaluation. 

jump instructions are used to implement the logical expression. Partial eval
uation clearly results in an efficient code. Section 7.9 discusses performance 
implications of full and partial evaluation of logical expressions. 

Partial evaluation also has an important advantage beyond the obvious re
duction in evaluation time. This is illustrated in the following. 

Suppose X and Y are inputs to the program. A statement like 



Section 7.9 Performance: Logical Expression Evaluation 291 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

cmp ch, 'a' 
jb skipl 
cmp ch, 'z' 
jbe skip2 

skipl : 
cmp ch,' A' 
jb skip_if 
cmp ch, 'Z' 
ja skip_if 

skip2: 
« if body here » 

skip_if : 
« code following the if » 

Figure 7.4 Assembly language code for partial evaluation. 

if «X> 0) AND (Y/X > 100)) 

can cause a divide-by-zero error if X = 0 when full evaluation is applied. How
ever, with partial evaluation, when X is zero, (X > 0) is evaluated to be false, 
and the second term (Y/X > 100) is not evaluated at all. This is used fre
quently in C programs to test if a pointer is not NULL before manipulating the 
data that it points to. 

Of course with full evaluation, we can rewrite the above condition to avoid 
the divide-by-zero error as 

if (X > 0) 
if (Y/X > 100) 

7.9 Performance: Logical Expression Evaluation 

Section 7.8 discussed the two common ways of evaluating logical expressions. 
As we have seen, full logical expression evaluation tends to generate long code, 
which also takes more time to execute. This section quantifies the performance 
impact of full and partial logical expression evaluation. 



292 Chapter 7 Selection and Iteration 

8 

,...., 
ell 

6 "C 
s::: 
0 
u 
~ 
ell 

"-' 

S 4 "';:: 

s::: 
0 

"'S 
u 
~ 

2 ~ 

O+---~----~---'----~--~r----r----r----r--~ 
10 20 30 40 50 60 70 80 90 100 

Number of calls (in thousands) 

Figure 7.S Performance impact of logical expression evaluation strategy. 

Figure 7.5 shows the performance impact of these two methods. The logical 
expression evaluated is the same as that given in Section 7.8, which determines if 
a character is an alpha character. Every time the procedure is called, it evaluates 
the logical expression for all (128) standard ASCII characters. The x-axis in 
Figure 7.5 gives the number of times this procedure is called. Clearly, partial 
evaluation is substantially faster (more than twice as fast) than full evaluation. 

For this particular example, we can write assembly language code that is 
even more efficient than the partial evaluation code shown in Figure 7.4 by 
observing that if the character code is below that of letter A, we know that it is 
not an alpha character. The assembly language version is shown below: 

cmp ch,'A' 
jb skip_if 
cmp ch, 'Z' 
jbe skip2 

cmp ch, 'a' 
jb skip_if 
cmp ch, 'z' 
ja skip_if 

skip2: 



Section 7.10 Summary 

« if body here » 
skip_if : 

« code following the if » 

293 

The performance of this code is about 12 percent better than that of the 
partial evaluation code generated by the compiler. This is an example in which 
the assembly language code is more efficient than the code generated by the 
compiler. This, of course, is the result of our knowledge about the ASCII 
encoding scheme. 

7.10 Summary 

We discussed the jump, compare, and loop instructions in detail. These as
sembly language instructions are useful in implementing high-level language 
selection and iteration structures such as if and while constructs. Through 
detailed examples, we discussed how these high-level decision structures are 
implemented in assembly language. We also discussed the indirect jump in
struction and its use in implementing multiway conditional statements (such as 
the switch statement in C and the case statement in Pascal). 

Logical expressions can be evaluated in one of two ways: partial evaluation 
or full evaluation. In partial evaluation, evaluation of a logical expression is 
stopped as soon as the final result of the complete logical expression is known. In 
full evaluation, the complete logical expression is evaluated. Languages like C 
use partial evaluation, while Pascal uses full evaluation (although with compiler 
options, we can force the compiler to use partial evaluation). There is significant 
performance overhead in fully evaluating logical expressions depending on their 
complexity. 

7.11 Exercises 

7-1 What is the difference between SHORT and NEAR jumps? 

7-2 What is the range of SHORT and NEAR jumps? Explain the reason for 
this range limit. 

7-3 What are forward and backward jumps? 

7-4 Why does the assembler need your help for forward near jumps? 

7-5 As you know, all conditional jumps are SHORT jumps. How do you 
handle conditional near jumps? 

7-6 Describe the semantics of the j cxz instruction and explain how it is 
useful. 



294 Chapter 7 Selection and Iteration 

7-7 Fill in the blanks in the following table, assuming that the 

cmp AH,AL 

instruction is executed. Note that all numbers are in decimal. 

AH AL CF ZF SF OF 
21 -21 

-21 -21 
-21 21 
255 -1 
129 -1 
128 -1 
128 -128 
128 127 

7-8 In Table 7.3, explain intuitively why the flags tested are necessary and 
sufficient to implement conditional jumps. 

7-9 We have stated on page 268 that to detect Snuml <Snum2, the condition 
ZF = 0 is not necessary. Justify this statement. 

7-10 In Table 7.5, explain intuitively why the flags tested are necessary and 
sufficient to implement conditional jumps. 

7-11 What is the difference between loop and loopne instructions? 
7-12 Compare and contrast direct and indirect jumps. 
7-13 What high-level language construct requires the use of the indirect jump 

for efficient implementation? 
7-14 Describe the two methods of evaluating logical expressions. 
7-15 Discuss the advantages of partial evaluation over full evaluation of logical 

expressions. 
7-16 Using a debugger (or the -S option with Turbo C), investigate when the 

indirect instruction is used for the switch statement (i.e., for how many 
cases). 

7-17 Consider the following statement: 

if«X > 0) AND (X-Y > 0) AND «x/Y)+(z/(X-Y)) < 2)) 
then 

Suppose your compiler uses only full evaluation of logical expressions. 
Modify the if statement so that it works without a problem for all values 
of X and Y. 



Section 7.12 Progamming Exercises 295 

7.12 Progamming Exercises 

7-Pl Modify Program 7.30 so that the user can enter both positive and negative 
numbers (including zero). In order to facilitate this, the user will first enter 
a number indicating the number of elements of the array that he/she is 
going to enter next. For example, in the input 

5 1987 -265 134905674 

the first number 5 indicates the number of array entries to follow. Your 
program should perform array bound checks. 

7-P2 Suppose we are given a sorted array of integers. Further assume that the 
array is sorted in ascending order. Then we can modify the linear search 
procedure to search for a number S so that it stops searching either when 
S is found or when a number greater than S is found. Modify the linear 
search program shown in Program 7.30 to work on a sorted array. For 
this exercise, assume that the user supplies the input data in sorted order. 

7-P3 In the last exercise, you have assumed that the user supplies data in sorted 
order. In this exercise, remove this restriction on the input data. Instead, 
use the selection sort procedure given in Program 7.31 to sort the array 
once after reading the input data. 

7-P4 Modify the indirect jump program given in Program 7.32 so that it works 
for any input data without the system hanging up or crashing. That is, 
make the program safe to run. 

7-P5 Suppose you are given a positive integer. You can add individual digits 
of this number to get another integer. Now apply the same procedure to 
the new integer. If we repeat this procedure, eventually we will end up 
with a single digit. Here is an example: 

7391928 = 7+3+9+1+9+2+8 = 39 
39 = 3+9 = 12 
12=1+2=3 

Write a program to read a positive integer from the user and that displays 
the single digit as obtained by the above procedure. For the example, the 
output should be 3. 
Your program should detect negative number input as an error and ter
minate after displaying an appropriate error message. 

7-P6 Repeat the above exercise with the following modification. Use multi
plication instead of addition. Here is an example: 

7391928 = 7*3*9*1 *9*2*8 = 27216 
27216 = 2*7*2*1 *6 = 168 



296 

186 = 1*6*8 = 48 
48 = 4*8 = 32 
32 = 3*2 = 6 

Chapter 7 Selection and Iteration 

7-P7 Suppose you are given an integer that requires 16 bits to store. You are 
asked to find whether its binary representation has an odd or an even 
number of 1 'so Write a program to read an integer (should accept both 
positive and negative numbers) from the user and outputs whether it 
contains an odd or even number of 1 'so 

7-P8 Write an assembly language program to read a string of characters from 
the user and that prints the vowel count. For each vowel, the count 
includes both uppercase and lowercase letters. For example, the input 
string 

Advanced Programming in UNIX Environment 

produces the following output: 

Vowel Count 
aorA 3 
eorE 3 
i or I 4 

oorO 2 
uorU 1 

7-P9 Do the last exercise using an indirect jump. Hint: Use xlat to translate 
vowels to five consecutive numbers so that you can use the number as an 
index into the jump table. 

7-PIO Suppose that we want to list each uppercase and lowercase vowel sepa
rately (i.e., a total of 10 count values). Modify the programs of the last 
two exercises to do this. After doing this exercise, express your opinion 
on the usefulness of the indirect jump instruction. 

7-Pll Merge sort is a technique to combine two sorted arrays. Merge sort takes 
two sorted input arrays X and V-say of size m and n-and produces a 
sorted array Z of size m + n that contains all elements of the two input 
arrays. The pseudocode of merge sort is as follows: 

mergesort (X, Y, Z, m, n) 
i:= 0 {index variables for arrays X, Y, and Z} 
j:= 0 
k :=0 
while «i < m) AND (j < n» 



Section 7.12 Progamming Exercises 

if (X[i] ~ YuD {find largest of two} 
then 

else 

Z[k] := Xli] {copy and update indices} 
k:= k+l 
i := i+ I 

Z[k] := Y[j] {copy and update indices} 
k :=k+l 
j:= j+l 

end if 
end while 
if(i < m) {copy remainder of input array} 

else 

while (i < m) 
Z[k] := Xli] 
k:= k+l 
i := i+ I 

end while 

while (j < m) 
Z[k] := Y[j] 
k :=k+l 
j := j+l 

end while 
end if 

end mergesort 

297 

The merge sort algorithm scans the two input arrays while copying the 
smallest of the two elements from X and Y into z. It updates indices 
appropriately. The first while loop terminates when one of the arrays 
is exhausted. Then the other array is copied into Z. Write a merge sort 
procedure and test it with two sorted arrays. Assume that the user will 
enter the two input arrays in sorted (ascending) order. The merge sort 
procedure receives the five parameters via the stack. 



Chapter 8 

Logical and Bit Operations 

Objectives 

• To discuss logical family of instructions 
• To describe shift and rotate family of instructions 
• To see how these instructions are useful in bit manipulation and Boolean 

expressions 
• To demonstrate the benefits of using shift instructions for simple multi

plication and division operations 

As we have seen in the last chapter, high-level languages provide several con
ditional and loop constructs. These constructs require Boolean or logical ex
pressions for specifying conditions. Assembly language provides severallogi
cal instructions to implement logical expressions. These instructions are also 
useful in implementing bitwise logical operations. Section 8.1 describes the 
logical instructions available in the Pentium assembly language. 

Bit manipulation is an important aspect of any high-level language. The 
logical instructions discussed in Section 8.1 are useful in bit manipulation. 
In addition, several shift and rotate instructions are provided to facilitate bit 
manipulation. Shift instructions are discussed in Section 8.2, while rotate in
structions are described in Section 8.3. 

Issues related to logical expressions in high-level languages are discussed in 
Section 8.4. Pentium provides several instructions to test and modify bits and to 
scan for a bit. These instructions are discussed in Section 8.5. Section 8.6 gives 
some examples to illustrate the application of logical and shift/rotate instruc
tions. Section 8.7 discusses the performance implications of shift operations 
for multiplication. The chapter concludes with a summary. 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



300 Chapter 8 Logical and Bit Operations 

8.1 Logical Instructions 

Logical instructions manipulate logical data just like arithmetic instructions 
manipulate arithmetic data (e.g., integers) with operations such as addition, 
subtraction, etc. The logical data can take one of two possible values: true or 
false. 

As the logical data can assume only one of two values, a single bit is 
sufficient to represent these values. Thus, all logical instructions that we discuss 
here operate on a bit-by-bit basis. By convention, if the value of a bit is 0 it 
represents false, and a value of 1 represents true. 

Most high-level programming languages provide the three basic logical op
erators: and, or, and not. Some also provide an exclusive-or (xor) operation. 
In this context, the normal or operator is called inclusive-or, and we will shortly 
see the differences between these two or operations. 

Assembly language provides all of these logical operators in the logical 
family of instructions. There are a total of five logical instructions: and, or, 
not, xor, and test. Except for the not operator, all of the logical operators are 
binary operators (i.e., they require two operands). These instructions operate 
on 8-, 16-, or 32-bit operands. 

All of these logical instructions affect the status flags. Since operands of 
these instructions are treated as a sequence of independent bits, these instruc
tions do not generate carry or overflow. Therefore, the carry flag (CF) and 
the overflow flag (OF) are cleared, and the status of the auxiliary flag (AF) is 
undefined. 

Only the remaining three arithmetic flags-the zero flag (ZF), the sign flag 
(SF), and the parity flag (PF)-record useful information about the result of 
these logical instructions. We next look at each of these instructions in tum. 

8.1.1 The and Instruction 

The logical and instruction is a binary operator with the following general 
format: 

and destination,source 

The usual rules that govern the specification of destination and source operands 
apply to these instructions as well. It goes without saying explicitly, then, that 
the destination and source can both be 8-, 16-, or 32-bit operands, both can be 
in general-purpose registers, or one can be in memory. 

The logical and operation sets the destination bit according to the truth table 
shown below: 



Section 8.1 Logical Instructions 301 

Table 8.1 Some examples of and AL ,BL 

Before execution of and After execution of and 
AL BL AL ZF SF PF 

0101 1110 11100001 01000000 0 0 0 
01101011 10010100 00000000 1 0 1 
11111111 11111111 1111 1111 0 1 1 
10010110 0110 1001 00000000 1 0 1 

Truth table for the and operation 
Input bits Output bit 

source bi destination bi destination bi 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

The output bit is 1 if and only if the corresponding input bits are 1. 
Table 8.1 gives some examples of how the instruction 

and AL,BL 

works. To find the value of an output bit, look at the corresponding two input 
bits and use the truth table for the and operation. The key point is that the bits 
are treated individually even though they are together in a byte or word. It is 
interesting to note that ZF = 1 implies that SF = 0 and PF = 1. 

Usage 

The and instruction is useful mainly in three situations: 

1. To support compound logical expressions and bitwise and operations of 
high-level languages; 

2. To clear one or more bits of a byte, word, or doubleword; 

3. To isolate one or more bits of a byte, word, or doubleword. 

The use of the and instruction to express compound logical expressions 
and to implement bitwise and operations is discussed in Section 8.4. Here we 
will concentrate on how and can be used to clear or isolate selected bits of an 
operand. 



302 Chapter 8 Logical and Bit Operations 

Clearing Bits 

If you look at the truth table of the and operation (see page 301), you will 
notice that the output bit is 0 whenever source hi is 0, irrespective of the value 
of the other input bit. When the source hi is 1, the output bit is identical to 
the destination hi input. Thus, the source hi is acting as a masking bit: if the 
masking bit is 0, the output is 0 no matter what the other input bit is; if the 
masking bit is 1, the other input bit is passed to the output. 

Consider the following example: 

AL = 11 0 1 0 11 0 +- operand to be manipulated 
BL = 11111100 +- mask byte 

and AL,BL = 11010100 

Here, AL contains the operand to be modified by bit manipulation and BL 
contains a set of masking bits. Let us say that we want to force the least 
significant 2 bits to 0 without altering any of the remaining 6 bits. We select 
our mask in BL such that it contains O's in those 2-bit positions and 1 's in the 
remainder of the masking byte. As you can see from this example, the and 
instruction produces the desired result. 

Here are some more examples that utilize the bit clearing capability of the 
and instruction. 

Example 8.1 Even-parity generation (partial code) 

Let us consider generation of even parity. Assume that the most significant 
bit of a byte represents the parity bit; the rest of the byte stores the data bits. 
The parity bit can be set or cleared so as to make the number of 1 bits in the 
whole byte even. 

If the number of 1 bits in the least significant 7 bits is even, the parity bit 
should be O. Assuming that the byte to be parity-encoded is in the AL register, 
the following statement 

and AL,7FH 

clears the parity bit without altering the remaining 7 bits. Notice that the mask 
7FH (0111111IB) has a 0 only in the parity bit position. 000000 

Example 8.2 ASCII-to-numeric conversion of digit characters 

In this example, we want to convert an ASCII decimal digit character to 
its equivalent 8-bit binary number. To see how this can be done by using the 



Section 8.1 Logical Instructions 303 

Table 8.2 ASCII-to-binary conversion of digits 

Decimal ASCII code 8-bit binary code 
digit (in binary) (in binary) 

0 0011 0000 00000000 
1 00110001 00000001 
2 0011 0010 00000010 
3 00110011 00000011 
4 00110100 00000100 
5 00110101 00000101 
6 00110110 00000110 
7 0011 0111 00000111 
8 0011 1000 00001000 
9 0011 1001 00001001 

and instruction, take a look at the relationship between the ASCII code and the 
8-bit binary representation of the 10 digits shown in Table 8.2. 

It is clear from this table that if we mask out the third and fourth bits (from 
left) in the ASCII code byte, we can transform the byte into an equivalent 8-bit 
unsigned binary number representation. 

In fact, we can mask out all of the upper 4 bits without worry, which is what 
the following code does. If AL has the ASCII code of a decimal digit, 

and AL,OFH 

would produce the desired result in AL. 000000 

Isolating Bits 

Another typical use of the and instruction is to isolate selected bit(s) for testing. 
This is done by masking out all the other bits, as shown in the next example. 

Example 8.3 Finding an odd or even number 

In this example, we want to find out if the unsigned 8-bit number in the 
AL register is an odd or an even number. A simple test to determine this is to 
check the least significant bit of the number: if this bit is 1, it is an odd number; 
otherwise, an even number. 

Here is the code to perform this test using the and instruction. 



304 Chapter 8 Logical and Bit Operations 

and 
jz 

odd_number: 

AL,! ; mask = OOOOOOO!B 
even_number 

<code for processing odd number> 

<code for processing even number> 

If AL has an even number, the least significant bit of AL is O. Therefore, 

and AL,1 

would produce a zero result in AL and sets the zero flag. The j z instruction 
is then used to test the status of the zero flag and to selectively execute the 
appropriate code fragment. This example shows the use of and to isolate a 
bit-the least significant bit in this case. 000000 

8.1.2 The or Instruction 

The or instruction has the general format 

or destination, source 

and the operation of or is shown in the form of the truth table below: 

Truth table for the or operation 
Input bits Output bit 

source hi destination hi destination hi 
0 0 0 
0 I 1 
1 0 1 
1 1 1 

The or operation is a dual of and in the sense that the output is 0 if and 
only if the both the inputs are O. Table 8.3 gives some examples of how the 
instruction 

or AL,BL 

works. 



Section 8.1 Logical Instructions 305 

Table 8.3 Some examples of or AL , BL 

Before execution of or After execution of or 
AL BL AL ZF SF PF 

01000010 00001010 01001010 0 0 0 
00000000 00000000 00000000 1 0 1 
1010 0000 00001111 1010 1111 0 1 1 
10000000 10000000 10000000 0 I 0 

Usage 

Like the and instruction, the or instruction is useful in two applications: 

1. To support compound logical expressions and bitwise or operations of 
high-level languages; 

2. To set one or more bits of a byte, word, or doubleword. 

The use of the or instruction to express compound logical expressions and to 
implement bitwise or operations is discussed in Section 8.4. We now discuss 
how the or instruction can be used to set a given set of bits. 

As you can see from the truth table for the or operation, when the source 
hi is 0, the other input is passed on to the output; when the source hi is 1, the 
output is forced to take a value of 1 irrespective ofthe other input. This property 
is used to set bits in the output. This is illustrated in the following example. 

AL = 11010110B +- operand to be manipulated 
BL = 00000011B +- mask byte 

or AL,BL = 11010111B 

The mask value in BL causes the least significant 2 bits to change to I. Here 
are some examples that illustrate the use of the or instruction. 

Example 8.4 Even-parity encoding (partial code) 

Consider the even-parity encoding discussed in Example 8.1 (on page 302). 
If the number of 1 bits in the least significant 7 bits is odd, we have to make the 
parity bit I so that the total number of 1 bits is even. This is done by 

or AL,BOH 

assuming that the byte to be parity-encoded is in the AL register. This or opera
tion forces the parity bit to 1 while leaving the remainder of the byte unchanged. 

000000 



306 Chapter 8 Logical and Bit operations 

Example 8.S Conversion of digits to ASCII characters 

This is the counterpart of Example 8.2 on page 302. Here we would like to 
convert an 8-bit unsigned binary number (between 0 and 9, both inclusive) to 
the corresponding ASCII character code. Such conversion is often required to 
print or display numbers. Refer to Table 8.2 on page 303. 

The conversion process involves making the third and fourth bits (from 
left) of the binary number 1 'so If the AL register has the binary number to be 
converted, the instruction 

or AL,30H 

will perform the desired conversion. Note that our mask input 00 l10000B (30H) 
will change the 2 bits to l's without affecting the remaining 6 bits. 000000 

Cutting and Pasting Bits 

The and and or instructions can be used together to "cut and paste" bits from 
two or more operands. We have already seen that and can be used to isolate 
selected bits-analogous to the "cut" operation. The or instruction can be used 
to "paste" the bits. For example, the following code creates a new byte in AL 
by combining odd bits from AL and even bits from BL registers. 

and AL,55H cut odd bits 
and BL,OAAH; cut even bits 
or AL,BL ; paste them together 

The first and instruction selects only the odd bits from the AL register by 
forcing all even bits to 0 by the use of the mask 55H (OlOlOlOlB). The second 
and instruction selects the even bits by using the mask AAH (lOlOlOlOB). The 
or instruction simply pastes these 2 bytes together to produce the desired byte 
in the AL register. 

8.1.3 The xor Instruction 

The general format of the exclusive-or (xor) instruction is 

xor destination, source 

The truth table for the xor operation is given below: 



Section 8.1 Logical Instructions 307 

Table 8.4 Some examples of xor AL , BL 

Before execution of or After execution of or 
AL BL AL ZF SF PF 

01000010 0001 1010 01011000 0 0 0 
01101101 0110 1101 00000000 1 0 1 
1010 0110 0101 1001 11111111 0 1 1 
1011 0110 00001111 1011 1001 0 1 0 

Truth table for the xor operation 
Input bits Output bit 

source hi destination hi destination hi 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Table 8.4 gives some examples of how the instruction 

xor AL,BL 

works. 
If you compare this truth table with that of the or operation on page 304, 

you will notice that they differ only in the last row when both the inputs are 
1. This apparently minor change between or and xor gives xor an interesting 
property-to selectively complement bits. 

The truth table shows that when the source hi is 0, the other input is passed 
on to the output; when the source hi is 1, the output is the complement of the 
other input. Thus, by using the appropriate mask, selected bits of an input can 
be inverted. The following example illustrates how the xor operation can be 
used to invert the odd bits of the AL register. 

AL = 11010110B +-- operand to be manipulated 
BL = 01010101B +-- mask byte 

xor AL,BL = 10000011B 

Since the mask is 55H, all odd bits of AL are flipped while copying the 
even bits to the output. Thus, in some sense, the xor operation can be thought 
of as a bit-specific not operation. In particular, if the mask has all 1 's, the xor 
performs like the not operation (except for differences in how the flags are 
affected). 



308 Chapter 8 Logical and Bit Operations 

Usage 

The xor instruction is useful mainly in three different situations: 

I. To support compound logical expressions of high-level languages 

2. To toggle one or more bits of a byte, word, or doubleword 

3. To initialize registers to zero. 

The use of the xor instruction to express compound logical expression is 
discussed in Section 8.4. Here we focus on the use of xor to toggle bits and 
initialize registers to zero. 

Toggling Bits 

Using the xor instruction, we can toggle a specific set of bits. To do this, the 
mask should have a I bit in the bit positions that are to be flipped. The following 
example illustrates this application of the xor instruction. 

Example 8.6 Parity conversion 

Suppose we want to change the parity encoding of incoming data-if even 
parity, change to odd parity and vice versa. To accomplish this change, all we 
have to do is flip the parity bit, which can be done by 

xor AL,80H 

Thus, an even-parity encoded ASCII character A-O 100000 I B-is transformed 
into odd-parity encoding, as shown below: 

01000001B +- even-parity encoded ASCII character A 
xor 10000000B +- mask byte 

11000001B +- odd-parity encoded ASCII character A 

Notice that if we perform the same xor operation on odd-parity encoding of 
A, we get back the even-parity encoding! This is an interesting property of the 
xor operation: xoring twice gives back the original value. This is not hard to 
understand, as xor behaves like the not operation by selectively flipping bits. 
This property is used in the following example to encrypt a byte. 000000 

Example 8.7 Encryption of data 



Section 8.1 Logical Instructions 309 

Data encryption is useful in applications that deal with sensitive data. We 
can write a simple encryption program by using the xor instruction. The idea 
is that we will use the encryption key as the mask byte of the xor instruction, 
as shown below. Assume that the byte to be encrypted is in the AL register and 
the encryption key is A6H. 

j read a data byte into AL 
xor AL,OA6H 
j write the data byte back from AL 

Suppose we have received character B, whose ASCII code is 0100001OB. 
After encryption, the character becomes d in ASCII, as shown below. 

010000108 +- ASCII character B 
001001108 +- encryption key (mask) 
011001008 +- ASCII character d 

An encrypted data file can be transformed back into normal form by running 
the encrypted data through the same encryption process again. To continue 
with our example, if the above encrypted character code 64H (representing d) 
is passed through the encryption procedure, we get 42H, which is the ASCII 
code for character B. 000000 

Initialization of Registers 

Another use of the xor instruction is to initialize registers to O. We can, of 
course, do this by 

moy AX,O 

but the same result can be achieved by 

xor AX,AX 

This works no matter what the contents of the AX register are. To see why this 
is so, look at the truth table for the xor operation given on page 307. Since 
we are using the same operand as both inputs, the input can be either both 0 or 
1. In both cases, the result bit is O-see the first and last rows of the xor truth 
table. 

These two instructions, however, are not exactly equivalent. The xor in
struction affects flags, whereas the moy instruction does not. Of course, we 
can also use the sub instruction to do the same. All three instructions take one 
clock cycle to execute, even though the moy instruction requires more bytes to 
encode the instruction. 



310 Chapter 8 Logical and Bit Operations 

8.1.4 The not Instruction 

The logical not operation is a unary operator (i.e., it requires only one operand). 
The general format is 

not destination 

The not operation complements or flips the bits, as shown in the following 
truth table. 

Truth table for the not operation 
Input bit Output bit 

destination hi destination hi 
0 1 
1 0 

As an example, if AL contains 00110 1 01 B before executing 

not AL 

the AL register will have 1100101 DB after executing the not instruction. One 
important difference between not and the other logical instructions is that not 
does not affect any of the flags. 

Usage 

The not instruction is used for complementing bits. Its main use is in supporting 
logical expressions of high-level languages. See the discussion in Section 8.4. 

Another possible use for the not instruction is to compute 1 's complement. 
Recall that 1 's complement of a number is simply the complement of the number. 
Since most systems use the 2's complement number representation system, 
generating 2's complement of an 8-bit signed number using not involves 

not AL 
inc AL 

However, the Pentium instruction set also provides the neg instruction to 
reverse the sign of a number. Thus, the not instruction is not useful for this 
purpose. 

8.1.5 The test Instruction 

The test instruction is the logical equivalent of the compare (cmp) instruction. 
It performs the logical and operation but, unlike the and instruction, test 
does not alter the destination operand. That is, test is a nondestructive and 
instruction. The general format is 

test destination,source 



Section 8.2 Shift Instructions 311 

Usage 

This instruction is used only to update the flags, and a conditional jump in
struction normally follows it. For instance, in Example 8.3 on page 303, the 
instruction 

and AL,1 

destroys the contents of the AL register. If our purpose is to test whether the 
unsigned number in the AL register is an odd number, we can do this using 
test without destroying the original number. For convenience, the example is 
reproduced below with the test instruction. 

test AL,1 ; mask = 00000001B 
jz even_number 

odd_number: 

<code for processing odd number> 

<code for processing even number> 

8.2 Shift Instructions 

Pentium provides two types of shift instructions: one type for performing log
ical shifts, and the other for performing arithmetic shifts. The logical shift 
instructions are: 

shl (SHift Left) 
shr (SHift Right) 

and the arithmetic shift instructions are 

sal (Shift Arithmetic Left) 
sar (Shift Arithmetic Right) 

Another way of looking at these two types of shift instructions is that the 
logical type instructions work on unsigned binary numbers, and the arithmetic 
type work on signed binary numbers. We will get back to this discussion later 
in this section. 



312 Chapter 8 Logical and Bit Operations 

Effect on Flags 

As in the logical instructions, the auxiliary flag is undefined following a shift 
instruction. The carry flag (CF), zero flag (ZF), and parity flag (PF) are updated 
to reflect the result of a shift instruction. The CF always contains the bit last 
shifted out of the operand. The OF is undefined following a multibit shift. In a 
single-bit shift, OF is set if the sign bit has been changed as a result of the shift 
operation; OF is cleared otherwise. The OF is rarely tested in a shift operation. 
The most often tested flags after a shift instruction are CF and ZE 

8.2.1 Logical Shift Instructions 

The logical shift instructions have the following general format: 

shl destination, count 
shr destination, count 

The destination can be an 8-, 16- or 32-bit operand stored either in a register 
or in memory. The second operand specifies the number of bit positions to be 
shifted. The destination is shifted left or right by count bit positions. 

The shl instruction can be used to left shift a destination operand. Each 
bit shift to the left causes the leftmost bit to move to the carry flag (CF), and 
the vacated rightmost bit is filled with a 0 bit. The bit that was in CF is lost as 
a result of the left shift operation. 

SHL GIE-----+-E I ± ± ± ± ± ± ± + 0 

Bit Position: 7 6 5 4 3 2 o 

The shr instruction works similarly but shifts bits to the right. 

SHR 0 + f f f f f f + t-B 
Bit Position: 7 6 5 4 3 2 o 

There are two versions of each instruction depending on how the count 
value is specified. The count can be given as an immediate value or in the CL 
register. Thus, the formats of these instructions are, 

shl destination, count 
shl destination,CL 

shr destination, count 
shr destination,CL 

The first format can be used to specify directly the number of bit positions 
to be shifted. The value of count can range from 0 to 31. The second format 



Section 8.2 Shift Instructions 313 

can be used to indirectly specify the shift count, which is assumed to be in 
the CL register. The CL register contents are not changed by the shl and shr 
instructions. The CL versions are useful when we don't know the count value 
(e.g., given as a parameter in a procedure call). In general, the first format is 
faster. 

Even though the shift count can be between 0 and 31, it does not make 
sense to use count values of 0 or greater than 7 (for an 8-bit operand), or 15 
(for a 16-bit operand), or 31 (for a 32-bit operand). As indicated, Pentium does 
not allow specification of shift count to be greater than 31. If a greater value 
is specified, Pentium takes only the least significant 5 bits of the number as the 
shift count. 

Here are some examples of shl and shr instructions. 

Instruction Before shift After shift CF 
shl AL,l AL = 1010 1110 AL = 0101 1100 1 
shr AL,l AL = 1010 1110 AL = 0101 0111 0 
mov CL,3 
shl AL,CL AL = 0110 1101 AL = 0110 1000 1 
mov CL,5 
shr AX,CL AX= AX= 1 

1011 1101 0101 1001 00000101 1110 1011 

Usage 

The shift instructions are useful mainly in two situations: 

1. To manipulate bits 

2. To mUltiply and divide unsigned numbers by a power of 2. 

Bit Manipulation 

The shift operations provide flexibility to bit manipUlation as illustrated by the 
following example. 

Example 8.8 Another encryption example 

Consider the encryption example discussed on page 308. In this example, 
we use the following encryption algorithm: encrypting a byte involves exchang
ing the upper and lower nibbles (i.e., 4 bits). This algorithm also allows the 



314 Chapter 8 Logical and Bit Operations 

recovery of the original data by applying the encryption twice, as in the xor 
example on page 308. 

Assuming that the byte to be encrypted is in the AL register, the following 
code implements this algorithm: 

; AL contains the byte to be encrypted 
mov AH,AL 
shl AL,4 move lower nibble to upper 
shr AH,4 move upper nibble to lower 
or AL,AH paste them together 
; AL has the encrypted byte 

To understand this code, let us trace the execution by assuming that AL has 
the ASCII character A. Therefore, 

AH = AL = 01000001B 

The idea is to move the upper nibble to lower in the AH register, and the other 
way around in the AL register. To do this, we use shl and shr instructions. 
The shl instruction replaces the shifted bits by O's and after the shl 

AL = 00010000B 

Similarly, shr also introduces O's in the vacated bits on the left and after the 
shr instruction 

AH = 00000100B 

The or instruction pastes these 2 bytes together, as shown below: 

AL = 00010000B 
AH = 00000100B 

or AL,AH = 00010100B 

We will show in Section 8.3.1 that this can be done better by using a rotate 
instruction (see Example 8.9 on page 320). DDDDDD 

Multiplication and Division 

Shift operations are very effective in performing doubling or halving of unsigned 
binary numbers. More generally, they can be used to multiply or divide unsigned 
binary numbers by a power of 2. 

In the decimal number system, we can easily perform multiplication and 
division by a power of to. For example, if we want to multiply 254 by 10, 



Section B.2 Shift Instructions 315 

Table 8.S Doubling and halving of unsigned numbers 

Binary number Decimal value 
00011100 28 
00111000 56 
01110000 112 
11100000 224 
10101000 168 
01010100 84 
00101010 42 
00010101 21 

we will simply append a 0 at the right (analogous to shifting left by a digit 
with the vacated digit receiving a 0). Similarly, division of 750 by 10 can be 
accomplished by throwing away the 0 on the right (analogous to right shift by 
a digit). 

Since computers use the binary number system, they can perform multipli
cation and division by a power of 2. This point is further clarified in Table 8.5. 
The first half of this table shows how shifting a binary number to the left by 
one bit position results in multiplying it by 2. Note that the vacated bits are 
replaced by O's. This is exactly what the shl instruction does. Therefore, if we 
want to multiply a number by 8 (i.e., 23), we can do so by shifting the number 
left by 3 bit positions. 

Similarly, as shown in the second half of the table, shifting right by one bit 
position is equivalent to dividing by 2. Thus, we can use the shr instruction 
to perform division by a power of 2. For example, to divide a number by 32 
(i.e., 25), we right shift the number by five bit positions. Remember that this 
division process corresponds to integer division, discarding any fractional part 
of the result. 

8.2.2 Arithmetic Shift Instructions 

This set of shift instructions 

sal (Shift Arithmetic Left) 
sar (Shift Arithmetic Right) 

can be used to shift signed numbers left or right, as shown below. 



316 Chapter 8 Logical and Bit Operations 

Table 8.6 Doubling of signed numbers 

Signed binary number Decimal value 
00001011 +11 
00010110 +22 
00101100 +44 
01011000 +88 
11110101 -11 
11101010 -22 
11010100 -44 
10101000 -88 

SAL 014----1--· I + + + + + + + + 0 

Bit Position: 7 6 5 4 3 2 o 

SAR ~f f f f + f f +---El 
Bit Position: 7 6 5 4 3 2 o 

Shifting left by one bit position corresponds to doubling the number, and 
shifting right by one bit position corresponds to halving it. As with the logical 
shift instructions, the CL register can be used to specify the count value. The 
general format is 

sal 
sal 

destination,count 
destination,CL 

Doubling Signed Numbers 

sar 
sar 

destination, count 
destination,CL 

Doubling a signed number by shifting it left by one bit position may appear 
to cause problems because the leftmost bit is used to represent the sign of the 
number. It turns out that this is not a problem at all. See the examples presented 
in Table 8.6 to develop your intuition. The first group presents the doubling 
effect on positive numbers and the second group shows the doubling effect on 
negative numbers. In both cases, the vacated bit is replaced by a O. Why isn't 
shifting out the sign bit causing problems? The reason is that signed numbers 
are sign-extended to fit a larger-than-required number of bits. For example, if 
we want to represent numbers in the range of +3 and -4, 3 bits are sufficient to 



Section 8.2 Shift Instructions 317 

Table 8.7 Division of signed numbers by 2 

Signed binary number Decimal value 
01011000 +88 
00101100 +44 
00010110 +22 
00001011 +11 
10101000 -88 
11010100 -44 
11101010 -22 
11110101 -11 

represent this range. If we use a byte to represent the same range, the number 
is sign-extended by copying the sign bit into the higher order 5 bits, as shown 
below. 

sign bit 
copied 
,..-'--.. 

+3 = 00000 011B 

sign bit 
copied 
,..-'--.. 

-3 = 11111101B 

Clearly, doubling a signed number is no different than doubling an unsigned 
number. Thus, no special shift left instruction is needed for the signed numbers. 
In fact, sal and shl are one and the same instruction-sal is an alias for shl. 

Halving Signed Numbers 

Can we also forget about treating the signed numbers separately in halving 
a number? Unfortunately, we cannot! When we are right shifting a signed 
number, the vacated left bit should be replaced by a copy of the sign of the 
number. This rules out the use of shr for signed numbers. See the examples 
presented in Table 8.7. The sar instruction precisely does this-the sign bit is 
copied into the vacated bit on the left. 

Remember that the shift right operation performs integer division. For 
example, rightshifting00001011B (+ 110) by a bit results inOOoo0101B (+5D). 



318 Chapter 8 Logical and Bit Operations 

8.2.3 Why Use Shifts for Multiplication and Division? 

Shifts are more efficient to execute than the corresponding multiplication or 
division instructions. As an example, consider multiplying a signed 16-bit 
number in the AX register by 32D. Using the mul instruction, we can write 

; multiplicand is assumed to be in AX 
mov eX,32 ; multiplier in ex 
mul ex 

These two instruction sequences take twelve clock cycles. Of this, mul takes 
about eleven clock cycles. 

Let us look at how we can perform this mUltiplication with the sal instruc
tion. 

; multiplicand is assumed to be in AX 
sal AX,5 ; shift left by 5 bit positions 

This code executes in just one clock cycle. This code also requires fewer bytes 
to encode. Thus, this code is both more space- and time-efficient than the mul 
version. Section 8.7 discusses the performance impact of these two versions. 

8.2.4 Double Shift Instructions 

Pentium provides two double shift instructions for 32-bit and 64-bit shifts. 
These two instructions operate on either word or doubleword operands and 
produce a single word or doubleword result, respectively. The double shift 
instructions require three operands, as shown below: 

shld 
shrd 

dest,src,count 
dest,src,count 

left shift 
right shift 

dest and src can be either a word or a doubleword. While the dest operand 
can be in a register or memory, the src operand must be in a register. The 
shift count can be specified as in the shift instructions--either as an immediate 
value or in the CL register. 

A significant difference between shift and double shift instructions is that 
the src operand supplies the bits in double shift instructions, as shown below: 



Section 8.3 Rotate Instructions 319 

15/31 o 15/31 o 
shld dest (register or memory) src (register) 

15/31 o 15/31 o 

shrd src (register) dest (register or memory) 

Note that the bits shifted out of the src operand go into the dest operand. 
However, the src operand itself is not modified by the double shift instructions. 
Only the dest operand is updated appropriately. As in the shift instructions, 
the last bit shifted out is stored in the carry flag. Later we present an example 
that demonstrates the use of the double shift instructions (see Example 8.10 on 
page 321). 

8.3 Rotate Instructions 

A drawback with the shift instructions is that the bits shifted out are lost. There 
may be situations where we want to keep these bits. The double shift instructions 
provide this capability on word or doubleword operands. The rotate family of 
instructions are useful in remedying this drawback on a variety of operands. 
These instructions can be divided into two types: rotate without involving the 
carry flag (CF), or rotate through the carry flag. The next two subsections 
consider these two types of instructions. 

8.3.1 Rotate Without Carry 

There are two instructions in this group: 

rol (ROtate Left) 
ror (ROtate Right) 

The format of these instructions is similar to the shift instructions and is given 
below: 

rol 
rol 

destination, count 
destination,CL 

ror 
ror 

destination, count 
destination,CL 

The rol instruction performs left rotation with the bits falling off on the 
left being placed on the right side, as shown below: 



320 Chapter 8 Logical and Bit Operations 

ROL B~' 11+ + + +0+ + + ;p 
Bit Position: 7 6 5 4 3 2 o 

The ror instruction performs right rotation, as shown below: 

ROR 

Bit Position: 7 6 5 4 3 2 o 

For both of these instructions, the CF will catch the last bit rotated out of 
destination. The following table illustrates the rotate operation by means of 
examples. 

Before execution After execution 
Instruction ALorAX AL or AX CF 

rol AL,! 1010 1110 0101 1101 1 
ror AL,! 1010 1110 01010111 0 
mov CL,3 
rol AL,CL 0110 1101 01101011 1 
mov CL,5 
ror AX,CL 1011 1101 0101 1001 110011011110 1010 1 

Usage 

The rotate instructions are useful in rearranging bits of a byte, word, or double
word. This is illustrated below by revisiting the data encryption example given 
on page 313. 

Example 8.9 Encryption exampLe revisited 

In Example 8.8, we have encrypted a byte by interchanging the upper and 
lower nibbles. This can be done easily either by 

mav CL,4 
rar AL,CL 

or by 

mav CL,4 
ral AL,CL 

This is a much simpler solution than the one using shifts. DDDDDD 



Section 8.3 Rotate Instructions 

8.3.2 Rotate Through Carry 

The instructions 

reI (Rotate through Carry Left) 
rer (Rotate through Carry Right) 

321 

include the carry flag in the rotation process. That is, the bit that is rotated out 
at one end goes into the carry flag, and the bit that was in the carry flag is moved 
into the vacated bit, as shown below. 

Bit Position: 7 6 5 4 3 2 o 

RCR Lfffff"fff+="G 
Bit Position: 7 6 5 4 3 2 o 

In this context, it is useful to recall that there are three instructions that 
explicitly manipulate the carry flag: ste, ele, and eme. 

The following table contains several examples that illustrate the operation 
of the reI and rer instructions. 

Before execution After execution 
Instruction ALorAX CF ALorAX CF 

reI AL,i 1010 1110 0 0101 1100 1 
rer AL,i 10101110 1 11010111 0 
mov CL,3 
reI AL,CL 0110 1101 1 01101101 1 
mov CL,5 
rer AX,CL 1011 1101 0101 1001 0 1001 0101 1110 1010 1 

Usage 

The reI and rer instructions provide flexibility in bit rearranging. Further
more, these are the only two instructions that take the carry flag bit as an input. 
This feature is useful in multi word shifts, as illustrated by the following exam
ple. 

Example 8.10 Shifting 64-bit numbers 



322 Chapter 8 Logical and Bit Operations 

We have seen that multiplication and division by a power of 2 is faster if 
we use shift operations rather than multiplication or division instructions. Shift 
instructions operate on operands of size up to 32 bits. What if the operand to 
be manipulated is bigger? 

Since the shift instructions do not involve the carry flag as input, we have 
two alternatives: either use reI or rer instructions, or use the double shift 
instructions for such multiword shifts. As an example, assume that we want to 
multiply a 64-bit unsigned number by 16. The 64-bit number is assumed to be 
in the EDX:EAX register pair with EAX holding the least significant 32 bits. 

Rotate version: 

mov CX,4 
shift_left: 

shl EAX,1 
rcl EDX,1 
loop shift left 

Double shift version: 

4 bit shift 

moves leftmost bit of AX to CF 
CF goes to rightmost bit of DX 

shld EDX,EAX,4 EAX is unaffected by shld 
shl EAX,4 

Similarly, if we want to divide the same number by 16, we can use the 
following code: 

Rotate version: 

mov CX,4 
shift_right: 

shr EDX,1 
rcr EAX,1 
loop shift_right 

Double shift version: 

4 bit shift 

moves rightmost bit of DX to CF 
CF goes to leftmost bit of AX 

shrd EAX,EDX,4 EDX is unaffected by shld 
shr EDX,4 

DDDDDD 



Section 8.4 Logical Expressions in High-Level Languages 323 

8.4 Logical Expressions in High-Level Languages 

Some high-level languages like Pascal provide Boolean data types. Boolean 
variables can assume either a true or a false value. Other languages like C 
do not explicitly provide Boolean data types. This section discusses Boolean 
data representation and the evaluation of compound logical expressions. 

8.4.1 Representation of Boolean Data 

In principle, only a single bit is needed to represent the Boolean data. However, 
such a representation, while compact, is not convenient, as testing a variable 
involves isolating the corresponding bit. 

Most languages use a byte to represent the Boolean data. If all bits of the 
byte are zero, it represents false; otherwise, true. It is strictly unnecessary 
to have all bits 1 to represent true. 

In C language, which does not provide an explicit Boolean data type, any 
data variable can be used in a logical expression to represent Boolean data. The 
same rules mentioned above apply: if the value is 0, it is treated as false and 
any non-zero value is treated as true. Thus, we can use integer variables as 
Boolean variables in logical expressions, for example. 

8.4.2 Logical Expressions 

The logical instructions are useful in implementing logical expressions of high
level languages. For example, C provides the four logical operators discussed 
in Section 8.1. 

C operator meaning 
&& AND 
II OR 
- exclusive-OR 
- NOT 

To illustrate the use of logical instructions in implementing logical expres
sions of high-level languages, let us look at the following C example: 

if e-ex && y) - ey I I Z)) 
X = Y + Z; 

The corresponding assembly language code generated by the Turbo C compiler 
is shown in Figure 8.1. As we have seen in Chapter 7, C uses partial evaluation 
of logical expressions. 



324 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 

Chapter 8 Logical and Bit operations 

cmp WORD PTR [BP-12] ,0 X = false? 
je falsel if so, (X .l.l y) := false 
or eX,ex Y = false? 
je falsel 
mov AX,l (X .l.l y) := true 
jmp SHORT skipl 

falsel: 
xor AX,AX (X .l.l y) := false 

skipl : 
not AX AX := -(X && y) 
push AX save -(X .l.l y) 
; now evaluate the second term 
or eX,ex y = true? 
jne true2 if so, (Y II Z) := true 
cmp WORD PTR [BP-14] ,0 Z = false? 
je skip2 

true2: 
mov AX,l (X II Y) := true 
jmp SHORT skip3 

skip2: 
xor AX,AX (X II Y) := false 

skip3: 
pop OX OX := -(X && Y) 
xor OX,AX -(X && y) ~ (y II Z) 
je end_if if zero, whole expo false 

if_body: 
mov AX,eX AX := Y 
add AX,WORD PTR [BP-14] AX := Y + Z 
mov WORD PTR [BP-12] ,AX X := Y + Z 

end_if: 

Figure 8.1 Assembly language code for the example logical expression. 

The variable X is mapped to [BP-12], Y to the ex register, and Z to 
[BP-14]. The code on lines 1-8 implements partial evaluation of (X .t.t Y). 
The result of the evaluation, 0 or 1, is stored in AX. The not instruction is used 
to implement the - operator (line 10), and the value of - (X .t.t Y) is stored on 
the stack (line 11). 



Section 8.5 Bit Instructions 325 

Similarly, lines 13-21 evaluate (Y II Z), and the result is placed in AX. 
The value of - (X && Y) is recovered to DX (line 23), and the xor instruction 
is used to implement the - operator (line 24). If the result is zero (i.e., false), 
the body of the if statement is skipped (line 25). 

8.4.3 Bit Manipulation 

Some high-level languages like C provide bitwise logical operators. For exam
ple, C provides bitwise and (&), or (I), xor (-), and not C) operators. These 
can be implemented by using the logical instructions provided in assembly 
language. 

The C language also provides shift operators: left shift (<<) and right shift 
(»). These operators can be implemented with the shift instruction of assembly 
language. 

Table 8.8 shows how the logical and shift family of instructions are used 
in implementing the bitwise logical and shift operators of the C language. The 
variable mask is mapped to the SI register. 

8.5 Bit Instructions 

Pentium provides bit test and modification instructions as well as bit scan in
structions. This section discusses these two groups of instructions. An example 
that uses these instructions is given later (see Example 8.12). 

8.5.1 Bit Test and Modify Instructions 

There are four bit test instructions. Each instruction takes the position of the 
bit to be tested. The least significant bit is considered as bit position zero. A 
summary of the four instructions is given below: 

Instruction 
bt (Bit Test) 
bts (Bit Test and Set) 
btr (Bit Test and Reset) 
btc (Bit Test and Complement) 

Effect on Selected Bit 
No effect 
Selected bit +-- 1 
Selected bit +-- 0 
Selected bit +-- NOT(Selected bit) 

All four instructions copy the selected bit into the carry flag. The format 
of all four instructions is the same. We use the bt instruction to illustrate the 
format of these instructions. 

bt operand,bit_pos 



326 Chapter 8 Logical and Bit Operations 

Table 8.8 Examples of bitwise operators 

C statement Assembly language code 
mask = mask»2 shr S1,2 
(right shift mask by 
two bit positions) 

mask = mask«4 shl S1,4 
(left shift mask by 
four bit positions) 

mask = -mask not S1 
(complement mask) 

mask = mask & 85 and S1,85 
(bitwise and) 

mask = mask I 85 or S1,85 
(bitwise or) 

mask = mask - 85 xor SI,85 
(bitwise xor) 

where operand can be a word or doubleword located either in a register or in 
memory. The hi t_pos specifies the bit position to be tested. It can be specified 
as an immediate value or in a 16- or 32-bit register. Instructions in this group 
affect only the carry flag. The other five status flags are undefined following a 
bit test instruction. 

8.5.2 Bit Scan Instructions 

Bit scan instructions scan the operand for a 1 bit and return the bit position in a 
register. There are two instructions-one to scan forward and the other to scan 
backward. The format is 

bsf 
brf 

dest_reg,operand 
dest_reg,operand 

;bit scan forward 
;bit scan reverse 



Section 8.6 Illustrative Examples 327 

where operand can be a word or doubleword located either in a register or in 
memory. The dest_reg receives the bit position. It must be a 16- or 32-bit 
register. The zero flag is set if all bits of operand are 0; otherwise, the ZF is 
cleared and the dest_reg is loaded with the bit position of the first 1 bit while 
scanning forward (for bsf), or reverse (for brf). These two instructions affect 
only the zero flag. The other five status flags are undefined following a bit scan 
instruction. 

8.6 Illustrative Examples 

This section presents three examples that use the shift and rotate family of 
instructions. 

Example 8.11 Multiplication using only shifts and adds 

The objective of this example is to show how multiplication can be done 
entirely by shift and add operations. We consider multiplication of two unsigned 
8-bit numbers. In order to use the shift operation, we have to express the 
multiplier as a power of 2. For example, if the multiplier is 64, the result can be 
obtained by shifting the multiplicand left by six bit positions (because 26 = 64). 

What if the multiplier is not a power of 2? In this case, we have to express 
this number as a sum of powers of 2. For example, if the multiplier is 10, it 
can be expressed as 8+2, where each term is a power of 2. Then the required 
multiplication can be done by two shifts and one addition. 

The question now is: How do we express the multiplier in this form? If we 
look at the binary representation of the multiplicand (100 = 00001010B), there 
is a 1 in bit positions with weights 8 and 2. Thus, for each 1 bit in the multiplier, 
the multiplicand should be shifted left by a number of positions equal to the bit 
position number. In the above example, the multiplicand should be shifted left 
by 3 and 1 bit positions and then added. This procedure is formalized in the 
following algorithm. 

mult8 (numberl, number2) 
result:= 0 
for (i = 7 downto 0) 

if (bit(number2, i) = 1) 
result:= result + numberl * i 

end if 
end for 

endmult8 



328 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

Chapter 8 Logical and Bit Operations 

The function bit returns the ith bit of number2. The program listing is given 
in Program 8.33. 

Program 8.33 Multiplication of two 8-bit numbers using only shifts and adds 

TITLE 8-bit multiplication using shifts 
COMMENT I 

Objective: To multiply two 8-bit unsigned numbers 
using SHL rather than MUL instruction. 

Input: Requests two unsigned numbers from user. 
Output: Prints the multiplication result. 

.MODEL SMALL 

.STACK 100H 

. DATA 
10: input_prompt 
11: out_msgl 

DB 'Please input two short numbers: ',0 
DB 'The multiplication result is: ',0 
DB 'Do you want to quit (YIN): ',0 12: query_msg 

13: 
14: . CODE 
15: INCLUDE io.mac 
16: main 
17: 

PROC 
. STARTUP 

18: 
19: 
20: 

read_input: 

21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: done: 
34: 

PutStr 
GetInt 
nwln 
GetInt 
nwln 
call 
PutStr 
PutInt 
nwln 
PutStr 
GetCh 
nwln 
cmp 
jne 

. EXIT 
35: main ENDP 
36: 

input_prompt 
AX 

BX 

mult8 
out_msgl 
AX 

query_msg 
AL 

AL, 'Y' 
read_input 

request two numbers 
read the first number 

read the second number 

mult8 uses SHL instruction 

mult8 leaves result in AX 

query user whether to terminate 
read response 

if response is not 'Y' 
repeat the loop 
otherwise, terminate program 

37: ._----------------------------------------------------------• 
38: ; mult8 multiplies two 8-bit unsigned numbers passed on to 



Section 8.6 Illustrative Examples 329 

39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 

it in registers AL and BL. The 16-bit result is returned 
in AX. This procedure uses only SHL instruction to do the 
multiplication. All registers, except AX, are preserved. 

e __________________________________________________________ _ 

, 
mult8 PROC 

push 
push 
push 
xor 
mov 
mov 

repeat 1 : 
rol 
jnc 
mov 
shl 
add 

CX 
OX 
SI 
OX,OX 
CX,7 
SI,AX 
; multiply 
BL,l 
skip1 
AX,SI 
AX,CL 
OX,AX 

; save registers 

OX := 0 (keeps multo result) 
CX := # of shifts required 
save original number in SI 

loop - iterates 7 times 
test bits of number2 from left 
if 0, do nothing 
else, AX := number1*bit weight 

update running total in OX 
56: skip1: 
57: 
58: 
59: 
60: 
61: skip2: 
62: 
63: 
64: 
65: 

loop 
rol 
jnc 
add 

mov 
pop 
pop 
pop 

repeat 1 
BL,l 
skip2 
OX,SI 

AX,OX 
SI 
OX 
CX 

test the rightmost bit of AL 
if 0, do nothing 
else, add number1 

move final result into AX 
restore registers 

66: ret 
67: mult8 ENOP 
68: ENO main 

The main program requests two numbers from the user and calls the pro
cedure mul t8 and displays the result. The main program then queries the user 
whether to quit and proceeds according to the response. 

The mul t8 procedure multiplies two 8-bit unsigned numbers and returns 
the result in AX. It follows the algorithm discussed on page 327. The multiply 
loop (lines 50-57) tests the most significant 7 bits of the multiplier. The least 
significant bit is tested on line 58. Notice that the procedure uses rol rather 
than shl to test each bit (lines 51 and 58). The use of rol automatically restores 
the BL register after 8 rotates. 000000 



330 Chapter 8 Logical and Bit Operations 

Example 8.12 Multiplication using only shifts and adds-version 2 

In this example, we rewrite the mul t8 procedure of the last example by 
using the bit test and scan instructions. In the previous version, we used a loop 
(see lines 50-57) to test each bit. Since we are interested only in 1 bits, we 
can use a bit scan instruction to do this job. The modified mul t8 procedure is 
shown below. 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 

._----------------------------------------------------------, 
mult8 multiplies two 8-bit unsigned numbers passed on to 
it in registers AL and BL. The 16-bit result is returned 
in AX. This procedure uses only SHL instruction to do the 
multiplication. All registers, except AX, are preserved. 
Demonstrates the use of bit instructions BSF and BTC. 

------------------------------------------------------------, 
8: mul t8 PROC 
9: push 

10: push 
11: push 
12: xor 
13: mov 
14: repeat1: 
15: bsf 
16: jz 
17: mov 
18: shl 
19: add 
20: btc 
21: jmp 
22: skip1: 
23: 
24: 

mov 
pop 

CX 
DX 
SI 
DX,DX 
SI,AX 

eX,BX 
skip1 
AX,SI 
AX,CL 
DX,AX 
BX,eX 
repeat1 

AX,DX 
SI 

25: pop DX 
26: pop CX 
27: ret 
28: mult8 ENDP 

; save registers 

DX := 0 (keeps multo result) 
save original number in SI 

returns first 1 bit position in ex 
if ZF=l, no 1 bit in BX - done 
else, AX := numberl*bit weight 

update running total in DX 
complement the bit found by BSF 

move final result into AX 
restore registers 

The modified loop (lines 14-21) replaces the loop in the previous version. 
This code is more efficient because the number of times the loop iterates is 
equal to the number of 1 bits in BX. The previous version, on the other hand, 



Section 8.6 Illustrative Examples 331 

always iterates seven times. Also note that we can replace the btc instruction 
on line 20 by a btr instruction. Similarly, the bsf instruction on line 15 can 
be replaced by a brf instruction. 000000 

Example 8.13 Conversion of octal to binary 

An algorithm for converting octal numbers to binary is given in Chapter 
2. The main program is similar to that in the last example. The procedure 
to_binary receives an octal number as a character string via BX and the 8 bit 
binary value is returned in AL. The pseudocode of this procedure is as follows: 

to_binary (octaLstring) 
binary_value := 0 
for (i = 0 to 3) 

if (octaLstring[i] = NULL) 
goto finished 

end if 
digit := numeric(octaLstring[i]) 
binary_value:= binary_value * 8 + digit 

end for 
finished: 
end to_binary 

The function numeric converts a digit character to its numeric equivalent. 
The program is shown in Program 8.34. Note that we use the shl instruction 
to multiply by 8 (line 57). The rest of the code follows the pseudocode. The 
next section discusses the improvement in performance due to the use of the 
shl instruction for multiplication over the mul instruction. 

Program 8.34 Octal-to-binary conversion 

1: TITLE Octal-to-binary conversion using shifts OCT_BIN.ASM 
2: COMMENT I 
3: Objective: To convert an 8-bit octal number to the 
4: binary equivalent using shift instruction. 
5: Input: Requests an 8-bit octal number from user. 
6: Output: Prints the decimal equivalent of the input 
7: octal number. 
8: .MODEL SMALL 
9: .STACK 100H 



332 

10: . DATA 
11: octal_number 
12: input_prompt 
13: out_msg1 
14: query_msg 
15: 
16: . CODE 
17: INCLUDE io.mac 
18: main PROC 
19: . STARTUP 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 

read_input: 
PutStr 
GetStr 
nwln 
mov 
call 
PutStr 
PutInt 
nwln 
PutStr 
GetCh 
nwln 
cmp 
jne 

done: 
. EXIT 

main ENDP 

Chapter 8 Logical and Bit Operations 

DB 4 DUP (?) ; to store octal number 
DB 'Please input an octal number: ',0 
DB 'The decimal value is: ',0 
DB 'Do you want to quit (YIN): ',0 

input_prompt 
octal_number,4 

request an octal number 
read input number 

BX,OFFSET octal_number ; pass octal # pointer 
to_binary returns binary value in AX 
out_msg1 
AX display the result 

query_msg query user whether to terminate 
AL read response 

AL, 'Y' if response is not 'Y' 
read_input read another number 

otherwise, terminate program 

38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 

;-----------------------------------------------------------
to_binary receives a pointer to an octal number string in 
BX register and returns the binary equivalent in AL (AH is 
set to zero). Uses SHL for multiplication by 8. Preserves 
all registers, except AX. 

------------------------------------------------------------, 
to_binary PROC 

push BX ; save registers 
push CX 
push DX 
xor AX,AX result := 0 
mov CX,3 max. number of octal digits 

repeat 1 : 
51: ; loop itarates a maximum of 3 times; 
52: ; but a NULL can terminates it early 
53: mov DL, [BX] ; read the octal digit 



Section 8. 7 Performance: Shift Vet:5us Multiplication 333 

54: cmp DL,O is it NULL? 
55: je finished if so, terminate loop 
56: and DL,OFH else, convert char. to numeric 
57: shl AL,3 multiply by 8 and add to binary 
58: add AL,DL 
59: inc BX move to next octal digit 
60: loop repeat 1 and repeat 
61: finished: 
62: pop DX ; restore registers 
63: pop ex 
64: pop BX 
65: ret 
66: to_binary ENDP 
67: END main 

8.7 Performance: Shift Versus Multiplication 

We have seen that shift can be used to perform multiplication and division. Ex
ample 8.11 has given a detailed algorithm to perform general mUltiplication by 
using only shift and add operations. In this section, we discuss the performance 
tradeoffs of shift and multiply instructions. 

Experiment 1 

In this experiment, we use Example 8.11 to see if the shift operation can be used 
as a general mechanism to perform multiplication. We consider mUltiplication 
of two unsigned 8 bit numbers (2550x 1280). 

As you can see, multiplier 1280 (lOOOOOOOB) has only a single 1 in its 
binary representation. The general shift algorithm given in Example 8.11, 
however, tests each of the 8 bits while performing shift only once. The overhead 
is substantial, as shown in Figure 8.2 (see "general shift" line). 

The use of the mul instruction reduces execution time substantially (see the 
"multiply" line). Since 1280 is a power of2, we can perform the required mul
tiplication by a single shift operation (shifting left 255 by seven bit positions). 
This operation reduces the execution time even further (see the "single shift" 
line). In fact, the single shift version is about twice as fast as the mul version. 

The data presented here demonstrates that the shift should be used for 
multiplication only if we know that the multiplier is a power of 2. The octal
to-binary conversion is an example where the multiplier is a power of 2. The 
next experiment looks at the performance of this conversion. 



334 Chapter 8 Logical and Bit Operations 

15 

,...... 12 
'" "0 
§ 
u 
d) 

9 '" '-' 
d) 

e 
',;:l 
s:: 6 0 

',;:l 
~ u 
d) 
x 

multiply ~ 3 

single shift 
0 

1 2 3 4 5 6 7 

Number of calls (in millions) 

Figure 8.2 Relative performance of shl and mul for multiplying two 8-bit numbers. 

Experiment 2 

Conversion from octal to binary involves repeated multiplication by 8. This 
multiplication can be done efficiently by the shl instruction. Another com
mon example is the conversion from hexadecimal to binary, which involves the 
multiplication by 16. Figure 8.3 shows the performance of the shl and mul 
versions of the to_binary procedure described in Example 8.13. The exe
cution time of the mul version is given by the "multiply" line, and that of the 
shl version is given by the "shift" line. The shl version is about 14 percent 
faster. Clearly, this is an example where shl can be used to generate efficient 
assembly language code. 

8.8 Summary 

We discussed logical, shift, and rotate instructions available in the Pentium 
assembly language. Logical instructions are useful to implement bitwise log
ical operators and Boolean expressions. However, in some instances Boolean 
expressions can also be implemented by using conditional jump instructions 
without using the logical instructions. 



Section 8.9 Exercises 335 

.....-.-
'" "I:l 
s:: 
0 
u 
0 

'" ......, 
0 e 
'': 
s:: 
0 
'': 
=' u 
0 
>< 
~ 

12~--------------------------------------------~ 

9 

6 

3 

0 
1 2 3 4 5 6 7 

Number of calls (in millions) 

Figure 8.3 Performance of mul and shl versions for binary conversion. 

Shift and rotate instructions provide flexibility to bit manipulation oper
ations. There are two types of shift instructions: one type works on logical 
and unsigned data, and the other type is meant for signed data. There are also 
two types of rotate instructions: rotate without, or rotate through carry. Rotate 
through carry is useful in shifting multiword data. 

Pentium also provides two double shift instructions that work on either 
word or doubleword operands. In addition, four bit instructions are available 
for testing and modifying bits, and two instructions for scanning for a bit are 
available. 

We discussed how the logical and shift instructions are used to implement 
logical expressions and bitwise logical operations in high-level languages. 

Shift instructions can be used to multiply or divide by a number that is 
a power of 2. Shifts for such arithmetic operations are more efficient than 
the corresponding arithmetic instructions. We also demonstrated that shift 
instructions can be profitably used for simple multiplication and division. 

8.9 Exercises 

8-1 Page 301 stated that ZF = 1 implies that SF = 0 and PF = 1. Explain why. 



336 Chapter 8 Logical and Bit Operations 

8-2 What is the difference between or and xor logical operators? 

8-3 Logical and operation can be implemented by using only or and not 
operations. Show how this can be done. You can use as many or and 
not operations as you want. But try to implement by using only three 
not and one or operation. 

8-4 Logical or operation can be implemented by using only and and not 
operations. Show how this can be done. You can use as many and and 
not operations as you want. But try to implement by using only three 
not and one and operation. 

8-5 Explain how and and or logical operations can be used to "cut and paste" 
a specific set of bits. 

8-6 Suppose the instruction set did not support the not instruction. How do 
you implement it using only and and or instructions? 

8-7 Can we use the logical shift instructions shl and shr on signed data? 

8-8 Can we use the arithmetic shift instructions sal and sar on unsigned 
data? 

8-9 Give assembly language program fragment to copy low-order 4 bits from 
the AL register and higher-order 4 bits from the AH register into the DL 
register. You should accomplish this using only the logical operations of 
Pentium. 

8-10 Repeat the above exercise using only the shift/rotate operations of the 
Pentium instruction set. 

8-11 Show the assembly language program fragment to complement only the 
odd bits of the AL register using only the logical operations. 

8-12 Repeat the above exercise using only the shift/rotate operations of the 
Pentium instruction set. 

8-13 Explain the difference between bitwise and and logical and operations. 
Use an example to illustrate your point. 

8-14 Repeat the above exercise for the or operation. 

8-15 Fill in the blanks in the following table: 



Section 8.9 Exercises 337 

Before execution After execution 
Instruction AL BL AL ZF SF PF 

and AL,BL 79H 86H 
or AL,BL 79H 86H 
xor AL,BL 79H 86H 
test AL,BL 79H 86H 
and AL,BL 36H 24H 
or AL,BL 36H 24H 
xor AL,BL 36H 24H 
test AL,BL 36H 24H 

8-16 Assuming that the contents of the AL register is treated as a signed num
ber, fill in the blanks in the following table: 

Before execution After execution 
Instruction AL CF AL CF 

shl AL,1 -1 ? 
rol AL,1 -1 ? 
shr AL,1 50 ? 
ror AL,1 50 ? 
sal AL,1 -20 ? 
sar AL,1 -20 ? 
reI AL,1 -20 1 
rer AL,1 -20 1 

8-17 Assuming that the CL register is initialized to 3, fill in the blanks in the 
following table: 

Before execution After execution 
Instruction AL CF AL CF 

shl AL,CL 76H ? 
sal AL,CL 76H ? 
reI AL,CL 76H 1 
rer AL,CL 76H 1 
ror AL,CL 76H ? 
rol AL,CL 76H ? 

8-18 In Chapter 7, we discussed how the flags ZF, OF, and SF can be used to 
establish a relationship such as < and > between two signed numbers 
(see Table 7.5 on page 268). Show that the following conditions are 
equivalent. 



338 Chapter 8 Logical and Bit Operations 

Condition given in Table 7.5 Equivalent condition 
jg ZF = 0 and SF = OF «SF xor OF) or ZF) = 0 
jge SF=OF (SF xor OF) = 0 
jl SF f:. OF (SF xor OF) = 1 
jle ZF = 1 or SF f:. OF «SF xor OF) or ZF) = 1 

8.10 Progamming Exercises 

8-P 1 Write a procedure to perform hexadecimal to binary conversion. Use only 
shift instructions for multiplication. Assume that signed 32-bit numbers 
are used. Test your procedure by writing a main program that reads a 
hexadecimal number as a character string and converts it to an equivalent 
binary number by calling the procedure. Finally, the main program should 
display the decimal value of the input by using PutLlnt. 

8-P2 Modify the octal-to-binary conversion program shown in Program 8.34 
to include error checking for nonoctal input. For example, digit 8 in 
the input should be flagged as an error. In case of error, terminate the 
program. 

8-P3 Write a program to mUltiply two signed 8-bit numbers using only shift 
instructions. Your program can read the two input numbers with GetInt 
and display the result by PutInt. 

8-P4 In Appendix A, we discuss the format of short floating-point numbers. 
Write a program that reads the floating-point internal representation from 
a user as a string of eight hexadecimal digits and displays the three 
components-mantissa, exponent, and sign-in binary. For example, 
if the input to the program is 429DAOOO, the output should be: 

sign = 0 
mantissa = 1.0011101101 
exponent = 110 

8-P5 Modify the program for the last exercise to work with the long floating
point representation. 

8-P6 Suppose you are given an integer that requires 16 bits to store. You are 
asked to find whether its binary representation has an odd or even number 
of 1 'so Write a program to read an integer (should accept both positive 
and negative numbers) from the user and outputs whether it contains an 
odd or even number 1 'so Your program should also print the number of 
1 's in the binary representation. 

8-P7 A file processing interrupt (Interrupt 57H) returns the file time stamp 
(i.e., time last modified) in the following format: 



Section 8.10 Progamming Exercises 

bits 
0-4 

5 -10 
11 - 15 

meaning 
seconds 
(in increments of 2) 
minutes 
hours 

339 

Since there are only 5 bits allocated to represent seconds, this field, which 
can represent numbers in the range 0-31, should be interpreted as repre
senting the number of 2 second increments. For example, 11: 10:06 p.m. 
is represented as 

01011 00101000011 
'--..-' '-...--' '--..-' 

hours minutes seconds 

Write a program to read the three components (hours, minutes, and sec
onds) from the user and convert the time to the format shown above. 
The format should be displayed in the binary form. Error checking is 
required for all three components. For example, the range of hours is 0 
to 24. Error should be reported for values outside this range. 

8-P8 Write a program that reads four hexadecimal digits from the user rep
resenting the time stamp discussed in the last exercise and outputs the 
corresponding time. For example, if the input is 5943, the output of the 
program should be: 

The time stamp is: 11: 10:06 p.m. 

8-P9 Interrupt 57H also gives the date stamp of a file (indicating the date that 
the file was last modified). The format of the date stamp is: 

bits 
0-4 
5-8 
9 -15 

meaning 
day 
month 
year 
(relative to 1980) 

The year is relative to 1980. Thus, 1994 is represented as 14 in the year 
field. For example, October 19, 1994 is represented as 

0001110101010011 
'-.,.--' '-.--' '--..-' 

year month day 

Write a program to read the three components (year, month, and day) 
from the user and convert the date to the format shown above. Month 



340 Chapter 8 Logical and Bit operations 

is given as a decimal number between 1 and 12. The format should 
be printed in the binary form. Error checking is required for all three 
components. For example, the year cannot be less than 1980. Also find 
the maximum year that can be represented and use it for error checking. 

8-PI0 Write a program that reads four hexadecimal digits from the user rep
resenting the date stamp discussed in the last exercise and outputs the 
corresponding date. For example, if the input is ID53, the output of the 
program should be: 

The date stamp is: October 19, 1994 

8-Pl1 Write a procedure abs that receives an 8-bit signed number in the AL 
register and returns its absolute value back in the same register. Remem
ber that negative numbers are stored in 2 's complement representation. 
It is simple to write such a procedure using arithmetic instructions. In 
this exercise, however, you are asked to write this procedure using only 
the logical instructions of Pentium. 

8-P12 Repeat the last exercise by using only the shift and rotate instructions of 
Pentium. 

8-P13 Display the status of the flags register. In particular, display the status 
of the carry, parity, zero, and sign flags. See Chapter 2 for details on the 
flags register. For each flag, use the format "flag = value". For example, 
if carry flag is set, your program should display "CF = 1". Each flag 
status should be displayed on a separate line. Before terminating your 
program, the four flag bits should be complemented and stored back in 
the flags register. 

8-P14 Repeat the last exercise using lahf and sahf instructions. The details 
of these instructions are as follows: The lahf (Load AH from Flags 
register) copies the lower-order byte of the flags register into the AH 
register. The sahf (Store AH to Flags register) is the complement of 
lahf and stores the contents of the AH register in the lower-order byte 
of the flags register. 



Part III 

Advanced Topics 



Chapter 9 

String Processing 

Objectives 

• To discuss string representation schemes 

• To describe string manipulation instructions of Pentium 

• To illustrate the use of indirect procedure calls 

• To demonstrate the performance advantage of string instructions 

A string is a sequence of characters. String manipulation is an important 
aspect of any programming task. Text processing applications, for example, 
heavily use string manipulationfunctions. Several high-level languages provide 
procedures or routines for string processing. This is the focus of this chapter. 

Strings are represented in a variety of ways. Section 9.1 discusses some 
of the representation schemes used to store strings. Pentium supports string 
processing by a special set of instructions. These instructions are described 
in Section 9.2. Several examples are presented in Section 9.3. The purpose 
of these examples is to illustrate the use of string instructions in developing 
procedures for string processing. Section 9.4 describes a program to test the 
procedures developed in the previous section. A novelty of this program is that 
it demonstrates the use of indirect procedure calls. 

String processing procedures can be developed without using the string 
instructions. However, using the string instructions can result in a more efficient 
code. The efficacy of the string instructions is demonstrated in Section 9.5. The 
chapter concludes with a summary. 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



344 Chapter 9 String Processing 

9.1 String Representation 

A string can be represented either as afixed-length string or as a variable-length 
string. In the fixed-length representation, each string occupies exactly the same 
number of character positions. That is, each string has the same length, where 
the length of a string refers to the number of characters in the string. In such 
a representation, if a string has fewer characters, it is extended by padding, for 
example, blank characters. On the other hand, if a string has more characters, 
it is usually truncated to fit the storage space availablc~. 

Clearly, if we have to avoid truncation of larger strings, we need to fix 
the string length carefully so that it can accommodate the largest string that 
the program will ever handle. A potential problem with this representation is 
that we should anticipate this value, which may cause difficulties with program 
maintenance. A further disadvantage of using fixed-length representation is 
that memory space is wasted if the majority of strings are shorter than the fixed 
length used. 

The variable-length representation avoids these problems. In this scheme, 
a string can have as many characters as required (usually, within some system
imposed limit). Associated with each string, there is a string length attribute 
giving the number of characters in the string. The length attribute of each string 
is given in one of two ways: 

1. Explicitly storing string length 
2. Using a sentinel character 

These two methods are discussed next. 

9.1.1 Explicitly Storing String Length 

In this method, string length attribute is explicitly stored along with the string, 
as shown in the following example: 

string DB 
str_len DW 

'Error message' 
$ - string 

where $ is the location counter symbol that represents the current value of the 
location counter. In this example, $ points to the byte after the last character of 
string. Therefore, 

$ - string 

gives the length of the string. Of course, we could also write 

string DB 'Error message' 
str_len DW 13 



Section 9.2 String Instrnctions 345 

However, if we modify the contents of string later, we have to update the 
string length value as well. On the other hand, by using $ - string, we will 
let the assembler do the job for us at assembly time. 

9.1.2 Using a Sentinel Character 

In this method, strings are stored with a trailing sentinel character to delimit 
a string. Therefore, there is no need to store string length explicitly. The 
assumption here is that the sentinel character is a special character that cannot 
appear within a string. DOS, for example, has a display string function (function 
09H of int 21H) which expects a string terminated by $. In this case, we can 
display a string like 

string1 DB 'This is DK$' 

but string2 cannot be properly displayed: 

string2 DB 'Price = $9.99$' 

While this is peculiar to DOS, we normally use a special, nonprintable 
character that does not appear in a string. We have been using the ASCII 
NULL-character (OOH) to terminate strings. Such NULL-terminated strings 
are called ASCIIZ strings. 

In this representation, string1 and string2 can be represented without 
causing any problems as 

string1 
string2 

DB 
DB 

'This is OK' ,0 
'Price = $9.99',0 

The C language, for example, uses this representation to store strings. Also, 
several DOS file-related functions expect file names stored in this representa
tion. In the remainder of this chapter, we will use this representation for storing 
strings. 

9.2 String Instructions 

Pentium provides five main string processing instructions. These can be used 
to copy a string, to compare two strings, and so on. The five basic instructions 
are: 



346 

mnemonic 
LODS 
STOS 
MOVS 
CMPS 
SCAS 

meaning 
LOaD String 
STOre String 
MOVe String 
CoMPare Strings 
SCAn String 

Chapter 9 String Processing 

operand(s) required 
source 
destinat.ion 
source & destination 
source & destination 
destination 

Specifying Operands 
As indicated, each string instruction requires a source operand, a destination 
operand, or both. For 32-bit segments, string instructions use ESI and EDI 
registers to point to the source and destination operands, respectively. The 
source operand is assumed to be at DS:ESI in memory, and the destination 
operand at ES:EDI in memory. For 16-bit segment!!, SI and 01 registers are 
used instead of ESI and EDI registers. If both the operands are in the same data 
segment, we can let both OS and ES point to the data segment to use the string 
instructions. 

Variations 
Each string instruction can operate on 8-, 16-, or 32-bit operands. As a part 
of execution, string instructions automatically update (i.e., increment or decre
ment) the index register(s) used by them. For byte operands, source and desti
nation index registers are updated by 1. These registers are updated by 2 and 4 
for word and doubleword operands, respectively. In this chapter, we focus on 
byte operand strings. String instructions derive much of their power from the 
fact that they can accept a repetition prefix to repeatedly execute the operation. 
These prefixes are discussed next. The direction of string processing-forward 
or backward-is controlled by the direction flag (discussed in Section 9.2.2). 

9.2.1 Repetition Prefixes 

String instructions can be repeated by using a repetition prefix. There are three 
prefixes falling into two categories: unconditional or conditional repetition. 
These are: 

unconditional repeat 
rep 

conditional repeat 
repe/repz 

repne/repnz 

REPeat 

REPeat while Equal 
REPeat while Zero 
REPeat while Not Equal 
REPeat while Not Zero 



Section 9.2 String Instructions 347 

None of the flags are affected by these instructions. 

rep 

This is an unconditional repeat prefix and causes the instruction to repeat ac
cording to the value in the CX register. The semantics of rep are: 

while (CX i- 0) 
execute the string instruction; 
CX :=CX-1; 

end while 

The CX register is first checked and if it is not 0, only then is the string 
instruction executed. Thus, if CX is 0 to start with, the string instruction is 
not executed at all. This is in contrast to the loop instruction, which first 
decrements and then tests if CX is O. Thus, with loop, CX = 0 results in a 
maximum number of iterations, and usually a j cxz check is needed. 

repeJrepz 

This is one of the two conditional repeat prefixes. Its operation is similar to that 
of rep except that repetition is also conditional on the zero flag (ZF), as shown 
below: 

while (CX i- 0) 
execute the string instruction; 
CX:=CX-1; 
if(ZF = 0) 
then 

exit loop 
end if 

end while 

The maximum number of times the string instruction is executed is deter
mined by the contents of CX, as in the rep prefix. But the actual number of 
times the instruction is repeated is determined by the status of ZE Conditional 
repeat prefixes are useful with cmps and scas string instructions. 

repneJrepnz 

This prefix is similar to the repe/repz prefix except that the condition tested 
for termination of repetition is ZF = 1. 



348 Chapter 9 String Processing 

while (CX # 0) 
execute the string instruction; 
CX:=CX-l; 
if(ZF= 1) 
then 

exit loop 
end if 

end while 

9.2.2 Direction Flag 

The direction of string operations depends on the value of the direction flag. 
Recall that this is one of the bits of the flag's register. If the direction flag (OF) 
is clear (i.e., OF = 0), string operations proceed in the forward direction (from 
head to tail of a string); otherwise, string processing is done in the opposite 
direction. 

Two instructions are available to explicitly manipulate the direction flag: 

std set direction flag (OF = 1) 
cld clear direction flag (OF = 0) 

Both of these instructions do not require any operands. Each instruction is 
encoded using a single byte and takes two clock cycles to execute. 

Usually it does not matter whether the string processing direction is for
ward or backward. For sentinel character-terminated strings, forward direction 
is preferred. However, there are situations where one particular direction is 
mandatory. For example, if we want to shift a string right by one position, we 
have to start with the tail and proceed toward the head (i.e., move backward) as 
in the following example. 

Initial string ~ 

After one shift ~ 

After two shifts ~ 

After three shifts~ 

Final string ~ 

lalblclOJlJ 

lalblclOIOI 

lalblclQQJ 

lalblblCTOJ 

lalalblQQJ 

If we proceed from the head and in the forward direction, only the first character 
is copied through the string, as shown below: 



Section 9.2 String Instructions 

Initial string ---+ 

After one shift ---+ 

After two shifts ---+ 

After three shifts---+ 

Final string ---+ 

9.2.3 String Move Instructions 

lalblclOI?1 

lalalclOI?1 

lalalalOI?1 

lalalalal?1 

lalalalalal 

349 

There are three basic instructions in this group--movs, lods, and stos. Each 
instruction can take one of four forms. We start our discussion with the first 
instruction. 

Move a String (movs) 

The format of the movs instruction is: 

movs dest_string, source_string 
movsb 
movsw 
movsd 

Using the first form, we can specify the source and destination strings. This 
specification will be sufficient to determine whether it is a byte, word, or dou
bleword operand. However, this form is not used frequently. 

In the other three forms, the suffix b, W, or d is used to indicate byte, word, 
or doubleword operands. This format applies to all the string instructions of 
this chapter. 

The movs instruction is used to copy a value (byte, word, or doubleword) 
from the source string to the destination string. As mentioned earlier, the source 
string value is pointed to by DS:SI and the destination string location is indi
cated by ES:DI in memory. After copying, the SI and DI registers are updated 
according to the value of the direction flag and the operand size. Thus, before 
executing the movs instruction, all four registers should be set up appropriately. 
(This is necessary even if you use the first format.) Note that our focus is on 
16-bit segments. For 32-bit segments, we have to use ESI and EDI registers. 



350 Chapter 9 String Processing 

movs b - move a byte string 
ES:DI := (DS:SI) ; copy a byte 
if (DF = 0) ; forward direction 
then 

SI:= SI+l 
DI:= DI+l 

else ; backward direction 
SI:= SI-l 
DI:= DI-l 

end if 
Flags affected: none 

For word and doubleword opemads, the index registers are updated by 2 and 
4, respectively. This instruction, along with the rep prefix, is useful to copy a 
string. More generally, we can use them to perform memory-to-memory block 
transfers. Here is an example that copies string1 to string2 . 

. DATA 
string1 
strLen 
string2 
. CODE 

DB 'The original string',O 
EQU $ - string1 
DB 80 DUP (?) 

. STARTUP 
mov AX,DS set up ES 
mov ES,AX to the data segment 
mov CX,strLen strLen includes NULL 
mov SI,OFFSET string1 
mov DI,OFFSET string2 
cld ; forward direction 
rep movsb 

Since the movs instruction does not change any of the flags, conditional repeat 
(repe or repne) should not be used with this instruction. 

Load a String (Iods) 

This instruction copies the value from the source string (pointed to by DS:SI) in 
memory to AL (for byte operands-lodsb), AX (for word operands-lodsw), 
or EAX (for doubleword operands-lodsd). 

lodsb -load a byte string 
AL := (DS:SI) 
if(DF = 0) 

; copy a byte 
; forward direction 



Section 9.2 String Instructions 

then 
SI:= SI+l 

else 
SI:= SI-l 

end if 
Flags affected: none 

351 

; backward direction 

Use of the rep prefix does not make sense, as it will leave only the last 
value in AL, AX, or EAX. This instruction, along with the stos instruction, 
is often used when processing is required while copying a string. This point is 
elaborated after describing the stos instruction. 

Store a String (stos) 

This instruction performs the complementary operation. It copies the value in 
AL (for stosb), AX (for stosw), or EAX (for stosd) to the destination string 
(pointed to by ES:OI) in memory. 

stosb - store a byte string 
ES:OI:=AL 
if (OF = 0) 
then 

01:= 01+1 
else 

01:= 01-1 
end if 

Flags affected: none 

; copy a byte 
; forward direction 

; backward direction 

We can use the rep prefix with the stos instruction if our intention is to 
initialize a block of memory with a specific character, word, or doubleword 
value. For example, the code 

. DATA 
array 1 OW 100 DUP (?) 

. CODE 
. STARTUP 
mov 
mov 
mov 

AX,DS 
ES,AX 
CX,100 

mov DI,OFFSET arrayl 
mov AX,-l 

set up ES 
to the data segment 

cld j forward direction 
rep stosw 



352 Chapter 9 String Processing 

initializes array1 with -1. Of course, we could have done the same with 

arrayl ow 100 OUP (-1) 

at assembly time if we want to initialize only once. 
In general, the rep prefix is not useful with lods and stos instructions. 

These two instructions are often used in a loop to do value conversions while 
copying data. For example, if string1 only contains letters and blanks, 

mov CX,strLen 
mov sr,OFFSET stringl 
mov or,OFFSET string2 
cld ; forward dirl9ction 

loopl: 
lodsb 
or AL,20H 
stosb 
loop loopl 

done: 

can convert it to a lowercase string. Note that blank characters are not affected 
because 20H represents blank in ASCII, and the 

or AL,20H 

instruction does not have any effect on it. The advantage of lods and stos is 
that they automatically increment SI and 01 registers. 

9.2.4 String Compare Instruction 

The cmps instruction can be used to compare two strings. 

cmpsb - compare two byte strings 
Compare the two bytes at OS:SI and ES:OI and set flags 
if (OF = 0) ; forward direction 
then 

SI:=SI+l 
01:= 01+1 

else ; backward direction 
SI:= SI-l 
01:= 01-1 

end if 
Flags affected: As per cmp instruction 



Section 9.2 String Instructions 353 

The cmps instruction compares the two bytes, words, or doublewords at 
DS:SI and ES:DI and sets the flags just like the cmp instruction. Like the cmp 
instruction, cmps performs 

(DS:SI) - (ES:DI) 

and sets the flags according to the result. The result itself is not stored. We can 
use conditional jumps like j a, j g, j c, etc. to test the relationship of the two 
values. As usual, the SI and DI registers are updated according to the value of 
the direction flag and the operand size. The cmps instruction is typically used 
with the repe/repz or the repne/repnz prefix. 

The following code 

. DATA 
string1 
strLen 
string2 
. CODE 

DB 'abcdfghi',O 
EQU $ - string1 
DB 'abcdefgh',O 

. STARTUP 
mov AX,DS set 
mov ES,AX to 
mov CX,strLen 
mov SI,OFFSET string1 
mov DI,OFFSET string2 

up ES 
the data segment 

cld ; forward direction 
repe cmpsb 

leaves SI pointing to g in string1 and DI to f in string2. Therefore, adding 

dec SI 
dec DI 

leaves SI and DI pointing to the last character that differs. Then we can use, 
for example, 

ja str1Above 

to test if string1 is greater (in the collating sequence) than string2. This, of 
course, is true in this example. A more concrete example is given later (see the 
string comparison procedure on page 361). 

repne/repnz can be used to continue comparison as long as the compari
son fails and the loop terminates when a matching value is found. For example, 

. DATA 
string1 
strLen 

DB 'abcdfghi',O 
EQU $ - string1 - 1 



354 Chapter 9 String Processing 

string2 
. CODE 

DB 'abcdefgh' ,0 

. STARTUP 
mov 
mov 

AX,DS 
ES,AX 

mov CX,strLen 

set up ES 
to the data se@~ent 

mov S1,OFFSET stringl + strLen - 1 
mov D1,OFFSET string2 + strLen - 1 
std ; backward directioIlL 
repne cmpsb 
inc S1 
inc D1 

leaves SI and 01 pointing to the first character that matches in the backward 
direction. 

9.2.5 Scanning a String 

The scas (scanning a string) instruction is useful in searching for a particular 
value or character in a string. The value should be in AL (for scasb), AX 
(for scasw), or EAX (for scasd), and ES:OI should point to the string to be 
searched. 

scasb - scan a byte string 
Compare AL to the byte at ES:OI and set flags 
if (OF = 0) ; forward direction 
then 

01:= 01+1 
else ; backward direction 

01:= 01-1 
end if 

Flags affected: As per cmp instruction 

Like with the cmps instruction, the repe/repz or the repne/repnz prefix 
can be used . 

. DATA 
stringl 
strLen 
. CODE 

DB 'abcdefgh' ,0 
EQU $ - stringl 

. STARTUP 
mov 
mov 

AX,OS 
ES,AX 

mov CX,strLen 

set up ES 
to the data segment 



Section 9.3 Illustrative Examples 355 

mov DI,OFFSET string1 
mov AL, 'e' character to be searched 
cld j forward direction 
repne scasb 
dec DI 

This program leaves 01 pointing to e in string1. The following example 
can be used to skip initial blanks . 

. DATA 
string1 
strLen 
. CODE 

DB abc',O 
EQU $ - string1 

. STARTUP 
mov AX,DS set 
mov ES,AX to 
mov CX,strLen 
mov DI,OFFSET string1 

up ES 
the data segment 

mov AL, ' , character to be searched 
cld j forward direction 
repe scasb 
dec DI 

This program leaves 01 pointing to the first nonblank character (a in the exam
ple) in string1. 

9.3 Illustrative Examples 

We now give some examples that illustrate the use of the string instructions 
discussed in this chapter. All these procedures are available in the string. asm 
file. These procedures receive the parameters via the stack. The pointer to a 
string is received in segment: offset form (i.e., two words from the stack). 
A string pointer is loaded into either OS and SI or ES and 01 using Ids or les 
instructions, the details of which are discussed next. 

LDS and LES Instructions 

The syntax of these instructions is 

Ids register, source 
les register, source 

where register should be a 16-bit general-purpose register, and source is a 
pointer to a 32-bit memory operand. The instructions perform the following 
actions: 



356 Chapter 9 String Processing 

Ids 
register := (source) 

OS := (source + 2) 

les 
register := (source) 

ES := (source + 2) 

The 16-bit value at source in memory is copied to register and the 
next 16-bit value (i.e., at source+2) is copied to the OS or ES register. Both 
instructions affect none of the flags. By specifying SI as the register operand, 
Ids can be conveniently used to set up a source string. Similarly, a destination 
string can be set up by specifying 01 with les. For complleteness, you should 
note that Pentium also supports 1f s, 19s, and Iss instructions to load the other 
segment registers. 

Examples 

We will next present seven simple string processing procedures. Most of these 
are available in high-level languages such as C. All procedures use the carry 
flag (CF) to report input error-not a string. This error results if the input 
passed is not a string whose length is less than the STR_MAX constant defined 
in string. asm. The carry flag is set (i.e., CF = 1) if the:re is an input error; 
otherwise, the carry flag is cleared. 

The following constants are defined in string. asm: 

STR_MAX 
STRING 1 
STRING2 

Example 9.1 

EQU 
EQU 
EQU 

128 
DWORD PTR [BP+4] 
DWORD PTR [BP+8] 

Write a procedure str _len to return the string length. 

String length is the number of characters in a string, excluding the NULL 
character. We will use the scasb instruction and search for the NULL character. 
Since scasb works on the destination string, les is us(:d to load the string 
pointer to the ES and OI registers from the stack. STR._MAX, the maximum 
length of a string, is moved into CX, and the NULL charac:ter (i.e., 0) is moved 
into the AL register. The direction flag is cleared to initiate a forward search. 
The string length is obtained by taking the difference between the end of the 



Section 9.3 Illustrative Examples 357 

string (pointed to by DI) and the start of the string available at [BP+4]. The 
AX register is used to return the string length value. This is similar to the C 
function strlen, which can be called as strlen (string!). 

------------------------------------------------------------, 
;String length procedure. Receives a string pointer 
;(seg:offset) via the stack. If not a string, CF is set; 
; otherwise , string length is returned in AX with CF = O. 
;Preserves all registers . 
. _----------------------------------------------------------, 
str_len PROC 

push BP 
mov 
push 
push 
push 
les 
mov 

cld 
mov 
repne 
jcxz 
dec 
mov 
sub 
clc 
jmp 

sl_no_string: 
stc 

sl_done: 
pop 
pop 
pop 
pop 
ret 

str_len ENDP 

BP,SP 
CX 
DI 
ES 
DI,STRINGl 
CX,STR_MAX 

AL,O 
scasb 
sl_no_string 
DI 
AX,DI 
AX, [BP+4] 

SHORT sl done 

ES 
DI 
CX 
BP 
4 

Example 9.2 

copy string pointer to ES:DI 
needed to terminate loop if BX 
is not pointing to a string 

forward search 
NULL character 

; if CX = 0, not a string 
back up to point to NULL 

string length in AX 
no error 

carry set => no string 

clear stack and return 

Write a procedure str _ cpy to copy a string string2 to string string1. 

To copy a string, the movsb instruction is used. We use string2 as the source 
string and string1 as the destination string. The str _len procedure is used 



358 Chapter 9 String Processing 
-----------------------------------------------------

to find the length of the source string string2, which is used to set up repeat 
count in ex. This value is incremented by 1 to include the: NULL character to 
properly terminate the destination string. e provides a similar function, which 
can be called as strcpy (stringl, string2). The direction of copy is 
from string2 to stringl, as in our assembly language procedure. 

;-----------------------------------------------------------
;String copy procedure. Receives two string pointers 
;(seg:offset) via the stack - stringl and string2. 
;If string2 is not a string, CF is set; 
; otherwise , string2 is copied to stringl and the 
;offeset of stringl is returned in AX with CF = O. 
;Preserves all registers. 
j-----------------------------------------------------------
str_cpy PROC 

push 
mov 
push 
push 
push 
push 
push 
; find 
Ids 
push 
push 
call 
jc 

mov 
inc 
les 
cld 
rep 
mov 
clc 
jmp 

sc_no_string: 
stc 

sc_done: 
pop 
pop 
pop 
pop 

BP 
BP,SP 
CX 
DI 
SI 
DS 
ES 

string length first 
SI,STRING2 ; source string pointer 
DS 
SI 
str_Ien 
sc_no_string 

CX,AX 
CX 
DI,STRINGl 

movsb 
AX, [BP+4] 

source string length in CX 
add 1 to include NULL 
dest. string pointer 
forward copy 

return dest. string pointer 
no error 

SHORT sc_done 

ES 
DS 
SI 
or 

carry set => no string 



Section 9.3 Illustrative Examples 

pop CX 
pop 
ret 

str_cpy ENDP 

BP 
8 

Example 9.3 

359 

clear stack and return 

Write a procedure str _cat to concatenate a string string2 to another 
string string1. 

This procedure is similar to the str _cpy procedure except that copying of 
string2 starts from the end of string1. To do this, we first move DJ to 
point to the NULL character of string1. This procedure is analogous to the 
C procedure strcat, which can be called as strcat (stringl, string2). It 
concatenates string2 to string1, as in our assembly language procedure. 

;-----------------------------------------------------------
;String concatenate procedure. Receives two string pointers 
;(seg:offset) via the stack - stringl and string2. 
;If stringl and/or string2 are not strings, CF is set; 
; otherwise , string2 is concatenated to the end of stringl 
;and the offset of stringl is returned in AX with CF = O. 
;Preserves all registers. 
;-----------------------------------------------------------
str_cat PROC 

push BP 
mov BP,SP 
push CX 
push DI 
push SI 
push DS 
push ES 
; find string length first 
les DI,STRINGl dest. string pointer 
mov CX,STR_MAX max string length 
cld forward search 
mov AL,O NULL character 
repne scasb 
jcxz st_no_string 
dec DI back up to point to NULL 
Ids SI,STRING2 source string pointer 
push DS 



360 Chapter 9 String Processing 
---------------------------------------------------

push 
call 
jc 

mov 
inc 
cld 
rep 
mov 
clc 
jmp 

st_no_string: 
stc 

st_done: 
pop 

S1 
str_len 
st_no_string 

eX,AX 
ex 

movsb 
AX, [BP+4] 

source string length in ex 
add 1 to include NULL 
forward copy 

return dest. string pointer 
no error 

SHORT st_done 

; carry set => no string 

ES 
pop OS 
pop S1 
pop 01 
pop ex 
pop BP 
ret 

str_cat ENOP 
8 clear stack and return 

Example 9.4 

Write a procedure str _cmp to compare two strings string! and string2. 

This function uses the cmpsb instruction to compare two strings. It returns in 
AX a negative value if string! is lexicographically less than string2, 0 if 
string! is equal to string2, and a positive value if string! is lexicograph
ically greater than string2. 

To implement this procedure, we have to find the first occurrence of a 
character mismatch between the corresponding characters in the two strings 
(when scanning strings from left to right). The relationship between the strings 
is the same as that between the two differing characters. When we include the 
NULL character in this comparison, this algorithm works correctly even when 
the two strings are of different length. 

The str_cmp instruction finds the length of string~~ using the str_len 
procedure. It does not really matter whether we find the length of string2 or 
string!. We use this value (plus one to include NULL) to control the number of 
times the cmpsb instruction is repeated. Conditional jump instructions are used 



Section 9.3 Illustrative Examples 361 

to test the relationship between the differing characters to return an appropriate 
value in the AX register. The corresponding function in C is strcmp, which 
can be invoked by strcmp(sting1, string2). This function also returns the 
same values (negative, 0, or positive value) depending on the comparison. 

;-----------------------------------------------------------
;String compare procedure. Receives two string pointers 
;(seg:offset) via the stack - stringl and string2. 
;If string2 is not a string, CF is set; 
; otherwise , stringl and string2 are compared and returns a 
;a value in AX with CF = 0 as shown below: 

AX negative value if string1 < string2 
AX = zero if string1 string2 
AX = positive value if string1 > string2 

;Preserves all registers. 
;-----------------------------------------------------------
str_cmp PROC 

push 
mov 
push 
push 
push 
push 
push 
; find 
les 
push 
push 
call 
jc 

mov 
inc 
Ids 
cld 

SP 
SP,SP 
CX 
or 
SI 
DS 
ES 

string length first 
DI,STRING2 ; string2 pointer 
ES 
DI 
str_Ien 
sm_no_string 

CX,AX 
CX 
SI,STRINGl 

string1 length in CX 
add 1 to include NULL 
string1 pointer 
forward comparison 

repe cmpsb 

below: 

same: 

je same 
ja above 

mov 
clc 

AX,-l ; AX 

jmp SHORT sm_done 

xor AX,AX AX 

-1 => string1 < string2 

o => string match 



362 Chapter 9 String Processing 
-----------------------------------------------------

clc 
jmp 

above: 
mov 
clc 
jmp 

sm_no_string: 
stc 

sm_done: 
pop 
pop 
pop 
pop 
pop 
pop 
ret 

str_cmp ENOP 

AX,1 

ES 
OS 
SI 
OI 
CX 
BP 
8 

Example 9.5 

; AX 1 => string1 > string2 

; carry set => no string 

clear and return 

Write a procedure str _chr to locate a character chr in a string string1. 

This is another function that uses scasb and is very similar in nature to the 
str _len procedure. The only difference is that, instead of looking for the 
NULL character, we will search for the given character chr. It returns a pointer 
to the position of the first match of chr in string1; if no match is found, a 
NULL (i.e., 0 value) is returned in AX. Note that chr is passed as a 16-bit value, 
even though only the lower half of the word is used in searching. In C, the 
corresponding function is strchr, which can be called as strchr (string1, 
int_char). As in our program, the character to be located is passed as an int, 
which will be converted to a char. Our return values are compatible to the 
values returned by the C function . 

. _----------------------------------------------------------, 
;String locate a character procedure. Receives a character 
;and a string pointer (seg:offset) via the stack. 
;char should be passed as a 16-bit word. 
;If string1 is not a string, CF is set; 
; otherwise, locates the first occurrence of char in string1 
;and returns a pointer to the located char in AX (if the 
;search is successful; otherwise AX = NULL) with CF = O. 



Section 93 Illustrative Examples 

;Preserves all registers. 
------------------------------------------------------------, 
str_chr PROe 

push 
mov 
push 
push 
push 

sh_skip: 

; find 
les 
push 
push 
call 
jc 

mov 
inc 
mov 
cld 
repne 
dec 
xor 
jCxz 
mov 

clc 
jmp 

sh_no_string: 
stc 

sh_done: 
pop 
pop 
pop 
pop 
ret 

stcchr ENDP 

BP 
BP,SP 
ex 
D1 
ES 

string length first 
D1,STR1NGl ; source string pointer 
ES 
or 
str_Ien 
sh_no_string 

eX,AX 
ex 
AX, [BP+8] 

scasb 
D1 
AX,AX 
sh_skip 
AX,D1 

source string length in ex 

read char. into AL 
forward search 

back up to match char. 
assume no char match (AX=NULL) 

return pointer to char. 

no error 
SHORT sh_done 

ES 
D1 
ex 
BP 
6 

; carry set => no string 

clear stack and return 

Example 9.6 

Write a procedure str_cnv to convert a string string2 to another string 
string1 in which all lowercase letters are converted to the corresponding 
uppercase letters. 



364 Chapter 9 String Processing 
-----------------------------------------------------

The main purpose of this example is to illustrate the use of lodsb and stosb 
instructions. We move the string length (plus one to include NULL) of string2 
into ex, which will be used as the count register for the loop instruction. The 
loop body consists of 

loop1: lodsb 
if (lowercase letter) 
then convert to uppercase 
stosb 
loop loop1 

;------------------------------------------------------------
jString convert procedure. Receives two string pointers 
j(seg:offset) via the stack - string! and string2. 
jIf string2 is not a string, CF is setj 
jotherwise, string2 is copied to string! and lowercase 
jletters are converted to corresponding uppercase letters. 
jstring2 is not modified in any way. 
jIt returns a pointer to string! in AX with CF = O. 
jPreserves all registers. 
------------------------------------------------------------, 
str_cnv PROC 

push BP 
mov BP,SP 
push CX 
push DI 
push SI 
push DS 
push ES 
j find string length first 
Ids SI,STRING2 j source string pointer 
push DS 
push SI 
call str len 
jc sn_no_string 

mov CX,AX source string length in CX 
inc CX add ! to include NULL 
les DI,STRING! dest. string pointer 
cld forward search 

loop! : 
lodsb 
cmp AL, 'a' lowercase letter? 
jb sn_skip 



Section 93 Illustrative Examples 

cmp 
ja 
sub 

AL, 'z' 
sn_skip 
AL,20H 

if no, skip conversion 
if yes, convert to uppercase 

sn_skip: 
stosb 
loop loop1 
rep movsb 
mov AX, [BP+4] ; return dest. string pointer 
clc ; no error 
jmp SHORT sn_done 

sn_no_string: 
stc 

pop 
pop 
pop 
pop 
pop 
pop 
ret 

str_cnv ENDP 

ES 
OS 
SI 
or 
ex 
BP 
8 

Example 9.7 

carry set => no string 

clear stack and return 

Write a procedure str _mav to move a string string! left or right by num 
number of positions. 

The objective of this example is to show how a particular direction of copying 
a string is important. This procedure receives a pointer to a string string! 
and an integer num indicating the number of positions the string value is to be 
moved within the string. A positive num value is treated as a move to the right 
and a negative value as a move to the left. A 0 value has no effect. Note that 
the pointer received by this function need not be pointing to the beginning of 
string!. It is important to make sure that there is enough room in the original 
string in the intended direction of the move. 

j-----------------------------------------------------------
;String move procedure. Receives a signed integer 
;and a string pointer (seg:offset) via the stack. 
;The integer indicates the number of positions to move 
;the string: 

-ve number => left move 



366 Chapter :9 String Processing 
-----------------------------------------------------

+ve number => right move 
;If string1 is not a string, eF is set; 
; otherwise , string is moved left or right and returns 
;a pointer to the modified string in AX with eF = O. 
;Preserves all registers. 
j--------------------------------------------------------_._-
str_mov PRDe 

push 
mov 
push 
push 
push 
push 
push 

BP 
BP,SP 
ex 
DI 
SI 
DS 
ES 

; find 
Ids 
push 
push 
call 
jnc 
jmp 

string length first 
SI,STRING1 ; string pointer 
DS 

sv_skip1: 
mov 
inc 
les 
mov 
cmp 
jl 

SI 
str_Ien 
sv_skip1 
sv_no_string 

eX,AX 
ex 
DI,STRINGl 
AX, [BP+B] 
AX,O 
move_left 

string length in ex 
add 1 to include NULL 

copy # of positions to move 
-ve number => left move 
+ve number => right move 

je finish zero => no move 
move_right: 

; prepare SI and DI for backward copy 
add SI,eX SI points to the 
dec SI NULL character 
mov DI,SI DI = SI + # of positions to move 
add DI,AX 
std backward copy 
rep movsb 
; now erase the remainder of the old string 

by writing blanks 
mov eX,[BP+B]; # of positions moved 
; DI points to the first char of left-over string 
mov AL," ; blank char to fill 
; direction flag is set previously 
rep stosb 



Section 9.3 Illustrative Examples 367 

jmp 
move_left: 

add 
cld 
rep 

finish: 
mov 
add 

SHORT finish 

DI,AX 

movsb 

AX, [BP+8] 
AX, [BP+4] 

forward copy 

add # of positions to move 
to string pOinter (ret value) 

clc no error 
jmp SHORT sv_done 

sv_no_string: 
stc ; carry set => no string 

pop ES 
pop DS 
pop SI 
pop DI 
pop ex 
pop 
ret 

str_mov ENDP 

BP 
6 clear stack and return 

To move left, we let SI point to the same character of string1 as the pointer 
received by the procedure. We let DI := SI + num. Since num is negative for left 
move, DI points to where the character pointed by SI should move. A simple 
forward copy according to the string length (plus one) will move the string 
value. The extraneous characters left of the original string value will not cause 
any problems, as a NULL terminates the moved value, as shown below: 

string1 before str _mov 
uu uuabcdO 

string1 after str _mov with the string pointing to a and num = - 2 
UUabcdOdO 

where U indicates a blank. 
To move right, we let SI point to the NULL character of string1 and DI 

to its right by num positions. A straightforward copy in the backward direction 
will move the string to its destination position. However, this leaves remnants 
of the old values on the left, as shown in the following example: 

string1 before str _mov 
UUabcdOUU 

string1 after str _mov with the string pointing to a and Dum = 2 
uuababcdO 



368 Chapter 9 String Processing 
---------------------------------------------------

To eliminate this problem, str _mov erases the contents of the remaining 
characters of the original value by filling them with blanks. In this example, 
the first ab characters will be filled with blanks. 

9.4 Testing String Procedures 

Now let us tum our attention to testing the string procedures developed in the 
last section. A partial listing of this program is given in Program 9.35. The full 
program can be found in the str _ test. asm file. 

Our main interest in this section is to show how using .m indirect procedure 
call would substantially simplify calling the appropriate procedure according 
to the user request. Let us first look at the indirect call instruction for 16-bit 
segments. 

Indirect Procedure Call 

In our discussions so far, we have been using only the direct near procedure 
calls, where the offset of the target procedure is provided directly. Recall that, 
even though we write only the procedure name, the assembler will generate the 
appropriate offset value at assembly time. 

With indirect near procedure calls, this offset is given with one level of 
indirection. That is, the call instruction itself will contain either a memory 
word address (through a label), or a 16-bit general-purpose register. The actual 
offset of the target procedure is obtained from the memory word or the register 
referenced in the call instruction. For example, we could use 

call BX 

if BX contains the offset of the target procedure. As a part of executing this 
call instruction, the contents of the BX register ar(~ used to load IP to transfer 
control to the target procedure. Similarly, we can use 

call target_proc_ptr 

if the word in memory at target_proc_ptr contains the offset of the target 
procedure. The jmp is another instruction that can be used for indirect jumps 
in exactly the same way as the indirect call to provide a one-way transfer of 
control. 

Back to the Example 

To facilitate calling the appropriate procedure, we maintain a procedure pointer 
table proc_ptr _ table. The user query response is used as an index into this 



Section 9.4 Testing String Procedures 

. DATA 

table to get the target procedure offset. The BX register is used as the index 
into this table. The instruction 

causes the indirect procedure call. The rest of the program is straightforward 
and is not discussed any further. 

Program 9.35 String test program str_test. asm 

proc_ptr_table DW str_len_fun,str_cpy_fun,str_cat_fun 
DW str_cmp_fun,str_chr_fun,str_cnv_fun 
DW str_mov_fun 

MAX_FUNCTIONS EQU ($ - proc_ptr_table)/2 

choice_prompt DB 'You can test several functions. ',CR,LF 
DB To test enter',CR,LF 
DB 'String length l',CR,LF 
DB 'String copy 2',CR,LF 
DB 'String concatenate 3',CR,LF 
DB 'String compare 4',CR,LF 
DB 'Locate character 5',CR,LF 
DB 'Convert string 6',CR,LF 
DB 'Move string 7',CR,LF 
DB 'Invalid response terminates program. ',CR,LF 
DB 'Please enter your choice: ',0 

invalid_choice DB 'Invalid chioce - program terminates. ',0 

stringl 
string2 

.CODE 

DB STR_MAX DUP (1) 
DB STR_MAX DUP (1) 

main PROC 
. STARTUP 
mov AX,DS 
mov ES,AX 



370 Chapter 9 String Processing 

query_choice: 
xor BX,BX 
PutStr choice_prompt display menu 
GetCh BL read response 
nwln 
sub BL, '1' 
cmp BL,O 
jb invalid_response 
cmp BL,MAX]UNCTIONS 
jb response_ok 

invalid_response: 
PutStr invalid_choice 
jmp SHORT done 

response_ok: 
shl BL,l multiply BL by 2 
call proc_ptr_table[BX] indirect call 
jmp query_choice 

done: 
. EXIT 

main ENDP 

END main 

9.5 Performance: Advantage of String Instructions 

A question that naturally arises is: How beneficial are these string instructions? 
We will answer this question by looking at the cmpsb instruction in performing 
string comparisons. 

There are two chief advantages that we get from using the string instructions: 

1. The index registers are automatically updated (either incremented or 
decremented depending on the direction flag); 

2. They are capable of operating on two operands that are located in the 
memory. 

For example, movsb can copy a byte from one memory location to another 
and increment both index registers. Such memory-to-memory transfer of a byte 
is not possible with the mov instruction, which requires an intermediate register 
to achieve the same, as indicated below: 

mov AL, [S1] 



Section 9.5 Performance: Advantage of String Instructions 371 

4 

.-.. 
<Il 

3 ~ c:: 
0 
CJ 
Q) 
<Il 
'-' 
Q) 

e 2 0'::: 

§ 
0'::: 
::I 
CJ 
Q) 

&l 1 

O~~-----r-------'--------r-------'-------~ 
o 20 40 60 80 100 

Number of procedure calls (in thousands) 

Figure 9.1 Performance impact of the cmpsb instruction in comparing two matching strings of 
length 100. 

mov E8:[D1],AL 
inc 81 
inc D1 

We will compare two versions of the str _cmp procedure: one using cmpsb 
and the other without this instruction. Figure 9.1 shows the performance of 
these two versions. The x-axis gives the number of times each procedure is 
called, and the y-axis gives the corresponding execution time in seconds. For 
this experiment, we have compared two matching strings of length 100. The 
version that uses the string instruction appears to perform almost twice as fast as 
the other version. The performance difference increases with increasing string 
length, as shown in Figure 9.2. In this figure, each procedure is called 60,000 
times on two matching strings of varying length (as given on the x-axis). 

Is the C Routine Worse? 

Since this is a short, well-defined procedure, we do not expect the C routine to 
perform any worse than our best assembly language procedure. Indeed, tests 
on the Turbo C strcmp routine show that it has the same execution time as the 



372 Chapter 9 String Processing 
---------------------------------------------------

25~------------------------------------------~ 

o .---~--~ 

o 100 200 300 400 500 600 700 800 900 1000 

String length 

Figure 9.2 Performance impact of the cmpsb instruction in comparing two matching strings 
60,000 times. 

cmpsb version of the assembly language procedure. Thus, it is not beneficial 
to develop such routines; rather, the existing library routines should be used. 
These routines can be called from assembly language programs. Chapter 13 
discusses how high-level languages and assembly languages can be interfaced. 

9.6 Summary 

We started this chapter with a brief discussion of various string representation 
schemes. Strings can be represented as either fixed-length, or variable-length. 
Each representation has advantages and disadvantages. Variable-length strings 
can be stored either by explicitly storing the string length, or by using a sentinel 
character to terminate a string. High-level programming languages like C use 
NULL-terminated storage representation for strings. We have also used the 
same representation to store strings. 

Pentium provides five basic string instructions--movl~, lods, stos, emps, 
and seas. Each of these instructions can work on byte, word, or doubleword 
operands. These instructions do not require the specification of any operands. 
Instead, the required operands are assumed to be at DS:SI and/or ES:DI for 



Section 9. 7 Exercises 373 

16-bit segments. For 32-bit segments, ESI and EDI registers are used instead 
of SI and DI registers, respectively. In addition, the direction flag is used to 
control the direction of string processing (forward or backward). Efficient code 
can be generated by combining string instructions with repeat prefixes. Three 
repeat prefixes-rep, repe/repz, and repne/repnz-are provided. 

We also demonstrated, by means of an example, how indirect procedure 
calls can be used. Indirect procedure calls give us a powerful mechanism by 
which, for example, we can pass a procedure to be executed as a parameter 
using the standard parameter passing mechanisms. 

The results presented in the last section indicate that using the string in
structions results in significant performance advantages for string processing 
procedures. Using string instructions can substantially reduce the executing 
time (up to about 50 percent) of string operations. 

9.7 Exercises 

9-1 What are the advantages and disadvantages of the fixed-length string 
representation? 

9-2 What are the advantages and disadvantages of the variable-length string 
representation? 

9-3 Discuss the pros and cons of storing the string length explicitly versus 
using a sentinel character for storing variable-length strings. 

9-4 What is an ASCIIZ string? 
9-5 We can write procedures to perform string operations without using the 

string instructions. What is the advantage of using the string instructions? 
Explain why? 

9-6 Why doesn't it make sense to use the rep prefix with the lods instruction? 
9-7 Explain why it does not make sense to use conditional repeat prefixes 

with lods, stos, or movs string instructions. 
9-8 Both loop and repeat prefixes use the CX register to indicate the repetition 

count. Yet there is one significant difference between them in how they 
use the CX register value. What is this difference? 

9-9 Identify a situation in which the direction of string processing is impor
tant. 

9-10 Identify a situation in which a particular direction of string processing is 
mandatory. 

9-11 Suppose that the Ids instruction is not supported by Pentium. Write a 
piece of code that implements the semantics of the Ids instruction. Make 
sure that your code does not disturb any other registers. 



374 Chapter 9 String Processing 
---------------------------------------------------

9-12 Compare the space and time requirements of Ids and the code you have 
written in the last exercise. To do this exercise:, you need to refer to the 
Pentium data book. 

9-13 What is the difference between the direct procedure call and the indirect 
procedure call? 

9-14 Explain how you can use the indirect procedure call to pass a procedure 
to be executed as a parameter. 

9-15 Figure 9.1 shows that the cmpsb version performs better. Explain intu
itively why this is so. 

9-16 Suppose a given application can be written using eilher 

rep mavsb 

or 

rep mavsw 

Which one is more efficient and why? 

9-17 Discuss the advantages and disadvantages of the following two ways of 
declaring a message. The first version 

msg1 DB 
msglLen DW 

'Test message' 
$-msg1 

uses the $ to compute the length, while the second version 

msg1 DB 
msg1Len DW 

uses a constant. 

9.S Progamming Exercises 

'Test message' 
12 

9-Pl Write a procedure str _ncpy to mimic the strncpy function provided 
by the C library. The function str _ncpy receives two strings, string1 
and string2, and a positive integer num via the stack. Of course, the 
procedure receives only the string pointers but not the actual strings. It 
should copy at most the first num characters of string2 to string1. 

9-P2 Write a procedure str _ncmp to mimic the C fUlliction strncmp. The 
parameters passed to this function are the same as. those of str _ncpy. 
It should compare at most the first num characters of the two strings and 
return a positive, negative, or a 0 value like th(~ str._cmp procedure does. 



Section 9.8 Progamming Exercises 375 

9-P3 A palindrome is a word, verse, sentence, or number that reads the same 
backward or forward. Blanks, punctuation marks, and capitalization do 
not count in determining palindromes. Here are some examples: 

1991 
Able was I ere I saw Elba 
Madam! I'm Adam 

Write a procedure to determine if a given string is a palindrome. The 
string is passed via the stack (i.e., the string pointer is passed to the 
procedure). The procedure returns 1 in AX if the string is a palindrome; 
otherwise, it returns O. The carry flag is used to indicate the Not a string 
error message, as we did in our examples in this chapter. 

9-P4 Write a procedure that receives a string via the stack (i.e., the string pointer 
is passed to the procedure) and removes all leading blank characters in 
the string. For example, if the input string passed is (u indicates a blank 
character) 

u u u u uReaduumyulips. 

it will be modified by removing all leading blanks as 

Readuumyulips. 

9-P5 Write a procedure that receives a string via the stack (i.e., the string 
pointer is passed to the procedure) and removes all leading and duplicate 
blank characters in the string. For example, if the input string passed is 
(u indicates a blank character) 

u u u u uReadu u umyu u U u ulips. 

it will be modified by removing all leading and duplicate blanks as 

Readumyulips. 

9-P6 Write a procedure str _str that receives two pointers to strings string 
and substring via the stack and searches for substring in string. If 
a match is found, it returns in AX the starting position of the first match. 
Matching should be case sensitive. A negative value is returned in AX if 
no match is found. For example, if 

string = Good things come in small packages. 

and 

substring = in 

the procedure should return 8 in AX indicating a match of in in things. 



376 Chapter 9 String Processing 
---------------------------------------------------

9-P7 Write a procedure to read a string representing a person's name from the 
user in the format 

first-nameuMlulast-name 

and displays the name in the format 

last-name,ufirst-nameuMI 

where u indicates a blank character. As indicated, you can assume that 
the three names--first name, middle initial, and last name--are separated 
by single spaces. 

9-P8 Modify the last exercise to work on an input that can contain multiple 
spaces between the names. Also, display the name as in the last exercise 
but with the last name in capital letters. 

9-P9 Write a procedure to match two strings that are received via the stack. 
The match should be case insensitive, i.e., uppercase and lowercase letters 
are considered a match. For example, Veda Anita and VeDa ANIta are 
considered matching strings. 

9-PlO Write a procedure to reverse the words in a string. It receives the string 
via the stack and modifies the string by reversing the words. Here is an 
example: 

input string: Politics in Science 
modified string: Science in Politics 

9-Pll Write a main program using indirect procedure calls to test the procedures 
written in the previous exercises. You can simplify your job by modifying 
the str _ test. asm program appropriately. 



Chapter 10 

Macros and Conditional 
Assembly 

Objectives 

• To discuss macro definition and expansion 
• To explain how blocks of statements can be repeated 
• To describe conditional assembly directives 
• To explore the performance tradeoffs associated with macros and proce

dures 

We have seen that procedures are extremely useful to implement modular pro
gram design techniques. This chapter discusses another mechanism to mod
ularize program code. Program modules can also be implemented by using 
macros. Simply put, a macro is a sophisticated text substitution mechanism. 
Although not used as frequently as procedures, macros are useful in certain 
situations. Macros are discussed in detail in Sections 10.1-10.6. 

A related topic--how .LST file contents are controlled-is discussed in Sec
tion 10.7. Repetition directives, which are discussed in Section 10.8, can be 
used to repeat a block of statements. These directives can be used both inside 
and outside of a macro definition. 

Section 10.9 discusses the conditional assembly directives, which allow 
conditional assembly of a block of statements. These directives are useful in 
generating customized code. Section 10.10 discusses nested macros. 

Finally, Section 10.11 deals with the performance tradeoffs associated with 
macros and procedures. The chapter concludes with a summary. 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



378 Chapter 10 Macros and Conditional Assembly 

10.1 What Are Macros? 

Macros provide a means by which a block of text (code, data etc.) can be 
represented by a name (called a macro name). When the a.ssembler encounters 
that name later in your program, the block of text associated with the macro 
name is substituted. The process is referred to as macro expansion. In simple 
terms, macros provide a sophisticated text substitution me:chanism. 

Macros are not unique to assembly language. High-level languages also 
support such mechanisms. For example, in C language, macros can be defined 
with the #def ine preprocessor directive. The statement 

#define 90 

causes 90 to be textually substituted for CLASS_SIZE. Similarly, if we define 

#define 
#define 

begin 
end 

{ 

} 

we can write C code using begin and end to group statements like in Pascal, 
as shown below: 

if (value > 100) 
begin 

end; 

value 100; 
count++; 

This is a valid C code because the preprocessor changes the source code to 

if (value > 100) 
{ 

value 100; 
count++; 

}; 

before passing it on to the C compiler. 
Both MASM and TASM assemblers support macros. In fact, these as

semblers provide three directives to support macro substitutions: =, EQU, and 
MACRO. We have already discussed how = and EQU directives can be used for 
constants whose values are available at assembly time (see Chapter 3). For 
example, we can write 

CLASS_SIZE = 90 

or 

CLASS_SIZE EQU 90 



Section 10.1 What Are Macros? 379 

The difference between = and EQU directives is that the = directive allows 
redefinition later on, while the constants defined by EQU cannot be redefined. 
However, both these directives are not useful for general text substitution (like 
we did with #def ine for begin and end). Macros provide such a flexibility. 
In fact, they have many advanced features to allow us to write powerful macros. 
We will take a look at some of these features in this chapter. 

In assembly language, macros can be defined with MACRO and ENDM direc
tives. The macro text begins with the MACRO directive and ends with the ENDM 
directive. The macro definition syntax is 

macro_name MACRO [parameter 1 , parameter2, .. .J 
macro body 
ENDM 

In the MACRO directive, the parameters are optional (as indicated by the 
square brackets [D. macro_name is the name of the macro that, when used 
later in the program, causes a macro expansion. To invoke or call a macro, use 
the macro_name and supply the necessary parameter values. The format is 

macro_name [argument 1 , argument2, .. .J 

Example 10.1 

Here is our first macro example that does not require any parameters. We have 
seen in Chapter 8 that using shift left to mUltiply by a power of 2 is more efficient 
than using the imul instruction. So, let us write a macro to do this. 

multAX_hy_16 MACRO 
sal AX,4 
ENDM 

The macro code consists of a single sal statement, which will be substituted 
whenever the macro is called. Now we can invoke this macro by using the 
macro name multAX_by_16, as in the following example: 

mov AX,27 
multAX_hy_16 

When the assembler encounters the macro name multAX_by_16, it is re
placed (i.e., text substituted) by the macro body. Thus, after the macro expan
sion, the assembler finds the code 



380 Chapter 10 Macros and Conditional Assembly 
---------------------------------------------------

mov 
sal 

AX,27 
AX,4 

10.2 Macros with Parameters 

Just like procedures, using parameters with macros aids in writing more flexible 
and useful macros. The number of parameters is limited by how many can 
fit in a single line. The previous macro always multipllies AX by 16. By 
using parameters, we can generalize this macro to operate on a byte, word, 
or doubleword located either in a general-purpose register or memory. The 
modified macro is: 

MACRO 
sal 
ENDM 

operand 
operand ,4 

The parameter operand can be any operand that is valid in the sal in
struction. This macro can be invoked to multiply a byte, word, or doubleword 
located in a register or memory. To multiply a byte in the DL register 

mult_by_16 DL 

can be used. This causes the following macro expansion: 

sal DL,4 

Similarly, a memory variable count (whether it is a byte, word, or double
word) can be multiplied by 16 by 

count 

Such a macro call will be expanded as 

sal count ,4 

Now, at least superficially, mult_by_16 looks like any other assembly 
language instruction, except that we have defined it. These are referred to as 
macro-instructions, which as we have seen, generate one or more assembly 
language instructions. 

The 8086 processor does not allow specification of shift count greater than 
1 as an immediate value. For this processor, we have to redefine the macro as 



Section 10.3 Macros Ve~us Procedures 

mult_by_!6_8086 MACRO 
sal 
sal 
sal 
sal 
ENDM 

operand 
operand,! 
operand,! 
operand,! 
operand,! 

381 

TASM, however, allows you to write immediate shift count values greater than 
1 and replaces them by an equivalent set of shift instructions. 

Example 10.2 

You may have noticed that the Pentium instruction set does not allow memory
to-memory data transfer. We have to use an intennediate register to facilitate 
such a data transfer. We can write a macro to perform memory-to-memory data 
transfers using the basic instructions of the processor. Let us call this macro, 
which exchanges the values of two memory variables, Wmxchg to exchange 
words of data in memory. 

Wmxchg MACRO 
xchg 
xchg 
xchg 
ENDM 

operand!, operand2 
AX,operand! 
AX,operand2 
AX,operand! 

You can easily verify that this sequence exchanges the memory words operandi 
and operand2 while leaving AX as it is. 

We can define similar macros for byte and doubleword operands. Here is 
an example for the byte operands. 

Bmxchg MACRO operand!, operand2 
xchg AL,operand! 
xchg AL,operand2 
xchg AL,operand! 
ENDM 

Later in this chapter (see page 403), we will show that, using conditional 
assembly directives, these two macros can be combined into one. 

10.3 Macros Versus Procedures 

Macros are similar to procedures in some respects. Both improve programmer 
productivity by aiding in the development of modular source code. Both can be 
used when a block of code is repeated in the source code. There are, however, 
some significant differences between them. 



382 Chapter 10 Macros and Conditional Assembly 
---------------------------------------------------

1. Parameter passing 
Parameter passing in a macro invocation is similar to that in a procedure 
call of a high-level language. The arguments are listl~d as part of a macro 
call. For example, to call the mul t _ by _16 macro to mUltiply the contents 
of AX by 16, we can write 

mult_by_16 AX 

Parameter passing in a procedure call often involves the stack. Assuming 
that the stack is used to pass the parameters, to call a procedure times16 
to do the same job 

push AX 
call times16 

The number of stack operations in preparation for a procedure call grows 
in direct proportion to the number of parameters passed. This, in ad
dition to the call/ret overhead, is the additional overhead associated 
with a procedure call. Macros avoid this overhead by text substitution but 
increase the space requirement. The performance tradeoffs are further 
elaborated in Section 10.11. 

2. Types of parameters 
Since a macro is a text substitution mechanism, a variety of parameter 
types can be passed. For example, we can write a macro 

shift MACRO op_code ,operand, count 
op_code operand,count 
ENDM 

and invoke it as 

shift sal,AX,3 

which results in the following expansion 

sal AX,3 

Here op_code is the instruction mnemonic. Any mnemonic in the shift 
and rotate family of instructions can be given. Thus, the same macro can 
be used with all of the shift and rotate family of instructions on bytes, 
words, and doublewords that are either located in a register or memory. 
Clearly, such parameter types cannot be passed to a procedure. 

3. Invocation mechanism 
The main difference between a macro invocation and a procedure invoca
tion is the following: macro invocation is done at assembly time by text 



Section 103 Macros Ve~us Procedures 383 

substitution, while procedure invocation is done at run time by trans
ferring control to the procedure. This leads to the following tradeoff: 
Macros tend to increase the length of the executable code due to macro 
expansions. This leads to increased assembly time. Macro expansion 
also creates a nuisance at debugging time-repeatedly looking at a block 
of code (macro expansions) that you know works correctly. Of course, 
there are ways to suppress macro expansions (see the . SALL directive 
described in Section 10.7). 
Procedures avoid these problems by transferring control to the only copy 
of the procedure code. In debugging, the procedure call, which appears 
as a single call instruction, can be skipped. 

In summary, the tradeoffs are that using macros results in faster execution of 
the code for reasons discussed before (further elaborated in Section 10.11). But 
macros result in increased memory space due to macro expansions. Procedures 
save space, as only one copy of the procedure is kept. However, procedure invo
cation overhead (to pass parameters via the stack and for call/ret) increases 
the execution time. Note that macro invocation causes assembly-time overhead 
but not run-time overhead. The advantages and disadvantages associated with 
macros and procedures can be summarized as: 

Type of overhead 
Memory space 
Execution time 
Assembly time 

Procedure 
lower 
higher 
lower 

Macro 
higher 
lower 
higher 

Given the state of modem technology, this time versus space tradeoff is not 
a major factor in preferring one over the other. The choice between macro and 
procedure depends on the application requirements. Our recommendation, for 
typical applications, is to use procedures except in some special situations as 
identified here. 

When Are Macros Better? 

1. Macros are useful in defining macro-instructions that extend the instruc
tion set of a processor. 

Example 10.3 

The macro mul t _ by _16 is an example for which it is impractical to write 
a procedure to do the same task. An equivalent procedure times16 may 
look like this: 



384 Chapter 10 Macros and Conditional Assembly 

times16 PROC 
push BP 
mov BP,SP 
push AX 
mov AX, [BP+4] 
sal AX,4 
mov [BP+4] ,AX 
pop AX 
pop BP 
ret 2 

times16 ENOP 

This procedure can be invoked to multiply a word variable count by 16 
as 

push count 
call times16 
pop count 

The overhead involved is substantial. Clearly, this is an impractical 
proposition. 

2. Macros are useful when text substitution is the only route available. Look 
at the following example. 

Example 10.4 

Suppose we want to preserve BX, CX, DX, SI, DI, and BP registers across 
procedure calls. We could use pusha and papa, but these instructions 
save and restore the AX register as well. But we want to return a result 
in AX. We can conveniently do this by the following two macros: 

save_regs MACRO restore_regs MACRO 
push BP pop BX 
push OI pop CX 
push SI pop OX 
push OX pop SI 
push CX pop OI 
push BX pop BP 
ENOM EN'OM 

It is not possible to write a procedure to do the sam(:. Thus, even though 
we can rely on procedures to produce modular code most of the time, 



Section 10.4 Labels in Macros 385 

there are instances where procedures are inadequate. A proper mix of 
procedures and macros make programs more modular and readable, and 
therefore, aid in maintaining them. 

10.4 Labels in Macros 

In the macros we have seen so far, there were no jump instructions in the macro 
body. We will now look at a macro with flow control statements. Consider the 
following macro that converts a lowercase alpha character to the corresponding 
uppercase letter. 

; There is a problem with this macro definition 
to_upperO MACRO ch 

cmp ch, 'a' 
jb done 
cmp ch, 'z' 
ja done 
sub ch,32 

done: 
ENDM 

The macro to_upperO performs the following: 

if «ch 2: I a ') AND (ch::: I z ')) 
then ch := ch - 32 
end if 

If we invoke this macro more than once in a program, the label done appears 
more than once when the macro calls are expanded. This causes the assembler 
to complain about the duplicate label done. In addition, the program that is 
invoking this macro should not use the label done even if the macro is invoked 
only once in the program. This is clearly undesirable-particularly if we want 
to use macros from a library. 

Such label problems are avoided in procedures, as the scope of any label 
declared within a procedure body is limited to that procedure body itself. We 
need a similar mechanism to limit the scope of labels declared in a macro. 

The LOCAL directive is provided by the assembler for this purpose. It can 
be used to declare labels in a macro local to that macro. The syntax is 

LOCAL local_labell [, locaLlabel2, .. .J 

Using the LOCAL directive, the to_upperO macro can be written as 



386 Chapter 10 Macros and Conditional Assembly 
--------------------------------------~-----------

MACRO ch 
LOCAL done 
cmp ch, 'a' 
jb done 
cmp ch, 'z' 
ja done 
sub ch,32 

done: 
ENDM 

If the LOCAL directive is used in a macro, it must immediately follow the MACRO 
directive. 

Typically, the labels that the assembler generates to replace the local labels 
are of the form 

??XXXX 

where XXXX is a hexadecimal number between 0 and FFFFH. The assembler 
maintains an internal counter to generate the number portion of the label. See 
the example .LST file shown in Figure 10.1. To avoid conflicts, you should 
not use labels in your program that begin with ?? A program can have up to 
216 = 65, 536 local labels, a large enough number for most programs. 

10.5 Comments in Macros 

Comments in macros deserve special attention. We would not like all the 
comments in a macro definition to appear every time the macro is expanded. 
On the other hand, we need to add comments to the macro body to explain the 
logic of the code---especially for complicated macros. 

Note that the assembler does nothing to the code in a macro definition. The 
assembler generates actual code only when a macro is invoked. See the .LST 
output that follows this discussion (see Figure 10.1). 

To provide the programmer flexibility regarding the comments in macros, 
assembler provides the ;; operator to suppress comments from appearing in 
macro expansions. Any comment that starts with ; ; will appear only in the 
macro definition but not in macro expansions. The comments that start with ; 
(i.e., the standard comments) appear in macro expansions as well. 

;;Converts a lowercase letter to uppercase. 
to_upper MACRO ch 

LOCAL done 
; case conversion macro 
cmp ch,'a';; check if ch >= 'a' 



Section 10.5 Comments in Macros 

17 0000 
18 

1 19 
1 20 0002 
1 21 0004 
1 22 0006 
1 23 0008 
1 24 OOOA 
1 25 OOOC 

26 OOOC 
27 OOOE 
28 

1 29 
1 30 0010 
1 31 0013 
1 32 0015 
1 33 0018 
1 34 001A 
1 35 OOlD 

36 0010 

BO 62 mov AL, 'b' 
to_upper AL 
; case conversion macro 

3C 61 cmp AL, 'a' 
72 06 jb ??OOOO 
3C 7A cmp AL, 'z' 
77 02 ja ??OOOO 
2C 20 sub AL,32 

770000: 
8A 08 mov BL,AL 
B4 31 mov AH, '1' 

to_upper AH 
; case conversion macro 

80 FC 61 cmp AH, 'a' 
72 08 jb ??0001 
80 FC 7A cmp AH, 'z' 
77 03 ja ??0001 
80 EC 20 sub AH,32 

??0001: 
8A FC mov BH,AH 

Figure 10.1 An example listing file showing macro expansions. 

jb done 
cmp ch, 'z' 
ja done 
sub ch,32 

done: 
ENOM 

Calling this macro by 

mov AL, 'b' 
to_upper AL 
mov BL,AL 
mov AH,' l' 
to_upper AH 
mov BH,AH 

, , and if 

, , then ch 

generates the .LST file shown in Figure 10.1. 

ch >= 'z' 

.= ch - 32 

387 



388 Chapter 10 Macros and Conditional Assembly 

10.6 Macro Operators 

There are five special operators to manipulate macros. 

Operator 
.. 
" 
& 

<> 
! 

% 

Meaning 
Suppress comment operator 
Substitute operator 
Literal-text string operator 
Literal-character operator 
Expression evaluate operator 

We have already seen how the ; ; operator works. The rest of the section briefly 
discusses the remaining four operators. 

Substitute Operator (&) 

The substitute operator forces the assembler to substitute a parameter with the 
actual argument. The syntax is 

&name 

where name is the value of the argument in the macro call. The & operator is 
typically used to concatenate one or more parameters with other text. 

Example 10.5 

We can use the following macro to sort two numbers num! and num2. 

sort2 MACRO cond, numl, num2 
LOCAL done 
push AX 
mov AX,numl 
cmp AX,num2 
j&cond done 
xchg AX,num2 
mov numl,AX 

done: 
pop AX 
ENDM 

This macro works on 16-bit signed or unsigned numbers. The cond parameter 
specifies the relationship of num2 relative to num1. For example, to sort two 
unsigned numbers value! and value2 such that value! ~ value2, we can 
invoke the macro as 



Section 10.6 Macro Operators 389 

sort2 ae,valuel,value2 

which causes the following macro expansion: 

push AX 
mov AX,valuel 
cmp AX,value2 
jae 710000 
xchg AX,value2 
mov valuel,AX 

??OOOO: 
pop AX 

If valuel and value2 are signed numbers, this macro should be invoked 
as 

sort2 ge,valuel,value2 

which generates the j ge conditional jump instruction in the macro expansion. 
The substitute operator is also useful to force the assembler to substitute a 

parameter inside a quoted string. The following example illustrates this point. 

Example 10.6 

Suppose we want to generate a set of messages to inform the user when he/she 
inputs a number that is out of range. The following macro definition 

;; incorrect macro definition 
range_error MACRO number, variable 
err_msg&number DB 'variable: out of range',O 

ENDM 

does not work because parameter substitution is not done inside a quoted string. 
For example, if we invoke the above macro as 

1,Assignment_mark 

it is expanded as 

DB 'variable: out of range',O 

which is not what we want. The correct macro definition is 

;; correct macro definition 
range_error MACRO number, variable 
err_msg&number DB '&variable: out of range',O 

ENDM 



390 Chapter 10 Macros and Conditional Assembly 

When invoked as 

!,Assignment_mark 

the macro will be expanded as 

'Assignment_mark: out of rrulge',O 

Literal-text string operator « » 

The literal-text string operator < > informs the assembler that the enclosed text 
should be treated as a single string rather than separate arguments. The syntax 
is 

<text> 

The text is treated as a single argument even if it contains parameter separators. 
Some typical parameter separators are commas, spaces, tabs, etc. The assembler 
removes the angle brackets and uses text as the argument. 

Example 10.7 

Consider the range_error macro defined before. Suppose that we also want to 
inform the user of the correct range along with the error message. The modified 
macro is shown below. 

range_error! MACRO 
err_msg&number DB 
range_msg&number DB 

ENDM 

number,variable,range 
'&variable: out of range',O 
'Correct range is &range',O 

When we invoke this macro as 

!,<Assignment mark>,<O to 25> 

the macro expansion will look like 

err_msg! DB 
range_msg! DB 

'Assignment mark: out of r~lge',O 
'Correct range is 0 to 25',0 

This operator can also be used to force the assembler to treat a character literally 
by removing its default special meaning. For example, <; > passes ; as an 
argument without treating it as the comment operator. This can also be done 
by using the literal-character operator, as we shall see next. 



Section 10.6 Macro Operators 391 

Literal-Character Operator (!) 

The literal-character operator ! preceding a character forces the assembler to 
treat the character literally without its default special meaning. The syntax is 

!character 

Thus, !; is equivalent to < ; >. The following example shows an instance where 
this operator is useful. 

Example 10.8 

If we define a macro as 
range_error2 MACRO number , variable ,range 
err_msg&number DB '&variable: out of range - &range',O 

ENDM 

we can invoke this in . DATA part as 

3,mark,<can!'!'t be !> 100> 

to create the error message 

err_msg3 DB 'mark: out of range - can"t be > 100',0 

If we didn't use the ! operator in the third argument, the assembler would 
have interpreted the third argument as <can' , t be>. Note that two successive 
single quotes will produce a single quote in the output. 

Expression Evaluate Operator (% ) 

The syntax of the expression evaluate operator % is 

%expression 

The expression is evaluated and its value is used to replace the expression itself. 
Typically, this operator is used to provide an argument in a macro call, as shown 
in the following example. 

Example 10.9 

Let us consider a macro to allocate and initialize an array of given size. The 
macro receives the name and size of the array, element size (B for byte, W for 
word, ... ), and the initial value. 



392 Chapter 10 Macros and Conditional Assembly 

init_arry MACRO element_size,name,size,init_value 
name D&element_size size DUP (init_value) 

ENDM 

We can call this macro to reserve space for an integer array of 47x7 (marks) 
and initialize it to -1. 

Assuming that 

NUM_STUDENTS 
NUM_TESTS 

EQU 
EQU 

47 
7 

have been defined, the macro call will be expanded as 

marks DW 329 DUP (-1) 

10.7 List Control Directives 

There are several list control directives available to specify the contents of the 
output listing (.LST) file. These directives can appear anywhere in the assembly 
language source code. Each directive will be in effect until replaced by another 
directive. The two directives . LIST and . XLIST control the source lines in the 
.LST file. 

Directive 
.LIST 

.XLIST 

Meaning 
Allows listing of subsequent source lines 
(This is the default mode.) 
Suppresses listing of subsequent source lines 

For example, if you want to suppress the contents of an include file, you can do 
so by 

INCLUDE 
.XLIST 
partO.inc 
. LIST 

suppress listing 

restore listing 

By default, all source lines are placed in the .LST file. 
The following three list control directives-. LALL, . BALL, and . XALL

affect only macro invocation calls. The assembler always lists the macro defi
nitions in the .LST file. 



Section 10. 7 List Control Directives 

Directive 
.LALL 
.SALL 

.XALL 

Meaning 
Enables listing of macro expansions 
Suppresses listing of all statements in 
macro expansions 
Lists only the source statements in a macro 
expansion that generate code or data 

393 

The . LALL directive causes the assembler to list all statements in a macro 
expansion except the macro comments (see Section 10.5). The .SALL directive 
causes the assembler to suppress listing of all macro expansions. It lists only the 
macro invocation statements in the .LST file. The use of . SALL can substantially 
reduce the size of a .LST file. Use this directive when you don't want to see 
macro expansions. 

The. XALL directive suppresses source statements such as comments, equates 
(EQU and =), etc. that do not generate code or data. It also suppresses re
peat block directives (Section 10.8) and conditional assembly directives (Sec
tion 10.9). 

The source file, which invokes the to_upper macro defined on page 386 

.LALL 
mov AL, 'a' 
to_upper AL 
.SALL 
mov BL,AL 
mov AH,'l' 
to_upper AH 
mov BH,AH 
mov CL, '?' 
.XALL 
to_upper CL 
mov DL,CL 

generates the listing file shown in Figure 10.2. 
When a macro is expanded, the number 1 appears in each of the expanded 

macro statements. This indicates the level of nesting. Since we have only a 
single level of nesting here, each macro expansion statement has a 1 at the left. 
Nested macros are discussed in Section 10.10. 



394 Chapter 10 Macros and (70nditional Assembly 

17 0000 BO 61 mov AL, 'a' 
18 to_upper AL 

1 19 ; case conversion macro 
1 20 0002 3C 61 cmp AL,'a' 
1 21 0004 72 06 jb ??OOOO 
1 22 0006 3C 7A cmp AL, 'z' 
1 23 0008 77 02 ja ??OOOO 
1 24 OOOA 2C 20 sub AL,3~! 

1 25 OOOC ??OOOO: 
26 OOOC 8A 08 mov BL,AL 
27 OOOE B4 31 mov AH,'l' 
28 to_upper AH 
29 0010 8A FC mov BH,AH 
30 001F Bl 3F mov CL, '?' 
31 to_upper CL 

1 32 0021 80 F9 61 cmp CL,'a' 
1 33 0024 72 08 jb ??0002 
1 34 0026 80 F9 7A cmp CL, '2:' 
1 35 0029 77 03 ja ??0002 
1 36 002B 80 E9 20 sub CL,32 
1 37 002E ??0002: 

38 002E 8A 01 mov OL,CL 

Figure 10.2 An example listing file to illustrate the effect of list control directives. 

10.8 Repeat Block Directives 

There are three directives to repeat a block of statements--REPT, WHILE, IRP, 
and IRPC. These directives can be used both inside :and outside a macro defi
nition. These directives are mostly used to define and initialize variables in a 
data segment. Each directive identifies the beginning of a block of statements 
and ENDM indicates the end of a repeat block. 

10.8.1 REPT Directive 

The syntax of the REPT (REPeaT) directive is 

REPT expression 
macro-body 

ENDM 



Section 10.8 Repeat Block Directives 395 

The macro-body is duplicated expression times. It is important to note that 
expression must evaluate to a constant at assembly time. 

Example 10.10 

The mult_by_16_8086 (on page 381) can be rewritten as 

mult_by_16_8086 MACRO operand 
REPT 4 

sal operand, 1 
ENDM 
ENDM 

This type of code repetition use of the REPT directive is infrequent. A more 
common use is to generate look-up tables, as demonstrated in the next example. 

Example 10.11 

Suppose an application requires cubed data very frequently. Instead of using 
multiplication, we can precompute the data in a look-up table. Let us say we 
are interested in the first 10 integers. We can write 

NUM_ENTR1ES EQU 10 
. DATA 
cube_table LABEL WORD 
int_value = 0 
REPT NUM_ENTR1ES 

ENDM 

DW int_value*int_value*int_value 
int value int_value+l 

The variable int_ value created by using the = directive is used only at 
assembly time. Note that the = directive allows redefinition. This generates the 
data segment shown in Figure 10.3. 

Here is a sample code to access this table, assuming that the integer to be 
cubed is in the SI register. 

shl S1,l ; multiply S1 by 2 
mov AX, cube_table [S1] 

Since each entry in the table is a word (2 bytes), the integer to be cubed must 
be multiplied by 2 in order to use it as an index into the table. 



396 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Chapter 10 Macros and Conditional Assembly 

5 0000 . DATA 
6 cube_table LABEL WORD 
7 0000 int_value = 0 
8 REPT NUM_ENTRIES 
9 DW int_value*int_value*int_value 

10 int_value = int_value+l 
11 ENDM 
12 0000 0000 DW int_value*int_value*int_value 
13 = 0001 int_value = int_value+l 
14 0002 0001 DW int_value*int_value*int_value 
15 = 0002 int_value = int_value+l 
16 0004 0008 DW int_value*int_value*int_value 
17 = 0003 int_value = int_value+l 
18 0006 001B DW int_value*int_value*int_value 
19 = 0004 int_value = int_value+l 
20 0008 0040 DW int_value*int_value*int_value 
21 = 0005 int_value = int_value+l 
22 OOOA 0070 DW int_value*int_value*int_value 
23 = 0006 int_value = int_value+l 
24 oooe 00D8 DW int_value*int_value*int_value 
25 = 0007 int_value = int_value+l 
26 OOOE 0157 DW int_value*int_value*int_value 
27 = 0008 int_value = int_value+l 
28 0010 0200 OW int_value*int_value*int_value 
29 = 0009 int_value = int_value+l 
30 0012 02D9 DW int_value*int_value*int_value 
31 = OOOA int_value = int_value+l 

Figure 10.3 Data segment generated by the REPT directive example code. 

10.S.2 WHILE Directive 

The syntax of the WHILE directive is 

WHILE expression 
macro-body 

ENDM 

The macro-body is executed until the expression evaluates to false (zero). The 
expression is evaluated before each iteration of the macro body. 

The previous example can be written using the WHILE directive as 

WHILE int_value LT NUM_ENTRIES 



Section 10.8 Repeat Block Directives 

ENDM 

DW int_value*int_value*int_value 
int_value int_value+1 

10.8.3 IRP and IRPC Directives 

The directives 
IRP - Iteration RePeat 
IRPC - Iteration RePeat with Character substitution 

397 

both provide a means of supplying a variable parameter to each iteration of 
a repeat block. These two directives are similar except for how the variable 
parameter values are specified. 

IRP Directive 

The syntax of IRP is 

IRP parameter, <argument! [, argument2, .. .J > 
macro-body 

ENDM 

The angle brackets are required. The arguments are given as a list separated by 
commas. During the first iteration, argument 1 is assigned to the parameter for 
use in the block of repeat statements; during the second iteration, argument2 
is assigned, and so on. Therefore, the argument list specifies both the number 
of iterations and the actual values to be used in each iteration. 

Example 10.12 

The following code 

. DATA 
IRP value, <9,6,11,8,13> 

DB value 
ENDM 

generates 

. DATA 
DB 9 
DB 6 
DB 11 
DB 8 
DB 13 



398 Chapter 10 Macros and Conditional Assembly 
-----------------------------------------------------

Example 10.13 

Suppose we want to generate a sequence of DB statements for the vowels in 
the order a, A, e, E, and so on. Suppose further that we want to write a macro 
in which we will list only the lowercase vowels and let tht! macro generate the 
uppercase vowel statements. Our first reaction would be to write the following 
macro: 

;; This macro does not work 
vowels MACRO 

IRP char, <a,e,i,o,u> 

ENDM 
ENDM 

DB '&char' 
DB %'&char'-32 

Unfortunately, this does not work, as the expression evaluate operator can be 
used to provide an argument in a macro call. To write thl:! desired macro, we 
have to follow a circuitous route as shown below: 

defineDB MACRO value 
DB value 
ENDM 

IRP char, <a,e,i,o,u> 
defineDB '&char' 
defineDB %'&char'-32 
ENDM 

Figure 10.4 shows the actual data segment statl:!ments generated by this 
code. Note that for the uppercase vowels, the ASCII equivalent decimal values 
are generated (for example, 65 for A, 69 for E, and SOl on). 

IRPC Directive 

The syntax of the IRPC directive is 

IRPC parameter, string 
macro-body 

ENDM 

The macro-body is repeated once for each character in string. Like in the 
IRP directive, string specifies the number of iterations as well as the character 
to be used in each iteration. 



Section 10.8 Repeat Block Directives 399 

1 13 
2 14 0000 
1 15 
2 16 0001 
1 17 
2 18 0002 
1 19 
2 20 0003 
1 21 
2 22 0004 
1 23 
2 24 0005 
1 25 
2 26 0006 
1 27 
2 28 0007 
1 29 
2 30 0008 
1 31 
2 32 0009 

defineDB 'a' 
61 DB 'a' 

defineDB %'a'-32 
41 DB 65 

defineDB 'e' 
65 DB 'e' 

defineDB %'e'-32 
45 DB 69 

defineDB 'i' 
69 DB 'i' 

defineDB %'i'-32 
49 DB 73 

defineDB '0' 
6F DB '0' 

defineDB %'0'-32 
4F DB 79 

defineDB 'u' 
75 DB 'u' 

defineDB %'u'-32 
55 DB 85 

Figure 10.4 Data segment to define vowels. 

Example 10.14 

The vowels macro in the previous example can be written using the IRPC 
directive by replacing 

IRP char, <a,e,i,o,u> 

by 

IRPC char, aeiou 

Example 10.15 

This example generates code to test and set the zero flag if the character char 
in the AL register is an vowel-uppercase or lowercase. 



400 Chapter 10 Macros and Conditional Assembly 
---------------------------------------------------

IRPe 
cmp 
je 

ENDM 
finished: 

char , aeiouAEIOU 
AL, '&:char' 
finished 

jne not_vowel 
vowel: 

not_vowel: 

generates the following code: 

cmp 
je 
cmp 
je 

cmp 
je 

finished: 
jne 

vowel: 

not_vowel: 

AL, 'a' 
finished 
AL, 'e' 
finished 

AL, 'U' 
finished 

This generates 10 cmp/ j e pairs of instructions. Obviouslly, this code is very 
long. Instead of using iteration at assembly time as in this f:xample, iteration at 
run time can be used to reduce space. 

10.9 Conditional Assembly 

Both TASM and MASM provide conditional directives that allow assembly 
of a block of statements if the specified condition is true. There are situations 



Section 10.9 Conditional Assembly 401 

in which conditional assembly helps generate efficient code, while in other 
situations, coding without using a conditional assembly directive is impossible. 
In this section, we will discuss selected conditional assembly directives and 
provide some examples that illustrate the points made here. 

Both assemblers also provide conditional error directives that generate error 
messages if the specified condition is true. However, we will not discuss them 
here. Refer to the documentation that comes with the assembler. 

We will now discuss the following types of conditional assembly directives. 

Directive 
IF IFE 

IFDEF IFNDEF 

IFB IFNB 

IFIDN IFDIF 

IFIDNI IFDIFI 

Meaning 
Assembles if condition is true (IF) 
or false (IFE) 
Assembles if symbol is defined (IFDEF) 
or undefined (IFNDEF) 
Assembles if argument is blank (IFB) 
or not blank (IFNB) 
Assembles if arguments are same (IFIDN) 
or different (IFDIF) - case sensitive 
Assembles if arguments are same (IFIDNI) 
or different (IFDIFI) - case insensitive 

The general syntax of conditional assembly directives is 

IFxxx expression 
Tstatements 

[ELSE 
Fstatements] 

ENDIF 

Each condition assembly directive ends with an ENDIF and there can be an 
optional ELSE clause present. 

10.9.1 IF and IFE Directives 

The syntax is 

IF expression 
IFE expression 

The IF directive assembles the then part if the expression evaluates to true 
(nonzero). The IFE directive is the IF counterpart and includes the then part 
if the expression is false (zero). Here are some operators that can be used in 
an expressIOn: 



402 Chapter 10 Macros and Conditional Assembly 
---------------------------------------------------

Arithmetic operators: +, -, *, j, mod, unary + and
EQ, GE, GT, LE, LT, NE 
NOT, AND, OR, XOR 

Relational operators: 
Logical operators: 

We now present two examples using these directives. 

Example 10.16 

The objective here is to write a macro that can perfOIm left or right shift 
operation. 

shift MACRO operand, count 
;; positive count => left shift 
;; negative count => right shift 
IFE count EQ 0 

IF count GT 0 ;; left shift 
shl operand,count 

ELSE ;; right shift 
;; count is negative 
shr operand,count 

ENDIF 
ENDIF 
ENDM 

By defining this macro, we have effectively defined a new macro-instruction 
that can left or right shift efficiently using the processor shift family instructions. 

Example 10.17 

In Example 10.2 on page 381, we have written two macros-Wmxchg and 
Bmxchg-for exchanging the values of two memory variables. We can combine 
these two macros into a single macro by using the IF directive along with the 
TYPE operator. The TYPE operator returns the number of bytes reserved for the 
operand in memory. Table 10.1 shows the values returned by the TYPE operator. 



Section 10.9 Conditional Assembly 

Table 10.1 Values returned by TYPE operator 

Type of memory operand 
BYTE 
WORD 
DWORD 
QWORD 
TBYTE 
NEAR 
FAR 
constant 

mxchg MACRO operand 1 , operand2 

value returned 
1 
2 
4 
8 
10 

FFFFH 
FFFEH 

o 

IF (TYPE operand1) NE (TYPE operand2) 
%OUT Operands of mxchg do not match. 

ELSE 
IF (TYPE 

xchg 
xchg 
xchg 

ELSE 
xchg 
xchg 
xchg 

ENDIF 
ENDIF 
ENDM 

operand1) EQ 1 
AL,operand1 
AL,operand2 
AL,operand1 

AX,operand1 
AX,operand2 
AX,operand1 

jBYTE operands 

jWORD operands 

403 

This example uses a directive that we have not discussed: %OUT. The syntax of 
the %OUT directive is 

%OUT text 

where text can contain any character. The directive displays text onscreen. It 
is useful in displaying error or warning messages during the assembly process 
as used in this example. 

10.9.2 IFDEF and IFNDEF Directives 

The syntax of these directives is 

IFDEF symbol 
IFNDEF symbol 



404 Chapter 10 Macros and Conditional Assembly 
---------------------------------------------------

If symbol is defined (IFOEF) or not defined (IFNOEF), the conditional block of 
statements is assembled. These directives, however, will not test the value of 
symbol. 

A common use of these directives is to customize code for a particular 
processor. For instance, assume that we want to save all the registers before 
starting a procedure so that they can be restored at the end of the procedure 
before return. If we are using an 80186 or later processors, the pusha instruction 
pushes all registers (AX, BX, ex, DX, SI, DI, BP, and SP) onto the stack. On 
the other hand, no such instruction is available in 8086; we have to push each 
of these registers individually. 

We could maintain two versions of the source code--one for 8086 and the 
other for the later processors. But it creates problems in program maintenance, 
as any modification to the program has to be done on both versions to maintain 
consistency. Worse still, in other situations there may be more than two versions. 

Using these conditional assembly directives, we can write a single source 
code which can generate the required version. The following two examples 
illustrate this point. 

Example 10.18 

We can define an assembly time variable PROC_ TYPE to identify the proces
sor type. Then we can use /0 option (/0 PROC_ TYPE=486) to generate code 
targeted for the 80486 processor. 

A problem arises if the /0 option is not specified on the assembler command. 
This can be avoided by using the IFNDEF directive for dlefault processor, as 
shown below. 

IFNDEF PROC_TYPE 
PROC_TYPE 

ENDIF 
EQU 8086 

Then if no processor type is specified on the assembly command line, the default 
8086 version is generated. 

Example 10.19 

Now we can write the required macro to generate the customized code that is 
dependent on the processor type. 

pushall MACRO 



Section 10.9 Conditional Assembly 

IF PROC_TYPE EQ 8086 
push AX 
push BX 
push CX 
push DX 
push SP 
push BP 
push SI 
push DI 

ELSE 
pusha 

ENDIF 
ENDM 

10.9.3 IFB and IFNB Directives 

The syntax of these directives is 

IFB <argument> 
IFNB <argument> 

405 

The angle brackets are required. The IFB directive assembles the conditional 
block of statements if argument is blank; IFNB assembles if argument is not 
blank. 

These directives are useful to test the presence as well as the number of 
arguments specified in a macro call. 

Example 10.20 

Consider the mul t_ by _16 macro definition on page 380. If the macro is invoked 
by 

the macro is expanded as 

sal ,4 

which causes the assembler to generate error for the sal instruction and you 
have no clue that this has been caused by an improper specification of the macro 
parameters. The assembler will not tell you this. 

We can rewrite mul t_ by _16 to check for this and report appropriate errors 
at assembly time. 



406 Chapter 10 Macros and Conditional Assembly 
---------------------------------------------------

mult_hy_16 MACRO operand, extra 
IFB <operand> 

%OUT ERROR: No argument in mult_hy_16 
EXITM 
ENDIF 
IFNB <extra> 

%OUT WARNING: Redundant argument in mult_lby_16 
ENDIF 
sal operand, 4 
ENDM 

The IFB statement checks to make sure that the macro call specifies the 
argument. If not, we use the %OUT directive to write en:or messages on the 
screen and terminate the macro expansion process by using the EXITM directive. 
The EXITM directive stops any macro expansion or repeat block expansion that 

is in progress. All remaining statements after EXITM are ignored. 
The IFNB statement checks to see if there are exIra arguments specified in 

the macro call. If so, a warning message is displayed on the screen and the 
argument is ignored-the macro expansion is not stopped" 

10.9.4 IFIDN and IFDIF Directives 

The syntax of the IFIDN (IF IDeNtical) and IFDIF (IF DIFferent) directives is 

IFIDN <argumentl>,<argument2> 
IFDIF <argument 1> , <argument2> 

The angle brackets are required. The condition block of statements are as
sembled if the arguments are identical (IFIDN) or different (IFDIF) character 
strings. These two directives are case sensitive (i.e., AX and Ax are not identi
cal). The case insensitive versions of these directives are IFIDNI and IFDIFI 
(i.e, with these directives, AX and Ax are treated as identical). 

Example 10.21 

Let us write a macro that can receive a 16-bit value back. We want to design our 
macro such that the argument can be any general-purpose register or a memory 
operand. The macro tricky saves AX and BX registers at the beginning as 
the macro body uses these two registers in the macro body. These two registers 
are restored at the end. 

;; incorrect version 
tricky MACRO dest 



Section 10.9 Conditional Assembly 

;; dest can be a 16-bit register or memory 
push AX 
push BX 

macro body 
uses AX and BX 

mov dest,AX 
pop BX 
pop AX 
ENDM 

407 

A problem with the tricky macro is that we cannot call this with either 
AX or BX as the argument. This problem is fixed in the tricky1 macro that 
uses the IFDIFI directive to conditionally save and restore registers. 

;; Correct version 
tricky1 MACRO dest 

IFDIFI <AX>,<dest> 
push AX 

ENDIF 
IFDIFI <BX>,<dest> 

push BX 
ENDIF 

macro body 
uses AX and BX 

IFDIFI <AX>,<dest> 
mov 
pop 

ENDIF 

dest,AX 
AX 

IFDIFI <BX>,<dest> 
pop BX 

ENDIF 
ENDM 

This is an example that cannot be coded to meet the requirements of the 
macro without using the IFDIFI directive. Note that all these directives in
troduce only assembly-time overhead but no run-time overhead. For more 
examples, see the io . mac file. 



408 Chapter 10 Macros and Conditional Assembly 

10.10 Nested Macros 

Macros can also be nested. When macros are expanded, the nesting level is 
shown on the left of each expanded statement. This is illustrated in the following 
example. 

Example 10.22 

In this example, the shift macro (given on page 402) is n~written using nested 
macros. This macro works for all of the 80X86 family of processors. In this 
macro, the common parts are replaced by the shifty macro. 

shifty MACRO lr, operand, count 
IF PROC_TYPE EQ 8086 

IF count LE 4 
REPT count 
sh&lr 
ENDM 

ELSE 

operand, 1 

mov 
sh&lr 

ENDIF 
ELSE 

sh&lr 
ENDIF 
ENDM 

CL,count 
operand,CL 

operand, count 

shift MACRO operand, count 
;; positive count => left shift 
;; negative count => right shift 
IFE count EQ 0 

IF count GT 0 ;; left shift 
shifty l, operand, count 

ELSE ;; right shift 
;; count negative 
shifty r,operand,-count 

ENDIF 
ENDIF 
ENDM 

Invoking this macro with 

;********************* 



Section 10.11 Performance: Macros Ve~us Procedures 409 

shift AX,2 

;********************* 
shift count,-5 

;********************* 

generates the partial .LST file shown in Figure 10.5 for the 8086 processor. 
The leftmost column gives the macro level. As shown on lines 45 and 46, 

the repeat directives are also counted as macros. The listing file would appear 
better if the . XLlST is used. 

10.11 Performance: Macros Versus Procedures 

Let us now look at the performance tradeoff between macros and procedures. 
We will use the bubble sort example discussed in Chapter 1. We will modify 
the assembly language procedure by replacing lines 

xchg AX, [SI +2] 
mov [SI] ,AX 

by either a macro invocation or a procedure call to swap two elements. 

Experiment 1 

Here, our interest is in looking at the call/ret overhead associated with pro
cedure calls. To do this, we will use the macro 

mxchg MACRO 
xchg AX, [SI] 
xchg AX, [SI +2] 
xchg AX, [SI] 
ENDM 

with the macro call mxchg replacing the two lines of code in the original as
sembly language procedure. Note that the three xchg instruction sequences 
exchange values at [S1] and [S1 +2] while preserving the contents of the AX 
register. 

The procedure version for this experiment assumes that the register SI holds 
the address of the first value to be exchanged. The address of the second value 
is assumed to be at SI+2. Thus, there is no overhead associated with passing 
parameters. 

mxchg PROC 
xchg AX, [SI] 
xchg AX, [81+2] 



410 Chapter 10 Macros and Conditional Assembly 

42 ;********************* 
43 shift AX,2 

1 44 IFE 2 EQ 0 
1 45 IF 2 GT 0 
1 46 shifty 1,AX,2 
2 47 IF PROC_TYPE EQ 8086 
2 48 IF 2 LE 4 
2 49 REPT 2 
2 50 shl AX,l 
2 51 ENOM 
3 52 0005 01 EO shl AX,l 
3 53 0007 01 EO shl AX,l 
2 54 ELSE 
2 55 mov CL,2 
2 56 shl AX,CL 
2 57 ENOIF 
2 58 ELSE 
2 59 shl AX,2 
2 60 ENOIF 
1 61 ELSE 
1 62 shifty r,AX,-2 
1 63 ENOIF 
1 64 ENOIF 

65 ;********************* 
66 shift count,-5 

1 67 IFE -5 EQ 0 
1 68 IF -5 GT 0 
1 69 shifty 1,count,-5 
1 70 ELSE 
1 71 shifty r,count,--5 
2 72 IF PROC_TYPE EQ 8086 
2 73 IF --5 LE 4 
2 74 REPT --5 
2 75 shr count, 1 
2 76 ENOM 
2 77 ELSE 
2 78 0009 Bl 05 mov CL,--5 
2 79 OOOB 03 2E OOOOr shr count,CL 
2 80 ENOIF 
2 81 ELSE 
2 82 shr count,--5 
2 83 ENOIF 
1 84 ENDIF 
1 85 ENOIF 

86 j********************* 
Figure 10.5 Partial listing file showing nested macro expansions. 



Section 10.11 Performance: Macros Ver.5US Procedures 411 

""' '" "0 
\: 
0 
() 
(1) 

'" '-" 
(1) 

E 
'p 
t: 
0 

tI) 

60 

50 

40 

30 

20 

10 

0 
1000 2000 3000 4000 5000 6000 7000 8000 

Number of elements 

Figure 10.6 Perfonnance impact of call/ret overhead. 

xchg AX, [SI] 
ret 

mxchg ENDP 

The procedure call 

call mxchg 

replaces the two lines of code in the original assembly language procedure. 
Figure 10.6 shows the perfonnance ofthese two versions. The x-axis gives 

the number of elements to be sorted, while the y-axis gives the time required 
to sort the input array in ascending order. The input array is initially sorted 
in descending order. The data suggests that the call/ret overhead in this 
example is about 25-30 percent. 

Experiment 2 

The procedure mxchg used in the last experiment has no parameters. In general, 
we write procedures that receive parameters via the stack. In this experiment 
we will modify the procedure so that it receives the parameters via the stack. 



412 Chapter 10 Macros and Conditional Assembly 

The two parameters required by the procedure are the pointers to the values in 
memory that are to be swapped. The modified procedure is: 

mxchg PROC 
push BP 
mov BP,8P 
push 81 
mov 81, [BP+4] 
xchg AX, [81] 
xchg AX,[81+2] 
xchg AX, [81] 
pop 81 
pop BP 
ret 2 

mxchg ENDP 

We will call this procedure with 

push 81 
call mxchg 

The macro is revised to correspond to the modified procedure definition. 
The revised macro is: 

mxchg MACRO ptrl 
push 81 
mov 81,ptrl 
xchg AX, [81] 
xchg AX, [81+2] 
xchg AX, [81] 
pop 81 
ENDM 

In our example, we can invoke this macro by 

mxchg SI 

The difference between the macro and procedure versions is that the proce
dure version includes the overhead in retrieving the parameters from the stack 
and the related house keeping activities (such as saving BP, etc.). 

Figure 10.7 plots the performance of these versions. The difference between 
the macro and procedure versions in this experiment increases to about 50 
percent-about twice that of the corresponding difference in Experiment 1. 
The additional difference over that of Figure 10.6 is attributable to parameter 
passing via the stack. 

While there is no reason to use either a macro or a procedure to swap two 
values in this example, it does serve our purpose of measuring the associated 
overheads. 



Section 10.12 Summary 413 

60 

50 

'""' '" '"0 40 c 
0 
u 
Q) 

'" '-' 30 Q) 

S 
''::: 
t: 20 0 
til 

10 

0 
1000 2000 3000 4000 5000 6000 7000 8000 

Number of elements 

Figure 10.7 Performance impact of call/ret and parameter passing overheads. 

10.12 Summary 

A macro is a sophisticated text substitution mechanism. Assemblers provide 
three directives to support the macro definition. The directives = and EQU are 
primitive in the sense that they can be used only for defining constants whose 
values are available at assembly time. For sophisticated text substitution, we 
have to rely on the MACRO directive. Each macro definition should end with 
an ENDM directive. Macros can be defined, like procedures, with parameters as 
well. 

Both macros and procedures can be used to write modular programs. There 
are, however, some inherent tradeoffs between the two. Macros tend to increase 
space requirements of a program, as they replace each macro call by the actual 
code. Procedures, on the other hand, maintain a single copy of the code and 
the control is transferred to this copy whenever a procedure is called. The 
transferring of control typically involves two types of overhead: 

1. call/ret overhead to transfer control back and forth between the caller 
and callee; 

2. parameter passing overhead, which usually involves the stack. 



414 Chapter 10 Macros and Conditional Assembly 
------------------------------------------------

The last section looked at the performance tradeoffs in the context of the bubble 
sort example. 

We have discussed five list control directives-. Ll:ST, . XLIST, . LALL, 
. SALL, and . XALL. The first two directives are general-purpose, while the last 
three directives affect only macro invocations. 

Both TASM and MASM assemblers provide three directives to repeat a 
block of statements-REPT, lRP, and lRPe. These directives can be used both 
inside and outside of macro definitions. We have demonstrated the use of these 
directives by means of several examples. 

Several conditional assembly directives are available to conditionally in
clude statements in the assembly process. Conditional assembly directives are 
useful in generating customized code from a single source program. Further
more, we have shown that in certain cases, coding without using a conditional 
assembly directive is impossible. 

10.13 Exercises 

10-1 Discuss the advantages and disadvantages of macros. 
10-2 Discuss the advantages and disadvantages of procedures. 
10-3 What are the three assembler directives that allow macro definition? Dis-

cuss the differences and similarities among them. 
10-4 What are the advantages of allowing parameters in a macro definition? 
10-5 What is the purpose ofEXlTM? 
10-6 Explain a scenario where a parameter type can be used as a macro pa

rameter but not as a procedure parameter. 
10-7 Discuss how the inherent tradeoffs between macros and procedures are 

affected by the current technology. 
10-8 What are the two run-time overheads of a procedure call? How do macros 

avoid these overheads? 
10-9 Why should comments receive special attention in macro definition? 

10-10 In a procedure body, we can define labels without any problem. Explain 
why defining labels in a macro definition causes a ]problem and how we 
can avoid this problem. 

10-11 What is the difference between the macro operators < > and !? 
10-12 What is the difference between the . SALL and . XALL directives? 
10-13 The lRP directive can be used to replace the lRPe directive. Do you 

agree with this statement? Justify your answer. 
10-14 The lRPe directive can be used to replace the lRP directive. Do you 

agree with this statement? Justify your answer. 



Section 10.14 Progamming Exercises 

10-15 Describe a macro definition that cannot be written without using 
IFIDN/IFDIF or IFIDNI/IFDIFI directives. 

415 

10-16 Explain why the results of Experiment 1 of Section 10.11 did not include 
parameter passing overhead. 

10.14 Progamming Exercises 

100Pl Define a macro to multiply two unsigned integers. 

mult dest,src 

The operands of this macro are memory variables. If the result cannot be 
stored in dest, the carry flag should be set to indicate overflow; otherwise, 
the carry flag should be cleared. Assume that dest and src operands 
are both byte, word, or doubleword variables. 

10-P2 Write a macro to implement the if-then construct. The semantics are 

if(ZF = 1) 
then 

execute then_proc 
end if 

The macro is invoked by 

where then_proc is the procedure name that will be executed if ZF = 1. 

IO-P3 Write a macro to implement the if -then -else construct. The semantics 
are 

if(ZF = 1) 
then 

execute then_proc 
else 

execute else_proc 
end if 

The macro is invoked by 

where then_proc is the procedure name that will be executed if ZF = 1, 
and else_proc is the procedure name that will be executed if ZF = O. 

10-P4 Write a macro to implement the while_z construct. The semantics are 



416 Chapter 10 Macros and Conditional Assembly 

while (ZF = 1) 
execute proc 

end while 

The macro is invoked by 

while_z proc 

where proc is the procedure name that will be executed while ZF = 1. 
IO-P5 Pentium procedure calls are unconditional, unlike jumps. Write a condi

tional call macro-instruction that calls a procedure :proc if ZF = 1. This 
macro-instruction is invoked as 

10-P6 Write a macr~ Bmult10 that multiplies the source operand src by 10 
and stores the result in the dest operand. It is invoked as 

BmultlO dest,src 

which performs 

dest := src x 10 

You should use only shifts and adds. Try to do it using only three I-bit 
left shifts and one add operation. For this exercise, registers need not be 
preserved. 

IO-P7 Modify the above macro to preserve registers. Also, make sure that 
your macro works properly when the src and dest operands are either 
registers, memory locations, or a combination of the two. 

IO-P8 Write a macro mul t 10 that works for byte, word, and doubleword operands. 
The macro mul t 10 performs a similar function as the Bmul t 10 macro in 
the last example. 

10-P9 All conditional jumps are short jumps. For example, j a can only jump 
to a label within approximately ±I27 bytes. Write a macro Lja that can 
perform j a to any label in the current segment. The macro is invoked as 

Lja label 

100PlO Generalize the macro you wrote for the last question. Write a macro 
Lj cond that works for any conditional jump instruction. It receives two 
parameters: cond to identify the jump condition, and label of the target 
instruction. The macro, for example, can be invoked as 

Ljcond ge,target 

to cause a long jump j ge to target location. 



Chapter 11 

ASCII and BCD 
Arithmetic 

Objectives 

• To introduce ASCII and BCD number representations 
• To explain arithmetic operations in ASCII and BCD representations 

• To describe the Pentium instructions that support arithmetic in ASCII 
and BCD representations 

• To discuss the tradeoffs among the binary, ASCII, and BCD representa
tions 

We discuss the binary number system in Appendix A. In the previous chapters, 
we used binary representation and discussed several instructions that operate 
on binary data. 

When we enter numbers from the keyboard, they are entered as an ASCII 
string of digit characters. Therefore, a procedure like GetInt is needed to 
convert the input ASCII string into the equivalent binary number. Similarly, 
output should be converted from binary to ASCII. This conversion overhead 
cannot be ignoredfor some applications. 

In this chapter, we present two alternative representations--ASCII and 
BCD-that avoid/reduce the conversion overhead. Section 11.1 provides a 
brief introduction to these two representations. The next two sections discuss 
how arithmetic operations can be done in these two representations. 

While the ASCII and BCD representations avoid/reduce the conversion 
overhead, processing numbers in these two representations is slower than in 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



418 Chapter 11 ASCIl and BCD Arithmetic 
-------------------------------------------------

the binary representation. This inherent tradeoff between conversion overhead 
and processing overhead among the three representations is explored in Sec
tion 11.4. The chapter ends with a summary. 

11.1 ASCII and BCD Representations of Numbers 

data Input 
(in A SCII) 

In previous chapters, the numeric data has been represented in the binary system. 
We have discussed several arithmetic instructions that operate on such data. The 
binary representation is used internally for manipulation (e.g., arithmetic and 
logical operations). 

When numbers are entered from the keyboard or displayed/printed, they 
should be in ASCII form. Thus, it is necessary to convert numbers from ASCII 
to binary at the input end and, again, to convert back to the ASCII form to 
output results, as shown below: 

ASCII to Process 
binary in binary 

conversion 

Binary to 
ASCII 

conversion 

Outpu t data 
SCII) (in A 

We have used GetInt/GetLint and PutInt/PutLint to perform these two 
conversions, respectively. These conversions represent an overhead but we can 
process numbers much more efficiently in the binary form. 

In some applications where processing of numbers is quite simple (for 
example, a single addition), the overhead associated with the two conversions 
might not be justified. In this case, it is probably more efficient to process 
numbers in the decimal form. 

Another reason for processing numbers in decimal form is that we can use 
as many digits as necessary, and we can control rounding-off errors. This is 
important when representing dollars and cents for financial records. 

Decimal numbers can be represented in one of two fonns: ASCII or binary
coded-decimal (BCD). These two representations are disc:ussed next. 

11.1.1 ASCII Representation 

In this representation, numbers are stored as strings of ASCII characters. For 
example, 1234 is represented as 

31323334H 



Section 11.1 ASCII and BCD Representations of Numbers 419 

where 31H is the ASCII code for I, 32H for 2, etc. As you can see, arithmetic 
on decimal numbers represented in ASCII form requires special care. There 
are two instructions to handle these numbers: 

aaa - ASCII adjust after addition 
aas - ASCII adjust after subtraction 

We will discuss these two instructions in Section 11.2. 

11.1.2 BCD Representation 

There are two types of BCD representation: unpacked BCD, and packed BCD. 
In unpacked BCD representation, each digit is stored in a byte, while two digits 
are packed into a byte in the packed representation. 

Unpacked BCD 

This representation is similar to the ASCII representation except that each byte 
stores the binary equivalent of a decimal digit. Note that the ASCII codes for 
digits 0 through 9 are 30H through 39H. Thus, if we mask off the upper four 
bits, we get the unpacked BCD representation. For example, 1234 is stored in 
this representation as 

01020304H 

We deal with only positive numbers in this chapter. Thus, there is no need 
to represent sign. But if a sign representation is needed, an additional byte can 
be used to associate a sign with a BCD number. The number is positive if this 
byte is OOH and negative if 80H. 

There are two instructions to handle these numbers: 

aam - ASCII adjust after multiplication 
aad - ASCII adjust before division 

Since this representation is similar to the ASCII representation, the four instructions
aaa, aas, aam, and aad--can be used with ASCII as well as unpacked BCD 
representations. 

Packed BCD 

In the last two representations, each digit of a decimal number is stored in a 
byte. The upper four bits of each byte contain redundant information. In packed 



420 Chapter 11 ASCII and BCD Arithmetic 
------------------------------------------------

BCD representation, each digit is stored using only four bits. Thus, two decimal 
digits can be packed into a byte. This reduces the m{:mory requirement by half 
compared to the other two representations. For example, decimal number 1234 
is stored in packed BCD as 

1234H 

which requires only two bytes as opposed to four in the other two representa
tions. There are only two instructions that support addition and subtraction of 
packed BCD numbers: 

daa - decimal adjust after addition 
das - decimal adjust after subtraction 

There is no support for multiplication or division operations. These two 
instructions are discussed in Section 11.3. 

11.2 Processing in ASCII Representation 

Pentium provides four instructions to process numbers in ASCII representation: 

aaa - ASCII adjust after addition 
aas - ASCII adjust after subtraction 
aam - ASCII adjust after multiplication 
aad - ASCII adjust before division 

These instructions do not take any operands. They assume that the required 
operand is in the AL register. 

11.2.1 ASCII Addition 

To understand the need for the aaa instruction, look at the next two examples. 

Example 11.1 An ASCII addition example 

Consider adding two ASCII numbers 4 (34H) and 5 (35H). 

34H = 00110100B 
35H = 00110101B 

69H = 01101001B 



Section 11.2 Processing in ASCII Representation 421 

The sum 69H is not correct. The correct value should be 09H in unpacked BCD 
representation. In this example, we get the right answer by setting the upper 
four bits to O. This scheme, however, does not work in cases where the result 
digit is greater than 9, as shown in the next example. 000000 

Example 11.2 Another ASCII addition example 

In this example, consider the addition of two ASCII numbers 6 (36H) and 
7 (37H). 

36H = 00110110B 
37H = 00110111B 

6DH = 01101101B 

Again, the sum 6DH is incorrect. We would expect the sum to be 13 (01 03H). 
In this case, ignore 6 as in the last example. But we have to add 6 to D to get 13. 
We add 6 because that is the difference between the bases of hex and decimal 
numbers. 000000 

The aaa instruction performs these adjustments. This instruction is used 
after performing an addition operation either by using an add or adc instruction. 
The resulting sum in AL is adjusted to unpacked BCD representation. The aaa 
instruction works as follows. 

1. If the least significant four bits of AL are greater than 9 or if the auxiliary 
flag is set, it adds 6 to AL and 1 to AH. Both CF and AF are set. 

2. In all cases, the most significant four bits of AL are cleared (Le., zeroed). 

Here is an example that illustrates the use of the aaa instruction. 

Example 11.3 A typical use of the aaa instruction 

sub AH,AH clear AH 
mov AL, '6' AL := 36H 
add AL, '7' AL := 36H+37H = 6DH 
aaa AX := 0103H 
or AL,30H AL := 33H 

To convert the results in AL to an ASCII result, we have to insert 3 into the 
upper four bits of AL. 000000 



422 Chapter 11 ASCII and BCD Arithmetic 
-------------------------------------------------, 

To add multiple digit decimal numbers, we have to use a loop that adds one 
digit at a time starting from the rightmost digit. Program 11.36 shows how the 
addition of two to-digit decimal numbers is done in ASCII representation. 

11.2.2 ASCII Subtraction 

The aas instruction is used to adjust the result of a subtraction operation (sub 
or sbb) and works like aaa. The actions taken by aas are: 

1. If the least significant four bits of AL are greater than 9 or if the auxiliary 
flag is set, it subtracts 6 from AL and 1 from AH. Both CF and AF are 
set. 

2. In all cases, the most significant four bits of AL are deared (Le., zeroed). 

It is straightforward to see that the adjustment is needed only when the result 
is negative, as shown in the following examples. 

Example 11.4 ASCII subtraction (positive result) 

sub AH,AH clear AH 
mov AL, '9' AL := 39H 
sub AL, '3' AL := 39H-33H = 6H 
aas AX := 0OO6H 
or AL,30H AL := 36H 

Notice that aas does not change the contents of the AL register, as the result is 
a positive number. 000000 

Example 11.S ASCII subtraction (negative result) 

sub AH,AH clear AH 
mov AL, '3' AL := 33H 
sub AL, '9' AL := 33H-39H = FAH 
aas AX := FF04H 
or AL,30H AL := 34H 

The AL result indicates the magnitude; the aas instruction sets the carry flag 
to indicate that a borrow has been generated. 000000 



Section 11.2 Processing in ASCII Representation 423 

Is the last result FF04H generated by aas useful? It is when you consider 
multidigit subtraction. For example, if we are subtracting 29 from 53 (Le., 
53-29), the first loop iteration performs 3-9 as in the last example. This gives 
us the result 4 in AL and the carry flag is set. Next we perform 5-2 using sbb 
to include the borrow generated by the previous subtraction. This leaves 2 as 
the result. After DRing with 30H, we will have 32 34H, which is the correct 
answer (24). 

11.2.3 ASCII Multiplication 

The aam instruction is used to adjust the result of a mul instruction. Unlike 
addition and subtraction, multiplication should not be performed on ASCII 
numbers but on unpacked BCD numbers. The aam works as follows: AL is 
divided by 10 and the quotient is stored in AH and the remainder in AL. 

Example 11.6 ASCII multiplication 

mov 
mov 
mul 
aam 
or 

AL,3 
BL,9 
BL 

AX,3030H 

multiplier in unpacked BCD form 
multiplicand in unpacked BCD form 
result 00lBH is in AX 
AX := 0207H 
AX := 3237H 

Notice that the multiplication should be done using unpacked BCD numbers
not on ASCII numbers! If the digits in AL and BL are in ASCII, as in the 
following code, we have to mask off the upper four bits. 

mov AL,'3' multiplier in ASCII 
mov BL, '9' multiplicand in ASCII 
and AL,OFH multiplier in unpacked BCD form 
and BL,OFH multiplicand in unpacked BCD form 
mul BL result 00lBH is in AX 
aam AX := 0207H 
or AL,30H AL := 37H 

The aam works only with the mul instruction but not with the imul instruction. 
DDDDDD 

11.2.4 ASCII Division 

The aad instruction adjusts the numerator in AX before dividing two unpacked 
decimal numbers. The denominator has to be a single byte unpacked decimal 



424 Chapter 11 ASCII and BCD Arithmetic 

number. The aad instruction multiplies AH by 10 and adds it to AL and sets 
AH to zero. For example, if AX = 0207H before aad, AX changes to 001BH 
after executing aad. As you can see from the last example, aad reverses the 
operation of aam. 

Example 11.7 ASCII division 

Consider dividing 27 by S. 

mov 
mov 
aad 
div 

AX,0207H 
BL,05H 

BL 

dividend in unpacked BCD form 
divisor in unpacked BCD form 
AX := 001BH 
AX := 0205H 

The aad instruction converts the unpacked BCD number in AX to binary form 
so that di v can be used. The di v instruction leaves the quotient in AL (OSH) 
and the remainder in AH (02H). 000000 

11.2.5 Example: Multidigit ASCII Addition 

Addition of multidigit numbers in ASCII representation is done one digit at a 
time starting with the rightmost digit. To illustrate the process involved, we 
discuss how addition of two lO-digit numbers is done (set: Program 11.36). 

Program 11.36 ASCII addition of two lO-digit numbers 

1: TITLE Addition of two integers in ASCII form ASCIIADD.ASM 
2: COMMENT I 
3: Objective: To demonstrate addition of two integers 
4: in the ASCII representation. 
5: Input: None. 
6: Output: Displays the sum. 
7: .MODEL SMALL 
8: . STACK 100H 
9: . DATA 

10: sum_msg 
11: number 1 
12: number2 
13: sum 
14: 
15: . CODE 

DB 'The sum is: ',0 
DB '1234567890' 
DB '1098765432' 
DB 10DUP (' '),0 add NULL char. to use PutStr 



Section 11.2 Processing in ASCII Representation 425 

16: INCLUDE io.mac 
17: main PROC 
18: . STARTUP 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 

; SI is used as index 
mov SI,9 
mov CX,10 
clc 

into numberl, number2, and sum 
SI points to rightmost digit 
iteration count (# of digits) 
clear carry (we use ADC not ADD) 

add_loop: 

main 

mov AL,numberl[SI] 
adc AL,number2[SI] 
aaa ASCII adjust 
pushf save flags because OR 
or AL,30H changes CF that we need 
popf in the next iteration 
mov sum[SI] ,AL store the sum byte 
dec SI update SI 
loop add_loop 
PutStr sum_msg display sum 
PutStr sum 
.EXIT 
ENDP 
END main 

The program adds two numbers numberl and number2 and displays the 
sum. We use SI as an index into the input numbers, which are in ASCII 
representation. SI is initialized to point to the rightmost digit (line 20). The 
loop count (10) is set up in CX (line 21). The addition loop (lines 23-32) 
adds one digit by taking any carry generated by the previous iteration into 
account. This is done by using adc rather than the add instruction. Since the 
adc instruction is used, we have to make sure that the carry is clear initially. 
This is done on line 22 using the clc (clear carry) instruction. 

Note that the aaa instruction produces the result in unpacked BCD form. 
To convert to ASCII form, we have to or the result with 30H (line 28). This 
ORing, however, destroys the carry generated by the adc instruction that we 
need in the next iteration. Therefore, it is necessary to save (line 27) and restore 
(line 29) flags. 

The overhead in performing the addition is obvious. If the input numbers 
were in binary, only a single add instruction would have performed the required 
addition. This conversion-overhead versus processing-overhead tradeoff is dis
cussed in Section 11.4. 



426 Chapter 11 ASCII and BCD Arithmetic 

11.3 Processing Packed BCD Numbers 

In this representation, as indicated earlier, two decimal numbers are packed into 
a byte. There are two instructions to process packed BCD numbers: 

daa - Decimal adjust after addition 
das - Decimal adjust after subtraction 

There is no support for multiplication or division. For these operations, we will 
have to unpack the numbers, perform the operation, and repack them. 

11.3.1 Packed BCD Addition 

The daa instruction can be used to adjust the result of an addition operation to 
conform to the packed BCD representation. To understand the sort of adjust
ments required, let us look at some examples next. 

Example 11.8 A packed BCD addition example 

Consider adding two packed BCD numbers 29 and 69. 

29H = 00101001B 
69H = 01101001B 

92H = 10010010B 

The sum 92 is not the correct value. The result should be 98. We get the correct 
answer by adding 6 to 92. We add 6 because the carry generated from bit 3 
(Le., auxiliary carry) represents an overflow above 16, not 10, as is required in 
BCD. DDDDDD 

Example 11.9 Another packed BCD addition example 

Consider adding two packed BCD numbers 27 and 34. 

27H = 00100111B 
34H = 00110100B 

5BH = 01011011B 

Again, the result is incorrect. The sum should be 61. The result 5B requires 
correction, as the first digit is greater than 9. To correct the result add 6, which 
gives us 61. DDDDDD 



Section 11.3 Processing Packed BCD Numbers 

Example 11.10 A final packed BCD addition example 

Consider adding two packed BCD numbers 52 and 61. 

52H = 01010010B 
61H = 01100001B 

B3H = 10110011B 

427 

This result also requires correction. The first digit is correct but the second 
digit requires a correction. The solution is the same as that used in the last 
example-add 6 to the second digit (Le., add 60H to the result). This gives us 
13 as the result with a carry (effectively equal to 113). 000000 

The daa instruction exactly perfonns adjustments like these to the result of an 
add or adc. More specifically, the following actions are taken by daa: 

• If the least significant four bits of AL are greater than 9 or if the auxiliary 
flag is set, it adds 6 to AL and sets AF, 

• If the most significant four bits of AL are greater than 9 or if the carry 
flag is set, it adds 60H to AL and sets CF. 

Example 11.11 Code for packed BCD addition 

Consider adding two packed BCD numbers 71 and 43. 

mov 
add 
daa 

AL,71H 
AL,43H j AL := B4H 

; AL := 14H and CF := 1 

As indicated, the daa instruction restores the result in AL to the packed BCD 
representation. The result including the carry (Le., 114H) is the correct answer 
in packed BCD. 000000 

As in the ASCII addition, multi byte BCD addition requires a loop. After 
discussing the packed BCD subtraction, we present an example to add two 
10-byte packed BCD numbers. 

11.3.2 Packed BCD Subtraction 

The das instruction can be used to adjust the result of a subtraction (Le., the 
result of sub or sbb). It works similar to daa and perfonns the following 
actions: 



428 Chapter 11 ASCII and BCD Arithmetic 

• If the least significant four bits of AL are greater than 9 or if the auxiliary 
flag is set, it subtracts 6 from AL and sets AP, 

• If the most significant four bits of AL are greater than 9 or if the carry 
flag is set, it subtracts 60H from AL and sets CF. 

Here is an example illustrating the use of the das instruction. 

Example 11.12 Code/or packed BCD subtraction 

Consider subtracting 43 from 71 (i.e., 71 - 43). 

mov 
sub 
das 

AL,71H 
AL,43H AL := 2EH 

AL := 28H 

The das instruction restores the result in AL to the packed BCD representation. 
000000 

11.3.3 Example: Multibyte Packed BCD Addition 

As in the ASCII representation, when adding two multibyte packed BCD num
bers, we have to use a loop that adds a pair of decimal digits in each iteration 
starting from the rightmost pair. An example program that adds two lO-byte 
packed BCD numbers number1 and number2 is shown in Program 11.37. 

Program 11.37 Packed BCD addition of two 10 digit numbers 

1: TITLE Addition of integers in packed BCD form BCDADD.ASM 
2: COMMENT I 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

Objective: 

Input: 
Output: 

SUM_LENGTH EQU 
.MODEL SMALL 
.STACK 100H 

To demonstrate addition of two integers 
in the packed BCD representation. 
None. 
Displays the sum. 

10 

10: . DATA 
11: sum_msg 
12: numberi 
13: 

DB 'The sum is: ',0 
LABEL BYTE 
DT 1234567890 j stores in packed BCD form 

14: number2 LABEL BYTE 



Section 11.3 Processing Packed BCD Numbers 

15: 
16: BCDsum 
17: 

DT 1098765432 
LABEL BYTE 
DT ? 

stores in packed BCD form 

18: ASCIIsum DB SUM_LENGTH DUP (, '),0 add NULL char. 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 

. CODE 

.486 
INCLUDE io.mac 
main PRDC 

. STARTUP 
sub 
mov 
clc 

add_loop: 
mov 
adc 
daa 
mov 
inc 
loop 
call 
PutStr 
PutStr 
. EXIT 

main ENDP 

SI,SI 
CX,5 

AL,numberl [SI] 
AL,number2[SI] 

BCDsum [SI] , AL 
SI 
add_loop 
ASCII_convert 
sum_msg 
ASCIIsum 

loop iteration count 
clear carry (we use ADC) 

ASCII adjust 
store the sum byte 
update index 

display sum 

40: ;-----------------------------------------------------------
41: Converts the packed decimal number (5 digits) in BCDsum 
42: ; to ASCII represenation and stores it in ASCIIsum. 
43: ; All registers are preserved. 
44: ;-----------------------------------------------------------
45: ASCII_convert PRDC 
46: pusha ; save registers 
47: ; SI is used as index into ASCIIsum 
48: mov SI,SUM_LENGTH-l 
49: ; DI is used as index into BCDsum 
50: sub DI,DI 
51: mov CX,5 loop count (# of BCD digits) 
52: cnv_Ioop: 
53: mov AL,BCDsum[DI] AL:= BCD digit 
54: mov AH, AL save the BCD digit 
55: ; convert right digit to ASCII & store in ASCIIsum 
56: and AL,OFH 
57: or AL,30H 
58: mov ASCIIsum[SI],AL 

429 



430 Chapter 11 ASCIl and BCD Arithmetic 

59: dec SI 
60: mov AL,AH ; restore the BCD digit 
61: ; convert left digit to ASCII & store in ASCllsum 
62: shr AL,4 right shift by 4 positions 
63: or AL,30H 
64: mov ASCllsum[SI] ,AL 
65: dec SI 
66: 
67: 
68: 
69: 
70: 
71 : 

inc DI update DI 
loop cnv_loop 
popa restore registers 
ret 

ASCII_convert ENDP 
END main 

Storage space for the two input numbers and for the sum (BCD sum) is allo
cated by using the DT (Define Ten-byte) assembler directive. With this storage 
allocation, we can represent numbers in the range 

±999,999,999,999,999,999 

When initializing using DT, the values are stored in packed BCD represen
tation in byte reverse order. The digits within a byte are, however, not reversed. 
For example, ' 

DT 1234567890 

is stored as 

90 78 56 34 12H 

Since we want to process these numbers one byte at a time, we use the 
LABEL directive on lines 12, 14, and 16. Note that we could have as well used 
the DB directive with "proper" initialization. However, we want to demonstrate 
the use of DT in initializing packed BCD numbers. 

The code is similar to that given in Program 11.36. However, since we add 
two decimal digits during each loop iteration, only five iterations are needed 
to add two 10-digit numbers. Therefore, processing numbers in packed BCD 
representation is faster than in ASCII representation. In any case, both rep
resentations are considerably slower in processing numbers than the binary 
representation. 

At the end of the loop, the sum is stored in BCDsum as a packed BCD number. 
To display this number, we have to convert it to the ASC][I form (an overhead 
that is not present in the ASCII version). 



Section 11.4 Performance: Decimal Ve~us Binary Arithmetic 431 

Table 11.1 Tradeoffs associated with the three representations 

Representation Storage Conversion Processing 
overhead overhead overhead 

Binary Nil High Nil 
Packed BCD Medium Medium Medium 
ASCII High Nil High 

The procedure ASCII_convert takes BCD sum and converts it to equivalent 
ASCII string and stores it in ASCII sum. For each byte read from BCDsum, 
two ASCII digits are generated. Note that the conversion from packed BCD to 
ASCII can be done by using only logical and shift operations. On the other hand, 
conversion from binary to ASCII requires a more expensive divide operation 
(thus increasing the conversion overhead). 

11.4 Performance: Decimal Versus Binary Arithmetic 

Now you know three representations to perform arithmetic operations: binary, 
ASCII, and BCD. The majority of operations are done in binary. However, 
there are tradeoffs associated with these three representations. 

First we will look at the storage overhead. The binary representation is com
pact and the most efficient one. The ASCII and unpacked BCD representations 
incur high overhead as each decimal digit is stored in a byte (see Table 11.1). 
The packed BCD representation, which stores two decimal digits per byte, 
reduces this overhead by approximately half. For example, using two bytes, 
we can represent numbers from 0 to 65,535 in binary representation and from 
o to 9999 in packed BCD representation, but only from 0 to 99 in ASCII and 
unpacked BCD representations. 

In applications where the input data is in ASCII form and the output is 
also required to be in ASCII form, binary arithmetic may not always be the 
best choice. This is because there are overheads associated with, the conver
sion between ASCII and binary representations. However, processing numbers 
in binary can be done much more efficiently than in either ASCII or BCD 
representations. Table 11.1 shows the tradeoffs associated with these three 
representations. 

In order to assess these tradeoffs, we have conducted two experiments. 
In the first experiment, two numbers are received as input in the ASCII form. 
However, to eliminate variable delays associated with entering numbers through 



432 Chapter 11 ASCII and BCD Arithmetic 
---------------------------------------------------

the keyboard, these two numbers are not given from the k1eyboard. Rather, the 
five-character string is read directly from memory. In all cases, the sum is 
stored in ASCII form in memory, as in Program 11.36. In ASCII addition, no 
conversion is needed either at the input end or on the output side (see Table 11.1). 
However, to add the two decimal numbers, we have to do it byte by byte in a 
loop (see Program 11.36). In this example, the loop iterates five times, which 
reduces processing speed. 

Experiment 1 

The objective of this experiment is to see the impact of conversion overhead. 
In binary addition, we have to first convert the ASCII input into binary form. 
Again, after addition, the sum has to be converted back to ASCII form. For this, 
we have modified procedures proc_PutInt and proc_GetInt. The advantage 
of performing binary addition is that it is the fastest of the three representations. 

The packed BCD representation also requires conversion from ASCII rep
resentation at the input and to ASCII representation at the output. However, 
this conversion is simpler than the binary conversion, which requires arithmetic 
multiplication and division. Conversion to BCD can be done by using only 
logical and shift operations. For an example, see procedure ASCILconvert 
in Program 11.37 for conversion from packed BCD to ASCII form. 

Figure 11.1 shows the execution time to perform a si:ngle addition of two 
five-digit decimal numbers given in ASCII form. The r,esulting sum is also 
stored in ASCII form. The x-axis gives the number of calls to the procedure 
in thousands and the y-axis gives the execution time in seconds. Due to high 
overhead in converting numbers between ASCII and binary, the binary version 
(see binary add line) takes more than three times that taken by the ASCII 
version. 

The BCD version also takes substantially more time than the ASCII ver
sion but performs better than the binary version mainly Ibecause conversions 
between BCD and ASCII are simpler. The data in this figure show the impact 
of conversion overhead. Thus, if an application reads data in ASCII form and 
performs simple arithmetic and produces output in ASCII form, doing it in 
ASCII is better than in the other two forms. 

Experiment 2 

In this experiment, let us see if the relative performance changes when we per
form a number of arithmetic operations between input and output. To conduct 
such an experiment, we have modified the code of the previous experiment 
such that it performs ten additions on the same two input dl~cimal numbers. For 



Section 11.4 Performance: Decimal Ve~us Binary Arithmetic 433 

2.0 

""" '" 1.5 ] 
(.) 
Q) 

'" ......, 

~ 
1.0 J .::: 

c:: 
0 0g 
~ ASCnadd 
&l 0.5 

0.0 ~:;""':===---.-------.--------r------I 
o 50 100 150 200 

Number of calls (in thousands) 

Figure 11.1 Performance tradeoffs when the conversion overhead dominates. 

example, in the binary version, after converting the two decimal numbers from 
ASCII to binary, it performs ten additions using the add instruction and finally 
converts the sum back to ASCII. 

The results of this experiment are shown in Figure 11.2. In this case, the 
relative performance is the converse of that in Figure 11.1. The binary version 
performs the best, while the ASCII worst. In fact, the ASCII version is about 
2.5 times slower than the binary version. The BCD version, on the other hand, 
is only about 50 percent slower than the binary version. In this experiment, 
processing speed dominates the conversion overhead. Thus, binary form is 
preferred in applications where the data comes in binary form or if number 
processing is not simple. 

A Final Word 

The last observation is strictly not true. Suppose that we are using long integers 
(32 bits) rather than the 16-bit numbers, as in the last two experiments. If 
the processor were to support only 16-bit multiplication or division operations, 
the conversion from ASCII to binary and vice versa would cause very high 
overhead. As a result, the conversion overhead is substantial, as the required 



434 Chapter 11 ASCII and BCD Arithmetic 
---------------------------------------------------

""'-

'" "0 
C 
0 
Co) 
tU 

'" '-' 
tU 
E . .-:: 
c 
0 ·a 
::l 
Co) 
tU 
>< 
~ 

6.0 

5.0 

4.0 

3.0 

2.0 

1.0 

0.0 
0 50 100 150 200 

Number of calls (in thousands) 

Figure 11.2 Performance tradeoffs when number processing dominates. 

multiplication and division should be done in software. For example, for 32-bit 
data, the execution times for 10,000 calls to perform a single addition, as in 
Experiment 1, are: 

Binary version: 
Packed BCD version: 

ASCII version: 

2.64 seconds 
0.11 seconds 
0.055 seconds 

In this case, ASCII representation is the best choice for performing the arith
metic. Of course, Pentium supports 32-bit arithmetic operations that can elim
inate the additional overhead. However, a similar situation arises when we are 
considering 64-bit data. 

The moral of the story is that a careful analysis of tht~ application should 
be done before deciding on the choice of representation for arithmetic in some 
applications. This is particularly true for business applications, where the data 
might come in ASCII form. 



Section 11.5 Summary 435 

11.5 Summary 

In previous chapters we converted decimal data into binary for storing internally 
as well as for manipulation. This chapter introduced two alternative representa
tions for storing the decimal data-ASCII and BCD representations. The BCD 
representation can be either unpacked or packed. 

In ASCII and unpacked BCD representations, one decimal digit is stored per 
byte, whereas the packed BCD representation stores two digits per byte. Thus, 
the storage overhead is substantial in ASCII and unpacked BCD. Packed BCD 
representation uses the storage space more efficiently (typically requiring half 
as much space). Binary representation, on the other hand, does not introduce 
any overhead. 

There are two main overheads that affect the execution time of a program: 
conversion overhead and processing overhead. When the ASCII form is used 
for data input and output, the data should be converted between ASCII and 
binary/BCD. This conversion overhead for binary representation can be sub
stantial, as mUltiplication and division are required. There is much less overhead 
for the BCD representations, as only logical and shift operations are needed. 

On the other hand, number processing in binary is much faster than in ASCII 
or BCD representations. Packed BCD representation is better than ASCII rep
resentation, as each byte stores two decimal digits. We demonstrated these 
tradeoffs using an example. 

11.6 Exercises 

11-1 Briefly give the reasons for using either ASCII or BCD representations. 

11-2 How is sign represented in ASCII and BCD representations? 

11-3 What is the difference between packed and unpacked BCD representa
tions? Discuss the tradeoffs between the two BCD representations. 

11-4 How are the following numbers represented in (i) binary, (ii) ASCII, (iii) 
unpacked BCD, and (iv) packed BCD. 

(a) 500 
(b) 32025 
(c) 2491 
(d) 4385 

11-5 Explain why pushf and popf instructions are needed in Program 11.36. 

11-6 Assuming that an ASCII digit is in the AL register, write an assembly 
language code fragment to convert it to unpacked BCD representation. 



436 Chapter 11 ASCII and BCD Arithmetic 
---------------------------------------------------

11-7 Assuming that the digit in the AL register is in unpa1cked BCD represen
tation, write an assembly language code fragment to convert it to ASCII 
representation. 

11-8 Suppose that two ASCII digits are in AH and AL, with the least significant 
digit in AL. Write an assembly language code fragment to convert it to 
packed BCD representation and store it in AL. 

11-9 For each code fragment given, find the contents of AX after executing 
the aaa instruction. 

(a) (b) 
sub AH,AH sub AH,AH 
mov AL, '5' mov AL, '7' 
add AL, '3' add AL, '8' 
aaa aaa 

(c) (d) 
sub AH,AH sub AH,AH 
mov AL, '9' mov AL, '9' 
add AL, '7' add AL, '9' 
aaa aaa 

11-10 For each code fragment given, find the contents of AX after executing 
the aas instruction. 

(a) (b) 
sub AH,AH sub AH,AH 
mov AL, '9' mov AL, '4' 
sub AL, '4' sub AL, '~9' 
aas aas 

(c) (d) 
sub AH,AH sub AH,AH 
mov AL, '3' mov AL, "i' 
sub AL, '7' sub AL, '!5' 
aas aas 

11-11 For each code fragment given, find the contents of AX after executing 
the daa instruction. 

(a) (b) 
mov AL,21H mov AL,3JH 
add AL,57H add AL,4SH 
daa daa 

(c) (d) 
mov AL,21H mov AL,515H 
add AL,96H add AL,61>H 
daa daa 



Section 11. 7 Progamming Exercises 437 

11-12 For each code fragment given, find the contents of AX after executing 
the das instruction. 

(a) (b) 
mov AL,66H mov AL,64H 
sub AL,45H sub AL,37H 
das das 

(c) (d) 
mov AL,34H mov AL,45H 
sub AL,51H sub AL,57H 
das das 

11-13 For each code fragment given, find the contents of AX after executing 
the aam instruction. 

(a) (b) 
mov AL, , 3' mov AL, '9' 
mov 8L, '2' mov 8L, , 9' 
mul 8L mul 8L 
aam aam 

(c) (d) 
mov AL, '4' mov AL, , 7' 
mov 8L, '4' mov 8L, , 3' 
mul 8L mul 8L 
aam aam 

11-14 Discuss the conversion versus processing overhead tradeoffs associated 
with the binary, ASCII, and BCD (both packed and unpacked) represen
tations. 

11.7 Progamming Exercises 

ll-P1 Modify asciiadd. asm (Program 11.36) to read two decimal numbers 
from the user instead of taking them from memory. The two numbers 
from the user should be read as a string. You can use GetStr to read the 
input numbers. 

ll-P2 Modify asciiadd. asm (Program 11.36) to read two decimal numbers 
from the user instead of taking them from memory (as in the last exercise). 
It should then subtract the second number from the first and display the 
result using PutStr. The two numbers from the user should be read as 
a string using GetStr. 

ll-P3 Modify bcdadd. asm (Program 11.37) to receive two decimal numbers 
from the user instead of taking them from memory. The two numbers 
from the user should be read as an ASCII string using GetStr. The 



438 Chapter 11 ASCII and BCD Arithmetic 

input numbers should be converted to the packed BCD representation 
for performing the addition, as in Program 11.37. The result should be 
converted back to ASCII so that it can be displayed by PutStr. 

II-P4 Modify the program for the last exercise to perform subtraction. 

I1-P5 Write an assembly language program to perform multiplication in ASCII 
representation. In this exercise, assume that the multiplier is a single 
digit. The two numbers to be multiplied are given as input in the ASCII 
form (and read by your program using GerStr). The result should be 
displayed by using PutStr. 
Hint: You need to use a loop that mimics the behavior of longhand 
multiplication (Le., multiply one digit at a time). 

II-P6 Write an assembly language program to perform multiplication in ASCII 
representation. Unlike in the last exercise, both numbers can be multidigit 
(up to 5 digits) numbers. The two numbers to be multiplied are given as 
input in the ASCII form (and read by your program using GerStr). The 
result should be displayed by using PutStr. 
Hint: You need two (nested) loops where the inner loop is similar to that 
in the last exercise. 



Chapter 12 

Interrupts and 
Input/Output 

Objectives 

• To describe the interrupt mechanism of Pentium 

• To explain software and hardware interrupts 

• To discuss DOS and BIOS interrupt services to interact with I/O devices 
such as the keyboard, printer, and display screen 

• To illustrate writing user defined interrupt service routines 

• To provide an understanding of some peripheral support chips 

• To discuss how programmed input/output is done with I/O ports using 
in and out instructions 

• To describe the polling mechanism and the associated overheads 

Interrupts, like procedures, can be used to alter a program's flow oj control to 
a procedure called interrupt service routine. Unlike procedures, which can be 
invoked by a call instruction, interrupt service routines can be invoked either 
in software (called software interrupts), or by hardware (called hardware in
terrupts). Interrupts are introduced in Section 12.1, and Section 12.2 discusses 
a taxonomy oJinterrupts. The interrupt invocation mechanism is described in 
Section 12.3. 

Both DOS and BIOS provide several software interrupt service routines. 
Software interrupts are introduced in Section 12.4. Section 12.5 discusses 
the keyboard services oj DOS and BIOS. The next section discusses the DOS 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



440 Chapter 12 Interrupts and Input/Output 
---------------------------------------------------

interrupt services for text output on the display screen. Printer services of DOS 
and BIOS are described in Section 12.7. Section 12.8 discusses exceptions. 

Hardware interrupts are introduced in Section 12.9, and these are discussed 
for the remainder of the chapter. I/O devices can be accessed in three ways. 
DOS and BIOS provide two ways of interacting with the system I/O devices. 
The third method of accessing involves direct I/O access. This method of I/O 
device access is low-level in nature and more complicated than the high-level 
access provided by DOS and BIOS. Direct access of I/O devices is supported 
by I/O ports using in and out instructions to access I/O ports. Sections 12./0 
through 12.12 also discuss this topic. 

Polling is an alternative to interrupts and is useful in some situations. 
Polling, however, introduces overhead. The impact of this overhead is stud
ied in Section 12.13. The last section summarizes the chapter. 

12.1 Introduction 

Interrupt is a mechanism by which a program's flow of control can be al
tered. We have seen two other mechanisms to do the same: procedures and 
jumps. While jumps provide a one-way transfer of control, procedures provide 
a mechanism to return control to the point of calling when the called procedure 
is completed. 

Interrupts provide a mechanism similar to that of a procedure call. Causing 
an interrupt transfers control to a procedure, which is refened to as an interrupt 
service routine (ISR). An ISR is also called a handler. When the ISR is 
completed, the original program resumes execution as if it were not interrupted. 
This behavior is analogous to a procedure call. There are, however, some 
basic differences between procedures and interrupts that make interrupts almost 
indispensable. 

One of the main differences is that interrupts can be initiated by both soft
ware and hardware. In contrast, procedures are purely software-initiated. The 
fact that interrupts can be initiated by hardware is the principal factor behind 
the power of the interrupt mechanism. This capability gives us an efficient way 
by which external devices (outside the CPU) can get the attention of the CPU. 

Software-initiated interrupts--called simply software interrupts--are caused 
by executing the int instruction. Thus these interrupts, like procedure calls, are 
anticipated or planned events. For example, when you are (:xpecting a response 
from the user (e.g., Y or N), you can initiate an interrupt to read a character 
from the keyboard. What if an unexpected situation arises that requires the 
immediate attention of the CPU? For example, you have written a program to 
display the first 90 Fibonacci numbers on the screen. While running the pro-



Section 12.2 A Taxonomy of Interrupts 441 

gram, however, you have realized that your program never terminates because 
of a simple programming mistake (e.g., you forgot to increment the index vari
able controlling the loop). Obviously, you want to abort the program and return 
control to the operating system. As you know, in most cases this can be done by 
ctrl-break. For this example, ctrl-break certainly works. The important 
point is that this is not an anticipated event-so cannot be programmed into 
the code. Strictly speaking, we can include code to handle all possible events, 
or at least most likely events, but such an alternative makes the program very 
inefficient. 

The interrupt mechanism provides an efficient way to handle unanticipated 
events. Referring to the previous example, the ctrl-break could cause an 
interrupt to draw the attention of the CPU away from the user program. The in
terrupt service routine associated with ctrl-break can terminate the program 
and return control to the operating system. 

Another difference between procedures and interrupts is that ISRs are nor
mally memory-resident. In contrast, procedures-including library routines
are loaded into memory along with application programs. Some other differences
such as using numbers to identify interrupts rather than names, using an invo
cation mechanism that automatically pushes the flags register onto the stack, 
and so on-are pointed out in later sections. 

12.2 A Taxonomy of Interrupts 

We have already identified two basic categories of interrupts-software-initiated 
and hardware-initiated (see Figure 12.1). The third category is called excep
tions. Exceptions handle instruction faults. An example of an exception is 
the divide error fault, which is generated whenever divide by 0 is attempted. 
This error condition occurs during the di v or idi v instruction if the divisor 
is O. Later we see an example of this fault in Section 12.8, which discusses 
exceptions in detail. 

Software interrupts are written into a program by using the int instruc
tion. The main use of software interrupts is in accessing I/O devices such as 
a keyboard, printer, display screen, disk drive, etc. Software interrupts can be 
further classified into system-defined and user-defined. There are two types 
of system-defined software interrupts: interrupt services supported by DOS, 
and those supported by BIOS (Basic Input/Output System). The BIOS is the 
lowest-level software that is stored in ROM (read-only memory). Note that 
DOS and other application software is loaded from disk. 

The interrupt service routines provided by DOS and BIOS are not mutually 
exclusive. There are some services, such as reading a character from the key-



442 

Aborts 

Chapter 12 Interrupts and Input/Output 

Interrupts 

Exceptions Software Interrupts 

Faults Traps 

/ 
( MaSkable~ 

Figure 12.1 A taxonomy of Pentium interrupts. 

I Application Program I 
I' 

I DOS Support 

BIOS Support I 

I Input/Output Devices I 

Figure 12.2 Various ways of interacting with I/O devices. 

board, provided by both DOS and BIOS. In fact, DOS uses BIOS-supported 
routines to provide some services that control the system hardware (see Fig
ure 12.2). 

Hardware interrupts are generated by hardware devices to get the atten
tion of the CPU. For example, when you strike a key, the keyboard hardware 
generates an external interrupt causing the CPU to suspend its present activity 
and execute the keyboard interrupt service routine to process the key. After 



Section 12.3 Interrupt Processing 443 

completing the keyboard ISR, the CPU resumes what it was doing before the 
interruption. 

Hardware interrupts can be either maskable or nonmaskable. The non
maskable interrupt (NMI) is always attended to by the CPU immediately. Note 
that when we say immediate, the CPU does not suspend the execution of the 
current instruction in the middle. It completes the current instruction and then 
services the interrupt. One example of NMI is the RAM parity error indicating 
memory malfunction. 

Maskable interrupts can be delayed until execution reaches a convenient 
point. As an example, let us assume that the CPU is executing a main program. 
An interrupt occurs. As a result, the CPU suspends the main as soon as it 
finishes the current instruction of main and the control is transferred to the 
ISRI. If ISRI has to be executed without any interruption, the CPU can mask 
further interrupts until ISRI is completed. Suppose that, while executing ISRl, 
another maskable interrupt occurs. Service to this interrupt would have to wait 
until ISR 1 is completed. 

12.3 Interrupt Processing 

12.3.1 Interrupt Processing in Protected Mode 

Unlike procedures, where a name is given to identify a procedure, interrupts 
are identified by a type number. Pentium supports 256 different interrupt types. 
Interrupt types range between 0 and 255. The interrupt type number is used as 
an index into a table that stores the addresses of ISRs. This table is referred 
to as the interrupt descriptor table (lOT). Like the global and local descriptor 
tables (GOT and LOT, as discussed in Chapter 2), each descriptor (or vector 
as they are often called) is essentially a pointer to an ISR and requires 8 bytes. 
The interrupt type number is scaled by 8 to form an index into the lOT. 

The IDT may reside anywhere in physical memory. The location of the 
lOT is maintained in an IDT register IOTR. The IDTR is a 48-bit register that 
stores 32 bits of IDT base address and a 16-bit IDT limit value. However, 
the IDT does not require more than 2048 bytes, as there can be at most 256 
descriptors. In a system, the number of descriptors could be much smaller than 
the maximum allowed. In this case, the lOT limit can be set to the required 
size. If a descriptor is referenced that is outside the limit, the processor enters 
shutdown mode. 

There are two special instructions to load (lidt) and store (sidt) the 
contents of the IDTR register. Both instructions take the address of a 6-byte 



444 Chapter 12 Interrupts and Input/Output 
-------------------------------------------------

memory as the operand. In the next subsection, we describe interrupt processing 
in the real mode, which is the focus of this chapter. 

12.3.2 Interrupt Processing in Real Mode 

In real mode, the IDT is located at base address O. Each vector takes only 4 
bytes as opposed to S bytes in the protected mode. Each vector consists of a 
CS:IP pointer to the associated ISR: 2 bytes for specifying the code segment 
(CS), and 2 bytes for the offset (IP) within the code segment. Figure 12.3 shows 
the interrupt vector table layout in the memory. 

Since each entry in the interrupt vector table is 4 bytes long, interrupt type is 
multiplied by 4 to get the corresponding ISR pointer in the table. For example, 
int 2 can find the ISR pointer at memory address 2x4 = OOOOSH. The first 2 
bytes at the specified address are taken as the offset value and the next 2 bytes 
as the CS value. Thus, executing int 2 causes the CPU to suspend its current 
program and calculate the address in the interrupt ve<:tor table (which is 2x4 = 

S for this example) and read CS:IP values and transfer control to that memory 
location. 

Just like procedures, ISRs should end with a return statement to send control 
back to the interrupted program. The interrupt return (iret) is used for this 
purpose. A typical ISR structure is shown below. 

;save the registers used in the ISR 
sti ; enable further interrupts 

ISR body 

; restore the saved registers 
iret ; return to the interrupted program 

When an interrupt occurs, the following actions are taken: 

1. Push flags register onto the stack 

2. Clear interrupt enable and trap flags 

3. Push CS and IP registers onto the stack 

4. Load CS with the 16-bit data at memory address (interrupt-typex4+2) 

5. Load IP with the 16-bit data at memory address (interrupt-type x 4). 

Note that EIP is used instead of IP for 32-bit segments. On receiving an 
interrupt, the flags register is automatically saved on the stack. The interrupt 



Section 12.3 Interrupt Processing 

Memory address (in Hex) 

003FF 

003FE 

003FD 

003FC 

00008 

OOOOA 

00009 

00008 

00007 

00006 

00005 

00004 

00003 

00002 

00001 

00000 

CS high byte 
------------

CS low byte 

IP high byte 
------------

IP low byte 

CS high byte 
------------

CS low byte 

IP high byte 
------------

IP low byte 

CS high byte 
------------

CS low byte 

IP high byte 
------------

IP low byte 

CS high byte 
------------

CS low byte 

IP high byte 
------------

IP low byte 

CS 

int type 255 

IP 

CS 

int type 2 

I P 

CS 

int type 1 

I P 

CS 

int type 0 

I P 

Figure 12.3 Interrupt vector table in memory (real mode). 

445 

enable flag is cleared. This disables attending further interrupts until this flag 
is set. Usually, this flag is set in ISRs unless there is a special reason to disable 
other interrupts. The interrupt flag can be set by 

sti 

and cleared by 



446 Chapter 12 Interrul'Jts and Input/Output 
---------------------------------------------------

eli 

assembly language instructions. Both of these instructions require no operands. 
The current CS and IP values are pushed onto the stack. In most cases, these 

values (i.e., CS:IP) point to the instruction following the current instruction. 
(See Section 12.8 for a discussion of a different behavior in case of a fault.) 
If it is a software interrupt, CS:IP points to the instructions following the int 
instruction. The CS and IP registers are loaded with the: address of the ISR 
from the interrupt vector table. 

The last instruction of an ISR is the iret instruction and serves the same 
purpose as ret for procedures. The actions taken on iret are: 

1. Pop the 16-bit value on top of the stack into IP register; 

2. Pop the 16-bit value on top of the stack into CS register; 

3. Pop the 16-bit value on top of the stack into the flags register. 

12.4 Software Interrupts 

Software interrupts are initiated by executing an interrupt instruction. The 
format of this instructions is 

int interrupt-type 

where interrupt-type is an integer in the range 0 through 255 (both inclu
sive). Thus a total of 256 different types are possible. This is a sufficiently 
large number, as each interrupt type can be parameterized to provide several 
services. For example, all DOS services are provided by int 21H. There are 
more than 80 different services (called functions) provided by DOS. All these 
functions are invoked by int 21H. Registers are used to pass parameters and 
to return values. The required function number is placed in the AH register. 
Any required additional parameters should be placed in specific registers. Usu
ally, the function also returns values in registers. We will discuss some of the 
int 21H services later in this chapter. 

DOS and BIOS provide several interrupt service routines to access liD 
devices. The following sections consider a select few of these services and 
explain by means of example how they can be used. We organize our discussion 
around the liD devices. The following liD devices are considered: the keyboard, 
display screen for text data, and printer. 



Section 12.5 Keyboard Services 447 

12.5 Keyboard Services 

12.5.1 Keyboard Description 

Associated with each I/O device, there is a device controller or 110 controller 
that acts as a hardware interface between the processor and the I/O device. The 
device controller performs many of the low-level tasks specific to the I/O device. 
This allows the CPU to interact with the device at a higher level. For each device 
controller, there is a software interface that provides a clean interface to access 
the device. This interface is called the device driver. 

For the keyboard, there is a keyboard controller (a chip dedicated to ser
vicing the keyboard) that scans the keyboard and reports key depressions and 
releases. This reporting is done via the 8259 interrupt controller, which in turn 
interrupts the processor to service the keyboard. On your PC, every time a key 
is depressed or released, the 8259 interrupt controller generates a hardware in
terrupt int 09H. This interrupt is serviced by BIOS. The ISR for the keyboard 
interrupt reads the identity of the key and stores it in the type-ahead keyboard 
buffer. In addition, it also identifies special key combinations such as ctrl
break. The keyboard buffer has the capacity to store up to 15 keys. When the 
buffer is full, pressing a key causes the BIOS to beep, indicating that the key 
stroke is lost. 

The keyboard controller supplies the key identity by means of a scan code. 
The scan code of a key is simply an identification number given to the key based 
on its location on the keyboard. The counting for the scan code starts at the top 
righthand side of the main keyboard (Le., with the Esc key) and proceeds left to 
right and top to bottom. Thus, the scan code for the Esc key is 1, the next key 
!II is 2, and so on. Table 12.1 shows the scan codes for the IBM-PC keyboard. 

The scan code of a key does not have any relation to the ASCII code of 
the corresponding character. The int 09H ISR receives the scan code and 
generates the equivalent ASCII code, if there is one. The code is placed in the 
keyboard buffer. This buffer is organized as a queue, which is a first-in-first-out 
(FIFO) data structure, as opposed to the last-in-first-out (LIFO) structure of the 
stack. When a request is received to read a keyboard character, the oldest key 
in the buffer (the earliest key in the buffer) is supplied and it is removed from 
the buffer. 

12.5.2 DOS Keyboard Services 

DOS provides several interrupt services to interact with the keyboard. All 
DOS interrupt services are invoked by int 21H after setting up registers ap
propriately. The AH register should always be loaded with the desired function 



448 Chapter 12 Interrupts and Input/Output 
--------------------------------------------

Table 12.1 Keyboard scan codes 

key scan code key scan code key scan code 
dec hex I dec hex I dec hex 

Alphanumeric keys 
A 30 1E M 50 32 Y 21 15 
B 48 30 N 49 31 Z 44 2C 
C 46 2E 0 24 18 1 02 02 
D 32 20 P 25 19 2 03 03 
E 18 12 Q 16 10 3 04 04 
F 33 21 R 19 13 4 05 05 
G 34 22 S 31 IF 5 06 06 
H 35 23 T 20 14 6 07 07 
I 23 17 U 22 16 7 08 08 
J 36 24 V 47 2F 8 09 09 
K 37 25 W 17 11 9 10 OA 
L 38 26 X 45 2D 0 11 OB 

Punctuation keys 
41 29 [ 26 lA :51 33 
12 OC ] 27 IB :52 34 
13 OD 39 27 / 53 35 

\ 43 2B 40 28 space :57 39 
Control keys 

Esc 01 01 Caps Lock 58 3A Right Shift 54 36 
Backspace 14 OE Enter 28 lC Ctrl 29 ID 
Tab 15 OF Left Shift 42 2A Alt 56 38 

Function keys 
Fl 59 3B F5 63 3F F9 67 43 
F2 60 3C F6 64 40 FlO 68 44 
F3 61 3D F7 65 41 Fll 133 85 
F4 62 3E F8 66 42 F12 134 86 

Numeric keypad and other keys 
VEnd 79 4F 6/~ 77 4D Dell. 83 53 
2/"- 80 50 7/Home 71 47 Num Lock 69 45 
3/Pg Dn 81 51 8/t 72 48 74 4A 
41~ 75 4B 9/Pg Up 73 49 + 78 4E 
5 76 4C o/Ins 82 52 
Print Screen 55 37 Scroll Lock 70 46 



Section 12.5 Keyboard Services 449 

number. The following seven functions are provided by DOS for interacting 
with the keyboard-reading a character or getting the status of the keyboard 
buffer. 

Function 01H - Keyboard input with echo 

Input: AH = 01H 
Returns: AL = ASCII code of the key entered 

This function can be used to read a character from the keyboard buffer. If 
the keyboard buffer is empty, this function waits until a character is typed. 
The received character i~ echoed to the display screen. If the character is a 
ctrl-break, an interrupt 23H is invoked, which aborts the program. 

Function 06H - Direct console 110 
There are two sub-functions associated with this function-keyboard input or 
character display. The DL register is used to specify the desired sub-function. 

Sub-function - Keyboard Input 

Inputs: AH = 06H 
DL = FFH 

Returns: ZF = 0 if a character is available 
In this case, the ASCII code of the key 
entered is placed in the AL register. 

ZF = 1 if no character is available 

If a character is available, the zero flag (ZF) is cleared (Le., ZF = 0) and the 
character is returned in the AL register. If no character is available, this function 
does not wait for a character to be typed. Instead, control is returned immedi
ately to the program and the zero flag is set (Le., ZF = 1). The input character 
is not echoed. No ctrl-break check is done by this function. 

Sub-function - Character Display 

Inputs: AH = 06H 
DL = character to be displayed 

(it should not be FFH) 
Returns: nothing 

The character in the DL register is displayed on the screen. 

Function 07H - Keyboard input without echo or ctrl-break check 



450 Chapter 12 Intenupts and Input/Output 
---------------------------------------------------

Input: AH 
Returns: AL 

07H 
ASCII code of the key entered 

This function waits for a character from the keyboard and returns it in AL as 
described in function 01H. The difference between this function and function 
01H is that this function does not echo the character, and no ctrl-break 
service is provided. This function is usually used to read the second byte of an 
extended-keyboard character (see Section 12.5.3). 

Function 08H -- Keyboard input without echo 

Input: AH 08H 
Returns: AL ASCII code of the key entered 

This function provides similar services as function 07H except that it performs 
a ctrl-break check. As a result, this function is nomlally used to read a 
character from the keyboard when echoing is not nee:ded. 

Function OAH -- Buffered keyboard input 

Inputs: AH OAH 
DS:DX pointer to the input buffer 

(First byte of the input buffer 
should have the buffer size.) 

Returns: character string in the input buffer 

This function can be used to input a character string (terminated by carriage 
return) into a buffer within the calling program. Before calling this function, 
DS:DX should be loaded with a pointer to the input buffer and the first byte 
of this buffer must contain a nonzero value representing the string length to be 
read including the carriage return. 

The input character string is placed in the buffer starting at the third byte 
of the buffer. Characters are read until either the Enter key is pressed or the 
buffer is filled to one less than its length. When the Enter key is pressed to 
terminate the input, ODH is stored in the buffer and the number of characters in 
the buffer (excluding the carriage return character) is place:d in the second byte 
of the input buffer. 

When the input buffer is filled to one less than its length before encountering 
the Enter key, all keys except Enter and Backspace keys are rejected, and this 
is indicated by a beep. 



Section 12.5 Keyboard Services 

o 234 5 6 1-1 1+1 

I I I I 
'~--------------~v~------------~/ 

Input buffer for character string 

I maximum number of characters (given as input) 
m indicates the actual number of characters in the input buffer 

excluding the carriage return (returned by the function) 

Function OBH - Check keyboard buffer 

Input: AH = OBH 
Returns: AL = OOH - if the keyboard buffer is empty 

AL = FFH - if the keyboard buffer is not empty 

451 

This function can be used to check the status of the keyboard buffer. It returns 
OOH in AL if the keyboard buffer is empty, and returns FFH in AL if the buffer 
has at least one character. A ctrl-break check is done by this function. The 
keyboard buffer is not modified in any way. 

Function OCH - Clear keyboard buffer 

Inputs: AH = OCH 
AL = 01H, 06H, 07H, 08H, or OAH 

Returns: Depends on the AL contents (see below) 

This function can be used to clear the keyboard buffer to discard any type
ahead input entered by the user. If AL is 01H, 06H, 07H, 08H, or OAH, then 
an appropriate DOS function is performed following the buffer flush. If AL 
contains any other value, nothing is done after clearing the buffer. 

12.5.3 Extended Keyboard Keys 

The IBM PC keyboard has several keys that are not the ASCII characters. These 
keys include the function keys, cursor arrows, Home, End, etc. These keys are 
called extended keys. When an extended key is pressed, the first byte placed 
in the keyboard buffer is OOH and the second byte is the keyboard scan code 
for the key. Table 12.1 lists the keyboard scan codes for the extended keys. In 
contrast, when an ASCII key is pressed, the first byte in the keyboard buffer 
(which is 30 bytes long to store 15 type-ahead keys with two bytes for each 
key) is ASCII code for the key, and the second byte is the scan code of the key. 



452 Chapter 12 IntemJ.pts and Input/Output 

To read a character from the keyboard using DOS functions, extended keys 
require two function calls, as shown in the following procedure. 

Read the next character code into AL using function 08H 
if(AL i- 0) 
then 

AL = ASCII code (ASCII character) 
else {extended key} 

read the scan code of the extended key into AL using 
function 07H 

AL = scan code (extended key character) 
end if 

Example 12.1 

In this example, we look at the GetStr procedure that we used to read a 
string from the keyboard. The GetStr is a macro (see the: io . mac file listing) 
that can receive up to two parameters: a pointer to a buffer to store the input 
string, and an optional buffer length value. The macro, after checking the 
parameters, places the buffer pointer in AX and the buf£er length in ex and 
calls the procedure proc_GetStr. This procedure actually reads a string from 
the keyboard using the buffered keyboard input function OAH. The pseudocode 
for the procedure is as follows. 

proc_GetStr 0 
save registers used in the procedure 
if(CX < 2) 
then 

else 
CX:=2 

if(CX> 81) 
then 

CX:= 81 
end if 

end if 
use function OAH to read input string into 

temporary buffer str_buffer 
copy input string from str_buffer to 

user buffer and append NULL 



Section 12.5 Keyboard Seroices 

restore registers 
return 

end proc_GetStr 

The DOScall macro is defined as follows: 

DOScall MACRO function_number 
mov AH,function_number 
int 21H 
ENDM 

Program 12.38 Procedure to read a string from the keyboard 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 

._-----------------------------------------------------------, 
Get string (of maximum length 80) from keyboard. 

AX <-- pointer to a buffer to store the input string 
CX <-- buffer size = string length + 1 for NULL 

If CX < 2, CX:= 2 is used to read at least one character. 
If CX > 81, CX := 81 is used to read at most 80 characters. 

._-----------------------------------------------------------, 
8: proc_GetStr 
9: push 

10: push 
11: push 
12: push 
13: mov 
14: mov 
15: mov 
16: ; check 
17: cmp 
18: jl 
19: 
20: 

cmp 
jle 

21: mov 
22: jmp 
23: set_CX_2: 
24: mov 
25: read_str: 

PROC 
DX 
SI 
Dr 
ES 
DX,DS 
ES,DX 
DI,AX 

CX bounds 
CX,2 
set_CX_ 2 
CX,81 
read_str 
CX,81 

; save registers 

set up ES to point to DS 
for string instruction use 

DI := buffer pointer 

SHORT read_str 

CX,2 

26: ; use temporary buffer str_buffer to read the string 
27: in using function OAH of int 21H 
28: mov DX,OFFSET str_buffer 
29: mov SI,DX 
30: mov [SI] ,CL ; first byte # of chars. to read 

453 



454 Chapter 12 Interrupts and Input/Output 
---------------------------------------------------

31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 

DOScall 
inc 
mov 
inc 
cld 
rep 
mov 
pop 
pop 
pop 
pop 
ret 

proc_GetStr ENDP 

OAH 
S1 
CL, [S1] 
S1 

movsb 

second byte = # of chars.. read 
CX := # of bytes to copy 
S1 = lnput string first char. 
forward direction for copy 

BYTE PTR [D!], 0 ; append NULL character 
ES ; restore registers 
DI 
S1 
DX 

12.5.4 BIOS Keyboard Services 

BIOS provides keyboard service routines under int 16H. Here we describe 
three common routines that are useful in accessing the keyboard. As with 
the DOS functions, the AH register should contain the function code before 
executing an interrupt of type 16H. One difference between DOS and BIOS 
functions is that if you use DOS services, the keyboard input can be redirected. 

Function 008 -- Read a character from the keyboard 

Input: AH OOH 
Returns: if AL =1= 0 then 

AL ASCII code of the key entere:d 
AH Scan code of the key entered 

if AL 0 
AH Scan code of the extended key entered 

This BIOS function can be used to read a character from the keyboard. If 
the keyboard buffer is empty, it waits for a character to be entered. As with 
the DOS keyboard function, the value returned in AL d,etermines if the key 
represents an ASCII character or an extended key character. In both cases, 
the scan code is placed in the AH register and the ASCIl[ and scan codes are 
removed from the keyboard buffer. 

A Problem 

You can see from the ASCII table in Appendix E that OOH represents NULL in 
ASCII. Note that returning the NULL key ASCII code (OOH) is interpreted as 



Section 12.5 Keyboard Services 455 

reading an extended key. Then how will you recognize the NULL key? This 
is a special case and the only ASCII key that is returned as an extended key 
character. Thus, if AL = 0 and AH = 3 (the scan code for the (0 key), then the 
contents of AL should be treated as the ASCII code for the NULL key. 

Here is a simple routine to read a character from the keyboard, which is a 
modified version of the routine given on page 452. 

Read the next character code using function OOH of int 16H 
if(AL =I- 0) 
then 

AL = ASCII code of the key entered 
else {AL = 0 which implies extended key with one exception} 

if (AH = 3) 
then 

AL = ASCII code of NULL 
else 

AH = scan code of an extended key 
end if 

end if 

Function 01H - Check keyboard buffer 

Input: 
Returns: 

AH = 01H 
ZP = 1 if the keyboard buffer is empty. 
ZP = 0 if there is at least one character available. 

In this case, the ASCII and scan codes are 
placed in the AL and AH registers as in 
function OOH. The codes, however, are not 
removed from the keyboard buffer. 

This function can be used to take a peek at the next character without actually 
removing it from the buffer. It provides similar functionality as the DOS func
tion OBH (see page 451). Unlike the DOS function, the zero flag (ZP) is used to 
indicate whether or not the keyboard buffer is empty. If a character is available 
in the buffer, its ASCII and scan codes are copied to the AL and AH registers 
as if we performed the function OOH. One major difference is that it does not 
actually remove the key codes from the keyboard buffer. Thus, it allows you to 
look ahead the next character without actually reading it from the buffer. 

Function 02H - Check keyboard status 



456 Chapter 12 Interru/Jts and Input/Output 
---------------------------------------------------

Table 12.2 Bit assignment for shift and toggle keys 

Bit number 
o 
1 
2 
3 
4 
5 
6 
7 

Key assignment 
Right shift key dlepressed 
Left shift key depresse:d 
Control key depressed 
Al t key depressed 
Scroll lock switch is on 
Number lock switch is on 
Caps lock switch is on 
Ins lock switch is on 

Input: AH 02H 
Returns: AL status of the shift and toggle keys 

The bit assignment is shown in Table 12.2. In this table, a bit with a value of 1 
indicates the presence of the condition. 

This function can be used to test the status of the four shift keys (Right shift, 
Left shift, Ctrl, Alt) and four toggle switches (Scroll lock, Number lock, Caps 
lock, and Ins). 

Example 12.2 

In this example, we write a program that reads a character string from the 
keyboard and displays the input string along with its length. The string input is 
terminated either by pressing both the shift keys simultaneously, or by entering 
80 characters, whichever occurs first. This is a strange tt:rmination condition 
(requiring the depression of both shift keys), but it is useful to illustrate the 
flexibility of the BIOS keyboard functions. 

As the main procedure is straightforward to understand, we focus on the 
mechanics of the read_string procedure. On first attempt, we might write 
this procedure as: 

read_string 0 
get maximum string length str _len and 

string pointer from the stack 
repeat 

read keyboard status (use int 16H function 2) 
if (both shift keys depressed) 



Section 12.5 Keyboard Seroices 

then 
goto end_read 

else 
read keyboard key (use int 16H function 0) 
copy the character into the string buffer 
increment buffer pointer 
display the character on the screen 

end if 
(string length = str _len) 

end_read: 
append NULL character to string input 
find and return the string length 
return 

end read_string 

4S7 

Unfortunately, this procedure will not work properly. In most cases, the 
only way to terminate the string input is by actually entering 80 characters. 
Pressing both shift keys will not terminate the string input unless a key is 
entered while holding both shift keys down. Why? The problem with the 
above code is that the repeat loop briefly checks the keyboard status (takes 
only a few microseconds). It then waits for you to type a key. When you enter 
a key, it reads the ASCII code of the key and initiates another repeat loop 
iteration. Thus, every time you enter a key, the program checks the status of the 
two shift keys within a few microseconds after a key has been typed. Therefore, 
read_string will almost never detect the condition that both shift keys are 
depressed (with the exception noted before). 

To correct this problem, we have to modify the procedure as follows: 

read_string 0 
get maximum string length str _len and 

string pointer from the stack 
read_loop: 

repeat 
read keyboard status (use int 16H function 2) 
if (both shift keys depressed) 
then 

else 
goto end_read 

check keyboard buffer status (use int 16H function 1) 
if (a key is available) 
then 



458 Chapter 12 Interrupts and Input/Output 

read keyboard key (use int 16H function 0) 
copy the character into the string buffer 
increment buffer pointer 
display the character on screen 

end if 
end if 

(string length = str _len) 
end_read: 

append NULL character to string input 
find and return the string length 
return 

end read_string 

With the modification, the procedure's repeat loop spends most of the time 
performing the following two actions: 

1. read keyboard status (using int 16H function 2) 
2. check if a key has been pressed (using int 16H function 1) 

Since function 1 does not wait for a key to be entered, the procedure prop
erly detects the string termination condition (Le., depression of both shift keys 
simultaneously). 

Program 12.39 funnystr. asm demonstrates the use of BIOS functions to read a string from 
the keyboard 

1: COMMENT A string read program FUNNYSTR.ASM 
2: Objective: To demonstrate the use of BIOS keyboard 
3: functions 0, 1, and 2. 
4: Input: Prompts for a string 
5: Output: Displays the input string and its length 
6: 
7: STR_LENGTH EQU 81 
8: .MODEL SMALL 
9: . STACK 100H 

10: . DATA 
11: 
12: 
13: 
14: 
15: 
16: 

string 
prompt_msg 
string_msg 
length_msg 
end_msg 

DB 
DB 
DB 
DB 
DB 

STR_LENGTH DUP (?) 

'Please enter a string 
'The string entered is 
' with a length of ' ,0 , characters. ' ,0 

« 81 chars): ' ,0 
' ,0 



Section 12.5 Keyboard Services 

17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 

. CODE 
INCLUDE 
main 

main 

io.mac 
PRoC 
. STARTUP 
PutStr 
mov 
push 
mov 
push 
call 
nwln 
PutStr 
PutStr 
PutStr 
Putlnt 
PutStr 
nwln 
. EXIT 
ENDP 

prompt_msg 
AX,STR_LENGTH-1 
AX 
AX,oFFSET string 
AX 

string_msg 
string 
length_msg 
AX 

push max. string length 

and string pointer parameters 
to call read_string procedure 

36: j-----------------------------------------------------------
37: String read procedure using BIDS int 16H. Receives string 
38: j pointer and the length via the stack. Length of the string 
39: j is returned in AX. 
40: j-----------------------------------------------------------
41 : 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 

read_string 
push 
mov 
push 
push 
mov 
mov 

read_loop: 
mov 
int 
and 
cmp 
jz 
mov 
int 
jnz 
jmp 

read_key: 
mov 
int 

PROC 
BP 
BP,SP 
BX 
CX 
CX, [BP+6] 
BX, [BP+4] 

AH,2 
16H 
AL,3 
AL,3 
end_read 
AH,1 
16H 
read_key 
read_loop 

AH,O 
16H 

CX := length 
BX := string pointer 

read keyboard status 
status returned in AL 
mask off most significant 6 bits 
if equal both shift keys depressed 

otherwise, see if a key has been 
struck 
if so, read the key 

read the next key from keyboard 
key returned in AL 

459 



460 

61: mov 
62: inc 
63: PutCh 
64: loop 
65: end_read: 
66: mov 
67: sub 
68: mov 
69: pop 
70: pop 
71: pop 
72: ret 
73: read_string 
74: END 

[BX] ,AL 
BX 
AL 
read_loop 

Chapter 12 Interrupts and Input/Output 

copy to buffer and increment 
buffer pointer 

display the character 

; append NULL BYTE PTR[BX],O 
BX, [BP+4] 
AX,BX 

find the input string length 
; return string length in AX 

CX 
BX 
BP 
4 
ENDP 
main 

12.6 Text Output to Display Screen 

DOS provides three functions to display characters on the screen. BIOS pro
vides many more services to interact with the screen. Here we discuss three 
DOS functions to display text on the screen. Two of these functions display a 
single character, while the third function displays a string of characters termi
nated by $. 

Function 02H - Display a character on the screen 

Inputs: AH = 02H 
DL = ASCII code of the character to be displayed 

Returns: Nothing 

This service displays the character in DL on the screen at the current cursor 
position and advances the cursor. Special ASCII characters such as Backspace 
(08H), Carriage return (ODH), Line feed (OAH), Bell (07H), etc. are recognized 
as control characters and properly processed. A pending ctrl-break will be 
processed after the character is displayed. 

Function 06H - Direct console 110 
This function, discussed on page 449, provides both keyboard input and display 
output services. A character code other than FFH in DL will cause the character 
in DL to be displayed. 

Function 098 - Display a string of characters 



Section 12.7 Printer Support 461 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 

Inputs: AH 
DS:DX 

09H 
pointer to a character string to be displayed. 
The string should be terminated by $. 

This function is useful in displaying a $ terminated character string. The dol
lar sign is used to indicate the end of the string and is not displayed. As a 
consequence, this function cannot be used to display a string containing $. 

Example 12.3 

The nwln macro defined in io . mac can be used to send a carriage return (CR) 
and line feed (LF) pair to the screen. The macro simply calls the proc_nwln 
procedure, which uses DOS function 2 to display CR and LF. The code for this 
procedure is shown in Program 12.40. 

Program 12.40 Procedure to send a newline (CR and LF) to the screen 
e __________________________________________________________ _ 

, 
; Sends CR and LF to the screen. Uses display function 2 
e __________________________________________________________ _ 

, 
proc_nwln PROC 

push DX 
mov DL,ODH carraige return 
DOScall 2 
mov DL,OAH line feed 

DOScall 2 
pop DX 
ret 

proc_nwln ENDP 

12.7 Printer Support 

DOS supports three parallel printers (LPT1, LPT2, and LPT3). It also supports 
four serial devices (COM1, COM2, COM3, and COM4) which can include 
serial printers. Programming a parallel printer is easier than programming a 
serial printer. Serial printers require specification of the serial communication 
characteristics such as the baud rate, parity, stop bits, etc. 

Parallel printers require that the data be transmitted in parallel (Le., 8 bits 
wide). In contrast, serial printers receive data in bit-serial fashion much like a 



462 Chapter 12 Interrupts and Input/Output 
---------------------------------------------------

modem. Parallel printers should be located close to the source of data (typically 
less than 6 feet). Serial printers, on the other hand, can be located farther away 
(up to about 50 feet). 

In this section, our discussion is limited to parallC!l printers. Both DOS and 
BIOS support parallel printers. We start our discussion with the DOS functions. 

12.7.1 DOS Printer Services 

DOS provides two functions to print a character on the standard printer (LPTl). 

Function 05H -- Print a character 

Inputs: AH = 05H 
DL = ASCII code of the character to be printed 

Returns: Nothing 

The character to be printed should be placed in DL before invoking the DOS 
function 05H. This function waits until the printer accepts the character. You can 
use ctrl-break to terminate the waiting. Most printers maintain an internal 
buffer (usually with a capacity to store 80 characters) to store the characters 
received for printing. Actual printing is done when either the buffer is full or 
when a carriage return is received. 

The following macro print_char can be used to print a character on the 
default printer. 

print_char MACRO char 
push AX , , save registers used 
push OX in the macro 
mov AH,05H , , select pri.nt flIDction 
mov OL,char , , char. to be printed 
int 21H 
pop OX , , restore registers 
pop AX 
ENOM 

12.7.2 BIOS Printer Support 

BIOS printer services are provided by interrupt 17H. Therle are three functions. 
The value in the AH register is used to select a function. 

Function OOH -- Print a character 



Section 12.7 Printer Support 

Inputs: AH o 
AL 
DX 

Returns: AH 

ASCII code of the character to be printed 
printer number 
(0 = LPTl, 1 = LPT2, 2 = LPT3) 
printer status byte as shown below. 

Bit Meaning 
o Printer time-out if the bit is 1 
1 Reserved 
2 Reserved 
3 Printer 110 error if the bit is 1 
4 Printer select 

o - Printer offline 
1 - Printer online 

5 Printer out of paper if the bit is 1 
6 Acknowledge if the bit is 1 
7 Printer ready 

o - Printer busy 
1 - Printer not busy 

463 

Bit 0 is used to indicate that BIOS received no response from the printer 
adaptor. For successful operation, bit 3 should be o. Bit 7 indicates whether 
the printer is ready to receive a character (when not busy) or not (when busy). 

Function 01H - Initialize printer 

Inputs: AH 1 
DX printer number 

(0 = LPTl, 1 = LPT2, 2 = LPT3) 
Returns: AH printer status byte as shown in function OOH. 

This function can be used to reset the selected printer to the power-up status. 

Function 02H - Get printer status 

Inputs: AH 2 
DX printer number 

(0 = LPTl, 1 = LPT2, 2 = LPT3) 
Returns: AH printer status byte as shown in function OOH. 

This function can be used to read the status of the selected printer. For example, 
before sending a character, the printer status can be read to ensure that the printer 
is online, not out of paper, and ready to receive a character. 



464 Chapter 12 Interropts and Input/Output 

12.8 Exceptions 

Exceptions are classified into faults, traps, and aborts depending on the way 
they are reported and whether or not the instruction that is interrupted is restarted. 
Faults and traps are reported at instruction boundaries. Faults use the boundary 
before the instruction during which the exception was detected. When a fault 
occurs, the system state is restored to the state before the current instruction so 
that the instruction can be restarted. The divide error, for instance, is a fault 
detected during the di v or idi v instruction. The processor, therefore, restores 
the state to correspond to the one before the divide instruction that caused the 
fault. Further, the instruction pointer is adjusted to point to the divide instruc
tion so that, after returning from the exception handler, the divide instruction 
is restarted. Another example of a fault is the segment-not-present fault. This 
exception is caused by a reference to data in a segment that is not in memory. 
Then, the exception handler must load the missing segment from a hard disk 
and resume program execution starting with the instruction that caused the ex
ception. In this example, it clearly makes sense to restalt the instruction that 
caused the exception. 

Traps, on the other hand, are reported at the instruction boundary immedi
ately following the instruction during which the exception was detected. For 
instance, overflow exception (interrupt 4) is a trap. Therefore, no instruction 
restart is supported. User-defined interrupts are also examples of traps. 

Aborts are exceptions that report severe errors. Examples include hardware 
errors and inconsistent values in system tables. 

There are several interrupts predefined by Pentium. These are called dedi
cated interrupts. These include the first five interrupts: 

Interrupt type 
o 
1 
2 
3 
4 

Purpose 
Divide error 
Single-step 
Nonmaskable interrupt (NMI) 
Breakpoint 
Overflow 

The NMI is clearly a hardware interrupt that will be discussed in Section 12.9. 
A brief description of the remaining four interrupts is given here. 

Divide Error Interrupt 
The CPU generates an interrupt of type 0 whenever executing a divide instruction
either di v (divide) or idi v (integer divide )-results in a quotient that is larger 



Section 12.8 Exceptions 465 

than the destination specified. The default ISR displays a divide overflow mes
sage and terminates the program. 

Single-Step Interrupt 
Single stepping is a useful debugging tool to observe the behavior of a program 
instruction by instruction. To start single stepping, the trap flag (TF) bit in the 
flags register should be set (i.e., TF = 1). When TF is set, the CPU automatically 
generates a type 1 interrupt after executing each instruction. Some exceptions 
do exist, but we will not bother about them here. 

The ISR for a type 1 interrupt can be used to display relevant information 
about the state of the program. For example, the contents of all registers could 
be displayed. Shortly, we will present an example program that initiates and 
stops single stepping (see the example on page 466). 

To end single stepping, TF should be cleared. The CPU, however, does not 
have any instructions to manipulate the TF directly. Instead, we have to resort 
to an indirect means. This is illustrated in the example on page 466. 

Breakpoint Interrupt 
If you have used a debugger (which you should have by now) such as the 
Turbo Debugger, you already know the usefulness of inserting breakpoints 
while debugging a program. A type 3 interrupt is dedicated to the breakpoint 
interrupt. This type of interrupt can be generated by using the special single
byte form of int 3 (opcode CCH). Using the int 3 instruction automatically 
causes the assembler to encode the instruction into the single-byte version. Note 
that the standard encoding for the int instruction is two bytes long. 

Inserting a breakpoint in a program involves replacing the program code 
byte by CCH while saving the program byte for later restoration to remove 
the breakpoint. The standard 2-byte version of int 3 can cause problems in 
certain situations, as there are instructions that require only a single byte to 
encode. 

Overftow Interrupt 
A type 4 interrupt is dedicated to handling overflow conditions. There are two 
ways by which a type 4 interrupt can be generated-either by int 4 or by 
into. Like the breakpoint interrupt, into requires only one byte to encode, as 
it does not require the specification of the interrupt type number as a part of the 
instruction. Unlike int 4, which unconditionally generates a type 4 interrupt, 
into generates a type 4 interrupt only if the overflow flag is set. We do not 
normally use into, as the overflow condition is usually detected and processed 
by using the conditional jump instructions j 0 and j no. 



466 Chapter 12 Interrupts and Input/Output 

Example 12.4 

As an example of an exception, we write an ISR to single step a piece of code 
(let us call it single-step code). During single stepping, we display the contents 
of the AX and BX registers after the execution of each instruction of the single
step code. The objectives in writing this program are to demonstrate how ISRs 
can be defined and installed and to show how TF can be manipulated. 

To put the CPU in the single-step mode, we have to set the TF. Since there 
are no instructions to manipulate TF directly, we have to use an indirect means: 
first use pushf to push flags onto the stack; then manipulate the TF bit; and 
finally, use popf to restore the modified flags word from the stack to the flags 
register. The code on lines 42-46 of Program 12.41 essentially performs this 
manipulation to set TF. The TF bit can be set by 

or AX,100H 

Of course, we can also manipulate this bit directly on the :stack itself. To clear 
the TF bit, we follow the same procedure and instead of o:ring, we use 

and AX,OFEFFH 

We use two services of int 21H to get and set interrupt vectors. 

Function 3SH - Get interrupt vector 

Inputs: AH = 35H 
AL = interrupt type number 

Returns: ES:BX = address of the specified ISR 

Function 2SH - Set interrupt vector 

Inputs: 

Returns: Nothing 

AH = 25H 
AL = interrupt type number 

DS:DX = address of the ISR 

The remainder of the code is straightforward: 
Lines 27-30: We use function 35H of DOS interrupt (int 21h) to get the 
current vector value of int 1. This vector value is restor(:d before exiting the 
program. 
Lines 33-39: The vector of our ISR is installed by using function 25H of 
int 21h. 



Section 12.8 Exceptions 467 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 

Lines 62-68: The original int 1 vector is restored using function 25h of 
int 21h. 

A Note 
It is not necessary to restore the old vector before we exit the program. DOS 
does this for us. DOS stores the old values in the PSP area and restores them as 
a part of a function 4CH call. Thus, it is not necessary to read and store the old 
interrupt vector value in our program. However, DOS does not restore interrupt 
vectors for all interrupts. As an example, it does not restore the original vector 
for int 09H. Thus, it is good practice to save and restore interrupt vectors 
within your program. We will follow this practice for all the examples. 

Program 12.41 An example to illustrate the installation of a user-defined ISR 

TITLE Single-step program 
COMMENT I 

STEPINTR.ASM 

Objective: To demonstrate how ISRs can be defined 
and installed. 

Input: None 
Output: Displays AX and BX values for 

the single-step code 

.MODEL SMALL 

.STACK 100H 

. DATA 
old_offset DW ? ; for old ISR offset 
old_seg 
start_msg 
AXequ 
BXequ 

. CODE 

DW ? and segment values 
DB 'Starts single stepping process. ',0 
DB 'AX = ',0 
DB 'BX = ',0 

INCLUDE io.mac 

21: main PROC 
22: 
23: 
24: 
25: 
26: 
27: 
28: 

. STARTUP 
PutStr start_msg 
nwln 

; get current interrupt vector for int lH 
mov AX,3501H AH := 35H and AL := 01H 
int 21H ; returns the offset in BX 



468 Chapter 12 Interrupts and Input/Output 
-----------------------------------------------------

29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51 : 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71 : main 

mov 
mov 

old_offset,BX 
old_seg,ES 

and the segment in ES 

;set up interrupt vector to our ISR 
push OS OS is used by function 25H 
mov 
mov 
mov 
mov 
int 
pop 

AX,es 
OS,AX 
OX, OFFSET 
AX,2501H 
21H 
OS 

; copy current segment to OS 

sstep_ISR ; ISR offset in OX 
AH := 25H and AL := 1H 

restore OS 

; set trap flag to start single stepping 
pushf 
pop 
or 
push 
popf 

AX 
AX,100H 
AX 

copy flags into AX 
set trap flag bit (TF = 1) 
copy modified flag bits 

back to flags register 

; from now on int 1 is generated after executing 
each instruction. Some test instructions follow. 

mov 
mov 
add 

; clear 
pushf 
pop 
and 
push 
popf 

AX,100 
BX,20 
AX,BX 

trap flag to end single stepping 

AX 
AX,OFEFFH 
AX 

copy flags into AX 
clear trap flag bit (TF = 0) 
copy modified flag bits 

back to flags register 

; restore the original ISR 
mov OX, old_offset 
push OS 
mov AX,old_seg 
mov OS,AX 
mov AX,2501H 
int 21H 
pop OS 

. EXIT 
ENOP 

72: ;-----------------------------------------------------------



Section 12.9 Hardware Interrupts 469 

73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 

;Single-step interrupt service routine replaces int alB. 
e __________________________________________________________ _ 

, 
sstep_ISR PROC 

sti 
PutStr AXequ 
Putlnt AX 
PutStr BXequ 
Putlnt BX 
nwln 

enable interrupt 
display AX contents 

display BX contents 

82: iret 
83: sstep_ISR ENDP 
84: END main 

12.9 Hardware Interrupts 

We have seen how interrupts can be caused by the software instruction into 
Since these instructions are placed in a program, such software interrupts are 
called synchronous events. Hardware interrupts, on the other hand, are of 
hardware origin and asynchronous in nature. These interrupts are typically 
used by peripheral or 110 devices such as a keyboard to alert the CPU that they 
require its attention. 

Hardware interrupts can be further divided into either maskable or non
maskable interrupts (see Figure 12.1). A nonmaskable interrupt (NMI) can 
be triggered by applying an electrical signal on the NMI pin of Pentium. This 
interrupt is called nonmaskable because the CPU always responds to this signal. 
In other words, this interrupt cannot be disabled under program control. The 
NMI causes a type 2 interrupt. 

Most hardware interrupts are of maskable type. To cause this type of in
terrupt, an electrical signal should be applied to the INTR (INTerrupt Request) 
input of Pentium. Pentium recognizes the INTR interrupt only if the interrupt 
enable flag (IF) bit of the flags register is set to 1. Thus, these interrupts can be 
masked or disabled by clearing the IF bit. Note that we can use sti and eli 
to set and clear this bit in the flags register, respectively. 

How Does the CPU Know the Interrupt Type? 

Recall that every interrupt should be identified by its type (a number between 0 
and 255), which is used as an index into the interrupt vector table to obtain the 
corresponding ISR address. This interrupt invocation procedure is common to 
all interrupts, whether caused by software or hardware. 



470 Chapter 12 Interrupts and Input/Output 

In response to a hardware interrupt request on the INTR pin, the CPU 
initiates an interrupt acknowledge sequence. As a part of this sequence, the 
CPU sends out an interrupt acknowledge (INTA) signal, and the interrupting 
device is expected to place the interrupt type number OIl the data bus. This 
number is used to identify the interrupt type. 

How Can More Than One Device Interrupt? 

From the above description, it is clear that all interrupt requests from external 
devices should be input via the INTR pin of Pentium. While: it is straightforward 
to connect a single device, computers typically have more than one I/O device 
requesting interrupt service. For example, the keyboard, hard disk, floppy disk, 
and printer all generate interrupts when they require the attention of the CPU. 

When more than one device interrupts, we have to have a mechanism to 
prioritize these interrupts (if they come simultaneously) and forward only one 
interrupt request at a time to the CPU while keeping the other interrupt requests 
pending for their tum. This mechanism can be implemente:d by using a special 
chip-the Intel 8259 Programmable Interrupt Controller. We will defer our 
discussion of this chip until Section 12.11.1. 

12.10 Direct Control of YO Devices 

Figure 12.2 on page 442 shows three ways of interacting with I/O devices by an 
application program. Our emphasis thus far has been on IUsing either DOS or 
BIOS support routines to access I/O devices. When we want to access an I/O 
device for which there is no such support available either from DOS or from 
BIOS, or when we want a nonstandard access, we have to access these devices 
directly-the third method shown in Figure 12.2. 

At this point, it is useful to review the material presented in Chapter 2. As 
described in Chapter 2, Pentium uses a separate I/O address space of 64K. This 
address space can be used for 8-bit, 16-bit, or 32-bit I/O ports. However, the 
combination cannot be more than the total I/O space. For example, we can have 
64K 8-bit ports, 32K 16-bit ports, 16K 32-bit ports, or a combination of these 
that fits the 64K I/O address space. Devices that transfer data 8 bits at a time 
can use 8-bit ports. These devices are called 8-bit devices. An 8-bit device can 
be located anywhere in the I/O space without any restrictions. On the other 
hand, a 16-bit port should be aligned to an even address so that 16 bits can be 
simultaneously transferred in a single bus cycle. Similarly, 32-bit ports should 
be aligned at addresses that are multiples of four. Pentium, however, supports 



Section 12.10 Direct Control of I/O Devices 471 

unaligned I/O ports, but there is a performance penalty. See Chapter 2 for a 
related discussion. 

12.10.1 Accessing 110 Ports 

To facilitate access to the I/O ports, Pentium provides two types of instructions: 
register I/O instructions and block I/O instructions. Register I/O instructions are 
used to transfer data between a register and an I/O port. Block I/O instructions 
are used for block transfer of data between memory and I/O ports. 

Register 110 Instructions 

Pentium provides two register I/O instructions: in and out. The in instruction 
is used to read data from an I/O port, and the out instruction to write data 
to an I/O port. A port address can be any value in the range 0 to FFFFH. 
The first 256 ports (i.e., ports with address in the range 0 to FFH) are directly 
addressable-i.e., address is given as a part of the instruction-by in and out 
instructions. 

Both in/out instructions can be used to read/write 8-, 16-, or 32-bit data. 
Each instruction can take one of two forms, depending on whether a port is 
directly addressable or not. The general formats of the in instruction are: 

in accumulator, port8 - direct addressing format 
in accumulator, DX - indirect addressing format 

The first form uses the direct addressing mode and can only be used to 
access the first 256 ports. In this case, the I/O port address, which is in the 
range 0 to FFH, is given by the port8 operand. In the other form, the I/O port 
address is given indirectly via the DX register. The contents of the DX register 
are treated as the port address. 

In either form, the first operand accumulator must be AL, AX, or EAX. 
This choice determines whether a byte, word, or doubleword is read from the 
specified port. 

The corresponding forms for the out instruction are 

out port8 , accumulator - direct addressing format 
out DX, accumulator - indirect addressing format 

Notice the placement of the port address. In the in instruction, it is the source 
operand and in the out instruction, it is the destination operand signifying the 
direction of data movement. 



472 Chapter 12 Interrupts and Input/Output 

Block I/O Instructions 

Pentium supports two block 110 instructions: ins and outs. These instruc
tions can be used to move blocks of data between 110 ports and memory. These 
110 instructions are, in some sense, similar to the string instructions discussed 
in Chapter 9. For this reason, block 110 instructions are also called string 110 in
structions. Like the string instructions, ins and outs do not take any operands. 
Also, we can use the repeat prefix rep as in the string instructions. 

For the ins instruction, the port address should be pllaced in DX and the 
memory address should be pointed to by ES:(E)DI. The address size determines 
whether the DI or EDI register is used (see Chapter 2 for details). Block 110 
instructions do not allow direct addressing format for the 110 port specification. 

For the out s instruction, the memory address should be pointed by DS: (E)SI, 
and the 110 port should be specified in DX. You can see the similarity between 
the block 110 instructions and the string instructions. 

You can use the rep prefix with ins and outs instructions. However, you 
cannot use the other two prefixes-repe and repnei-with the block 110 in
structions. The semantics of rep are the same as those in the string instructions. 
The directions flag (DF) determines whether the index register in the block 110 
instruction is decremented (DF is 1) or incremented (DF is 0). The increment 
or decrement value depends on the size of the data unit transferred. For byte 
transfers the index register is updated by 1. For word and doubleword transfers, 
the corresponding values are 2 and 4, respectively. The size of the data unit 
involved in the transfers can be specified as in the string instructions. Use insb 
and outsb for byte transfers, insw and outsw for word transfers, and insd 
and outsd for doubleword transfers. 

12.11 Peripheral Support Chips 

Recall from Chapter 2 that 110 devices are not interfaced directly to the CPU. 
Rather, each device has a device or peripheral controller 1that acts as an inter
mediary between the device and the CPU, as shown in Figure 12.4 

In this section, we start our discussion by explaining how multiple devices 
can interrupt the CPU using the Intel 8259 programmable: interrupt controller 
chip. Then, we proceed to describe the Intel 8255 programmable peripheral 
interface chip. 

12.11.1 8259 Programmable Interrupt Controller 

To accommodate more than one interrupting device in the system, your PC 
uses the Intel 8259 programmable interrupt controller (PIC) chip. The 8259 



Section 12.11 Peripheral Support Chips 473 

ADDRESS BUS r.. 

v DATA 

DATA BUS r.. STATUS Vt r.. 
110 DEVICE 

~ V COMMAND v 

CONTROL BUS r.. 

v 
1/0 CONTROLLER 

Figure 12.4 Input/output device interface to the system. 

PIC can service interrupts from up to eight hardware devices. These interrupts 
are received on lines IRQO through IRQ7, as shown in Figure 12.5. 

Internally, 8259 has an 8-bit interrupt command register (lCR) and another 
8-bit interrupt mask register (IMR). The ICR is used to program the 8259, and 
the IMR is used to enable or disable specific interrupt requests IRQO-IRQ7. 
The 8259 can be programmed to assign priorities to IRQO-IRQ7 requests in 
several ways. The BIOS initializes the 8259 to assign fixed priorities-the 
default mode called fully nested mode. In this mode, the incoming interrupt 
requests IRQO through IRQ7 are prioritized with the IRQO receiving the highest 
priority and the IRQ7 receiving the lowest priority. 

Also part of this initialization is the assignment of interrupt type numbers. 
To do this, only the lowest type number should be specified. BIOS uses 08H as 
the lowest interrupt type (for the request coming on the IRQO line). The 8259 
automatically assigns the next seven numbers to the remaining seven IRQ lines 
in increasing order, with IRQ7 generating an interrupt of type OFH. 

All communication between the CPU and the 8259 occurs via the data bus. 
The 8259 PIC is an 8-bit device requiring two ports for ICR and IMR. These 
are mapped to the I/O address space, as shown in Table 12.3. Table 12.4 shows 
the mapping of IRQ input of the 8259 to various devices in the system. 

Note that the CPU recognizes external interrupt requests generated by 8259 
only if the IF flag is set. Thus, by clearing the IF flag, we can mask or disable 
all eight external interrupts as a group. However, to selectively disable external 
interrupts, we have to use the IMR. Each bit in the IMR enables (if the bit is 
0) or disables (if the bit is 1) its associated interrupt. Bit 0 is associated with 
IRQO, bit 1 with IRQ1, and so on. For example, we can use the code 



474 

INTR 

INTA 

CPU 

;t ~ 
\r -V 

8-bit data bus 

Chapter 12 Intem-tpts and Input/Output 

8259 

PIC 

-E---

-E---

-E---

IRQO 

IRQ1 

IRQ2 

IRQ3 

IRQ4 

IRQ5 

IRQ6 

IRQ7 

Figure 12.5 Intel 8259 programmable interrupt controller. 

Table 12.3 8259 port address mapping 

8259 register Port address 
ICR 20H 
IMR 21H 

Table 12.4 Mapping of 110 devices to external interrupt levels 

IRQ # 
o 
1 
2 
3 
4 
5 
6 
7 

Interrupt type 
08H 
09H 
OAH 
OBH 
OCH 
ODH 
OEH 
OFH 

Device 
System timer 
Keyboard 
reserved 
Serial port (COMl) 
Serial port (COM2) 
Hard disk 
Floppy disk 
Printer 



Section 12.11 Peripheral Support Chips 

Table 12.5 8255 port address mapping 

8255 register 
PA (input port) 
PB (output port) 
PC (input port) 
Command register 

mov AL,OFEH 
out 21H,AL 

port address 
60H 
61H 
62H 
63H 

475 

to disable all external interrupts except the system timer interrupt request on 
the IRQO line. 

When several interrupt requests are received by the 8259, it serializes these 
requests according to their priority levels. For example, if a timer interrupt 
(IRQO) and a keyboard interrupt (IRQ1) arrive simultaneously, the 8259 for
wards the timer interrupt to the CPU, as it has a higher priority than the keyboard 
interrupt. Once the timer ISR is completed, the 8259 forwards the keyboard 
interrupt to the CPU for processing. To facilitate this, the 8259 should know 
when an ISR is completed. The end of an ISR execution is signaled to the 8259 
by writing 20H into the ICR. Thus the code fragment 

mov AL,20H 
out 20H.AL 

can be used to indicate end-of-interrupt (EOI) to the 8259 PIC. This code 
fragment appears before the iret instruction of an ISR. 

12.11.2 8255 Programmable Peripheral Interface Chip 

The 8255 programmable peripheral interface (PPI) chip provides three 8-bit 
general-purpose registers that can be used to interface with 110 devices. These 
three registers--called PA, PB, and PC-are mapped to 110 space as shown 
in Table 12.5. The BIOS configures the three ports of the 8255 a shown in 
Table 12.5. Here input and output are from the processor viewpoint. For our 
discussion, we need to know details only about PA and PB ports. These details 
are given in Table 12.6. 

The keyboard interface is provided by port PA, and PB7. The hardware 
within the keyboard scans the keys to check the state of the keys (i.e., depressed 
or released). The keyboard sends an interrupt to 8259 (on the IRQ1 line) 



476 

PA 

PB 

Chapter 12 Interrnpts and Input/Output 

Table 12.6 I/O bit map of ports PA and PB of 8255 

Keyboard scan code if PB7 = 0 
PA 7 = 0 if a key is depressed 
PA 7 = 1 if a key is released 
PAO--PA6 = key scan code 

Configuration switch 1 if PB7 = 1 

PBO 8253 timer 2 gate to speaker 
(1 enables channel 2 timer) 

PB 1 speaker data (1 enables timer clock 
to go to the speaker driver) 

PB2 selects source for port PC bits 0--3 
PB3 cassette motor 
PB4 Enable RAM parity check 
PB5 Disable I/O channel check 
PB7 selects source for PA input 

o - keyboard scan code 
1 - configuration switch 1 
Also, 1 is used as keyboard acknowledge 

whenever there is a change in a key state. Recall that IRQl generates a type 
9 interrupt. The scan code of the key whose state has changed (Le., depressed 
or released) is provided by the keyboard at PA. The keyboard then waits for an 
acknowledge signal to know that the scan code has be:en read by the processor. 
This acknowledgment can be signaled by setting and dearing PB7 momentarily. 
The normal state of PB7 is O. 

The scan code of the key can be read from PA. Bits PAO-PA6 give the scan 
code of the key whose state has changed. PA 7 is used to indicate the current 
state of the key. 

PA 7 = 0 - key is depressed 
PA 7 = 1 - key is released 

For example, if Esc is pressed, PA supplies 01H as 1 iis the scan code for 
the Esc key. When Esc is released, PA supplies 81 H. In the next section, we 
write our own keyboard driver to replace the BIOS int 9 ISR to illustrate the 
keyboard interface. 



Section 12.12 A Hardware Intenupt Example 477 

12.12 A Hardware Interrupt Example 

In this section, we illustrate how a hardware interrupt routine can be written. 
As an example, we write a type 9 interrupt routine to replace the BIOS supplied 
int 09 routine. 

Example 12.5 

Our objective is to write a replacement ISR for int 09H. Recall that a type 9 
interrupt is generated via the IRQ1 line of the 8259 PIC by the keyboard every 
time a key is depressed or released. 

The logic of the main procedure can be described as follows: 

mainO 
save the current int 9 vector 
install our keyboard ISR 
display "ISR installed" message 
repeat 

read_kb_key () 
{this procedure waits until a key is pressed 
and returns the ASCII code of the key in AL} 

if (key =1= Esc key) 
then 

else 

if (key = return key) 
then 

display newline 
else 

display the key 
end if 

goto done {If Esc key, we are done} 
end if 

(FALSE) 
done: 

restore the original int 09H vector 
return to DOS 

end main 

The read_kb_key procedure waits until a value is deposited in the keyboard 
buffer keyboard_data. The pseudocode is: 



478 Chapter 12 Interrupts and Input/Output 

read_kb_keyO 
while (keyboard_data = -1) 
end while 
AL := keyboard_data 
keyboard_data:= -1 
return 

end read_kb_key 

The keyboard ISR kbrd_ISR is invoked whenever a key is pressed or re
leased. The scan code of the key can be read from PAO-PAti, while the key state 
can be read from PA 7. PA 7 is 0 if the key is depressed; PA 7 is 1 if the key is 
released. After reading the key scan code in Program 12.42 (lines 107 and 108), 
the keyboard should be acknowledged. This is done by momentarily setting 
and clearing the PB7 bit (lines 111-116). If the key is the left shift or right shift 
key, bit 0 of keyboard_flag is updated. If it is a normal key, its ASCII code 
is obtained. The code at lines 154 and 155 will send an end-of-interrupt (EOI) 
to the 8259 to indicate that the interrupt service is completc!d. The pseudocode 
of the ISR is given below: 

kbrd_ISRO 
read key scan code from KB_DATA (port 60H) 
set PH7 bit to acknowledge using KB_CTRL (port 61H) 
clear PB7 to reset acknowledge 
process the key 
send end-of-interrupt (EOI) to 8259 
iret 

end kbrd_ISR 

Program 12.42 A keyboard ISR to replace BIOS int 09H keyboard ISR 

1: TITLE Keyboard interrupt service program KEYBOARD.AS~I 

2: COMMENT I 
3: 
4: 
5: 
6: 
7: 
8: 

Objective: To demonstrate how the keyboard works. 
Input: Key strokes from the keyboard. Only lEtft 

and right shift keys are recognized. 
ESC key restores the original keyboard ISR 
and terminates the program. 

Output: Displays the key on the screen. 



Section 12.12 A Hardware Interrupt Example 

ESC_KEY EQU lBH ASCII code for ESC key 
CR EQU ODH ASCII code for carriage return 
KB_DATA EQU 60H 8255 port PA 
KB_CTRL EQU 61H 8255 port PB 
LEFT_SHIFT EQU 2AH left shift scan code 
RIGHT_SHIFT EQU 36H right shift scan code 

9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 

EO! EQU 20H end-of-interrupt byte for 8259 PIC 
PIC_CMD_PORT EQU 20H 8259 PIC command port 

.MODEL SMALL 

.STACK 100H 

. DATA 
install_msg DB 'New keyboard ISR installed.',O 
keyboard_data DB -1 keyboard buffer 
keyboard_flag DB o keyboard shift status 
old_offset DW ? storage for old int 09H vector 
old_segment DW ? 

27: j lowercase scan code to ASCII conversion table. 
28: j ASCII code 0 is used for scan codes we are not interested. 
29: lcase_table DB 01BH,'1234567890-=',08H,09H 
30: DB 'qwertyuiop[]',CR,O 
31: DB 'asdfghjklj',27H,60H,0,'\' 
32 : DB ' zxcvbnm, . /' ,0, , .' ,0,' ',0 
33: DB 0,0,0,0,0,0,0,0,0,0 
34: DB 0,0,0,0,0,0,0,0,0,0 
35: DB 0,0,0,0,0,0,0,0,0,0 
36: j uppercase scan code to ASCII conversion table. 
37: ucase_table DB 01BH,'!~#$y'At.()_+',08H,09H 

38: DB 'QWERTYUIOP{}',ODH,O 
39: 
40: 
41: 
42: 
43: . CODE 

DB ' ASDFGHJKL: ' , , " , , , -, ,0, , I ' 
DB 'ZXCVBNM<>?' ,0, '.' ,0,' , 
DB 0,0,0,0,0,0,0,0,0,0 
DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 

44: INCLUDE io.mac 
45: 
46: main PROC 
47: 
48: 
49: 
50: 
51: 
52: 

. STARTUP 
PutStr install_msg 
nwln 

j save int 09H vector for later restoration 
mov AX, 3509H j AH : = 35H and AL : = 09H 

479 



480 

53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61: 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 
71: 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81: 
82: 
83: 
84: 
85: 
86: 
87: 
88: 
89: 
90: 
91: 
92: 
93: 
94: 
95: 
96: 

repeat: 

newline: 

done: 

main 

int 
mov 
mov 

;set up 
push 
mov 
mov 
mov 
mov 
int 
pop 

call 
cmp 
je 
cmp 
je 
PutCh 
jmp 

nwln 
jmp 

Chapter 12 Interrupts and Input/Output 

21H DOS function 35H returns 
old_offset,BX offset in BX and 
old_segment,ES ; segment in ES 

interrupt vector to our keyboard ISR 
DS DS is used by function 25H 
AX,CS ; copy current segment to DS 
DS,AX 
DX,OFFSET kbrd_ISR ; ISR offset in DX 
AX,2509H AH : = 25H and AL : = O!m 
21H 
DS 

read_kb_key 
AL,ESC_KEY 
done 
AL,CR 
newline 
AL 
repeat 

repeat 

restore DS 

read a key 
if ESC key 
then done 
if carriage return 
then display new line 
else display character 

; restore original keyboard interrupt int 09H vector 
mov DX,old_offset 
push DS 
mov AX,old_segment 
mov DS,AX 
mov AX,2509H 
int 21H 
pop DS 

. EXIT 
ENDP 

e ____________________________________________________ • ______ _ , 
;This procedure waits until a valid key is entered at the 
; keyboard. The ASCII value of the key is returned in AL. 
e ________________________________________________________ . __ _ . 

cmp 
je 
mov 

keyboard_data,-1 ; -1 is an invalid entry 
read_kb_key 
AL,keyboard_data 



Section 12.12 A Hardware Intenupt Example 

97: mov keyboard_data,-l 
98: ret 
99: read_kb_key ENDP 

100: j-----------------------------------------------------------
101: jThis keyboard ISR replaces the original int 09H ISR. 
102: j-----------------------------------------------------------
103: kbrd_ISR PROC 
104: 
105: 
106: 
107: 
108: 
109: 
110: 
111: 
112: 
113: 
114: 
115: 
116: 
117: 
118: 
119: 
120: 
121: 
122: 
123: 
124: 
125: 
126: 
127: 
128: 
129: 
130: 
131: 
132: 
133: 
134: 
135: 
136: 
137: 
138: 
139: 
140: 

sti 
push 
push 

AX 
BX 

enable interrupt 
save registers used by ISR 

in AL,KB_DATA read keyboard scan code and the 
mov BL,AL key status (down or released) 
j send keyboard acknowledge signal by momentarily 

setting and clearing PB7 bit 
in AL,KB_CTRL 
mov AH,AL 
or 
out 
xchg 
out 

mov 
and 
cmp 
je 
cmp 
je 
test 
jnz 
mov 
and 
jnz 
j no 
mov 
jmp 

shift_key_on: 
mov 

get_ASCII: 
dec 
xlat 
cmp 
je 
mov 
jmp 

AL,80H 
KB_CTRL,AL 
AL,AH 
KB_CTRL,AL 

AL,BL 
BL,7FH 
BL,LEFT_SHIFT 
left_shift_key 
BL,RIGHT_SHIFT 
right_shift_key 

set PB7 bit 

clear PB7 bit 

AL := scan code + key status 
isolate scan code 

left or right shift key 
changed status? 

AL,80H j if not, check status bit 
EOI_to_8259 j if key released, do nothing 
AH,keyboard_flag j AH := shift key status 
AH,l j AH = 1 if left/right shift is ON 
shift_key_on 

shift key is pressed 
BX,OFFSET lcase_table 
SHORT get_ASCII 

BX,OFFSET ucase_table 

shift OFF, use lowercase 
conversion table 

shift key ON, use uppercase 
conversion table 

AL index is one less than scan code 

AL,O 
EOI_to_8259 

ASCII code of 0 => uninterested key 

keyboard_data,AL j save ASCII code in keyboard buffer 
SHORT EOI_to_8259 

481 



482 

141: 
142: 
143: 
144: 
145: 
146: 
147: 
148: 
149: 
150: 
151: 
152: 
153: 
154: 
155: 
156: 
157: 

left_shift_key: 
right_shift_key: 

Chapter 12 Interrupts and Input/Output 

test AL,80H test key status bit (O=do.m, l=up) 
jnz shift_off 

shift_on: 
or keyboard_flag, 1 shift bit (i.e., LSB) := 1 
jmp SHORT EOI_to_8259 

shift _off: 
and keyboard_flag,OFEH shift bit (i.e., LSB) := 0 
jmp SHORT EOI_to_8259 

EOI_to_8259: 
mov AL,EOI send EOI to 8259 PIC 
out PIC_CMD_PORT,AL indicating end of ISR 
pop BX restore registers 
pop AX 

158: iret 
159: kbrd_ISR ENDP 
160: END main 

12.13 Performance: Polling Versus Interrupts 

Interrupts provide a convenient mechanism to draw the attention of the CPU 
to process an event. We have seen how hardware interrupts can be used to 
interact with 110 devices. We have shown how a keyboard can use interrupts 
for processing its requests. This type of 110 is called interrupt-driven I/O. 

An alternative to interrupt-driven 110 is the programmed I/O. In programmed 
110, the program repeatedly checks the status of an 110 dlevice (actually, the 
status register of the associated 110 controller) until the desired condition is 
indicated. This process is called polling. Thus, programmed 110 is typically 
characterized by loops. These loops are called polling loops. Polling is used 
for other purposes as well. For instance, in Program 12.39 on page 458, we 
used polling to check the keyboard status using int l6H. 

Interrupt-driven processing is efficient because it eliminates the overhead 
associated with polling loops. Furthermore, polling can only be done at places 
in the program (by explicitly writing code to do the polling) where you can 
anticipate the occurrence of a particular condition. Thus, with polling, we 
cannot handle unexpected events. 

To illustrate the amount of polling overhead, we use our bubble sort example 
from Chapter 1. As written, the program cannot be terminated even by ctrl-



Section 12.13 Performance: Polling Vet:5us Interrnpts 483 

break. This is because a ctrl-break check is done whenever the keyboard or 
display is accessed (either to read a keyboard character or to display a character 
on the screen). However, the bubble sort procedure does not access these 
two devices while performing the sort. The frequency of ctrl-break can be 
increased by adding 

break = on 

to the configuration file (it can also be typed at the terminal). This increases 
the ctrl-break check frequency (for example, by also checking whenever a 
disk is accessed). This additional check is of no use to us. Therefore, once the 
sort operation begins, the sort procedure runs to completion (unless the system 
is reset). 

To cause programmed termination of the bubble sort procedure, we will 
modify the assembly language routine. We will include code 

next_pass: 
mov 
int 

AH,OBH 
21H 

; to process ctrl-break 

after each iteration to read the keyboard buffer status using the DOS function 
OBH. Note that this DOS function performs the ctrl-break check. 

Figure 12.6 shows the performance of the original version and the modified 
version. Both versions are run to completion without premature termination. 
The data shows that the polling overhead decreases with the array size to be 
sorted. For example, the polling overhead, as a percentage of the original sort 
time, decreases from about 38 percent to 17 percent when the array size is 
increased from 2000 elements to 8000 elements, as shown in the following 
table. 

Array size 
2000 
5000 
8000 

Overhead 
38% 
22% 
17% 

The decrease in polling overhead is to be expected, as the time required for 
polling remains constant for each pass, while the execution time of each pass 
increases with the array size. 

The polling overhead is overwhelming if we increase the polling frequency. 
For example, instead of polling once during each pass, if we modify the code to 
do polling each time a swap is performed, the execution time for a 1000-element 
array increases from less than 0.5 seconds to more than 50 seconds! 



484 Chapter 12 Interrupts and Input/Output 

20 ,-------------------------------------

15 
"...., 
til 

"J>e-"'0 
§ 

§.~4; J>e-u 
Q) 
til 

10 . ;s. <f .~'t,CJ '-' 
Q) ~~ o~ 
S ~\.~ .p .;s.0 
'§ ~~ 

til 5 

O~~--_r----~------T_----~----~------T_-----~ 

1000 2000 3000 4000 5000 6000 70001 80100 

Number of elements 

Figure 12.6 Polling overhead for the bubble sort example of Chapter 1. 

12.14 Summary 

Interrupts provide a mechanism to transfer control to an interrupt service rou
tine. The mechanism is similar to that of a procedure call. However, while 
procedures can be invoked only by a procedure call in software, interrupts can 
be invoked by both hardware and software. 

Software interrupts are often used to support access tOi the system I/O de
vices. Both BIOS and DOS provide a high-level interface to the hardware with 
software interrupts. Hardware interrupts are used by I/O devices to interrupt 
the CPU to service their requests. 

All interrupts, whether hardware-initiated or software-initiated, are iden
tified by an interrupt type number that is between 0 and 255. This interrupt 
number is used to access the interrupt vector table to get the associated inter
rupt vector. Hardware interrupts can be masked or disabled by manipulating the 
interrupt flag using sti and eli instructions. Masking of individual external 
interrupts can be done by manipulating the IMR of the 8259 PIC. 

There are three ways an application program can access I/O devices. DOS 
and BIOS provide software interrupt support routines to access I/O devices. In 
the third method, an application program accesses the I/O devices directly via 



Section 12.15 Exercises 485 

110 ports. This involves low-level programming using in and out instructions. 
Such direct control of 110 devices requires detailed knowledge about the 110 
device. We used several examples to illustrate how this can be done. 

We briefly introduced polling as an alternative to interrupt-driven 110. 
Polling introduces overhead due to pooling loops. The last section examined 
the impact of this overhead on the bubble sort example of Chapter 1. 

12.15 Exercises 

12-1 What is the difference between a procedure and an interrupt service rou
tine? 

12-2 In invoking an interrupt service routine, the flags register is automatically 
saved on the stack. However, a procedure call does not automatically save 
the flags register. Explain the rationale for this difference. 

12-3 How would you categorize the interrupts generated by the keyboard? 

12-4 Explain how one can disable all maskable hardware interrupts efficiently. 
Efficiency here refers to both time- and space-efficiency of the code. 

12-5 Describe another way to disable all maskable hardware interrupts. 

12-6 Write a piece of code to disable all maskable hardware interrupts except 
the timer and keyboard interrupts. Refer to the interrupt table on page 474. 

12-7 We have stated that the 

into 

instruction generates a type 4 interrupt. As you know, we can also gen
erate this type of interrupt using the 

int 4 

instruction. What is the difference between the two instructions? 

12-8 Suppose that the CPU is currently executing the keyboard interrupt ser
vice routine, which is shown below: 

keyboard_ISR PROC 
sti 

ISR body 

iret 
keyboard_ISR ENDP 



486 Chapter 12 Interrnpts and Input/Output 
---------------------------------------------------

Suppose that, while in the middle of executing the keyboard ISR, a timer 
interrupt has occurred. Describe the activities of the CPU until it com
pletes processing the keyboard interrupt service routine. 

12-9 What happens in the scenario described in the last question if the sti 
instruction is deleted from the keyboard ISR? 

12-10 Discuss the advantages and disadvantages of the: three: ways an application 
program can interact with I/O devices (see Figure 12.2). 

12-11 Describe the actions taken (until the beginning of the execution of ISR) 
by the CPU in response to an interrupt int lOR. You can assume real 
mode of operation. 

12-12 Is there any difference between how an ISR is invoked if the interrupt is 
caused by a software int instruction or hardware interrupt or exception? 

12-13 What is the difference between the DOS keyboard function OBH and the 
BIOS keyboard function 01H? 

12-14 Describe how extended keyboard keys are handled. 
12-15 Discuss the tradeoffs associated with polling and interrupts. 

12.16 Progamming Exercises 

12-Pl Write a divide error exception handler to replace the system supplied one. 
This handler should display a message "A divide error has occurred" and 
then replace the result with the maximum possible value. You can use 
registers for the dividend and divisor of the di v instruction. Test your 
divide error ISR by making the divisor zero. Also, c~xperiment with the 
ISR code so that you see that the di v instruction is restarted because 
divide error is considered a fault. For example, if your ISR does not 
change the value of the divisor (i.e., leave it as 0), your program will 
not terminate, as it repeatedly calls the divide error exception handler by 
restarting the divide instruction. After observing this behavior, modify 
the ISR to change the divisor to a value other than 0 in order to proceed 
with your test program. 

12-P2 The into instruction generates overflow interrupt (interrupt 4) if the over
flow flag is set. Overflow interrupt is a trap, and th(~refore the interrupt 
instruction is not restarted. Write an ISR to replace the system supplied 
one. Your ISR should display a message "An overflow has occurred" and 
then replace the result with zero. As a part of the exercise, test that into 
does not generate an interrupt unless the overflow flag is set. 

12-P3 Convert toupper. asm given in Chapter 3 into an ISR for interrupt 100. 
You can assume that DS:BX points to a null-t(~rmin;ated string. Write a 
simple program to test your ISR. 



Section 12.16 Progamming Exercises 487 

12-P4 Write a program to display the date in the format dd-mmm-yyyy, where 
mmm is the three-letter abbreviation for the month (e.g., JAN, FEB, etc.). 
To get the current date, you can use the function 2AH of interrupt 21H. 
Details are given below: 

Function 2AO - Get date 

Input: AH 2AH 
Returns: AL day of the week (0 = Sun, 1 = Mon, etc.) 

year (1980-2099) CX 
DH 
DL 

month (1= Jan, 2 = Feb, etc.) 
day of the month (1-31) 

12-P5 Write a program to display the time in the format hh: mm: ss. To get the 
current time, you can use the function 2CH of interrupt 21H. Details are 
given below: 

Function 2eU - Get time 

Input: 
Returns: 

AH = 2CH 
CH = hours (0-23) 
CL = minutes (0-59) 
DH = seconds (0-59) 
DL = hundredths of a second (0-99) 



Chapter 13 

High-Level Language 
Interface 

Objectives 

• To review motivation for writing mixed-mode programs 
• To discuss the principles of mixed-mode programming 
• To describe how assembly language procedures are called from C 

• To illustrate how C functions are called from assembly language proce
dures 

• To explain how inline assembly language code is written 

Thus far we have written stand-alone assembly programs. Except in Chap
ter 1, our discussion has focused on the mechanics of Pentium assembly lan
guage programming. This last chapter considers mixed-mode programming. 
In this mode, part of a program is written in a high-level language and part 
in assembly language. We use C and Pentium assembly languages to illustrate 
how such mixed-mode programs are written. The motivation for mixed-mode 
programming is discussed in Section 13.1. Section 13.2 gives an overview of 
mixed-mode programming. Mixed-mode programming can be done either by 
inline assembly code or by separate assembly modules. The inline assembly 
method is discussed in Section 13.6. Other sections focus on the separate 
assembly module method. 

Section 13.3 gives a detailed discussion of the mechanics involved in call
ing assembly language procedures from a C program. This section presents 
details about parameter passing, returning values to C functions, and so on. 

S. P. Dandamudi, Introduction to Assembly Language Programming
© Springer Science+Business Media New York 1998



490 Chapter 13 High-Level Language Interface 

Section 13.4 details how a C function can be called from an assembly lan
guage procedure. Section 13.5 discusses some simplifications that we can use 
in interfacing assembly programs to C. The last section summarizes the chapter. 

13.1 Why Program in Mixed-Mode? 

Mixed-mode programming refers to writing parts of a program in different lan
guages. In this chapter we focus on programming in the high-level C language 
and assembly language. Thus, in our case, part of a program is written in C 
and the other part in Pentium assembly language. We use the Borland C++ 
compiler and Turbo Assembler to explain the principles involved in mixed
mode programming. This discussion can be easily extended to a different set 
of languages-for example, mixed-mode programming involving Pascal and 
assembly language. 

In Chapter 1 we discussed several reasons why one would want to program 
in assembly language. We identified the following three main reasons: 

• Access to hardware 

• Time-efficiency 

• Space-efficiency 

Access to hardware refers to having direct control over the input/output 
devices and other system hardware. High-level languages, on purpose, do not 
provide mechanisms to directly access system hardware. As we have seen in 
Chapter 12, we can use software interrupts to access various I/O devices. For 
example, int 21H software interrupt provides a variety of services to access 
devices like a keyboard, printer, display screen, disk, and so on. In addition, we 
can use in and out instructions to write our own assembly language routines 
to access I/O devices. These features of assembly language are very important 
if one is involved in writing systems software. 

Time-efficiency refers to the fact that a carefully written assembly language 
program tends to execute faster than an equivalent program written in a high
level language. We demonstrated this advantage of programming in assembly 
language in Chapter 1 by using the bubble sort example. 

Space-efficiency refers to the space requirements of the executable code. 
A more efficient program requires less space to do the samle task. In general, a 
cleverly crafted assembly language program tends to take le:ss memory than the 
equivalent code produced by a compiler. We should note, however, that space 
efficiency is not critical in most applications. It is important only in handheld 
devices and other memory-constrained systems. 



Section 13.2 Overview 491 

While it is possible to write a program entirely in assembly language, there 
are several disadvantages in doing so. These include: 

• Low productivity 

• High maintenance cost 

• Lack of portability 

Low productivity is due to the fact that assembly language is a low-level lan
guage. That is, in most cases, each assembly language instruction accomplishes 
only a fraction of the task typically done by a high-level language instruction. 
As a result, a single high-level language instruction may require several assem
bly language instructions. We discussed this aspect in Chapter 1 by means of 
examples. It has been observed that programmers tend to produce the same 
number of lines of debugged and tested source code per unit time irrespective 
of the level of the language used. As the assembly language requires more lines 
of source code, programmer productivity tends to be low. 

Programs written in assembly language are also difficult to maintain. This 
is also a direct consequence of assembly language being a low-level language. 

High-level programs are portable in the sense that they can be compiled to a 
target architecture without making any changes (or sometimes with slight mod
ifications) to the source code. Assembly language programs are not portable 
and are suitable to run only on the target architecture. 

As a result of these pros and cons, some programs are written in mixed-mode 
using both high-level and low-level languages. System software often requires 
mixed-mode programming. In such programs, it is possible for a high-level 
procedure to call a low-level procedure and vice versa. The remainder of the 
chapter discusses how mixed-mode programming is done in C and assembly 
languages. Our goal is to illustrate only the principles involved. Once these 
principles are understood, the discussion can be generalized to any type of 
mixed-mode programming. 

13.2 Overview 

There are two ways of writing mixed-mode C and assembly programs-inline 
assembly code, or separate assembly modules. In the inline assembly method, 
the C program module can contain assembly language instructions. The Bor
land C++ compiler allows embedding assembly language instructions within 
a C program by prefixing them with asm to let the compiler know that it is 
an assembly language instruction. This method is useful if you have only a 
small amount of assembly code to be embedded. Otherwise, separate assembly 



492 Chapter 13 High-Level Language Interface 
---------------------------------------------------

C source file 
sarnplel.c 

COMPILER 

Object file 
sarnplel.obj 

LINKER 

Executable file 
samplel.exe 

Assembly source file ] 
sarnple2.asrn 

-] Object file 
sample2.(~ 

Figure 13.1 Steps involved in compiling mixed-mode programs. 

modules are preferred. Section 13.6 discusses how the in line assembly method 
works with an example. Until then, we focus on separate assembly modules. 

When separate modules are used for C and assembly languages, each mod
ule can be translated into the corresponding object (. 0 b j) file. To do this 
translation, we use a C compiler for the C modules and an assembler for the 
assembly modules, as shown in Figure 13.1. Then the linker can be used to 
produce the executable ( . exe) file from these object files. 

Suppose our mixed-mode program consists of two modules--one C module 
(file samplel. c), and one assembly module (file sample2. asm). The process 
involved in producing the executable file is shown in Figure 13.1. We can 
instruct the Borland C++ compiler to initiate this cycle with 

bee samplel.e sample2.asm 



Section 13.3 Calling Assembly Proceduresfrom C 493 

This command instructs the Borland C++ compiler to first compile sample1. c 
to sample 1. obj and then invoke the Turbo Assembler TASM to assemble 
sample2. asm to sample2. 0 b j. The linker TLINK is finally invoked to link 
sample1.obj and sample2. obj to produce sample1. exe. 

13.3 Calling Assembly Procedures from C 

Let us now discuss how we can call an assembly language procedure from a C 
program. The first thing we have to know is what communication medium is 
used between the C and assembly language procedures. We need to figure this 
out, as the two procedures may exchange parameters and results. You are right 
if you guessed it to be the stack. 

Given that the stack is used for communication purposes, we still need 
to know how the C function places the parameters on the stack, and where it 
expects the assembly language procedure to return the result. In addition, we 
should also know which registers we can use freely without worrying about 
preserving their values. Next we discuss these issues in detail. 

13.3.1 Parameter Passing 

There are two ways in which arguments (i.e., parameter values) are pushed onto 
the stack: from left to right or from right to left. Most high-level languages 
such as Basic, Fortran, and Pascal push the arguments from left to right. These 
are called left-pusher languages. C, on the other hand, pushes arguments from 
right to left. Thus, C is a right-pusher language. Right-pushing offers one 
advantage over left-pushing if the language allows procedures with a variable 
number of arguments. In this case, the number of arguments pushed onto the 
stack is available just below the return address pointer on the stack, independent 
of the number of arguments passed. The stack state after executing 

sum(a,b,c,d) 

is shown in Figure 13.2. From now on, we consider only right-pushing of 
arguments as we focus on the C language. 

To see how Borland C++ pushes arguments onto the stack, take a look at 
the following C program (this is a partial listing of Program 13.1). 

int main(void) 
{ 

int x=25, y=70; 
int value; 
extern int test(int, int, int); 



494 Chapter 13 High-Level Language Interface 

Left-pusher Right-pusher 

... . .. 

a d 

b c 

c b 

d a 

TOS, SP - IP IP ~ - SP, TOS 

Figure 13.2 Two ways of pushing parameters onto the stack. 

value = test (x, y, 5); 

} 

This program is compiled (use -8 option to generate the assembly source code) 
as: 

int x=25, y=70; 

mov word ptr [bp-2] ,25 
mov word ptr [bp-4],70 

int value; 
extern int test(int, int, int) ; 

value = test (x, y, 5); 

push 5 
push word ptr [bp-4] 
push word ptr [bp-2] 
call near ptr _test 
add sp,6 
mov word ptr [bp-6] ,ax 

The compiler assigns space for variables x, y, and value on the stack at 
BP-2, BP-4, and BP-6, respectively. When the test function is called, the 



Section 13.3 Calling Assembly Proceduresfrom C 495 

arguments are pushed from right to left, starting with the constant 5. Also notice 
that the stack is cleared of the arguments by the C program after the call by 

add sp,6 

So when we write our assembly procedures, we should not bother clearing 
the arguments from the stack as we did in our programs in the previous chapters. 
The rationale for using this convention to clear arguments from the stack is that 
C allows a variable number of arguments in a function call. On the other hand, 
parameters are cleared by the called procedure if we are using Pascal instead 
of C. The Borland C++ compiler allows you to specify the desired parameter 
passing mechanism (C or Pascal). For example, by using -p option to use Pascal 
calls, the same program is compiled as 

int x=25, y=70; 

mov si,25 
mov word ptr [bp-2],70 

int value; 
extern int test(int, int, int); 

value = test (x, y, 5); 

push si 
push word ptr [bp-2] 
push 5 
call near ptr TEST 
mov di,ax 

We can clearly see that left-pushing of arguments is used. In addition, the 
stack is not cleared of the arguments. Thus, in this case, it is the responsibility 
of the called procedure to clear the stack of the arguments, which is what we 
have been doing in our assembly programs in the previous chapters. 

13.3.2 Returning Values 

We can see from the C and Pascal assembly codes given in the last sub-section 
that the AX register returns the value of the test function. In fact, AX is used to 
return 8- and 16-bit values. To return a 32-bit value, use DX:AX pair with DX 
holding the upper 16 bits. Table 13.1 shows how various values are returned to 
the Borland C++ function. This list does not include floats and doubles. These 
are returned via the 8087 stack. We will not discuss these details here. 



496 Chapter 13 High-Level Language Interface 
---------------------------------------------------

Table 13.1 Registers used to return values 

Return value type 
unsigned char 
char 
unsigned short 
short 
unsigned int 
int 
unsigned long 
long 
near pointer 
far pointer 

13.3.3 Preserving Registers 

Register used 
AX 
AX 
AX 
AX 
AX 
AX 

DX:AX 
DX:AX 

AX 
DX:AX 

In general, the called assembler procedure can use the registers as needed, 
except that the following register contents should be preserved: 

BP, SP, es, DS, SS 

In addition, if register variables are enabled, both SJ[ and DI registers should 
also be preserved. When register variables are enabled, both SI and DI registers 
are used for variable storage, as shown below: 

int x=25, y=70; 

mov si,25 
mov word ptr [bp-2] ,70 

int value; 
extern int test(int, int, int) ; 

value = test (x, y, 5) ; 

push 5 
push word ptr [bp-2] 
push si 
call near ptr _test 
add sp,6 
mov di,ax 



Section 133 Calling Assembly Procedures/rom C 497 

Compare this version, with register variables enabled, to the previous version 
given on page 494. Instead of using the stack, SI and DI are used to map 
variables x and value, respectively. Since one never knows whether the C 
code was compiled with or without enabling the register variables, it is good 
practice to preserve SI and DI registers as well. 

13.3.4 Publics and Externals 

Mixed-mode programming with separate assembly modules involves at least 
two program modules-one C module and one assembly module. Thus, we 
have to declare those functions and procedures that are not defined in the same 
module as external. Similarly, those procedures that are accessed by another 
module should be declared as public, as discussed in Chapter 4. Before pro
ceeding further, you may want to refresh your memory by reviewing the mate
rial on multimodule programs presented in Chapter 4. Here we mention only 
those details that are specific to the mixed-mode programming involving C and 
assembly language. 

In C, all external labels should start with an underscore character (_). The 
C and C++ compilers automatically append the required underscore character 
to all external functions and variables. For example, when we called the test 
function in our example C program, the corresponding assembly code shown 
on page 494 used _test, as we have declared test as an external function. A 
consequence of this characteristic is that when we write an assembly procedure 
that is called from C, we have to make sure that we prefix an underscore char
acter to its name. Next we present a few examples to illustrate mixed-mode 
programming. 

13.3.5 Illustrative Examples 

We now look at three examples to illustrate the interface between C and assem
bly programs. We start with a simple example, whose C part has been dissected 
in the previous subsections. For an additional example, see the bubble sort 
example discussed in Chapter 1. 

Example 13.1 Our first mixed-mode example 

This example passes three parameters to the assembly language function 
test. The C code is shown in Program 13.43 and the assembly code in Pro
gram 13.44. Since the test procedure is called from the C program, we have 
to prefix an underscore character to the procedure name. The function test 
is declared as external in the C program (line 11) and public in the assembly 



498 Chapter 13 High-Level Language Interface 

program (line 7). Since C clears the arguments from the stack, the assembly 
procedure uses a simple ret to transfer control back to the C program. Other 
than these differences, the assembly procedure is similar to several others we 
have written before. 

Program 13.43 An example illustrating assembly calls from C-C code (in file testex_c. c) 

1: 1********************************************************** 
2: * A simple example to illustrate C and assembly languagl~ * 
3: * interface. The test function is written in assembly * 
4: * language (in file testex_a.asm). * 
5: **********************************************************1 
6: #include <stdio.h> 
7: int main(void) 
8: { 
9: 

10: 
11: 
12: 
13: 
14: 
15: 

int x=25 , y=70; 
int value; 
extern int test(int, int, int); 

value = test (x, y, 5); 
printf("result %d\n", value); 
return 0; 

16: } 

Program 13.44 An example illustrating assembly calls from C-Assembly code (in file tes
tex_a.asm) 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 

j-----------------------------------------------------------
; Assembly program for the test function - called from the 
; C program in file testex_c.c 
-----------------------------------------------------------, 
.MODEL SMALL 
. CODE 
PUBLIC _test 
_test PROC 

push 
mov 
mov 
add 
sub 

BP 
BP,SP 
AX, [BP+4] 
AX, [BP+6] 
AX, [BP+8] 

get argument1 x 
add argument2 y 
subtract argument3 from sum 



Section 13.3 Calling Assembly Proceduresfrom C 499 

14: 
15: 
16: _test 
17: 

pop 
ret 
ENDP 
END 

BP 
stack cleared by C function 

Example 13.2 An example to show parameter passing by call-by-value as well 
as call-by-reference 

This example shows how pointer parameters are handled. The C main 
function requests three integers and passes them to the assembly procedure. 
The C program is given in Program 13.45. The assembly procedure min_max, 
shown in Program 13.46, receives the three integer values and two pointers to 
variables minimum and maximum. It finds the minimum and maximum of the 
three integer values and returns them to the main C function via the two pointer 
variables. The minimum value is kept in AX and the maximum in OX. The 
code given on lines 29-32 in Program 13.46 stores the return values by using 
the BX register in the indirect addressing mode. 

Program 13.45 An example with C program passing pointers to assembly program-C code 
(in file minmrucc. c) 

1: /********************************************************** 
2: * An example to illustrate call-by-value and * 
3: * call-by-reference parameter passing between C and * 
4: * assembly language modules. The min_max function is * 
5: * written in assembly language (in file minmax_a.asm). * 
6: **********************************************************/ 
7: #include <stdio.h> 
8: int main(void) 
9: { 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 

int value1, value2, value3; 
int minimum, maximum; 
extern void min_max (int, int, int, int*, int*); 

printf("Enter number 1 
scanf("%d", &;value1); 
printf("Enter number 2 
scanf("%d", &;value2); 
printf("Enter number 3 
scanf("%d", &;value3); 

") ; 

") ; 

") ; 



500 

20: 
21: 
22: 
23: 
24: } 

Chapter 13 High-Level Language Interface 

min_max(value1, value2, value3, &minimum, &maximum); 
printf("Minimum = %d, Maximum = %d\n", minimum, maximum); 
return 0; 

Program 13.46 An example with C program passing pointers to assembly program-Assembly 
code (in file minmruca. asm) 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 

e __________________________________________________________ _ , 
Assembly program for the min_max function - called frollll 

; the C program in file minmax_c. c. This function finds 'the 
; minimum and maximum of the three integers received by it. 
-----------------------------------------------------------, 
.MODEL SMALL 
. CODE 

8: PUBLIC _min_max 
9: _min_max PROC 

10: push BP 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 

mov 
; AX 
mov 
mov 
cmp 
jl 
xchg 

skip1 : 
mov 
cmp 
jl 
cmp 
jl 
mov 
jmp 

new_min: 
mov 

store_result: 
mov 
mov 
mov 
mov 
pop 

BP,SP 
keeps minimum number and DX maximum 

AX, [BP+4] get value 1 
DX,[BP+6] get value 2 
AX,DX value 1 < value 2? 
skip1 if so, do nothing 
AX,DX else, exchange 

CX, [BP+8] 
CX,AX 
new_min 
CX,DX 
store_result 
DX,CX 
store_result 

AX,CX 

BX, [BP+10] 
[BX] ,AX 
BX, [BP+12] 
[BX] ,DX 
BP 

get value 3 
value 3 < min in AX? 

value 3 < max in DX? 

BX : = &minimum 

BX : = &maximum 



Section 13.3 Calling Assembly Proceduresjrom C 501 

34: ret 
35: _min_max ENDP 
36: END 

Example 13.3 String processing example 

This example illustrates how global variables, declared in C, are accessed 
by assembly procedures. The string variable is declared as a global variable in 
the C program, as shown in Program 13.47 (line 9). The assembly language 
procedure computes the string length by accessing the global string variable, as 
shown in Program 13.48. The procedure call is parameter-less in this example 
(see line 16 of the C program). The string variable is declared as an external 
variable in the assembly code (line 7) with an underscore, as it is an external 
variable. 

Program 13.47 A string processing example-C code (in file string_c. c) 

1: 1********************************************************** 
2: * A string processing example. Demonstrates processing * 
3: * global variables. Calls the string_length * 
4: * assembly language program in file string_a.asm file. * 
5: **********************************************************1 
6: #include <stdio.h> 
7: #define LENGTH 256 
8: 
9: char string[LENGTH]; 

10: int main(void) 
11: { 
12: extern int string_length (char a[]); 
13: 
14: printf("Enter string: II); 

15: scanf ("%S ", string); 
16: printf(lIstring length = %d\n", string_length 0 ); 
17: return 0; 
18: } 



502 Chapter 13 High-Level Language Interface 
---------------------------------------------------

Program 13.48 A string processing example-Assembly code (in file string_a. asm) 

1: ;---------------------------------------------------------
2: ; String length function works on the global string 
3: ; (defined in the C function). It returns string length. 
4: ;---------------------------------------------------------
5: .MODEL SMALL 
6: . DATA 
7 : EXTRN _string: byte 
8: . CODE 
9: PUBLIC _string_length 

10: _string_length PROC 
11: mov AX,O AX keeps the character count 

load BX with string address 12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

mov 
repeat: 

cmp 
jz 
inc 
inc 
jmp 

done: 
ret 

_string_length 
END 

BX,OFFSET _string 

BYTE PTR[BX],O compare with NULL character 
done 
AX increment string length 
BX inc. BX to point to next char. 
repeat 

ENDP 

13.4 Calling C Functions from Assembly 

So far we have considered how a C function can call an assembler procedure. 
Sometimes it is desirable to call a C function from an assembler procedure. 
This scenario often arises when we want to avoid writing assembly code for 
performing complex tasks. Instead, a C function could be written for those 
tasks. This section illustrates how we can access C functions from assembly 
procedures. Essentially, the mechanism is the same-we use the stack as the 
communication medium, as shown in the next example. 

Example 13.4 An example to illustrate a C function call from an assembly 
procedure 



Section 13.4 Calling C Functions/rom Assembly 503 

The main C function requests a set of marks of a class and passes this array 
to the assembly procedure stats, as shown in Program 13.49. The assem
bly procedure stats computes the minimum, maximum and rounded average 
marks and returns these three values to the C main function (see Program 13.50). 
To compute the rounded average mark of the class, the C function find_avg is 
called from the assembly procedure. The required arguments total and size 
are pushed onto the stack (lines 42 and 43) before calling the C function on 
line 44. Since the convention for C calls for the caller to clear the stack, line 45 
adds 4 to SP to clear the two arguments passed onto f ind_avg C function. The 
rounded average integer is returned in the AX register. 

Program 13.49 An example to illustrate C calls from assembly programs-C code (in file 
marks_c. c) 

1: /********************************************************** 
2: * An example to illustrate C program calling assembly * 
3: * procedure and assembly procedure calling a C function. * 
4: * This program calls the assembly language procedure * 
5: * in file MARKS_A. ASM. The program outputs minimum, * 
6: * maximum, and rounded average of a set of marks. * 
7: **********************************************************/ 
8: #include <stdio.h> 
9: 

10: #define CLASS_SIZE 50 
11: 
12: int main(void) 
13: { 
14: int marks [CLASS_SIZE] ; 
15: int minimum, maximum, average; 
16: int class_size, i; 
17: int find_avg(int, int); 
18: extern void stats(int*, int, int*, int*, int*); 
19: 
20: printf("Please enter class size «50): II); 

21: scanf("%d", &class_size); 
22: printf("Please enter marks:\n"); 
23: for (i=O; i<class_size; i++) 
24: scanf("%d", &marks[iJ); 
25: 
26: 
27: 
28: 

stats (marks , class_size, &minimum, &maximum, &average); 
printf("Minimum = %d, Maximum = %d, Average = %d\n", 

minimum, maximum, average); 



504 Chapter 13 High-Level Language Interface 
----------------------------------------------------

29: 
30: } 

return 0; 

31: /********************************************************* 
32: * Returns the rounded average required by the assembly 
33: * procedure STATS in file MARKS_A. ASM. 
34: *********************************************************/ 
35: int find_avg(int total, int number) 
36: { 
37: return((int) ((double)total/number + 0.5)); 
38: } 

Program 13.50 An example to illustrate C calls from assembly programs--Assembly code (in 
file marks_a. asm) 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 

--------------------------------------------------_._-------, 
Assembly program example to show call to a C function. 

; This procedure receives a marks array and class size 
; and returns minimum, maximum, and rounded average mark.s. 
;----------------------------------------------------------
.MODEL SMALL 
EXTRN _find_avg:PROC 
. CODE 
PUBLIC stats 

PROC 
push BP 
mov BP,SP 
push SI 
push DI 
; AX keeps minimum number and DX maximum 
; Marks total is maintained in S1 
mov BX,[BP+4] BX := marks array address 
mov AX, [BX] min := first element 
mov 
xor 
mov 

repeat 1 : 

DX,AX 
SI,SI 
CX, [BP+6] 

mov OI, [BX] 
; compare and update 
cmp DI,AX 
ja skip1 
mov AX,DI 

max := first element 
total := 0 
CX := class size 

DI := current mark 
minimum 

28: skip1: 



Section 13.5 Simplified Calling Mechanisms 505 

29: j compare and update maximum 
30: cmp DI,DX 
31: jb skip2 
32: mov DX,DI 
33: skip2: 
34: add SI,DI update marks total 
35: add BX,2 
36: loop repeat 1 
37: mov BX, [BP+8] return minimum 
38: mov [BX] ,AX 
39: mov BX, [BP+10] return maximum 
40: mov [BX] ,OX 
41: j now call find_avg C function to compute average 
42: push WORD PTR[BP+6] j push class size 
43: push SI push total marks 
44: call _find_avg returns average in AX 
45: add SP,4 clear stack 
46: mov BX, [BP+12] return average 
47: mov [BX] ,AX 
48: pop DI 
49: pop SI 
50: pop BP 
51: ret 
52: _stats ENDP 
53: END 

13.5 Simplified Calling Mechanisms 

The task of interfacing C and assembly language programs can be simplified 
by using features ofTASM. We have so far, on purpose, not used these features 
in order to focus on the fundamental mechanisms involved. In this section we 
discuss three features of TASM that simplify high-level language interface. 

13.5.1 The ARG Directive 

When writing an assembly language program such as minmruca. asm, we have 
to calculate the offsets of the arguments (relative to BP). By using the ARG 
directive, we can let the assembler do this job for us. All we have to do is list 
the arguments passed on to the procedure by the C program in an ARG directive. 
The order of these arguments should be the same as that in the C call. Also make 
sure that all arguments are listed in a single ARG statement. For each argument, 



506 Chapter 13 High-Level Language Interface 

its type field should be specified. If a type field is not specified, TASM assumes 
WORD for 16-bit models and DWORD for 32-bit models. The next example 
illustrates how the ARG directive can be used. 

Example 13.5 An ARG directive example 

In order to show how the ARG directive can be used, we have rewritten the 
minmax procedure using the ARG directive (see Program 13.51). Notice that the 
arguments are listed in the same order as in the C call. The ARG statement on 
line 11 uses \ so that we can continue it on the next line. Remember that \ can 
be used to extend an assembly language line beyond 80 characters. The ARG 
directive computes the required offsets. We can refer to these offsets by their 
names. For example, see lines 16, 17,22,32, and 34 in Program 13.51. 

Program 13.51 An example to demonstrate the use of the ARG directive (in file minmax2a. asm) 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 

;----------------------------------------------------------
Assembly program for the min_max function -- called from 
the C program in file minmax_c.c. This function finds the 
minimum and maximum of the three integers received by it. 
Uses ARG to simplify offset calculations of arguments. 

;----------------------------------------------------------
.MODEL SMALL 
. CODE 
PUBLIC _min_max 
_min_max PROC 

skipl: 

ARG 

push 

vl:WORD, v2:WORD, v3:WORD,\ 
min_ptr:PTR WORD, max_ptr:PTR WORD 
BP 

mov BP,SP 
; AX keeps minimum number and DX maximum 
mov AX, [vi] get value 1 
mov DX,[v2] get value 2 
cmp AX,DX value 1 < value 2? 
jl skipl if so, do nothing 
xchg AX,DX else, exchange 

mov CX, [v3] get value 3 
cmp CX,AX value 3 < min in AX? 
jl new_min 
cmp CX,DX value 3 < max in DX? 



Section 13.5 Simplified Calling Mechanisms 507 

26: 
27: 
28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 

jl store_result 
mov DX,CX 
jmp store_result 

new_min: 
mov AX,CX 

store_result: 
mov BX, [min_ptr] BX := 8I;minimum 
mov [BX] ,AX 
mov BX, [maJcptr] BX : = &maximum 
mov [BX] ,OX 
pop BP 
ret 

_min_max ENDP 
END 

13.5.2 Extended CALL Instruction 

In this section, we discuss two other simplifications of high-level language 
interface. The first one is a minor one that eliminates the need for prefixing 
underscores to external functions and variables. We can let the assembler do 
this for us by specifying that the C language is used. We do this by writ
ing PUBLIC C ... instead of PUBLIC ... as shown in Program 13.52 (see 
line 10). We can follow the same method for the EXTRN directive, as shown 
on line 8 of Program 13.52. 

Program 13.52 An example showing the use of the extended CALL instruction (in file 
marks2a. asm) 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

._---------------------------------------------------------, 
Assembly program example to show call to a C function. 
This procedure receives a marks array and class size 
and returns minimum, maximum, and rounded average marks. 
Uses TASM's extended procedure call instruction. 

;----------------------------------------------------------
.MODEL SMALL 
EXTRN C find_avg:PROC 
. CODE 

10: PUBLIC C stats 
11: stats PROC 
12: ARC marks:PTR WORD, class_size:WORD, min:PTR WORD,\ 



508 Chapter 13 High-Level Language Interface 

push 
max:PTR WORD. avg:PTR WORD 
BP 

mov BP.SP 
push SI 
push 01 
; AX keeps minimum number and OX maximum 
; Marks total is maintained in SI 
mov BX.[marks] BX := marks array address 
mov AX. [BX] min := first element 
mov OX.AX max := first element 
xor SI.SI total := 0 

13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 

mov 
repeatl: 

ex. [class_size] 

28: 
29: 
30: 
31: 
32: 
33: 
34: 
35: 

skipl : 

36: skip2: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 
53: 
54: 

stats 

mov 01. [BX] ; 01 := current mark 
; compare and update minimum 
cmp OI.AX 
ja skipl 
mov AX.OI 

; compare and update maximum 
cmp OI.OX 
jb skip2 
mov OX.OI 

add SI.OI update marks total 
add BX.2 
loop repeat 1 
mov BX. [min] return minimum 
mov [BX] .AX 
mov BX. [max] return maximum 
mov [BX] .OX 
; now call find_avg C function to compute average 
; returns the rounded average value in AX 
call find_avg C. SIt class_size 
mov BX.[avg] ; return average 
mov [BX].AX 
pop DI 
pop SI 
pop BP 
ret 
ENOP 
ENDs 



Section 13.6 Inline Assembly Code 509 

The other feature relieves us from pushing the arguments onto the stack 
before a procedure call. We can use the CALL instruction extensions to let the 
assembler insert the necessary push instructions to place the arguments in the 
correct order (right-pushing for C and left-pushing for Pascal) and to clear the 
stack (in case of C). The syntax of the CALL instruction is 

CALL destination [language[,argl] ... ] 

where language is C, CPP, Pascal, FORTRAN, etc. and arg is any valid 
argument that can be pushed onto the stack. We use this extended CALL on 
line 46 to call the C function find_avg. 

To summarize, the extended CALL instruction does the following three 
things to simplify procedure calls: 

• Pushes the arguments in the correct order (based on the language speci
fied); 

• Prefixes an underscore if required (as in the C language); 

• Clears the stack of the arguments if needed (as in the C language). 

13.6 Inline Assembly Code 

In the inline assembly method, assembly language statements can be embedded 
into the C code. Such assembly statements are identified by placing the asm 

keyword before the assembly language instruction, as shown in Program 13.53. 
The end of an inline asm statement is indicated by either a semicolon (;) or a 
newline. Multiple assembly language instructions can be written on the same 
asm line provided they are separated by semicolons, as shown below: 

asm xor AX,AX; mov AL,DH 

If there are multiple assembly language instructions, we can also use braces 
to compound them, as shown below: 

asm { 
xor AX,AX 
mov AL,DH 

} 

Make sure to place the first brace on the same line as the asm keyword. To 
include comments on asm statements, use C-style comments. You cannot use 
assembly language-style comments (that start with a semicolon). 



510 Chapter 13 High-Level Language Interface 

Example 13.6 Example with inline assembly code 

This is a simple example to illustrate how inline assembly code can be writ
ten. The e function current_month is entirely written in assembly language. 
It uses int 21H to read the current month. The date information is provided 
by service 2AH under int 21H, as detailed below: 

Function 2AD - Get date 

Input: AH 
Returns: AL 

ex 
DH 
DL 

2AH 
day of the week (0 = Sun, 1 = Mon, etc.) 
year (1980-2099) 
month (1= Jan, 2 = Feb, etc.) 
day of the month (1-31) 

Program 13.53 An example showing inline assembly code (in file inlineex. c) 

1: 1***************************************************************** 
2: * This program illustrates how inline assembly code can be * 
3: * written. It uses the interrupt service of DOS (int 21H) * 
4: * to get the current month information. * 
5: *****************************************************************1 
6: #include <stdio.h> 
7: 
8: int current_month(void); 
9: 

10: int main(void) 
11: { 
12: printf ("Current month is: %d\n", current_month 0 ); 
13: return 0; 
14: } 
15: int current_month(void) 
16: { 
17: 
18: 
19: 
20: 
21: } 

asm mov 
asm int 
asm xor 
asm mov 

AH,2AH 
21H 
AX,AX 1* we really want to clear AH *1 
AL,DH 



Section 13.7 Summary 511 

Compiling Inline Assembly Programs 

Borland C++ can handle inline assembly code in one of two ways: 

• Convert the C code first into assembly language and then invoke TASM 
to produce an object ( . 0 b j) file. We call this the TASM method . 

• Use the built-in assembler (BASM) to assemble the asm statements in 
the C code. We call this the BASM method. 

The process involved in compiling using these two methods is shown in 
Figure 13.3. The BASM approach is restricted in the sense that only 16-bit 
instructions can be used. If you use 32-bit instructions (e.g., 80486 or Pentium 
instructions), the Borland C++ compiler generates an error message. Then you 
can either simplify the in line code to avoid the instructions that BASM will not 
accept, or use the other method that invokes TASM. Using the BASM method 
does not require any special attention to compile an inline program. 

In the TASM method, you can use the -8 compiler option so that the com
piler first generates an assembly language file and then invokes TASM to as
semble it into the. obj file. Alternatively, you can include 

#pragma inline 

at the beginning of the C file to instruct the compiler to use the -8 option. The 
TASM method has the advantage of utilizing the capability ofTASM, and hence 
you are not restricted to a subset of the assembly language instructions as in the 
BASM method. 

13.7 Summary 

We introduced the principles involved in mixed-mode programming. We dis
cussed the main motivation for writing mixed-mode programs. This chapter 
focused on mixed-mode programming involving C and the assembly language. 
Using the Borland C++ compiler and Turbo Assembler software, we demon
strated how assembly language procedures are called from C, and vice versa. 
Once you understand the principles discussed in this chapter, you can easily 
handle any type of mixed-mode programming activity. 

13.8 Exercises 

13-1 Why do we need to write mixed-mode programs? 
13-2 Find out details about how you can compile mixed-mode programs with 

your compiler (if it is other than the Borland C++ compiler). 



512 Chapter 13 High-Level Language Interface 

COMPILER 

COMPILER ASSEMBLER 

LINKER LINKER 

BASMmethod TASMmethod 

Figure 13.3 Steps involved in compiling mixed-mode programs with inline assembly code. 

13-3 Describe how parameters are passed from a C calling function to an 
assembly language procedure. 

13-4 For your compiler, describe how 8-, 16-, and 32-bit values are returned 
to a C function. 

13-5 For your compiler, which registers should be preserved by an assembly 
procedure? 



Section 13.9 Progamming Exercises 513 

13-6 What is the difference between a right-pusher and a left-pusher language 
(as far as parameter passing is concerned)? 

13-7 Why does C use right-pushing while Pascal uses left-pushing of argu
ments? 

13-8 Explain why in C, the calling function is responsible for clearing the 
stack. 

13-9 What are the pros and cons of inline assembly as opposed to separate 
assembly modules? 

13-10 What are the significant differences between the BASM and TASM meth
ods for writing inline assembly code? 

13.9 Progamming Exercises 

13-Pl Write a mixed-mode program to display the time in the formathh:mm: ss. 
The C main program should call the assembly procedure get_time and 
pass on to it three pointers for returning hours, minutes, and seconds. 
The assembly procedure uses the function 2CH of interrupt 21H to get 
the current time. Details of this service are given below: 

Function 2eH - Get time 

Input: AH 
Returns: CH 

CL 
DH 
DL 

2CH 
hours (0-23) 
minutes (0-59) 
seconds (0-59) 
hundredths of a second (0-99) 

13-P2 Write a program that requests the user for a string and a substring and 
reports the location of the first occurrence of the substring in the string. 
Write a C main program to receive the two strings from the user. The 
C main program then calls an assembly language procedure to find the 
location of the substring. This procedure receives two pointers to strings 
string and substring and searches for substring in string. If a 
match is found, it returns the starting position of the first match. Matching 
should be case sensitive. A negative value is returned if no match is found. 
For example, if 

string = Good things come in small packages. 

and 

substring = in 



514 Chapter 13 High-Level Language Interface 

the procedure should return 8, indicating a match of in in things. 

13-P3 Write a mixed-mode inline assembly program to display the date in the 
format dd-mmm-yyyy, where mmm is the three-letter abbreviation for the 
month (e.g., JAN, FEB, etc.). The e main program is responsible for 
displaying the date. However, the e function calls the function get_date 
that receives three pointers to variables day, month, and year. To get the 
current date, you can use the function 2AH of interrupt 21H. Details of 
this service are given below: 

Function 2AH - Get date 

Input 
Returns: 

AH = 2AH 
AL = day of the week (0 = Sun, 1 = Mon, etc.) 
ex = year (1980-2099) 
DH = month (1= Jan, 2 = Feb, etc.) 
DL = day of the month (1-31) 

13-P4 Write a program to read a matrix (maximum size lOx 10) from the user 
and display the transpose of the matrix. To obtain the transpose of matrix 
A, write rows of A as columns. Here is an example: 
If the input matrix is 

[ ;; !~ ~~ ~~] 
34 56 78 90 
45 67 89 10 

the transpose of the matrix is 

[ 
12 23 34 45] 
34 45 56 67 
56 67 78 89 
78 89 90 10 

The e part of your program is responsible for getting the matrix and 
for displaying the result. The transpose should be done by an assembly 
procedure. Devise an appropriate interface between the two procedures. 

13-P5 Write a mixed-mode program that reads a string of characters as input 
and displays the number of alphabetic characters (Le., A-Z and a-z) and 
number of digit characters (Le., 0-9). The e main function prompts the 
user for a string and passes this string to an assembly procedure (say 
count), along with two pointers for the two counts to be returned back. 
The assembly procedure count calls the e library functions isalpha 



Section 13.9 Progamming Exercises 515 

and isdigi t to determine if a character is an alpha or digit character, 
respectively. 

13-P6 We know that 
N x (N + 1) 

1+2+3+ ... +N= 2 

Write a program that requests N as input and computes the lefthand side 
and the righthand side of the equation and verifies that they are equal 
and displays the value. Organize your program as follows: The C main 
function should request the N value and also display the output. It should 
call an assembly procedure that verifies the equation and returns the value 
back to the C main function. The assembly program computes the left
hand side and calls a C function to compute the righthand side (it passes 
the N value to the C function). If the lefthand side is equal to the right
hand side, the assembly procedure returns the result of the calculation. 
Otherwise, a negative value is returned to the main C function. 



Part IV 

Appendices 



Appendix A 

I nternal Data 
Representation 

Objectives 

• To present various number systems and conversions among them 
• To introduce signed and unsigned number representations 
• To discuss floating-point number representation 
• To describe character representation 

Modern computer systems are built around millions of tiny switches imple
mented by what are known as transistors. Each switch can be in one of two 
states: open or closed. These two states are used to represent 0 and 1, the basic 
alphabet of any digital computer. Everything that a computer should under
stand must be expressed in this simple alphabet--computer instructions, data, 
etc. This appendix examines how data are represented internally in a computer 
system. 

We consider two types of data-numbers and characters. Representing 
numbers is a two-step process. First, we have to select a number system to use. 
Then, we have to decide how numbers in the selected number system can be 
represented for internal storage. 

To facilitate our discussion, we first introduce several number systems, 
including the decimal system that we use in everyday life, in Section A.l. Sec
tion A.2 discusses conversion of numbers among the number systems. We will 
then proceed to discuss how integers---both unsigned (Section A.3) and signed 
(Section A.4}-and floating-point numbers (Section A.5) are represented. A 



520 Appendix A Internal Data Representation 

brief discussion of character representation is given in Section A.6. We con
clude with a summary. 

A.I Positional Number Systems 

The number systems that we discuss here are based on positional number sys
tems. The decimal number system that we are already familiar with is an ex
ample of a positional number system. In contrast, the Roman numeral system 
is not a positional number system. 

Every positional number system has a radix or base, and an alphabet. 
The base is a positive number. For example, the decimal system is a base-l0 
system. The number of symbols in the alphabet is equal to the base of the 
number system. The alphabet of the decimal system is 0 through 9, a total of 
ten symbols or digits. 

In this appendix, we discuss four number systems that are relevant in the con
text of computer systems and programming. These are the decimal (base-l 0), 
binary (base-2), octal (base-8), and hexadecimal (base-16) number systems. 
Our intention in including the familiar decimal system is to use it to explain 
some fundamental concepts of positional number systems. 

Computers internally use the binary system. The remaining two number 
systems-octal and hexadecimal-are used mainly for convenience to write a 
binary number even though they are number systems on their own. We would 
have ended up using these number systems if we have 8 or 16 fingers instead 
of 10. 

In a positional number system, a sequence of digits is used to represent a 
number. Each digit in this sequence should be a symbol in the alphabet. There 
is a weight associated with each position. If we count position numbers from 
right to left starting with zero, the weight of position n in a base b number 
system is bn • For example, the number 579 in the decimal system is actually 
interpreted as 

5 x (102 ) + 7 x (101) + 9 x (10°) 

(Of course, 10° = 1.) In other words, 9 is in unit's place, 7 is in lO's place, and 
5 is in 100's place. 

More generally, a number in the base b number system is written as 

dndn-I ... dIdo 

where do represents the least significant digit (LSD) and dn represents the most 
significant digit (MSD). This sequence represents the value 

dnbn + dn_Ibn- 1 + ... + dlb 1 + dobo (A.l) 



Section A.1 Positional Number Systems 521 

where b is the base of the number system. Each digit d; in the string can be 
in the range 0 ~ d; ~ (b - 1). When we are using a number system with 
b ~ 10, we use the first b decimal digits. For example, the binary system uses 
o and 1 as its alphabet. For number systems with b > 10, the initial letters of 
the English alphabet are used to represent digits greater than 9. For example, 
the alphabet of the hexadecimal system, whose base is 16, is 0 through 9 and 
A through F-a total of 16 symbols representing the digits of the hexadecimal 
system. We treat lowercase and uppercase letters used in a number system such 
as the hexadecimal system as equivalent. 

The number of different values that can be represented using n digits in a 
base b system is bn • Consequently, since we start counting from 0, the largest 
number that can be represented using n digits is (bn - 1). This number is written 
as 

(b - l)(b - 1) ... (b - l)(b - 1) 
\. .I 

total of n digits 

The minimum number of digits (i.e., the length of a number) required to 
represent X different values is given by rIogb Xl, where r 1 represents the 
ceiling function. Note that r m 1 represents the smallest integer that is greater 
than or equal to m. 

A.I.I Notation 

The commonality in the alphabet of several number systems gives rise to con
fusion. For example, if we write 100 without specifying the number system in 
which it is expressed, different interpretations can lead to assigning different 
values, as shown below: 

Number Decimal value 

100 
binary 

4 --+ 

100 
decimal 

100 --+ 

100 
octal 

64 --+ 

100 
hexadecimal 

256 --+ 

Thus, it is important to specify the number system (i.e., specify the base). We use 
the following notation in this text. A single letter-uppercase or lowercase-is 
appended to the number to specify the number system. We use D for decimal, B 
for binary, Q for octal, and H for hexadecimal number systems. When we write 



522 Appendix A Internal Data Representation 

a number without one of these letters, the decimal system is the default number 
system. Using this notation, 10110111B is a binary number and 2BA9H is a 
hexadecimal number. 

Decimal Number System 

We use the decimal number system in everyday life. This is a base-l 0 system 
presumably because we have ten fingers and toes to count. The alphabet consists 
of ten symbols-digits 0 through 9. 

Binary Number System 

The binary system is a base-2 number system that is used by computers for 
internal representation. The alphabet consists of two digits 0 and 1. Each 
binary digit is called a bit (standing for binary digit). Thus, 1021 is not a valid 
binary number. 

In the binary system, using n bits, we can represent numbers from 0 through 
(2n - 1 )-a total of 2n different values. We need m bits to represent X different 
values where 

m = flog2 Xl 

For example, 150 different values can be represented by using 

rtog2 1501 = f7.2291 = 8 bits 

In fact, using 8 bits, we can represent 2s = 256 different values (Le., from 0 
through 255D). 

Octal Number System 

This is a base-8 number system with the alphabet consisting of digits 0 through 
7. Thus, 181 is not a valid octal number. The octal numbers are often used 
to express binary numbers in a compact way. For example, we need 8 bits to 
represent 256 different values. The same range of numbers can be represented 
in the octal system by using only 

flogs 2561 = f2.6671 = 3 digits 

For example, the number 230Q is written in the binary system as 10011000B, 
which is difficult to read and error prone. In general, we can reduce the length 
by a factor of 3. As we shall see in the next section, it is straightforward to go 
back to the binary equivalent-which is not the case with the decimal system. 



Section A.2 Number Systems Conversion 523 

Hexadecimal Number System 

This is a base-16 number system. The alphabet consists of digits 0 through 9 and 
letters A through F. In this text, we use capital letters consistently, even though 
lowercase and uppercase letters can be used interchangeably. For example, 
FEED is a valid hexadecimal number, whereas GEFF is not. 

The main use of this number system is to conveniently represent long binary 
numbers. The length of a binary number expressed in the hexadecimal system 
can be reduced by a factor of 4. Consider the previous example again. The 
binary number 10011 OOOB can be represented as 98H. Debuggers, for example, 
display information-addresses, data, etc.-in hexadecimal representation. 

A.2 Number Systems Conversion 

When we are dealing with several number systems, there is often a need to 
convert numbers from one system to another. In the following, we look at how 
we can perform these conversions. 

A.2.t Conversion to Decimal 

To convert a number, expressed in the base-b system, to the decimal system, we 
merely perform the arithmetic calculations of Equation A.l given on page 520, 
i.e., multiply each digit by its weight and add the results together. Note that 
these arithmetic calculations are done in the decimal system. 

Example A.I Conversion from binary to decimal 

Convert the binary number 10100111B into its equivalent in the decimal 
system. 

10100111B = 1.27 + 0 . 26 + 1 .25 + 0 . 24 + 
o . 23 + 1 . 22 + 1 . 21 + 1 . 2° 

1670 

Notice that the positional weights increase from right to left as 

1,2,4,8,16,32,64,128. 

DDDDDD 

Example A.2 Conversion from octal to decimal 



524 Appendix A Internal Data Representation 

Convert the octal number 247Q into its equivalent in the decimal system. 

247Q 2 . g2 + 4 . gl + 7 . gO 

167D 

Example A.3 Conversion from hexadecimal to decimal 

DDDDDD 

Convert the hexadecimal number A 7H into its equivalent in the decimal 
system. 

A7H A·161 +7.160 

10 . 161 + 7 . 160 

167D 

DDDDDD 

We can obtain an iterative algorithm to convert a number to its decimal 
equivalent by observing that a number in base b can be written as: 

dIdo d l x b l +do x bO 

(dl X b) + do 

d2dldo d2 x b2 +dl x b l +do x bO 

«d2 x b) + ddb + do 

d3 X b3 + d2 X b2 + dl X b l + do x bO 

«(d3 x b) + d2)b + dl)b + do 

The following algorithm summarizes this process. 
Algorithm: Conversion from base b to the decimal system 
Input: A number dn-Idn ... dIdo in base b 
output: Equivalent decimal number 
Procedure: The digits of the input number are processed from left to right one 
digit at a time. 

Result:= 0 
for (i = n - 1 downto 0) 

Result := (Result x b ) + di 

end for 



Section A.2 Number Systems Conversion 525 

We now show the workings of this algorithm by converting 247Q into decimal. 

initial value: Result := 0 
After iteration 1: Result:= (0 x 8) + 2 = 2D 
After iteration 2: Result := (2 x 8) + 4 = 20D 
After iteration 3: Result:= (20 x 8) + 7 = 167D 

This is the correct answer, as shown in Example A.2. 

A.2.2 Conversion from Decimal 

Theoretically, we could use the same procedure to convert a number from the 
decimal system into a target number system. However, the arithmetic calcula
tions (multiplications and additions) should be done in the target system base. 
For example, to convert from decimal to hexadecimal, the multiplications and 
additions involved should be done in base 16, not in base 10. Since we are not 
used to performing arithmetic operations in nondecimal systems, this is not a 
pragmatic approach. 

Luckily, there is a simple method that allows such base conversions while 
performing the arithmetic in the decimal system. The procedure is: 

Divide the decimal number by the base of the target number system 
and keep track of the quotient and remainder. Repeatedly divide the 
successive quotients while keeping track of the remainders generated 
until the quotient is zero. The remainders generated during the pro
cess, written in reverse order of generation from left to right, form 
the equivalent number in the target system. 

This conversion process is shown in the following algorithm. 
Algorithm: Decimal to base b conversion 
Input: A number dn-Idn ... dIdo in decimal 
Output: Equivalent number in the target base b number system 
Procedure: Result digits are obtained from left to right. MOD is the modulo 
operator and DIY is the integer divide operator. 

Quotient := decimal number to be converted 
while (Quotient -=1= 0) 

next most significant digit of result := Quotient MOD b 
Quotient:= Quotient DIY b 

end while 

Example A.4 Conversion from decimal to binary 

Convert the decimal number 167 into its equivalent in the binary system. 



526 Appendix A Internal Data Representation 

167/2 
83/2 
4112 
20/2 
10/2 
5/2 
2/2 
112 

quotient 
83 
41 
20 
10 
5 
2 
1 
o 

remainder 
1 
1 
1 
o 
o 
1 
o 
1 

The desired binary number can be obtained by writing the remainders gener
ated in the reverse order from left to right. For this example, the binary num
ber is 10100111B. This agrees with the result of Example A.l on page 523. 

DDDDDD 

To understand why this algorithm works, let M be the decimal number 
that we want to convert into its equivalent representation in the base-b target 
number system. Let dndn-l ... dIdo be the equivalent number in the target 
system. Then 

M dndn-l ... dIdo 

= dn · bn + dn-l . bn- l + ... + dl . b l + do· bO 

Now, to get do, divide M by b. 

M = (dn . bn-l + dn-l . bn-2 + ... + dl) + do 
b b 

do 
QI+-'; 

Since do is less than b, it represents the remainder of M/b division. To obtain 
the d l digit, divide QI by b. The algorithm merely formalizes this procedure. 

Example A.S Conversion from decimal to octal 

Convert the decimal number 167 into its equivalent in octal. 

167/8 
20/8 

218 

quotient 
20 
2 
o 

remainder 
7 
4 
2 



Section A.2 Number Systems Conversion 527 

Therefore, 1670 = 247Q. From Example A.2 on page 524, we know that this 
is the correct answer. 000000 

Example A.6 Conversion from decimal to hexadecimal 

Convert the decimal number 167 into its equivalent in hexadecimal. 

167/16 
10116 

quotient 
10 
o 

remainder 
7 
A 

Therefore, 1670 = 7 AH, which is the correct answer (see Example A.3 on 
page 524). 000000 

A.2.3 Conversion among Binary, Octal, and Hexadecimal 

Conversion among binary, octal, and hexadecimal number systems is relatively 
easier and more straightforward. Conversion from binary to octal involves 
converting 3 bits at a time, while binary to hexadecimal conversion requires 
converting 4 bits at a time. 

Binary/Octal Conversion 

To convert a binary number into an equivalent octal number, form 3-bit groups 
starting from the right. Add extra O's at the lefthand side of the binary number 
if the number of bits is not a multiple of 3. Then replace each group of 3 bits 
by its equivalent octal digit using Table A.l. With practice, you don't need to 
refer to the table, as you can easily remember the replacement octal digit. Why 
three bit groups? Simply because 23 = 8. 

Example A.7 Conversion from binary to octal 

Convert the binary number 10100111 to its equivalent in octal. 

247 ,.....,.-,,.....,.-, ,.....,.-, 
10100111B OlOl00I11B 

247Q 

Notice that we have added a leftmost 0 (shown in bold) so that the number 
of bits is 9. Adding O's on the lefthand side does not change the value of a 



528 Appendix A Internal Data Representation 

Table A.I 3-bit binary to octal conversion 

3-bit Binary 
000 
001 
010 
all 
100 
101 
110 
111 

Octal digit 
a 
1 
2 
3 
4 
5 
6 
7 

number. For example, in the decimal system, 35 and 0035 represent the same 
value. DDDDDD 

We can use the reverse process to convert numbers from octal to binary. 
For each octal digit, write the equivalent 3-bit group from Table A.1. You 
should write exactly 3 bits for each octal digit even if there are leading a's. For 
example, for octal digit 0, write the three bits 000. 

Example A.S Conversion from octal to binary 

The following two examples illustrate conversion from octal to binary. 

105 
,-'-0, ,-'-0, ,-'-0, 

105Q = 001 000 101 B 
247 

,-'-0, ,-'-0, ,-'-0, 

247Q = 010 100 111 B 

If you want an 8-bit binary number, throwaway the leading a in the binary 
number. D D D D D D 

BinarylHexadecimal Conversion 

The process for conversion from binary to hexadecimal is similar except that 
we use 4-bit groups instead of 3-bit groups because 24 = 16. For each group 
of 4 bits, replace it by the equivalent hexadecimal digit from Table A.2. If the 
number of bits is not a multiple of 4, pad a's at the left. 



Section A.2 Number Systems Conversion 529 

Table A.2 4-bit binary to hexadecimal conversion 

4-bit Binary Hex digit 4-bit Binary Hex digit 
0000 0 1000 8 
0001 1 1001 9 
0010 2 1010 A 
0011 3 1011 B 
0100 4 1100 C 
0101 5 1101 0 
0110 6 1110 E 
0111 7 1111 F 

Example A.9 Binary to hexadecimal conversion 

Convert the binary number 1101011111 into its equivalent hexadecimal 
number. 

1101011111B 

3 5 F 
~~~ 

0011 0101 1111 B

35FH

As in the octal to binary example, we have added two O's on the left to make
the total number of bits a multiple of 4 (i.e., 12). 000000

The process can be reversed to convert from hexadecimal to binary. Each
hex digit should be replaced by exactly four binary bits that represent its value
(see Table A.2). An example follows.

Example A.tO Hex to binary conversion

Convert the hexadecimal number BO 1 0 into its equivalent binary number.

B OlD
~~~~ 

B01DH = 1011 000000011101B 

000000 

As you can see from these examples, the conversion process is simple if 
we are working among binary, octal, and hexadecimal number systems. With 
practice, you will be able to do conversions among these number systems almost 
instantly. 



530 Appendix A Internal Data Representation 

If you don't use a calculator, division by 2 is easier to perform. Since con
version from binary to hex or octal is straightforward, an alternative approach 
to converting a decimal number to either hex or the octal is to first convert the 
decimal number to binary and then from binary to hex or octal. 

Decimal ==> Binary ==> Hex or Octal 

The disadvantage, of course, is that for large numbers, division by 2 tends to be 
long and thus may lead to simple errors. In such a case, for binary conversion 
you may want to convert the decimal number to hex or the octal number first 
and then to binary. 

Decimal ==> Hex or Octal ==> Binary 

A final note: You don't normally require conversion between hex and octal 
numbers. If you have to do this as an academic exercise, use binary as the 
intermediate form, as shown below. 

Hex ==> Binary ==> Octal 
Octal ==> Binary ==> Hex 

A.3 Unsigned Integer Representation 

Now that you are familiar with different number systems, let us tum our attention 
to how integers (numbers with no fractional part) are represented internally in 
computers. Of course, we know that the binary number system is used internally. 
Still, there are a number of other details that need to be sorted out before we 
have a workable internal number representation scheme. 

We begin our discussion by considering how unsigned numbers are repre
sented using a fixed number of bits. We then proceed to discuss the represen
tation for signed numbers in the next section. 

The most natural way to represent unsigned (i.e., non-negative) numbers is 
to use the equivalent binary representation. As discussed in Section A.I.I, a 
binary number with n bits can represent 2n different values, and the range of the 
numbers is from 0 to (2n -1). Padding ofO's on the left can be used to make the 
binary conversion of a decimal number equal exactly N bits. For example, to 
represent 16D we need rtog2 161 = 5 bits. Therefore, 16D = lOOOOB. However, 
this can be extended to a byte (i.e., N = 8) as 

00010000B 

or to the word size (i.e., N = 16) as 

00000000 00010000B 



Section A.3 Unsigned Integer Representation 531 

A problem arises if the number of bits required to represent an integer in 
binary is more than the N bits we have. Clearly, such numbers are outside the 
range of numbers that can be represented using N bits. Recall that using N 
bits, we can represent any integer X such that 

0.:::: X':::: 2N - 1 

A.3.t Arithmetic on Unsigned Integers 

Addition 

Since the internal representation of unsigned integers is the binary equivalent, 
binary addition should be performed on these numbers. Binary addition is 
similar to decimal addition except that we are using the base-2 number system. 

When you are adding two bits Xi and Yi, you generate a result bit Zi and a 
possible carry bit Caul' For example, in the decimal system when you add 6 
and 7, the result digit is 3 and there is a carry. The following table, called a 
truth table, covers all possible bit combinations that Xi and Yi can assume. 

Input bits Output bits 
Xi Yi Zi CaUl 

0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

This truth table describes the functionality of what is called a half adder to add 
just two input bits. Such an adder is sufficient only to add the least significant 
two bits of a binary number. For other bits, there may be a third bit--carry-out 
generated by adding the bits just right of the current bit position. 

This addition involves three bits-two input bits Xi and Yi, as in the half 
adder, and a carry-in bit Cin from bit position (i -1). The required functionality 
is shown in Table A.3, which corresponds to that of the full adder. 

Given this truth table, it is straightforward to perform binary addition. For 
each three bits involved, use the truth table to see what the output bit value is 
and if a carry bit is generated. The carry bit CaUl generated at bit position i will 
go as the carry-in C in to bit position (i + 1). Here is an example. 

Example A.11 Binary addition o/two 8-bit numbers 



532 Appendix A Internal Data Representation 

Table A.3 Truth table for binary addition 

Input bits 

Xi Yi 

0 0 
0 0 
0 1 
0 1 
1 0 
1 0 
1 1 
1 1 

001110 +--- Cin 

174D = 10101110B 
75D = 01001011B 

249D = 11111001B 

Output bits 

en Zi Cout 

0 0 0 
1 1 0 
0 1 0 
1 0 1 
0 1 0 
1 0 1 
0 0 1 
1 1 1 

000000 

An overflow is said to have occurred if there is a carry-out of the leftmost 
bit position, as shown in the following example. 

Example A.12 Binary addition with overflow 

Addition of 1740 and 910 results in an overflow, as the result is outside 
the range of the numbers represented by using 8 bits. 

indicates 
overflow 

-!-
1111111 0 +--- Cin 

174D 10101110B 
91D 01011011B 

265D i- 00001001B 

The overflow condition implies that the sum is not in the range of numbers that 
can be represented using 8 bits-which is 0 through 2550. To represent 2650, 
we need 9 bits. You can verify that 100001001B is the binary equivalent of 
2650. 000000 



Section A.3 Unsigned Integer Representation 533 

Table A.4 Truth table of binary subtraction 

Input bits Output bits 
Xi Yi Bin Zi Bout 

0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

Subtraction of Unsigned Binary Numbers 

The subtraction operation is similar to the addition operation. The truth table 
for binary subtraction is shown in Table A.4. The inputs are two input bits Xi 

and Yi, and a borrow-in Bi n. The subtraction operation generates a result bit Zi 

and a borrow-out Bout. Table A.4 shows the two output bits when Xi - Yi is 
performed. 

Example A.13 Binary subtraction of two 8-bit numbers 

Perform binary subtraction of 110D from 201D. 

1111110 ~ Bin 

2010 = 11001001B 
110D = 01101110B 

91D = 01011011B 

000000 

If a borrow is produced out of the leftmost bit position, an underflow is said to 
have occurred indicating that the result is too small to be represented. Since 
we are considering only non-negative integers, any negative result causes an 
underflow, as shown in the following example. 

Example A.14 Binary subtraction with underflow 

Subtracting 202D from 201D results in an underflow, as the result is nega
tive. 



534 Chapter A Internal Data Representation 

indicates 
underflow 

-I-
11111110 +- Bin 

201D 11001001B 
202D 11001010B 

-10 =1= 11111111B (= 255D) 

Since the result -1 is too small, it cannot be represented. In fact, the result 
111111111B represents -ID in the 2's complement representation of signed 
numbers, as we shall see in Section A.4.4. DDDDDD 

In practice, the subtract operation is treated as the addition of the negated 
second operand. That is, 50D-40D is treated as 50D + (-40D). Then, of course, 
we need to discuss how the signed numbers are represented. This is the topic of 
the next section. Now, however, let us look at how multiplication and division 
operations are done on unsigned binary numbers. This information is useful if 
you want to write multiplication/division routines in assembly language. For 
example, multiplying two 64-bit numbers is not supported by Pentium. While 
it is unlikely that you will write such a routine, discussion of multiplication and 
division gives the basic concepts involved. 

Multiplication 

Let us now consider unsigned integer multiplication. Multiplication is more 
complicated than either addition or subtraction operations. Multiplying two 
n-bit numbers could result in a number that requires 2n bits to represent. For 
example, multiplying two 16-bit numbers could produce a 32-bit result. 

To understand how binary multiplication is done, it is useful to consider 
decimal multiplication like when you first learned multiplication. Here is an 
example. 

Example A.IS Decimal multiplication 

123 +- multiplicand 
x 456 +- multiplier 

123 x 6 :::} 738 
123 x 5 :::} 615 
123 x 4:::} 492 
Product :::} 56088 

DDDDDD 



Section A.3 Unsigned Integer Representation 535 

We have started with the least significant digit of the multiplier, and the partial 
product 123 x6 = 738 is computed. The next higher digit (5) of the multiplier 
is used to generate the next partial product 123 x5 = 615. But since digit 5 has 
a positional weight of 10, we should actually do 123x50 = 6150. This is im
plicitly done by left shifting the partial product 615 by one digit position. The 
process is repeated until all digits of the multiplier are processed. Binary mul
tiplication follows exactly the same procedure except that the base-2 arithmetic 
is performed, as shown in the next example. 

Example A.16 Binary multiplication of unsigned integers 

14D =:} 1110B 
lID =:} x 1011B 
111 0 x 1 =:}---:-1-:-11':'""':0=--

1110 x I=:} 1110 
1110 x 0 =:} 0000 
1110 xl=:} 1110 
Product =:} ---:"1-::"00-::-1-=-1:-:0:-:1-=0'::"B 

~ multiplicand 
~ multiplier 

= 154D 

000000 

The following algorithm formalizes this procedure with a slight change. 

Algorithm: Multiplication of unsigned binary number 
Input: Two n-bit numbers-a multiplicand and a multiplier 
Output: A 2n-bit result that represents the product 
Procedure: 

product:= 0 
for (i = 1 to n) 

if (least significant bit of the multiplier = 1) 
then 

product:= product + multiplicand 
end if 
shift left multiplicand by one bit position 

{Equivalent to multiplying by 2} 
shift right the multiplier by one bit position 

{This will move the next higher bit into 



536 Appendix A Internal Data Representation 

the least significant bit position for testing} 
end for 

Here is how the algorithm works on the data of Example A.16. 

Division 

iteration 
initial values 

after iteration 1 
after iteration 2 
after iteration 3 
after iteration 4 

product 
00000000 
00001110 
00101010 
00101010 
10011010 

multiplicand 
1110 

11100 
111000 

1110000 
11100000 

multiplier 
1011 

101 
10 

1 
o 

The division operation is complicated as well. It generates two results: a 
quotient and a remainder. If we are dividing two n-bit numbers, division 
could produce an n-bit quotient and another n-bit remainder. As in the case of 
multiplication, let us first look at a decimal longhand division example. 

Example A.I7 Decimal division 

Use longhand division to divide 247861D by 123D. 

2015 ~ quotient 

divisor -+ 123) 247861 
123 x 2 => -246 

18 
123 x O=> -00 

186 
123 x I=> -123 

631 
123 x 5=> -615 

16 ~ remainder 

000000 

Binary division is simpler than decimal division because binary numbers 
are restricted to O's and 1 's-either subtract the divisor or do nothing. Here is 
an example of binary division. 



Section A.3 Unsigned Integer Representation 537 

Example A.IS Binary division of unsigned numbers 

Divide two 4-bit binary numbers: dividend is 1011B (110) and the divisor 
is 0010B (20). The dividend is extended to 8 bits by padding O's at the lefthand 
side. 

00101 ~ quotient 

divisor -+ 0010) 00001011 
0010 x 0 =} -0000 

0001 
0010 x 0 =} -0000 

0010 
0010 xl=} -0010 

0001 
0010 x 0 =} -0000 

0011 
0010 xl=} -0010 

001 ~ remainder 

The quotient is 00101B (50) and the remainder is 001B (10). 000000 

The following binary division algorithm is based on this longhand division 
method. 

Algorithm: Division of two n-bit unsigned integers 
Inputs: A 2n-bit dividend and n-bit divisor 
Outputs: An n-bit quotient and an n-bit remainder replace the 2n-bit dividend. 
Higher-order n bits of the dividend (dividend_Hi) will have the n-bit remainder, 
and the lower-order n bits (dividend_Lo) will have the n-bit quotient. 
Procedure: 

for(i = 1 ton) 
shift the 2n-bit dividend left by one bit position 

{vacated right bit is replaced by a O.} 
if (dividend_Hi::: divisor) 
then 

dividend_Hi := dividend_Hi - divisor 
dividend := dividend + 1 {set the rightmost bit to I} 

end if 
end for 



538 Appendix A Internal Data Representation 

The following table shows how the algorithm works on the data of Exam
ple A.IB. 

iteration dividend 
initial values 00001011 

after iteration 1 00010110 
after iteration 2 00001101 
after iteration 3 00011010 
after iteration 4 00010101 

The dividend after iteration 4 is interpreted as 

0001 0101 
"-v--' "-v--' 

remainder quotient 

divisor 
0010 
0010 
0010 
0010 
0010 

The lower four bits of the dividend (01OIB = 50) represent the quotient, and 
the upper four bits (OooIB = 10) represent the remainder. 

A.4 Signed Integer Representation 

There are several ways in which signed numbers can be represented. These 
include: 

• Signed-magnitude 

• Excess-M 
• 1 's complement 
• 2's complement 

The following subsections discuss each of these methods. However, most mod
em computer systems, including Pentium-based systems, use the 2's comple
ment representation, which is closely related to the 1 's complement represen
tation, for signed integers. Therefore, our discussion of the other two represen
tations is rather brief. 

A.4.1 Signed-Magnitude Representation 

In signed-magnitude representation, one bit is reserved to represent the sign of 
a number. The most significant bit is used as the sign bit. Conventionally, a 
sign bit value of 0 is used to represent a positive number and 1 for a negative 
number. Thus, if we have N bits to represent a number, (N - 1) bits are 
available to represent the magnitude of the number. For example, when N is 4, 



Section A.4 Signed Integer Representation 539 

Table A.S Number representation using 4-bit binary (All numbers except in Binary column are 
in decimal) 

Unsigned Binary Signed Excess-7 1 's complement 2's complement 
representation pattern magnitude 

0 
1 
2 
3 
4 
S 
6 
7 
8 
9 
10 
11 
12 
13 
14 
IS 

0000 0 -7 0 0 
0001 1 -6 1 1 
0010 2 -S 2 2 
0011 3 -4 3 3 
0100 4 -3 4 4 
0101 S -2 S S 
0110 6 -1 6 6 
0111 7 0 7 7 
1000 -0 1 -7 -8 
1001 -1 2 -6 -7 
1010 -2 3 -S -6 
1011 -3 4 -4 -S 
1100 -4 S -3 -4 
1101 -S 6 -2 -3 
1110 -6 7 -1 -2 
1111 -7 8 -0 -1 

Table A.S shows the range of numbers that can be represented. For comparison, 
the unsigned representation is also included in this table. The range of n-bit 
signed-magnitude representation is _2n - 1 + 1 to +2n - 1 - 1. Note that in this 
method, 0 has two representations: +0 and -0. 

A.4.2 Excess-M Representation 

In this method, a number is mapped to a non-negative integer so that its binary 
representation can be used. This transformation is done by adding a value 
called bias to the number to be represented. For an n bit representation, the 
bias should be such that the mapped number is less than 2n. 

To find out the binary representation of a number in this method, simply 
add the bias M to the number and find the corresponding binary representation. 
That is, the representation for number X is the binary representation for the 
number X + M, where M is the bias. For example, in the excess-7 system, 
-3D is represented as 

-3+7 = +4 = 0100B 



540 Appendix A Internal Data Representation 

Numbers represented in excess-M are called biased integers for obvious 
reasons. Table A,5 gives examples of biased integers using 4-bit binary num
bers. This representation, for example, is used to store the exponent values in 
the floating-point representation (discussed in Section A.5). 

A.4.3 1 's Complement Representation 

Like in the excess-M representation, negative values are biased as well in the 
next two representations-1 's complement and 2 's complement representations. 
For positive numbers, the standard binary representation is used. As in the 
signed-magnitude representation, the most significant bit indicates the sign 
(0 = positive and 1 = negative). In 1 's complement representation, negative 
values are biased by bn - 1, where b is the base or radix of the number system. 
For the binary case that we are interested in here, the bias is 2n - 1. For 
the negative value - X, the representation used is the binary representation for 
(2n - 1) - X. For example, if n is 4, we can represent -5 as 

1111B 
-01OIB 

1010B 

As you can see from this example, the l's complement of a number can 
be obtained by merely complementing individual bits (converting O's to l's 
and vice versa) of the number. Table A.5 shows 1 's complement representation 
using 4 bits. In this method also, 0 has two representations. The most significant 
bit is used to indicate the sign. To find the magnitude of a negative number 
in this representation, apply the process used to obtain 1 's complement (i.e., 
complement individual bits) again. 

Example A.19 Finding magnitude of a negative number in l' s complement 
representation 

Find the magnitude of 1010B that is in 1 's complement representation. 
Since the most significant bit is 1, we know that it is a negative number. 

1010B ~complement bits~ 0101 = 5D 
Therefore, 1010B = -5D. DDDDDD 

Addition 

Standard binary addition (discussed in Section A.3.1) can be used to add two 
numbers in 1 's complement form with one exception-the carry out of the 



Section A.4 Signed Integer Representation 541 

leftmost bit (i.e., sign bit) should be added to the result. Since carry out can be 
o or I, this additional step is needed only when a carry is generated out of the 
sign bit position. 

Example A.20 Addition in l' s complement representation 

The first example shows addition of two positive numbers. The second example 
illustrates how subtracting 5 - 2 can be done by adding -2 to 5. Notice that the 
carry out of the sign bit position is added to the result to get the final answer. 

+50 = 0101B 
+20 = 0010B 

+70 = 0111B 

+50 = 0101B 
-20 = 1101B 

10010B 
4 1 

+30 = 00l1B 

The next two examples cover the remaining two combinations of the input 
operands. 

-50 = 1010B 
+20 = 0010B 

-30 = 1100B 

-50 = 1010B 
-20 = 1101B 

10111B 
4 1 

-70 = 1000B 

Recall that, from Example A.I2, a carry out of the most significant bit position 
indicates an overflow condition for unsigned numbers. This, however, is not 
true here. 000000 

Overflow 
With unsigned numbers, we have stated that the overflow condition can be 
detected when there is a carry out of the leftmost bit position. Since this no 
longer holds here, how do we know if an overflow has occurred? Let us see 
what happens when we create an overflow condition. 

Example A.21 Overflow examples 

Here are two overflow examples that use I 's complement representation for 
signed numbers. 



542 Appendix A Internal Data Representation 

+5D 
+3D 

01018 
00118 

+8D i- 10008 (= -70) 

-5D = 10108 
-4D = 10118 

101018 
4 1 

-9D i- 01108 (= +60) 

Clearly, +8 and -9 are outside the range. Remembering that the leftmost bit is 
the sign bit, 1000B represents -7 and 0110B represents +6. Both answers are 
incorrect. 000000 

If you observe these two examples closely, you notice that in both cases, the 
sign bit of the result is reversed. In fact, this is the condition to detect overflow 
when signed numbers are added. Also note that overflow can only occur with 
addition if both operands have the same sign. 

Subtraction 

Subtraction can be treated as the addition of a negative number. We have already 
seen this in Example A.20. 

Example A.22 Subtraction in l' s complement representation 

To subtract 7 from 4 (i.e., to perform 4 - 7), get 1 's complement represen
tation of - 7 and add this to 4. 

+4D = 01008---+---+---+---+01008 
Its complement 

-7D = 01118---+---+---+---+10008 

-3D = 11008 
The result is 11008 = -3, which is the correct answer. 000000 

Overflow 
The overflow condition cannot arise with subtraction if the operands involved 
are of the same sign. The overflow condition can be detected here if the sign 
of the result is the same as that of the subtrahend (i.e., second operand). 

Example A.23 A subtraction example with overflow 

Subtract -3 from 5 (i.e., perform 5 - (-3». 



Section A.4 Signed Integer Representation 543 

+ 50 = 0101 B -----+ -----+ -----+ -----+ 0 101 B 
l's complement 

- ( - 30) = 11 OOB -----+ -----+ -----+ -----+ 00 11B 
- --
+80 =j:. 1000B 
Overflow has occurred here because the subtrahend is negative and the 
result is negative. 000000 

Example A.24 Another subtraction example with underflow 

Subtract 3 from -5 (i.e., perform -5 - (3)). 

- 50 = 101 OB -----+ -----+ -----+ -----+ 101 OB 
l' s complement 

- ( +30) = 0011 B -----+ -----+ -----+ -----+ 11 OOB 

-80 

10110B 

4 1 
0111B 

An underflow has occurred in this example, as the sign of the subtrahend 
is the same as that of the result (both are positive). 000000 

Representation of signed numbers in 1 's complement representation allows the 
use of simpler circuits for performing addition and subtraction than the other two 
representations we have seen so far (signed-magnitude and excess-M). Some 
older computer systems used this representation for integers. An irritant with 
this representation is that 0 has two representations. Furthermore, the carry 
bit generated out of the sign bit will have to be added to the result. The 2's 
complement representation avoids these pitfalls. As a result, 2's complement 
representation is the choice of current computer systems. 

A.4.4 2 's Complement Representation 

In 2's complement representation, positive numbers are represented the same 
way as in the signed-magnitude and l's complement representations. The neg
ative numbers are biased by 2n, where n is the number of bits used for number 
representation. Thus, the negative value -A is represented by (2n - A) us
ing n bits. Since the bias value is one more than that in the l's complement 
representation, we have to add 1 after complementing to obtain the 2's comple
ment representation of a negative number. We can, however, discard any carry 
generated out of the sign bit. 

Example A.2S 2' s complement representation 



544 Appendix A Internal Data Representation 

Find the 2's complement representation of -6, assuming that 4 bits are used 
to store numbers. 

60 = 0110B~ complement ~ 1001B 
add 1 lB 

1010B 

Therefore, 101 OB represents -6D in 2's complement representation. 000000 

Table A,5 shows the 2's complement representation of numbers using 4 bits. 
Notice that there is only one representation for O. The range of an n-bit 2's 
complement integer is _2n - 1 to +2n - 1 - 1. For example, using 8 bits, the 
range is -128 to + 127. 

To find the magnitude of a negative number in the 2's complement repre
sentation, like in the 1 's complement representation, simply reverse the sign of 
the number. That is, use the same conversion process (i.e., complement and 
add 1 and discard any carry generated out of the leftmost bit). 

Example A.26 Finding magnitude of a negative number in 2's complement 
representation 

Find the magnitude of the 2's complement integer 101OB. 
Since the most significant bit is 1, we know that it is a negative number. 

1010B~ complement ~0101B 
add 1 lB 

0110B (= 6D) 

The magnitude is 6. That is, 1010B = -6D. 000000 

Addition and Subtraction 

Both of these operations work in the same manner as in the case of 1 's comple
ment representation except that any carry out of the leftmost bit (i.e., sign bit) 
is discarded. Here are some examples. 

Example A.27 Examples of addition operation 



Section A.5 Floating-Point Representation 

+5D = 0101B 
+2D = 0010B 
+7D = 0111B 

-5D = 1011B 
+2D = 0010B 
-3D = 1101B 

+5D = 0101B 
-2D = 1110B 
+3D 10011B 
Discarding the carry leaves 
the result 00l1B = +30. 

-5D = 1011B 
-2D = 1110B 
-7D 11001B 
Discarding the carry leaves 
the result 1001B = -70. 

545 

DDDDDD 

As in the 1 's complement case, subtraction can be done by adding the negative 
value of the second operand. 

A.S Floating-Point Representation 

So far we have discussed various ways of representing integers-both unsigned 
and signed. Now let us tum our attention to representation of numbers with 
fractions (called real numbers). We start our discussion by looking at how 
fractions can be represented in the binary system. Next we discuss how fractions 
can be converted from decimal to binary and vice versa. Finally, we discuss 
how real numbers are stored in computers. 

A.S.I Fractions 

In the decimal system, which is a positional number system, fractions are rep
resented in a similar manner as integers except for different positional weights. 
For example, when we write in decimal 

0.7913 

the value it represents is 

(7 x lO-l) + (9 x lO-2) + (1 x lO-3) + (3 x lO-4) 

The decimal point is used to identify the fractional part of a number. The 
position immediately right of the decimal point has the weight 10-1, the next 



546 Appendix A Internal Data Representation 

position has the weight 10-2 , and so on. If we count the digit position from the 
decimal point (left to right) starting with 1, the weight of position n is 1 o-n . 

This can be generalized to any number system with base b. The weights 
should be b-n , where n is defined as above. Let us apply this to the binary 
system that is of interest to us. If we write a fractional binary number 

0.11001B 

the decimal value it represents is 

1 .2-1 + 1.2-2 + 0.2-3 + 0.2-4 + 1 .2-5 = 0.78125D 

The period in the binary system is referred to as the binary point. Thus, the algo
rithm to convert a binary fraction to its equivalent in decimal is straightforward. 

Algorithm: Binary fraction to decimal 
Input: A fractional binary number 0.dld2··· dn- 1dn with n bits 

(trailing O's can be ignored.) 
Output: Equivalent decimal value 
Procedure: Bits in the input fraction are processed from right to left starting 
with bit dn • 

decimaLvalue:= 0.0 
for (i = n downto 1) 

decimaLvalue:= (decimaLvalue + di )/b 
end for 

Here is an example showing how the algorithm works on the binary fraction 
0.1100IB. 

iteration 
initial value 

iteration 1 
iteration 2 
iteration 3 
iteration 4 
iteration 5 

decimaL value 
0.0 

(0.0 + 1)/2 =0.5 
(0.5 + 0)/2 = 0.25 

(0.25 + 0)/2 = 0.125 
(0.125 + 1 )/2 = 0.5625 

(0.5625 + 1)/2 = 0.78125 

Now that we know how to convert a binary fraction into its decimal equiva
lent, let us look at how we can do the reverse conversion (from decimal fraction 
to equivalent binary). 

This conversion can be done by repeatedly multiplying the fraction by the 
base of the target system, as shown in the following example. 



Section A.5 Floating-Point Representation 547 

Example A.28 Conversion of a fractional decimal number to binary 

Convert the decimal fraction 0.781250 into its equivalent in binary. 

0.78125 x 2 1.5625 ~ 1 
0.5625 x 2 1.125 ~ 1 

0.125 x 2 0.25 ~ 0 
0.25 x 2 0.5 ~ 0 

0.5 x 2 1.0 ~ 1 
Terminate 

The binary fraction is 0.1100lB, which is obtained by taking numbers from top 
and writing them left to right with a binary point. D D D D D D 

What we have done is to multiply the number by the target base (to convert 
to binary use 2) and the integer part of the multiplication result goes as the first 
digit immediately right of the radix or base point. Take the fractional part of 
the multiplication result and repeat the process to produce more digits. The 
process stops when the fractional part is 0, as in the above example, or when 
you have the desired number of digits in the fraction. This is similar to what we 
do in the decimal system when dividing 1 by 3. We write the result as 0.33333 
if we want only 5 digits after the decimal point. 

Example A.29 Conversion of a fractional decimal number to octal 

Convert 0.781250 into octal equivalent. 

0.78125 x 8 
0.25 x 8 

Terminate 

6.25 ~ 6 
2.0 ~ 2 

Therefore, the octal equivalent of 0.781250 is 0.62Q. DDDDDD 

Without a calculator, multiplying a fraction by 8 or 16 is not easy. We can 
avoid this problem by using the binary as the intermediate form, as in the case 
of integers. First convert the decimal number to its binary equivalent and group 
3 bits (for octal conversion) or 4 bits (for hexadecimal conversion) from left to 
right (pad O's at right if the number of bits in the fraction is not a multiple of 3 
or 4). 



548 Appendix A Internal Data Representation 

Example A.30 Conversion of a fractional decimal number to octal 

Convert 0.78125D to octal using the binary intermediate form. 

From Example A.28, we know that 0.78125D = 0.11001B. 
Now convert 0.1100lB to octal. 

O. 110 010 = 0.62Q 
"-.-' "-.-' 

6 2 

Notice that we have added a 0 (shown in bold) on the right. DDDDDD 

Example A.31 Conversion of a fractional decimal number to hexadecimal 

Convert 0.78125D to hexadecimal using the binary intermediate form. 

From Example A.28, we know that 0.78125D = 0.11001B. 
Now convert 0.11001B to hexadecimal. 

O. 11001000 = 0.C8H 
"-v-'''-v-' 
12=C 8 

Notice that we have to add three O's on the right to make the number of bits 
equal to 8 (a multiple of 4). DDDDDD 

This conversion process is given by the following algorithm. 

Algorithm: Conversion of fractions from decimal to base b system 
Input: Decimal fractional number 
Output: Its equivalent in base b with a maximum of F digits 
Procedure: The function integer returns the integer part of the argument and 
the function fraction returns the fractional part. 

value := fraction to be converted 
digiccount:= 0 
repeat 

next digit of the result:= integer (value x b) 
value := fraction (value x b) 
digiccount:= digiccount + 1 

«value = 0) OR (digiccount = F» 

We will leave tracing the steps of this algorithm as an exercise. 
If a number consists of both integer and fractional parts, convert each part 

separately and put them together with a binary point to get the desired result. 
This is illustrated in Example A.33 on page 553. 



Section A.5 Floating-Point Representation 549 

A.S.2 Representing Floating-Point Numbers 

A naive way to represent real numbers is to use direct representation-allocate 
1 bits to store the integer part and F bits to store the fractional part, giving us 
the format with N (= I + F) bits as shown below: 

?? .. ?? ?? .. ?? 
~.~ 

I bits F bits 

This is called fixed-point representation. 
Representation of integers in computers should be done with a view of 

the range of numbers that can be represented. The desired range dictates the 
number of bits required to store a number. As discussed earlier, 

the number of bits required = rtogb Rl 
where R is the number of different values to be represented. For example, to 
represent 256 different values, we need 8 bits. The range can be 0 to 2550 (for 
unsigned numbers) or -1280 to + 1270 (for signed numbers). To represent 
numbers outside this range requires more bits. 

Representation of real numbers introduces one additional factor: once we 
have decided to use N bits to represent a real number, the next question is where 
do we place the binary point? That is, what is the value of F? This choice leads 
to a tradeoff between the range and precision. 

Precision refers to how accurately we can represent a given number. For 
example, if we use 3 bits to represent the fractional part(F = 3), then we have to 
round the fractional part of a number to the nearest 0.125 (= 2-3) to represent. 
Thus, we lose precision by introducing rounding errors. For example, 7.800 
may be stored as 7.750. In general, if we use F bits to store the fractional part, 
the rounding error is bound by ~ . 2~ or 2/+ 1 • 

In summary, range is largely determined by the integer part, and precision 
is determined by the fractional part. Thus, given N bits to represent a real 
number where N = I + F, the tradeoff between range and precision is obvious. 
Increasing the number of bits F to represent the fractional part increases the 
precision but reduces the range, and vice versa. 

Example A.32 Range versus precision tradeoff 

Suppose we have N = 8 bits to represent positive real numbers using the 
fixed-point representation. Show the range versus precision tradeoff when F is 
changed from 3 to 4 bits. 

When F = 3, the value of! is I = N - F = 5 bits. Using this allocation of bits 
for F and I, a real number X can be represented that satisfies 0 ~ X < 25 (i.e., 
o ~ X < 32). The precision (i.e., maximum rounding error) is 23~1 = 0.0625. 



550 Appendix A Internal Data Representation 

If we increase F by 1 bit to 4 bits, the range decreases approximately by 
half to 0 ::s X < 24 (i.e., 0 ::s X < 16). The precision, on the other hand, 
improves to 24~1 = 0.03125. DDDDDD 

The fixed-point representation is simple but suffers from the serious disad
vantage of limited range. This may not be acceptable to most applications. In 
particular, fixed-point's inability to represent very small and very large numbers 
without requiring a large number of bits is unacceptable in many applications. 

Using scientific notation, we can make better use of the given number of 
bits to represent a real number. The next section discusses the floating-point 
representation that is based on the scientific notation. 

A.S.3 Floating-Point Representation 

Using the decimal system for a moment, we can write very small and very large 
numbers in scientific notation as follows: 

1.2345 x 1045 

9.876543 X 10-37 

Expressing such numbers using the positional number notation is difficult to 
write and understand, error prone, and requires more space. In a similar fashion, 
binary numbers can be written in scientific notation. For example, 

+1101.101 x 2+ 11001 13.625 X 225 

= 4.57179 X 108 

As indicated, numbers expressed in this notation have two parts: a mantissa (or 
signijicand) , and an exponent. There can be a sign (+ or -) associated with 
each part. 

Numbers expressed in this notation can be written in several equivalent 
ways, as shown below: 

1.2345 X 1045 

123.45 X 1043 

0.00012345 x 1049 

This causes implementation problems to perform arithmetic operations, com
parisons, etc. This problem can be avoided by introducing a standard form
called normal form. Reverting back to the binary case, a normalized binary 



Section A.5 Floating-Point Representation 551 

form has the format 

where Xj and Yj represent a bit, 1 ~ i ~ M and 0 ~ j < N. The normalized 
form of 

+ 1101.101 X 2+11010 

is 

+ 1.101101 x 2+11101 

We normally write such numbers as 

+ 1.101101E 11101 

To represent such normalized numbers, we might use the format shown below: 

~ ~it If-ooEE:--- N bits -~::;o~1 ~it �f-E<E----- M bits ------::::;O~I 

I Sel exponent ISml mantissa I 

where Sm and Se represent the sign of mantissa and exponent, respectively. 
Implementation of floating-point numbers on computer systems vary from 

this generic format-usually for efficiency reasons or to conform to a standard. 
From here on, we discuss the specific format used by Pentium, which also 
conforms to the IEEE 754 floating-point standard. Such standards are useful, 
for example, to exchange data among several different computer systems and 
to write efficient numerical software libraries. 

Pentium supports three formats for floating-point numbers. Two of these 
are for external use and one for internal use. The internal format is used to 
store temporary results and we will not discuss this format. The remaining two 
formats are shown below: 



552 

Short reals 

bit position 

Long reals 

bit position 

Appendix A Internal Data Representation 

~ ~it h 8 bits ~ 1 "'" 23 bits ".1 

ISm I exponent I mantissa 
I 

31 130 23122 0 

~ ~it I"", 11 bits ".1"", 52 bits 

ISml exponent 
I 

mantissa 

63162 52151 o 

Two points are worth noting about these formats: 

1. The mantissa stores only the fractional part of a normalized number. The 
1 to the left of the binary point is not explicitly stored but implied to save a 
bit. Since this bit is always 1, there is really no need to store it. However, 
representing 0.0 requires special attention, as we shall see later. 

2. There is no sign bit associated with the exponent. Instead, the exponent 
is converted to an excess-M form and stored. For short reals, the bias 
used is 127D (= 7FH) and for long reals, 1023 (=3FFH). 

We now show how a real number can be converted to its floating-point equiva
lent. 

Algorithm: Conversion to floating-point representation. 
Input: A real number in decimal 
Output: Floating-point equivalent of the decimal number 
Procedure: The procedure consists of four steps. 
Step 1: Convert the real number to binary. 

1 a: Convert the integer part to binary using the procedure 
described in Section A.2.2 (page 525). 

1 b: Convert the fractional part to binary using the procedure 
described in Section A.5.1 (page 548). 

lc: Put them together with a binary point. 
Step 2: Normalize the binary number. 

Move the binary point left or right until there is only a 
single 1 to the left of the binary point while adjusting the 
exponent appropriately. You should increase the exponent 
value by 1 if the binary point is moved to the left by one 
bit position; decrement by 1 if moving to the right. 



Section A.3 Unsigned Integer Representation 533 

Table A.4 Truth table of binary subtraction 

Input bits Output bits 
Xi Yi Bin Zi Bout 

a a a a a 
a a 1 1 1 
a 1 a 1 1 
a 1 1 a 1 
1 a a 1 a 
1 a 1 a a 
1 1 a a a 
1 1 1 1 1 

Subtraction of Unsigned Binary Numbers 

The subtraction operation is similar to the addition operation. The truth table 
for binary subtraction is shown in Table A.4. The inputs are two input bits Xi 

and Yi, and a borrow-in Bin. The subtraction operation generates a result bit Zi 

and a borrow-out Bout. Table AA shows the two output bits when Xi - Yi is 
performed. 

Example A.13 Binary subtraction of two 8-bit numbers 

Perform binary subtraction of llOD from 2alD. 

1111110 +- Bin 
201D = 110010018 
110D = 011011108 

91D = 010110118 

000000 

If a borrow is produced out of the leftmost bit position, an underflow is said to 
have occurred indicating that the result is too small to be represented. Since 
we are considering only non-negative integers, any negative result causes an 
underflow, as shown in the following example. 

Example A.14 Binary subtraction with underflow 

Subtracting 2a2D from 2alD results in an underflow, as the result is nega
tive. 



534 Chapter A Internal Data Representation 

indicates 
underflow 

{, 
11111110 +- Bin 

201D 11001001B 
202D 11001010B 

-1D "# 11111111B (= 2550) 

Since the result - 1 is too small, it cannot be represented. In fact, the result 
111111111B represents -10 in the 2's complement representation of signed 
numbers, as we shall see in Section A.4.4. 000000 

In practice, the subtract operation is treated as the addition of the negated 
second operand. That is, 500-400 is treated as 500 + ( -400). Then, of course, 
we need to discuss how the signed numbers are represented. This is the topic of 
the next section. Now, however, let us look at how multiplication and division 
operations are done on unsigned binary numbers. This information is useful if 
you want to write multiplication/division routines in assembly language. For 
example, multiplying two 64-bit numbers is not supported by Pentium. While 
it is unlikely that you will write such a routine, discussion of multiplication and 
division gives the basic concepts involved. 

Multiplication 

Let us now consider unsigned integer multiplication. Multiplication is more 
complicated than either addition or subtraction operations. Multiplying two 
n-bit numbers could result in a number that requires 2n bits to represent. For 
example, multiplying two 16-bit numbers could produce a 32-bit result. 

To understand how binary multiplication is done, it is useful to consider 
decimal multiplication like when you first learned multiplication. Here is an 
example. 

Example A.IS Decimal multiplication 

123 +- multiplicand 
x 456 +- multiplier 

123 x 6 => 738 
123 x 5 => 615 
123 x 4 => 492 
Product=> 56088 

000000 



Section A.3 Unsigned Integer Representation 535 

We have started with the least significant digit of the multiplier, and the partial 
product 123 x 6 = 738 is computed. The next higher digit (5) of the multiplier 
is used to generate the next partial product 123 x 5 = 615. But since digit 5 has 
a positional weight of 10, we should actually do 123x50 = 6150. This is im
plicitly done by left shifting the partial product 615 by one digit position. The 
process is repeated until all digits of the multiplier are processed. Binary mul
tiplication follows exactly the same procedure except that the base-2 arithmetic 
is performed, as shown in the next example. 

Example A.16 Binary multiplication of unsigned integers 

14D =:} 1110B +- multiplicand 
llD =:} x 1011B +- multiplier 
l11Ox1=:} 1110 
l11Ox1=:} 1110 
l11OxO=:} 0000 
l11Ox1=:} 1110 
Product =:} 10011010B = 154D 

DDDDDD 

The following algorithm formalizes this procedure with a slight change. 

Algorithm: Multiplication of unsigned binary number 
Input: Two n-bit numbers-a multiplicand and a multiplier 
Output: A 2n-bit result that represents the product 
Procedure: 

product:= 0 
for (i = 1 to n) 

if (least significant bit of the multiplier = 1) 
then 

product:= product + multiplicand 
end if 
shift left multiplicand by one bit position 

{Equivalent to multiplying by 2} 
shift right the mUltiplier by one bit position 

{This will move the next higher bit into 



536 Appendix A Internal Data Representation 

the least significant bit position for testing} 
end for 

Here is how the algorithm works on the data of Example A.16. 

Division 

iteration 
initial values 

after iteration 1 
after iteration 2 
after iteration 3 
after iteration 4 

product 
00000000 
00001110 
00101010 
00101010 
10011010 

multiplicand 
1110 

11100 
111000 

1110000 
11100000 

multiplier 
1011 

101 
10 

1 
o 

The division operation is complicated as well. It generates two results: a 
quotient and a remainder. If we are dividing two n-bit numbers, division 
could produce an n-bit quotient and another n-bit remainder. As in the case of 
multiplication, let us first look at a decimal longhand division example. 

Example A.17 Decimal division 

Use longhand division to divide 247861D by 123D. 

2015 +- quotient 
--:----

divisor ~ 123) 247861 
123 x 2 =} -246 

18 
123 x O=} -00 

186 
123 x I=} -123 

631 
123 x 5=} -615 

16 +- remainder 

000000 

Binary division is simpler than decimal division because binary numbers 
are restricted to O's and 1 's--either subtract the divisor or do nothing. Here is 
an example of binary division. 



Section A.S Exercises 557 

Floating-point representation used on the IBM PC follows the IEEE 754 
standard. There are three components of a floating-point number: mantissa, 
exponent, and the sign of mantissa. There is no sign associated with the expo
nent. Instead, the exponent is stored as a biased number. We illustrated how 
real numbers can be converted from decimal to floating-point format. 

The last section discussed character representation. We identified some 
desirable properties that a character encoding scheme should satisfy in order to 
facilitate efficient character processing. While there are two character codes
EBCDIC and ASCII-most computers including the IBM PC use ASCII. We 
noted that ASCII satisfies the requirements of an efficient character code. 

A.S Exercises 

A-I How many different values can be represented using four digits in the 
hexadecimal system? What is the range of numbers that can be repre
sented? 

A-2 Repeat the above exercise for the binary system and the octal system. 

A-3 Find the decimal equivalent of the following: 

(a) 737Q 
(b) 11010011B 

(c) AB15H 
(d) 1234H 

(e) 1234Q 
(f) l00I00B 

A-4 To represent numbers 0 through 300 (both inclusive), how many digits 
are required in the following number systems: 

1. binary 

2. octal 

3. hexadecimal 

A-5 What are the advantages of the octal and hexadecimal number systems 
over the binary system? 

A-6 Perform the following number conversions: 

1. 1011010011B = ______ Q 

2. 1011010011B = H 

3. 1204Q= ______ B 

4. ABCDH = ______ B 

A-7 Perform the following number conversions: 

1. 56D = ______ B 



558 Appendix A Internal Data Representation 

2.217D= ______ Q 

3. 150D = H 

Verify your answer by converting your answer back to decimal. 
A-8 Assume that 16 bits are available to store a number. Specify the range of 

numbers that can be represented by the following number systems: 

1. unsigned integer 

2. signed-magnitude 

3. excess-1023 

4. l's complement 

5. 2's complement 

A-9 What is the difference between a half-adder and a full-adder? 
A-10 Perform the following operations assuming that the numbers are unsigned 

integers. Make sure to identify the presence or absence of the overflow 
or underflow condition. 

1. 01011010B + 1001 11 11B 

2. 10110011B + 01101100B 

3. 11110001B + OOOl1OOlB 

4. 10011101B + 11000011B 

5. 01011010B - 1001111lB 

6. 1011001lB - 01101100B 

7. 11110001B -00011001B 

8. 10011101B - 11000011B 

A-II Repeat the above exercise assuming that the numbers are signed integers 
that use the 2's complement representation. 

A-12 Find the decimal equivalent of the following binary numbers assuming 
that the numbers are expressed in: 

1. unsigned integer 

2. signed-magnitude 

3. excess-1023 

4. 1's complement 

5. 2's complement 

(a) 01101110 
(d) 11010011 

(b) 11011011 
(e) 10001111 

(c) 00111101 
(f) 01001101 



Section A.9 Progamming Exercises 559 

A-13 Convert the following decimal numbers into signed-magnitude, excess-
127, 1 's complement, and 2 's complement number systems. Assume that 
8 bits are used to store the numbers. 

(a) 60 
(d) -1 

(b) 0 
(e) 100 

(c) -120 
(f) -99 

A-14 Find the decimal equivalent of the following binary numbers: 

(a) 10101.0101011 
(d) 1011.1011 

(b) 10011.1101 
(e) 1101.001101 

(c) 10011.1010 
(f) 110.111001 

A-15 Convert the following decimal numbers into the short floating-point for
mat: 

1. 19.3125 

2. -250.53125 

A-16 Convert the following decimal numbers into the long floating-point for
mat: 

1. 19.3125 

2. -250.53125 

A-17 Find the decimal equivalent of the following numbers, which are in the 
short floating-point format: 

1. 7B59H 

2. A971H 

3. BBCIH 

A.9 Progamming Exercises 

A-PI Implement the algorithm on page 524 to perform binary-to-decimal con
version in your favorite high-level language. Use your program to verify 
the answers of the exercises that require this conversion. 

A-P2 Implement the algorithm on page 525 to perform decimal-to-binary con
version in your favorite high-level language. Use your program to verify 
the answers of the exercises that require this conversion. 

A-P3 Implement the algorithm on page 552 to convert real numbers from dec
imal to short floating-point format in your favorite high-level language. 
Use your program to verify the answers of the exercise that requires this 
conversion. 



560 Appendix A Internal Data Representation 

A-P4 Implement the algorithm to convert real numbers from the short floating
point format to decimal in your favorite high-level language. Assume 
that the input to the program is given as four hexadecimal digits. Use 
your program to verify the answers of the exercise that requires this 
conversion. 



Appendix B 

Assembling and Linking 
Assembly Language 
Programs 

Objectives 

• To present the structure of the stand-alone assembly language programs 
used in this book 

• To describe the input and output routines provided with this book 
• To explain the assembly process 

In this appendix, we discuss the necessary mechanisms to write and execute 
assembly language programs. We begin by taking a look at the structure of 
assembly language programs that we use in this book. To make the task ofwrit
ing assembly language programs easier, we make use of the simplified segment 
directives provided by the assembler. Section B.1 describes the structure of the 
stand-alone assembly language programs used in this book. 

Unlike high-level languages, assembly language does not provide a con
venient mechanism to do input/output. To overcome this deficiency, we have 
provided a set of I/O routines to facilitate character, string, and numeric in
put/output. These routines are described in Section B.2. 

Once we have written an assembly language program, we have to transform 
it into its executable form. Typically, this takes two steps: we use an assembler to 
translate the source program into what is called an object program and then use 



562 Appendix B Assembling and Linking Assembly Language Programs 

a linker to transform the object program into an executable version. SectionB.3 
gives details of these steps. The appendix concludes with a summary. 

B.1 Structure of Assembly Language Programs 

Writing an assembly language program is a complicated task, particularly for 
a beginner. We will make this daunting task simple by hiding those details 
that are irrelevant. A typical assembly language program consists of three 
parts. The code part of the program defines the program's functionality by a 
sequence of assembly language instructions. The code part of the program, 
after translating it to the machine language code, is placed in the code segment. 
The data part reserves memory space for the program's data. The data part of 
the program is mapped to the data segment. Finally, we also need the stack 
data structure, which is mapped to the stack segment. The stack serves two 
main purposes: it provides temporary storage and acts as the medium to pass 
parameters in procedure calls. We will use the template shown in Figure B.l 
for writing stand-alone assembly language programs. These are the programs 
that are written completely in assembly language. 

Now let us dissect the statements in this template. This template consists 
of two types of statements: executable instructions and assembler directives. 
Executable instructions generate machine code for Pentium to execute when the 
program is run. Assembler directives, on the other hand, are meant only for the 
assembler. They provide information to the assembler on the various aspects 
of the assembly process. In this book, all assembler directives are shown in 
uppercase letters, while instructions are shown in lowercase. 

The TITLE line is optional and when included, usually contains a brief 
heading of the program and the disk file name. The TITLE information can 
be up to 128 characters. To understand the purpose of the TITLE directive, 
you should know that the assembler produces, if you want, a nicely formatted 
listing file (with extension .1st) after the source file has been assembled. In the 
listing file, each page heading contains the information provided in the TITLE 
directive. 

The COMMENT assembler directive is useful to include several lines of 
text in assembly language programs. The format of this directive is 

COMMENT delimiter [text] 
[text] 
[text] delimiter [text] 

where the brackets [ ] indicate optional text. The delimiter is used to delineate 
the comment block. The delimiter is any nonblank character after the COM
MENT directive. The assembler ignores the text following the delimiter until 



Section B.1 Structure of Assembly Language Programs 

TITLE 
COMMENT 

brief title of program 
I 

file-name 

Objectives: 
Inputs: 

Outputs: 

.MODEL SMALL 

. STACK 100H 

. DATA 
(data goes here) 

. CODE 

.486 

INCLUDE io.mac 
main PROC 

. STARTUP 

(code goes here) 

. EXIT 
main ENDP 

END main 

defines a 256-byte stack 

not necessary if only 8086 
instructions are used 
include I/O routines 

setup segments 

returns control 

Figure B.1 Structure of the stand-alone assembly language programs used in this book 

563 

the second occurrence of the delimiter. It also ignores any text following the 
second delimiter on the same line. We use the COMMENT directive to in
clude objectives of the program and its inputs and outputs. For an example, see 
sample. asm given on page 568. 

The .MODEL directive specifies a standard memory configuration for the 
assembly language program. For our purposes, a small model is sufficient. A 
restriction of this model is that our program's code should be:::: 64K, and the 
total storage for the data should also be :::: 64K. This directive should precede 
the .STACK, . DATA , and .CODE directives. 



564 Appendix B Assembling and Linking Assembly Language Programs 

The .STACK directive defines the stack segment to be used with the pro
gram. The size of the stack can be specified. By default, we always use a 100H 
byte (256 bytes or 128 words) stack. 

The .DATA directive defines the data segment for the assembly language 
program. The program's variables are defined here. Chapter 3 discusses various 
directives to define and initialize variables used in assembly language programs. 

The .CODE directive terminates the data segment and starts the code seg
ment. You need to use .486 only if the code contains instructions of 32-bit 
processors such as 80486 and Pentium. This line is not necessary if the as
sembly language code uses only the instructions of the 8086 processor. The 
INCLUDE directive causes the assembler to include source code from another 
file (io. mac here). The code 

main PRDC 

main ENOP 

defines a procedure called main using the directives PROC (PROCedure) and 
ENDP (END Procedure). 

The last statement uses the END directive for two distinct purposes: 

1. By using the label main, it identifies the entry point into the program 
(first instruction of main procedure here); 

2. It signals the assembler that the end of the source file has been reached. 

The choice of main in the template is arbitrary. You can use any other name 
with the restriction that the same name should appear in all three places. 

The .STARTUP assembler directive sets up the data and stack segments 
appropriately. In its place you can write code to set up the data segment yourself. 
To do this, use the following code: 

mov AX, «IOATA 
mov OS,AX 

These two lines initialize the DS register so that it points to the program's data 
segment. Note that @DATA points to the data segment. 

To return control from the assembly program, use the .EXIT assembler 
directive. This directive places the code to call the int 21H function 4CH to 
return control. In this directive's place, you can write your own code to call 
int 21H, as shown below: 

mov AX,4COOH 
int 21H 



Section B.2 Input/Output Routines S6S 

Control is returned to the operating system by interrupt 21H service 4CH. The 
service required under interrupt 21H is indicated by moving 4CH into the AH 
register. This service also returns an error code that is given in the AL register. 
It is good practice to set AL to 0 to indicate normal termination of the program. 

B.2 Input/Output Routines 

We rarely write programs that do not input and/or output data. High-level lan
guages provide facilities to input and output data. For example, C provides 
scanf and printf functions to input and output data, respectively. Analo
gously, Pascal has read and write for similar purposes. Typically, high-level 
languages can read numeric data (integers, floating-point numbers), characters, 
and strings. 

Assembly language, however, does not provide a convenient mechanism to 
input/output data. The operating system provides some basic services to read 
and write data, but these are fairly limited. For example, there is no function to 
read an integer from the keyboard. 

In order to facilitate 110 in assembly language programs, it is necessary 
to write the required procedures. We have written a set of 110 routines to 
read and display signed integers, characters, and strings. The remainder of the 
section describes these routines. Each 110 routine call looks like an assembly 
language instruction. This is achieved by using macros. Each macro call 
typically expands to several assembly language statements and includes a call 
to an appropriate procedure. These macros are all defined in the io . mac file and 
actual assembled procedures that perform I/O are in the io. obj file. Table B.1 
provides a summary of the 110 routines defined in io . mac. 

Character 110 

Two macros are defined to input and output characters: PutCh and GetCh. The 
format of PutCh is 

PutCh source 

where source can be any general-purpose, 8-bit register, or a byte in memory, 
or a character value. Some examples follow: 

PutCh 
PutCh 
PutCh 

'A' 
AL 
response 

The format of GetCh is 

displays character A 
displays the character in AL 
displays the byte located in 
memory (labeled response) 



566 

name 

PutCh 

GetCh 

nwln 

PutStr 

GetStr 

PutInt 

GetInt 

PutLint 

GetLint 

Appendix B Assembling and Linking Assembly Language Programs 

Table B.1 Summary of I/O routines defined in io . mac 

operand(s) 

source 

destination 

none 

source 

destination [,buffeLsize] 

source 

destination 

source 

destination 

operand 
location 

value 
register 
memory 

size 

8 bits 

register 8 bits 
memory 

memory variable 

memory variable 

register 16 bits 
memory 
register 16 bits 
memory 
register 32 bits 
memory 
register 32 bits 
memory 

GetCh destination 

what it does 

Displays the character 
located at source 

Reads a character into 
destination 
Displays a carriage return 
and line feed 
Displays 
the NULL-terminated string 
at source 
Reads a carriage
return-terminated string into 
destination and stores it as 
a NULL-terminated string. 
Maximum string length is 
buffer_size-l. 
Displays the signed 16-bit 
number located at source 
Reads a signed 16-bit num
ber into destination 
Displays the signed 32-bit 
number located at source 
Reads a signed 32-bit num
ber into destination 

where destination can be either an 8-bit, general-purpose register or a byte in 
memory. Some examples are: 

GetCh 
GetCh 

DH 
response 

In addition, a nwln macro is defined to display a newline, which sends a carriage 
return (CR) and a line feed (LF). It takes no operands. 



Section B.2 Input/Output Routines 567 

String 110 

PutStr and GetStr are defined to display and read strings, respectively. The 
strings are assumed to be in NULL-terminated format. That is, the last character 
of the string is the NULL ASCII character, which signals the end of the string. 
Strings are discussed in Chapter 9. 

The format of PutStr is 

PutStr source 

where source is the name of the buffer containing the string to be displayed. 
For example, 

PutStr message 

displays the string stored in the buffer message. Strings are limited to 80 
characters. If the buffer does not contain a NULL-terminated string, a maximum 
of 80 characters are displayed. 

The format of GetStr is 

GetStr destination [, buffer_size] 

where destination is the buffer name into which the string from the keyboard 
is read. The input string can be terminated by a CR. You can also specify the 
optional buffer_size value. If not specified, a buffer size of81 is assumed. 
Thus, in the default case, a maximum of 80 characters are read into the string. 
If a value is specified, buffer _size-l characters are read. The string is stored as 
a NULL-terminated string. You can backspace to correct input. Here are some 
examples: 

GetStr 
GetStr 

Numeric 110 

in_string 
TR_title,41 

reads at most 80 characters 
reads at most 40 characters 

There are four macro definitions for performing integer I/O: two are defined for 
16-bit integers and two for 32-bit integers. First we look at the 16-bit integer 
I/O routines-PutInt and GetInt. The formats of these routines are 

PutInt 
GetInt 

source 
destination 

where source and destination can be a 16-bit, general-purpose register or the 
label of a memory word. 

PutInt displays the signed number at the source. It suppresses all leading 
O's. GetInt reads a 16-bit signed number into destination. You can backspace 



568 

1 : TITLE 
2: COMMENT 
3: 
4: 
5: 
6: 

Appendix B Assembling and Linking Assembly Language Programs 

while entering a number. The valid range of input numbers is -32,768 to 
+32,767. If an invalid input (such as typing a nondigit character) or out-of
range number is given, an error message is displayed and the user is asked to 
type a valid number. Some examples are: 

PutInt 
Putlnt 
Getlnt 
Getlnt 

AX 
sum 
CX 
count 

Long integer I/O is similar except that the source and destination must be a 
32-bit register or a label of a memory doubleword (i.e., 32 bits). For example, 
if total is a 32-bit number in memory, we can display it by 

PutLint total 

and read a long integer from the keyboard into total by 

GetLint total 

Some examples that use registers are: 

PutLint EAX 
GetLint EDX 

An Example 

Program B.54 gives a simple example to demonstrate how some of these I/O 
routines can be used to facilitate I/O. The program uses the DB (define byte) 
assembly language directive to declare several strings (lines 11-15). All these 
strings are terminated by 0, which is the ASCII value for the NULL character. 
Similarly, 16 bytes are allocated for a buffer to store user name and another 
byte is reserved for response. In both cases, ? indicates that the data is not 
initialized. 

Program B.54 An example assembly program 

An example assembly language program SAMPLE.ASM 
I 
Objective: To demonstrate the use of some I/O 

routines and to show the structure 
of assembly language programs. 

Inputs: As prompted. 



Section B.2 Input/Output Routines 

7: Outputs: As per input. 
8: .MODEL SMALL 
9: .STACK 100H 

10: . DATA 
11: name_msg DB 'Please enter your name: ',0 
12: query_msg DB 
13: confirm_msgl DB 
14: confirm_msg2 DB 
15: welcome_msg DB 
16: 

'How many times to repeat welcome message? ',0 
'Repeat welcome message ',0 
, times? (y/n) ',0 
'Welcome to Assembly Language Programming ',0 

17: user_name 
18: response 
19: 
20: . CODE 

DB 16 DUP (?) 
DB ? 

21: INCLUDE io.mac 
22: 
23: main PROC 
24: 
25: 
26: 
27: 

. STARTUP 
PutStr name_msg 
nwln 
GetStr user_name,16 

28: nwln 
29: 
30: 
31: 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 
41: 
42: 
43: 
44: 
45: 

ask_count: 
PutStr 
GetInt 
nwln 
PutStr 
Putlnt 
PutStr 
GetCh 
nwln 
cmp 
jne 

display_msg: 
PutStr 
PutStr 
nwln 
loop 
. EXIT 

46 : main ENDP 

query_msg 
CX 

confirm_msgl 
ex 
confirm_msg2 
response 

response, ' y' 
ask_count 

welcome_msg 
user_name 

display_msg 

47: END main 

j buffer for user name 

prompt user for his/her name 

read name (max. 15 characters) 

prompt for repeat count 
read repeat count 

confirm repeat count 
by displaying its value 

read user response 

if 'y', display welcome message 
otherwise, request repeat count 

display welcome message 
display the user name 

repeat count times 

569 



570 Appendix B Assembling and Linking Assembly Language Programs 

The program requests the name of the user and a repeat count. After con
firming the repeat count, it displays a welcome message repeat count times. 
We use PutStr on line 25 to prompt for the user name. The name is read as a 
string using GetStr into the user _name buffer. Since we have allocated only 
16 bytes for the buffer, the name cannot be more than 15 characters. We enforce 
this by specifying the optional buffer size parameter in GetStr (line 27). The 
PutStr on line 30 requests a repeat count, which is read by Get lnt on line 31. 
The confirmation message is displayed by lines 33-35. The response of the user 
yin is read by GetCh on line 36. If the response is y, the loop (lines 40-44) 
displays the welcome message repeat count times. A sample interaction with 
the program is shown below: 

Please enter your name: 
Veda 
How many times to repeat welcome message? 4 
Repeat welcome message 4 times? Cy/n) y 
Welcome to Assembly Language Programming Veda 
Welcome to Assembly Language Programming Veda 
Welcome to Assembly Language Programming Veda 
Welcome to Assembly Language Programming Veda 

B.3 Assembling and Linking 

Figure B.2 shows the steps involved in converting an assembly language pro
gram into an executable program. The source assembly language file (e.g., 
sample. asm) is given as input to the assembler. The assembler translates the 
assembly language program into an object program (e.g., sample. obj). The 
linker takes one or more object programs (e.g., sample. obj and io. obj) and 
combines them into an executable program (e.g., sample. exe). The following 
subsections describe each of these steps in detail. 

B.3.1 The Assembly Process 

To assemble a program, you need to have an assembler (e.g., TASM.EXE or 
MASM.EXE). In the remainder of this section we describe Turbo assembler 
TASM. MASM also works in a similar way (see your assembler documentation). 
The general format to assemble an assembly language program is 

TASM [options] source-file [,obj-file] [,list-file] [,xref-file] 

where the specification of fields in [ ] is optional. If we simply specify only 
the source file, TASM just produces only the object file. Thus to assemble our 
example source file sample. asm, type 



Section B.3 Assembling and Linking 

Editor 

Assembler 
(TASM, MASM) 

sample.asm 

sample.obj 

Other object files - - - - - - -I 

Linker 
(TLlNK, LINK) 

sample.exe 

Creates an assembly 
language program 
sample.asm 

Assembles the source program 
sample.asm 
to generate the object program 
sample.obj 

sample. 1st 

Links all object programs including 
sample.obj 
to generate the executable program 
sample.exe 

sample.map 

Loads and executes 
executable program 
sample.exe 

571 

Figure B.2 Assembling, linking, and executing assembly language programs (optional inputs 
and outputs are shown by dashed lines). 

TASM sample 

You don't have to type the extension. By default, TASM assumes the. asm 

extension. During the assembly process, TASM displays error messages (if 
any). After successfully assembling the source program, TASM generates an 



572 Appendix B Assembling and Linking Assembly Language Programs 

object file with the same file name as the source file but with the. obj extension. 
Thus, in our example, it generates the sample. obj file. 

If you want the assembler to generate the listing file, you can use 

TASM sample" 

This produces two files: sample. obj and sample .lst. The list file contains 
detailed information about the assembly process, as we shall see shortly. If you 
want to use a different file name for the listing file, you have to specify the file 
name (the extension .lst is assumed), as in the following example: 

TASM sample"myprog 

which generates two files: sample. obj and myprog .lst. 
If the fourth field xref-file is specified, TASM generates a listing file 

containing cross-reference information (discussed shortly). 

Options 

You can also use command line option L to produce the listing file. For example, 

TASM IL sample 

produces sample. obj and sample .lst files. During the assembly process, 
TASM displays error messages but does not display the corresponding source 
lines. You can use option Z to force TASM to display the error source lines. 
Other interesting options are N to suppress symbol table information in the 
listing file, and Z1 to include complete debugging information for debuggers 
(such as Turbo debugger TD). A complete list of options is displayed by typing 
TASM. 

The List File 

Program B.55 gives a simple program that reads two signed integers from the 
user and displays their sum if there is no overflow; otherwise, it displays an 
error message. The input numbers should be in the range -2,147,483,648 to 
+2,147,483,647, which is the range of a 32-bit signed number. The program 
uses PurStr and GetL1nt to prompt and read input numbers (see lines 24, 25 
and 29, 30). The sum of the input numbers is computed on lines 34-36. If the 
resulting sum is outside the range of a signed 32-bit integer, the overflow flag 
is set by the add instruction. In this case, the program displays the overflow 
message (line 40). If there is no overflow, the sum is displayed (lines 46 and 
47). 



Section B.3 Assembling and Linking 

Program B.SS An assembly language program to add two integers sumprog. asm 

1: TITLE Assembly language program to find sum SUMPROG.ASM 
2: COMMENT I 
3: Objective: To add two integers. 
4: Inputs: Two integers. 
5: Output: Sum of input numbers. 
6: .MODEL SMALL 
7: . STACK 100H 
8: . DATA 

promptCmsg DB 'Enter first number: , ,0 
prompt2_msg DB 'Enter second number: ' ,0 
sum_msg DB 'Sum is: , ,0 

9: 
10: 
11: 
12: 
13: 

error_msg DB 'Overflow has occurred!',O 

14: numberl 
15: number2 

DD ? 
DD ? 

stores first number 
stores first number 

16: sum 
17: 

DD ? stores sum 

18: . CODE 
19: INCLUDE io.mac 
20: .486 
21 : main PROC 
22: . STARTUP 
23: ; prompt user for first number 
24: PutStr promptl_msg 
25: GetLint numberl 
26: nwln 
27: 
28: ; prompt user for second number 
29: PutStr prompt2_msg 
30: GetLint number2 
31: nwln 
32: 
33: 
34: 
35: 
36: 
37: 
38: 
39: 
40: 

; find 
mov 
add 
mov 

; check 
jno 
PutStr 

sum of two 32-bit 
EAX,numberl 
EAX,number2 
sum,EAX 

for overflow 
no_overflow 
error_msg 

numbers 

573 



574 

41: 
42: 
43: 
44: 
45: 
46: 
47: 
48: 
49: 
50: 
51: 
52: 

Appendix B Assembling and Linking Assembly Language Programs 

nwln 
jmp done 

; display sum 
no overflow: 

done: 

main 

PutStr sum_msg 
Put Lint sum 
nwln 

. EXIT 
ENDP 
END main 

The list file for the source program sumprog. asm is shown in Program B.56. 
It contains, in addition to the original source code lines, a lot of useful informa
tion about the results of the assembly. This additional information includes the 
actual machine code generated for the executable statements, offsets of each 
statement, and tables of information about symbols and segments. 

The top line of each page consists of a header that identifies the assembler, 
its version, date, time, and page number. If TITLE is used, the title line is 
printed on each page of the listing. There are two parts to the listing file: the 
first part consists of annotated source code, and the second part gives tables of 
information about the symbols and segments used by the program. 

Source Code Lines 

The format of the source code lines is: 

nesting-level line# offset machine-code source-line 

nesting-level: the level of nesting of "include files" and macros. We discuss 
this in Chapter 1 0, which discusses macros in detail. 

1 ine#: the number of the listing file line numbers. These numbers are different 
from the line numbers in the source file. This can be due to include files, macros, 
etc., as shown in Program B.56. 

off set: a 4-digit hexadecimal offset value of the machine code for the source 
statement. For example, the offset of the first instruction (line 31) is 0000, and 
that of the add instruction on line 45 is 0044H. Source lines such as comments 
do not generate any offset. 



Section B.3 Assembling and Linking 575 

machine-code: the hexadecimal representation of the machine code for the 
assembly language instruction. For example, the machine language encoding 
of 

mov EAX,numberl 

is 661 Al 004B (line 44) and requires 4 bytes (66 is the operand size override 
prefix). Similarly, the machine language encoding of 

jmp done 

is EB 1990 (line 52), requiring 3 bytes of memory. Again, source code lines 
such as comments do not generate any machine code for obvious reasons. 

source-line: a copy of the original source code line. As you can see from 
Program B.56, the number of bytes required for the machine code depends on the 
source instruction. When operands are in memory like number1, their relative 
address value is appended with r (see line 44) to indicate that the actual value 
is fixed up by the linker when the segment is combined with other segments 
(for example, io. obj in our example). You will see an e instead of r if the 
symbol is defined external to the source file (thus available only at link time). 
For segment values, an s is appended to the relative addresses. 

Program B.56 The list file for the example assembly program sumprog. asm 

\begin{verbatim} 
1: Turbo Assembler Version 4.0 07/31/95 14:38:34 Page 1 
2: sumprog.ASM 
3: Assembly language program to find sum SUMPROG.ASM 
4: 
5: 
6: 1 COMMENT 
7: 2 Objective: To add two integers. 
8: 3 Inputs: Two integers. 
9: 4 Output: Sum of input numbers. 

10: 5 DOSSEG 
11: 6 0000 .MODEL SMALL 
12: 7 0000 . STACK 100H 
13: 8 0000 . DATA 
14: 9 0000 45 6E 74 65 72 20 66+ promptl_msg DB 'Enter first number: ' ,0 
15: 10 69 72 73 74 20 6E 75+ 
16: 11 60 62 65 72 3A 20 00 
17: 12 0015 45 6E 74 65 72 20 73+ prompt2_msg DB 'Enter second number: ' ,0 
18: 13 65 63 6F 6E 64 20 6E+ 



576 Appendix B Assembling and Linking Assembly Language Programs 

19: 14 75 6D 62 65 72 3A 20+ 
20: 15 00 
21: 16 002B 53 75 6D 20 69 73 3A+ sum_msg DB 'Sum is: ' ,0 
22: 17 20 00 
23: 18 0034 4F 76 65 72 66 6C 6F+ error_msg DB 'Overflow has occurred!' ,0 
24: 19 77 20 68 61 73 20 6F+ 
25: 20 63 63 75 72 72 65 64+ 
26: 21 21 00 
27: 22 
28: 23 004B ???? number1 DW ? stores first number 
29: 24 004D ???? number2 DW ? stores first number 
30: 25 004F ???? sum DW ? stores sum 
31: 26 
32: 27 0051 . CODE 
33: 28 INCLUDE io.mac 
34: 1 29 
35: 1 30 
36: 31 
37: 32 0000 main PROC 
38: 33 ; initialize data segment 
39: 34 0000 B8 OOOOs mov AX,<ODATA 
40: 35 0003 8E D8 mov DS,AX 
41: 36 
42: 37 ; prompt the user for first number 
43: 38 PutStr prompt1_msg 
44: 39 GetInt number 1 
45: 40 nwln 
46: 41 
47: 42 ; prompt the user for second number 
48: 43 PutStr prompt2_msg 
49: 44 GetInt number2 
50: 45 nwln 
51: 46 
52: 47 ; find sum of two 16-bit numbers 
53: 48 002F Ai 004Br mov AX,number1 
54: 49 0032 03 06 004Dr add AX,number2 
55: 50 0036 A3 004Fr mov sum,AX 
56: 51 
57: 52 ; check for overflow 
58: 53 0039 71 10 jno no overflow 
59: 54 PutStr error_msg 
60: 55 nwln 
61: 56 0048 EB 16 90 jmp done 
62: 57 
63: Turbo Assembler Version 4.0 07/31/95 14:38:34 Page 2 
64: sumprog.ASM 
65: Assembly language program to find sum SUMPROG.ASM 
66: 



Section B.3 Assembling and Linking 577 

67: 
68: 58 ; display sum 
69: 59 004B no_overflow: 
70: 60 PutStr sum_msg 
71: 61 PutInt sum 
72: 62 nwln 
73: 63 
74: 64 ; return to DOS 
75: 65 0060 done: 
76: 66 0060 B8 4COO mov AX,4COOH 
77: 67 0063 CD 21 int 21H 
78: 68 0065 main ENDP 
79: 69 END main 
80: Turbo Assembler Version 4.0 07/31/95 14:38:34 Page 3 
81: Symbol Table 
82: Assembly language program to find sum SUMPROG.ASM 
83: 
84: 
85: 
86: Symbol Name Type Value 
87: 
88: ??DATE Text "07/31/95" 
89: ??FILENAME Text "sumprog " 
90: ??TIME Text "14:38:32" 
91: ??VERSION Number 0400 
92: <D32BIT Text 0 
93: <DCODE Text _TEXT 
94: <DCODESIZE Text 0 
95: <DCPU Text 0101H 
96: <DCURSEG Text _TEXT 
97: <DDATA Text DGROUP 
98: <DDATASIZE Text 0 
99: <DFILENAME Text SUMPROG 

100: <DINTERFACE Text OOH 
101: <DMODEL Text 2 
102: <DSTACK Text DGROUP 
103: <DWORDSIZE Text 2 
104: DONE Near _TEXT: 0060 
105: ERROR_MSG Byte DGROUP:0034 
106: MAIN Near _TEXT: 0000 
107: NO_OVERFLOW Near _TEXT:004B 
108: NUMBERl Word DGROUP:004B 
109: NUMBER2 Word DGROUP:004D 
110: PROC_GETCH Near _TEXT:---- Extern 
111: PROC_GETINT Near _TEXT:---- Extern 
112: PROC_GETLINT Near _TEXT:---- Extern 
113: PROC_GETSTR Near _TEXT:---- Extern 
114: PROC_NWLN Near _TEXT:---- Extern 



578 Appendix B Assembling and Linking Assembly Language Programs 

115: PROC_PUTCH 
116: PROC_PUTINT 
117: PROC_PUTLINT 
118: PROC_PUTSTR 
119: PROMPT1_MSG 
120: PROMPT2_MSG 
121: SUM 
122: SUM_MSG 
123: TEMP 
124: 
125: Macro Name 
126: 
127: GETCH 
128: GETINT 
129: GETLINT 
130: GETSTR 
131: NWLN 
132: PUTCH 
133: PUTINT 
134: PUTLINT 
135: PUTSTR 
136: 

Near 
Near 
Near 
Near 
Byte 
Byte 
Word 
Byte 
Byte 

TEXT:---- Extern 
TEXT:---- Extern 

_TEXT:---- Extern 
TEXT:---- Extern 

DGROUP:OOOO 
DGROUP:0015 
DGROUP:004F 
DGROUP:002B 

TEXT:---- Extern 

137: Groups & Segments Bit Size Align Combine Class 
138: 
139: DGROUP 
140: STACK 
141: DATA 

Group 
16 0100 Para Stack STACK 
16 0051 Word Public DATA 

142: Turbo Assembler 
143: Symbol Table 

Version 4.0 07/31/95 14:38:34 Page 4 

144: Assembly language program to find sum 
145: 

SUMPROG.ASM 

146: 
147: _TEXT 

\end{verbatim} 
16 0065 Word Public CODE 

Symbol Table 

The second part of the listing file consists of two tables of information. The 
first one lists all the symbols used in the program in alphabetical order. These 
include the variables and labels used in the program. For each symbol, the 
symbol table gives its type and value. For example, number! and number2 
are words with offsets 4BH and 4FH, respectively, in the DGROUP segment 
group. This segment group has _DATA and STACK segments. 

The 110 procedures (PROC_ GETCR, etc.) are near procedures that are defined 
as external in io . mac. Procedures are discussed in Chapter 4. The object code 



Section B-3 Assembling and Linking 579 

for these procedures is available at the time oflinking (io. obj file). The macros 
listed are defined in io . mac. 

Ifthe fourth field xref-file on the TASM command line is specified, the 
listing file would have contained cross-reference information for each symbol. 
The cross-reference information gives where (Le., line number) the symbol 
was defined and the line numbers of all the lines in the program on which that 
symbol was referenced. 

Group and Segment Table 

The other table gives information on groups and segments. Segment groups do 
not have any attributes and are listed with the segments making up the group. For 
example, the DGROUP consists of _DATA and STACK segments. Segments, 
however, have attributes. For each segment, five attributes are listed. 

Bit: gives the data size, which is 16 in our case. 

Size: indicates the segment size in hex. For example, the STACK segment is 
100H (Le., 256) bytes long. 

Align: indicates the type of alignment. This refers to the memory boundaries 
that a segment can begin. Some alignment types are: 

BYTE 
WORD 
PARA 

Segment can begin at any address 
Segment can begin only at even addresses 
Segment can begin only at an address 
that is a multiple of 16 (para = 16 bytes) 

For example, STACK is para-aligned, while _DATA and _TEXT are word
aligned. 

Combine: specifies how segments of the same name are combined. With the 
PUBLIC combine type, identically named segments are concatenated into a 
larger segment. The combine type STACK is special and can only be used for 
the stack. 

Class: refers to the segment class-e.g., CODE, DATA, or STACK. The linker 
uses this information to order segments. 

B.3.2 Linking Object Files 

Linker is a program that takes one or more object programs as its input and 
produces an executable program. In our example, since I/O routines are defined 



580 Appendix B Assembling and Linking Assembly Language Programs 

separately, we need two object files-sample. obj and io. obj-to generate 
the executable file sample. exe. To do this, we use the command 

TLINK sample io 

The syntax of TLINK is given by 

TLINK [options] obj-files,exe-file,map-file,lib-file 

where obj-files is a list of object files to be linked, and exe-file is the 
name of the executable file. If no executable file name is given, the name of the 
first object file specified is used with the . exe extension. TLINK, by default, 
also generates a map file. If no map file name is given on the command line, 
the first object file name is used with the . map extension. lib-file specifies 
library files, and we will not discuss them here. 

The map file provides information on segments. The map file generated for 
the sample program is shown below: 

Start Stop Length Name 

OOOOOH 0037FH 00380H _TEXT 
00380H 0053FH 001COH _DATA 
00540H 0063FH 00100H STACK 

Program entry point at 0000:0000 

Class 

CODE 
DATA 
STACK 

For each segment, it gives the starting and ending addresses along with the 
length of the segment in bytes, its name and class. For example, the CODE 
segment is named _TEXT and starts at address 0 and ends at 37FH. The length, 
therefore, is 380H. 

If you intend to debug your program using Turbo Debugger, you should 
use V in order to link the necessary symbolic information. For example, the 
sample.obj object program, along with io. obj, can be linked by 

TLINK IV sample io 

You have to make sure that the ZI option has been used during the assembly. 

B.4 Summary 

Assembly language programs consist of three parts: stack, data, and code seg
ments. These three segments can be defined using simplified segment directives 
provided by both TASM and MASM assemblers. By means of simple exam
ples, we have seen how a typical stand-alone assembly language program looks 
using these directives. 



Section B.5 Exercises 581 

Since assembly language does not provide a convenient mechanism to do 
input/output, we defined a set of I/O routines to help us in performing simple 
character, string, and numeric input and output. The numeric I/O routines 
provided can input/output both 16-bit and 32-bit signed integers. 

To execute an assembly language program, we have to first translate it into 
an object program by using an assembler. Then we have to pass this object 
program, along with any other object programs needed by the program, to a 
linker to produce an executable program. Both the assembler and linker generate 
additional files that provide information on the assembly and link processes. 

B.5 Exercises 

B-1 What is the purpose of the TITLE directive? 

B-2 How is the stack defined in the assembly language programs used in this 
book? 

B-3 In the assembly language program structure used in this book, how are 
the data and code parts specified? 

B-4 What is meant by a "stand-alone" assembly language program? 

B-5 What is an assembler? What is the purpose of it? 

B-6 What files are generated by your assembler? What is the purpose of each 
of these files? 

B-7 What is the function of the linker? What is the input to the linker? 

B-8 Why is it necessary to define our own I/O routines in assembly language? 
B-9 What is a NULL-terminated string? 

B-I0 Why is buffer size specification necessary in GerStr but not in PutStr? 

B-ll What happens if the buffer size parameter is not specified in GetStr? 

B-12 What happens if the buffer specified in PutStr does not contain a NULL-
terminated string? 

B-13 What is the range of numbers that GetInt can read from the keyboard? 
Give an explanation for the range. 

B-14 Repeat the last exercise for GetLint. 

B.6 Progamming Exercises 

B-PI Write an assembly language program to explore the behavior of the var
ious character and string I/O routines. In partiCUlar, comment on the 
behavior of the GetStr and PutStr routines. 



582 Appendix B Assembling and Linking Assembly Language Programs 

B-P2 Write an assembly language program to explore the behavior of the var
ious numeric I/O routines. In particular, comment on the behavior of the 
GetInt and GetLint routines. 

B-P3 Modify the sample. asm by deliberately introducing errors into the pro
gram. Assemble the program and see the type of errors reported by your 
assembler. Also, generate the listing file and briefly explain its contents. 

B-P4 Assemble the sample. asm program to generate cross-reference informa
tion. Comment on how this information is presented by your assembler. 



Appendix C 

Debugging Assembly 
Language Programs 

Objectives 

• To present some basic strategies to debug assembly language programs 

• To describe the DOS debugger DEBUG 

• To explain the basic features of the Turbo debugger (TD) 

• To provide a brief discussion of the Microsoft debugger (CodeView) 

Debugging assembly language programs is more difficult and time-consuming 
than debugging high-level language programs. However, the fundamental 
strategies that workfor high-level languages also workfor assembly language 
programs. Section C.l gives a discussion of these strategies. Since you are fa
miliar with debugging in a high-level language, this discussion is rather brief. 

The following three sections discuss three popular debuggers. While the 
DOS DEBUG is a line-oriented debugger, the other tw~Turbo Debugger and 
CodeView--are window-oriented and are much better. All three share some 
basic commands required to support debugging assembly language programs. 

Our goal in this appendix is to introduce the three debuggers briefly, as 
the best way to get familiar with these debuggers is to try them. We use a 
simple example to explain some of the commands of DEBUG (in Section C.2) 
and Turbo Debugger (in Section C.3). Since CodeView is similar in spirit to 
the Turbo Debugger, we give only a brief overview of it in Section C.4. The 
appendix concludes with a summary. 



584 Appendix C Debugging Assembly Language Programs 

C.I Strategies to Debug Assembly Language Programs 

Programming is a complicated task. Very few real-life programs are ever writ
ten that work perfectly the very first time. Loosely speaking, a program can 
be thought of as mapping a set of input values to a set of output values. The 
functionality of the mapping performed by a program is given as the specifica
tion for the programming task. It goes without saying that when the program 
is written, it should be verified to meet the specifications. In programming 
parlance, this activity is referred to as testing and validating the program. 

Testing a program itself is a complicated task. Typically, test cases, selected 
to validate the program, should test each possible path in the program, boundary 
cases, etc. During this process, errors ("bugs") are discovered. Once a bug is 
found, it is necessary to find the source code causing the error and fix it. This 
process is known by its colorful name, debugging. 

Debugging is not an exact science. You have to rely on your intuition and 
experience. However, there are tools that can help you in this process. We will 
look at three such tools in this chapter-DEBUG, Turbo Debugger TO, and 
Microsoft Code View. 

Finding bugs in a program is very much dependent on the individual pro
gram. Once an error is detected, there are some general ways of locating the 
source code lines causing the error. The basic principle that helps you in writ
ing the source program in the first place-the divide and conquer technique-is 
also useful in the debugging process. Structured programming methodology 
facilitates debugging greatly. 

A program typically consists of several modules, where each module may 
have several procedures. When developing a program, it is best to do incremen
tal development. In this methodology, a single or a few procedures are added 
to the program to add some specific functionality and test it before adding other 
functions to the program. In general, it is a bad idea to write the whole program 
and start the testing process, unless the program is "small." The best strategy 
is to write code that has as few bugs as possible. This can be achieved by using 
pseudocode and verifying the logic of the pseudocode even before you attempt 
to translate it into an assembly language program. This is a good way of catch
ing many of the logical errors and saves a lot of debugging time. Never write 
an assembly language code with the pseudo-code in your head! Furthermore, 
don't be in a hurry to write some assembly code that appears to work. This is 
short sighted, as you will end up spending more time in the debugging phase. 

To isolate a bug, program execution should be observed in slow motion. 
Most debuggers provide a command to execute a program in single-step mode. 
In this mode, a program executes one statement at a time and pauses. Then you 
can examine contents of registers, data in memory, stack contents, etc. In this 



Section Cl Strategies to Debug Assembly Language Programs 585 

mode, a procedure call is treated as a single statement and the entire procedure is 
executed before pausing the program. This is useful if you know that the called 
procedure works correctly. Debuggers also provide another command to trace 
even the statements of procedure calls, which is useful for testing procedures 
as well. 

Often we know that some parts of the program work correctly. In this 
case, it is a sheer waste of time to single step or trace the code. What we 
would like is to execute this part of the program and then stop for more careful 
debugging (perhaps by single stepping). Debuggers provide commands to set 
up breakpoints and to execute up to a breakpoint. Another helpful feature that 
most debuggers provide is the watch facility. By using watches, it is possible to 
monitor the state (i.e., values) of the variables in the program as the execution 
progresses. 

In the following three sections, we discuss three debuggers and how they 
are useful in debugging the program addigi ts. asm discussed in Chapter 3. 
We limit our discussion to 16-bit segments and operands. The program used in 
our debugging sessions is shown in Program C.S7. This program does not use 
the .STARTUP and .EXIT assembler directives. As explained in Appendix B, 
we use 

mov AX ,CODATA 
mov DS,AX 

in place of the .STARTUP directive and 

mov AX,4COOH 
int 21H 

in place of the .EXIT directive. 

Program C.S7 An example program used to explain debugging 

1: TITLE Add individual digits of a number ADDIGITS.ASM 
2: COMMENT I 
3: Objective: To find the sum of individual digits of 
4: a given number. Shows character to binary 
5: conversion of digits. 
6: Input: Requests a number from keyboard. 
7: Output: Prints the sum of the individual digits. 
8: .MODEL SMALL 
9: .STACK 100H 

10: . DATA 
11: number_prompt DB 'Please type a number «11 digits): ',0 



586 

12: out_msg 
13: number 
14: 
15: . CODE 

Appendix C Debugging Assembly Language Programs 

DB 'The sum of individual digits is: ',0 
DB 11 DUP (1) 

16: INCLUDE io.mac 
17: main PROC 
18: 
19: 
20: 
21: 

. STARTUP 
PutStr number_prompt 
GetStr number,ll 
nwln 

; request an input number 
read input number as a string 

22: mov BX,OFFSET number ; BX := address of number 
23: sub DX,DX DX := 0 -- DL keeps the sum 
24: repeat_add: 
25: 
26: 
27: 
28: 
29: 
30: 
31: 
32: done: 
33: 
34: 
35: 
36: 
37: main 
38: 

mov 
cmp 
je 
and 
add 
inc 
jmp 

AL, [BX] 
AL,O 
done 
AL,OFH 
DL,AL 
BX 
repeat_add 

PutStr out_msg 
PutInt DX 
nwln 
. EXIT 
ENDP 
END main 

move the digit to AL 
if it is the NULL character 

sum is done 
mask off the upper 4 bits 
add the digit to sum 
increment BX to point to next digit 
and jump back 

write sum 

C.2 DEBUG 

DEBUG is invoked by 

DEBUG file-Ilame 

For example, to debug the addigi ts program, we can use 

DEBUG addigits.exe 

DOS loads DEBUG into memory, which in tum loads addigi ts. exe. It 
is necessary to enter the extension . exe, as DEBUG does not assume any 
extension. DEBUG displays a hyphen (-) as a prompt. At this prompt, it can 
accept one of several commands. Table C.l shows seme of the commands 
useful in debugging programs. 



Section C.2 DEBUG 587 

Table C.I Summary of DEBUG commands 

command 

Display Commands: 
U 
U address 
U range 

D 
D address 

D range 

R 

R register 

E address 

E address value-list 

Execution Commands: 
T 

T count 
T =address 
T =address count 
p 

P count 
P =address 
P =address count 

G 

G bkpt-address 

G =address bkpt-address 

Miscellaneous Commands: 
L 

Q 

function 

Unassembles next 32 bytes 
Unassembles next 32 bytes at address 
Unassembles the bytes in the specified range 

Displays the next 128 bytes of memory in hex and ASCII 
Displays the next 128 bytes of memory at address 
Displays the contents of memory in the specified range 

Displays the contents of all registers and shows the next 
instruction 
Displays the contents of register and accepts hex data to 
update register 

Displays the contents of the memory location specified by 
address 
Copies the hex data from value-list into memory from 
CS:address 

Traces (i.e., single-step mode) execution; executes one in
struction and displays the register contents and the next 
instruction 
Executes next count instructions 
Executes the instruction at CS : address 
Executes count instructions at CS : address 

Like trace but proceeds through call, loop, int 
Proceeds through the next count statements 
Executes the statement at CS: address 
Executes count statements at CS : address 

Executes program to completion or until a breakpoint is 
encountered 
Executes program until the breakpoint specified by bkpt

address 

Executes program until the breakpoint specified by bkpt
address starting from address 

Reloads program after termination 
Quits DEBUG 



588 

Display Group 

U (Unassemble) 

Appendix C Debugging Assembly Language Programs 

Unassembles the next 32 bytes. The general format is 

U [address] 

or 
U [range] 

If no address is specified in the command, the next 32 bytes since the last U 
command are unassembled. If there was no U command, the default address 
CS:IP is used. The address should be specified in hex. The range can be 
specified in one of two ways-either by giving a start and end address, or by 
giving a start address and length in bytes. When specifying length, the prefix L 
should be used, as shown in the following example. 

U ; unassembles the next 32 bytes 
U 38 ; unassembles 32 bytes from CS:3BH 
U 38 48 ; unassembles from CS:3BH to CS:4BH 
U 38 L10 ; unassembles 16 (= 10H) bytes from CS:3BH 

Note that in the last example, length is specified as L10, where lOH = 16D is 
the length. 

D (Display or Dump) 

Displays the contents of the specified memory locations both in hex and ASCII. 
The general format is similar to that of the U command and is given by 

D [address] 

or 
D [range] 

The default segment is the segment pointed by DS and the default range is 128 
(i.e., 80H) bytes. 

D ; displays the next 128 bytes from last display 
D CS: 0 ; displays 128 bytes from CS:O 
D 10 17 ; displays from DS:lOH to DS:17H 
D 38 L8 ; displays 11 (= BH) bytes from DS:3BH 



Section C.2 DEBUG 

E (Enter) 

This command can be used to enter data. The general format is 

E address 
or 
E address values 

589 

If the first format is used (i.e., with no values), it displays the contents of the 
addressed location. The default segment is the data segment pointed by DS. 
For example, 

E 12 

displays the contents ofDS: 12H. In the second format, the list of values specified 
replaces the contents of the addressed memory locations. For example, 

E 46 31 32 33 

changes the contents of memory locations 46H through 48H to 31H, 32H, and 
33H, respectively. We can also do the same with the following command: 

E 46 '123' 

The same command can be used to replace machine code. For example, 

E CS:5 88 D8 

replaces the machine code by 8BD8, which represents 

mov 8X,AX 

R (Register) 

Displays the contents of registers and the next instruction. The general format 
is 

R 

or 



590 Appendix C Debugging Assembly Language Programs 

R register 

If no register is specified, it displays the contents of all registers, including the 
flags, instruction pointer, and segment registers. The flags register contents are 
displayed as follows: 

Flag Set Clear 
Overflow OV NV 
Direction DN UP 
Interrupt EI DI 
Sign NG PL 
Zero ZR NZ 
Auxiliary carry AC NA 
Parity PE PO 
Carry CY NC 

When a register name is specified in the command, it displays the contents of 
the register and prompts (displays ':') for a replacement value. For example, 

-R AX 
AX 0000 
:7FFF 

displays the contents of AX (here 0000) 
prompts for a replacement value 
here we want to write 7FFFH into AX 

modifies AX to 7FFFH. If you do not want to change the contents of the register, 
simply type return. You can also use this command to modify the IP register. 

Execution Group 

T (Trace) 

Executes the program in single-step mode; after the execution, it displays the 
contents of the registers and the next instruction. The general format is 

T or T count 
T =address or 

or 
T =address count 

If a count value is specified, it traces count instructions. It displays contents 
of registers and the next instruction after the execution of each instruction. If 
an address is specified, tracing starts at the specified address. Here are some 
examples: 

T =50 ; trace the instruction at CS:5DH 
T 3 ; trace the next 3 instructions 
T =50 3 ; trace 3 instructions from CS:5DH 



Section C2 DEBUG 591 

P (Proceed) 

Similar to trace except it considers an interrupt call (int), procedure call (call), 
loop, etc., as single instructions. Normally you use this command unless you 
want to debug a procedure, interrupt routine, etc. 

G(Go) 

Executes program to a specified breakpoint. The format is 

G or G bkpt-address or 
G =address bkpt-address 

This command is useful in setting breakpoints. You can specify up to 10 break
point addresses. If the optional start address (=address) is given, execution 
begins from this address. This, for example, is useful in debugging a proce
dure or a part of the program, without executing it from the beginning. Some 
examples are given below: 

G 

G 31 
G =31 45 

; execute program to completion 
; execute up to CS:31H 
; execute from CS:31H to CS:45H 

C.2.1 Miscellaneous Group 

The other two commands in Table C.l are useful to reload the program (L) and 
exit the DEBUG (Q). 

C.2.2 An Example 

A sample DEBUG run on addigi ts. exe is shown in Program C.58. The U 
command on line 2 displays the code by unassembling the first 32 bytes. A 
drawback with this is that there is no symbolic information. For example, 

mov AX,(DDATA 

is displayed as 

mov AX,3F09 

where 3F09 (in hex) is the data segment value. Similarly, procedure calls include 
the offset values but not the procedure names. This deficiency is remedied by 
the other two debuggers. 



592 Appendix C Debugging Assembly Language Programs 

Notice that the code shown here does not exactly correspond to the code of 
Program C.57. The reason is that each macro call (such as PutStr, GetStr, 
and nwln) is expanded by using the macro definitions in io . mac. For example, 
the PutStr macro call is expanded by the four lines of code (lines 5-8). Using 
symbolic information, we can write these four lines of code as 

push AX 
mov AX,OFFSET number_prompt 
call proc_PutStr 
pop AX 

As discussed in Appendix B, these macros are defined in io . mac. The GetStr 
macro is expanded to lines 9-15 and nwln to lines 16-18. 

Now let us examine the data segment contents. In order to use the default 
DS register, we have to set up this register to point to our data segment. This is 
done by the first two lines of the code. One way to execute these two lines of 
code is to use the T command (line 20). It makes no difference whether you use 
the P or T command, as there are no procedure calls or loop instructions. Note 
that the trace command executes in single-step mode. Thus, after executing 
each instruction, it displays the contents of the registers, status of the flags, 
and the next instruction to be executed. From line 27, we can see that DS is 
initialized to the data segment. 

Now we can use the D command (line 29) to display the first 128 bytes 
starting at offset O. The data segment contains the two message strings: 

Please type a number «10 digits): 
The sum of individual digits is: 

and the storage space for number starts after these two message strings at 
3F09:0046. Since we have not initialized it, the contents do not matter at this 
point. 

Now let us execute the program until after reading an input number. That 
is, we will set up a breakpoint at the instruction 

mov 8X,0046 

at offset 001FH. We can do this by using the G command on line 38. The 
prompt and the input number are shown on line 39. At the breakpoint, it 
displays the contents of the registers, flags, and the next instructions, as in the 
trace command we have seen before. While the G command allows us to set up 
breakpoints in the program, the other two symbolic debuggers provide a much 
better screen-oriented user interface, as we shall see later in this appendix. 

Now let us verify that the input has been read properly. We use the D 
command 



Section G.2 DEBUG 593 

1 : 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 

D 46 LB 

on line 44 to examine the contents of number. In this D command, we are 
not only specifying the address (46H), but also indicating that 11 (=BH) bytes 
are to be displayed. Thus, we will just see the contents (11 bytes) of number 
(lines 45 and 46). 

Let us suppose that we want to check the logic of the loop (lines 25-32 in 
Program C.57). We can do this by executing the loop in single-step mode using 
the T command on line 47. This gives us an opportunity to check the logic one 
instruction at a time. An interesting point is that, on line 55, when we are using 
the indirect addressing mode, it displays the address and its contents: 

DS:0046=31 

At the end of the loop, DX = 1, which is what it should be for the given input. 
Having checked the logic of the loop, let us run the whole loop without 

any interruption. This is done by setting a breakpoint using the G command 
on line 80. (In this example, it is useful to have the list file handy to know the 
offset values of the code at various points.) This breakpoint is set at line 34 
in Program C.57. We note that the sum in the DX register is the correct value 
(2DH = 45D) for the input given in this sample run. 

The rest of the DEBUG output is straightforward to follow. Notice that 
after the program has terminated, we have used the L command to reload the 
application for another execution, this time without any breakpoints. Finally, 
on line 100, we have used the Q command to exit DEBUG. 

Program C.S8 A sample DEBUG session 

A:\>debug addigits.exe 
-U 
3ED1:0000 B8093F MOV AX,3F09 
3ED1:0003 8ED8 MOV DS,AX 
3ED1:0005 50 PUSH AX 
3ED1:0006 B80000 MOV AX,OOOO 
3ED1:0009 E85600 CALL 0062 
3ED1: OOOC 58 POP AX 
3ED1:000D 51 PUSH CX 
3ED1:000E B90BOO MOV CX,OOOB 
3ED1:0011 50 PUSH AX 
3ED1:0012 B84600 MOV AX,0046 
3ED1:0015 E88101 CALL 0199 
3ED1: 0018 58 POP AX 
3ED1:0019 59 POP CX 
3ED1:001A 50 PUSH AX 
3ED1:001B E83500 CALL 0053 



594 Appendix C Debugging Assembly Language Programs 

18: 3ED1:001E 58 
19: 3ED1:001F BB4600 
20: -T 2 
21: 

POP AX 
MOV BX,0046 

22: AX=3F09 BX=OOOO CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
23: DS=3EC1 ES=3EC1 SS=3F20 CS=3ED1 IP=0003 NV UP EI PL NZ NA PO NC 
24: 3ED1:0003 8ED8 MOV DS,AX 
25: 
26: AX=3F09 BX=OOOO CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
27: DS=3F09 ES=3ECl SS=3F20 CS=3ED1 IP=0005 NV UP EI PL NZ NA PO NC 
28: 3ED1: 0005 50 PUSH AX 
29: -D 0 
30: 3F09:0000 50 6C 65 61 73 65 20 74-79 70 65 20 61 20 6E 75 
31: 3F09:0010 6D 62 65 72 20 28 3C 31-30 20 64 69 67 69 74 73 
32: 3F09:0020 29 3A 20 00 54 68 65 20-73 75 6D 20 6F 66 20 69 
33: 3F09:0030 6E 64 69 76 69 64 75 61-6C 20 64 69 67 69 74 73 
34: 3F09:0040 20 69 73 3A 20 00 00 00-00 00 00 00 00 00 00 00 
35: 3F09:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
36: 3F09:0060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
37: 3F09:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 
38: -G iF 
39: Please type a number «10 digits): 1234567890 
40: 

Please type a nu 
mber «10 digits 
): . The sum of i 
ndividual digits 
is: .......... . 

41: AX=3F09 BX=OOOO CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
42: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=OOlF NV UP EI PL NZ NA PO NC 
43: 3ED1:001F BB4600 
44: -D 46 LB 
45: 3F09:0040 
46: 3F09:0050 00 
47: -T 8 
48: 
49: 
50: 
51: 
52: 
53: 
54: 
55: 
56: 
57: 
58: 
59: 
60: 
61 : 
62: 
63: 
64: 
65: 
66: 
67: 
68: 
69: 
70: 

AX=3F09 BX=0046 
DS=3F09 ES=3EC1 
3ED1:0022 2BD2 

AX=3F09 BX=0046 
DS=3F09 ES=3ECl 
3ED1:0024 8A07 

AX=3F31 BX=0046 
DS=3F09 ES=3ECl 
3ED1:0026 3COO 

AX=3F31 BX=0046 
DS=3F09 ES=3EC1 
3ED1: 0028 7407 

AX=3F31 BX=0046 
DS=3F09 ES=3ECl 
3ED1:002A 240F 

AX=3FOl BX=0046 
DS=3F09 ES=3ECl 

MOV BX,0046 

31 32-33 34 35 36 37 38 39 30 1234567890 

CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
SS=3F20 CS=3EDl IP=0022 NV UP EI PL NZ NA PO NC 

SUB DX,DX 

CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
SS=3F20 CS=3ED1 IP=0024 NV UP EI PL ZR NA PE NC 

MOV AL, [BX] DS:0046=31 

CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
SS=3F20 CS=3EDl IP=0026 NV UP EI PL ZR NA PE NC 

CMP AL,OO 

CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
SS=3F20 CS=3ED1 IP=0028 NV UP EI PL NZ NA PO NC 

JZ 0031 

CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
SS=3F20 CS=3EDl IP=002A NV UP EI PL NZ NA PO NC 

AND AL,OF 

CX=04EC DX=OOOO SP=0100 BP=OOOO SI=OOOO DI=OOOO 
SS=3F20 CS=3EDl IP=002C NV UP EI PL NZ NA PO NC 



Section C,J Turbo Debugger 1D 

71: 3ED1:002C 02DO 
72: 
73: 
74: 
75: 
76: 
77: 
78: 
79: 
80: 
81 : 

AX=3FOl BX=0046 
DS=3F09 ES=3ECl 
3ED1: 002E 43 

AX=3FOl BX=0047 
DS=3F09 ES=3ECl 
3ED1:002F EBF3 
-G 31 

ADD DL,AL 

CX=04EC DX=OOOl 
SS=3F20 CS=3EDl 

INC BX 

CX=04EC DX=OOOl 
SS=3F20 CS=3EDl 

JMP 0024 

SP=0100 BP=OOOO SI=OOOO DI=OOOO 
IP=002E NV UP EI PL NZ NA PO NC 

SP=0100 BP=OOOO SI=OOOO DI=OOOO 
IP=002F NV UP EI PL NZ NA PE NC 

82: AX=3FOO BX=0050 CX=04EC DX=002D SP=0100 BP=OOOO SI=OOOO DI=OOOO 
83: DS=3F09 ES=3ECl SS=3F20 CS=3EDl IP=0031 NV UP EI PL ZR NA PE NC 
84: 3ED1:0031 50 PUSH AX 
85: -G45 
86: The sum of individual digits is: 45 
87: 
88: AX=3FOO BX=0050 CX=04EC DX=002D SP=0100 BP=OOOO SI=OOOO DI=OOOO 
89: DS=3F09 ES=3ECl SS=3F20 CS=3EDl IP=0045 NV UP EI PL NZ NA PO NC 
90: 3ED1:0045 B8004C 
91: -G 
92: 

MOV AX,4COO 

93: Program terminated normally 
94: -L 
95: -G 
96: Please type a number «10 digits): 456 
97: The sum of individual digits is: 15 
98: 
99: Program terminated normally 

100: -Q 

101: 
102: A:\> 

C.3 Thrbo Debugger TD 

595 

Turbo Debugger is a window-oriented debugger that facilitates symbolic de
bugging at the source-code level. TD can be used to debug programs written in 
high-level languages like C and Pascal as well as in assembly language. In this 
section, we briefly discuss some of the features of TD relevant to debugging 
assembly language programs. 

In order for TD to use symbolic information during debugging, you have 
to assemble your program with the ZI option and link with the V option. For 
example, to debug addigi ts. asm, use the following commands to prepare 
your program: 

TASM Izi addigits 
TLINK Iv addigits io 



596 Appendix C Debugging Assembly Language Programs 

:: Pile E it Uie", Run Bl'eak 0 nts Data 0 tiom: ~lindQW Hel .. :. 
[ l l=Hodule: addigits File: addigits.asro 18 

.CODE 
INCLUDE iO.l1Iac 
111 a in PROC 

fIlOV Ax.eDATA 
DS.AX 
nUfIlber-prol1lpt 
nUfIlber.11 . 

initialize DS 
fIlOV 
PutStl" 
GetStl" 
ntlln 
fIlOV 
sub 

; l"equest an input nUfIlber 
l"ead input nurober as a st!'ing 

BX.OFFSET numbel" ; BX : = addl"ess of numbel" 
DX.DX DX : = 0 -- DL keeps the sum 

l'epeat_add: 
fIlOV AL. [OX] 

AL.0 
done 
AL.BFH 
DL.AL 
BX 

move the digit to AL 
• Cll'lp if it is the HULL chal"actel" 
• je SUJI is done 
• and mask off the uppel" 4 bits 

add add the digit to suro 
incl"eroent OX to point to next 

Figure C.I TD window at the start of addigi ts . asm program. 

The Turbo Debugger can then be invoked by 

TD addigits 

Figure C.l shows the screen that you would see after invoking TD as indi
cated. The screen consists of a menu bar (called main menu) at the top, and a 
quick reference help line at the bottom. In addition, it displays two windows: 
a module window and a watches window. Each window that the TD opens 
has a number associated with it. The window number appears in the upper
righthand comer of the window. For example, the module window is window I 
and the watches window is window 2. The active window, the module window 
in Figure C.I, has a double-line border around it and inactive windows have a 
single-line border (e.g., see watches window). 

The module window shows the source program. The arrow at the left points 
to the next instruction to be executed. Since we haven't yet run the program, 
the arrow points to the first line of the main procedure in Figure C.l. 

You can make an inactive window active by pressing Alt-x, where x is the 
window number. For example, Alt-2 makes the watches window active. 

The main menu can be activated by F1O. Press carriage return to open the 
selected pull-down menu. You can then use the arrow keys to navigate the menu 
items. Here we will take a brief look at the View and Run menu options. 



Section G.3 Turbo Debugger m 597 

MS:DQS Prompt · aD 
:: File Edit Uiew Run Break ints Data 0 tions \I in do,,", Hel . :. DY 

1=[ f ][ ~ ]~ 

• 
• 

• 

I J=ftodule: addigits Pile: addigits.as~ 18 
. CODE 
I MCLUDE fo. iliac 
ilia in PROC 

1II0U 
1II0U 
PutStr 
GetStr 
nwln 
III0U 
sub 

I'e peat_add : 
1II0U 
ClllP 
je 
and 
add 

AX.@DATA 
DS. AX 
nUlllbel"-PI"OIIIpt 
nUlllber.11· 

in it ialize DS 

; request an input nUlllber 
read input nUlllber as a string 

BX.OPPSEI nUlllber ; BX : '" address of nUlllber 
DX.DX DX : '" iii - - DL keeps the SUIII 

AL.[BX] 
AL.1iI 
done 
AL.IiIFH 
DL.AL 
BX 

lIIoue the digit to AL 
if it is the HULL dlal'acter 

SUIII is done 
",ask off the upper 4 bits 
add the digit to SUIII 
increlllent BX to point to next 

k 
digit 

Figure C.2 TD window after adding number to watch list. 

The View pull-down menu provides several options to view the status of 
the program. Some of the options available are listed in Table C.2. 

As we indicated in Section C.l, watches are useful to monitor the state of 
a set of variables as the program execution progresses. In Turbo Debugger, a 
variable or an expression can be added to the watch list by using add watch 
in the Data menu (Ctrl-F7). Figure C.2 shows the watches window when the 
variable number is added to the watch list. Notice that the TD shows the name 
of the variable, its type and contents. Now, for example, we can test the initial 
part of our program by placing a breakpoint after reading the input number by 
GetStr. This can be done by using an option under the Run menu, which we 
will discuss next. 

Program execution is controlled by the Run menu. Some of the options in 
this menu are shown in Table C.3. Now let us execute the program until 

mov BX,OFFSET number 

One way is to move the cursor to this line and press F4. This execution prompts 
you for a number (we have given 1234567890 as input in this example execution) 
that is stored in variable number. As shown in Figure C.3, the watches window 
shows that number has properly received the input value. Breakpoints in a 
program can also be set by the Breakpoints menu. 



598 Appendix C Debugging Assembly Language Programs 

Table C.2 Selected View menu options 

Breakpoints 
Stack 
Watches 

Displays a list of breakpoints set in the program 
Displays the active procedures 
Displays the values of the variables and expressions in the watch 
list 

Variables 

CPU 
Dump 

Register 

Run (F9) 

Shows the names and values of all variables accessible from current 
location of the program 
Shows the status of the program (discussed in text) 
Shows the contents of a part of memory (similar to DEBUG's Dump 
command) 
Shows the contents of all registers including the flags 

Table C.3 Selected Run menu options 

Execute program until completion or until a breakpoint is 
encountered 

Goto cursor (F4) 
Trace into (F7) 

Execute program up to the line that the cursor is on 
Execute one instruction at a time in single-step mode (similar to 
DEBUG Trace command) 

Step over (FS) Execute one statement at a time (a procedure call, interrupt, loop 
are treated as a single statement as in the Proceed command of 
DEBUG) 

The module window is useful in debugging programs at the source-code 
level. This is particularly helpful in debugging programs written in high-level 
languages like C and Pascal. While the source-code level of debugging is also 
useful in debugging assembly language programs (for example, we can set 
convenient watches to monitor the progress), the CPU window is much more 
useful for low-level debugging. The remainder of the section focuses on the 
CPU window. 

The CPU window provides a snapshot view of the program state. The CPU 
window after executing the program until 

mov BX,OFFSET number 

is shown in Figure C.4. The window is divided into five panes. The code pane 
(top left pane) shows the CS:IP, along with the machine code and source-code 



Section C3 Turbo Debugger 1D 599 

MS-DOS Prompt ' . ,. 
:=: File Edit Uiew Run Break ints Data 0 tions llindow Hel ~:I' 
[ I J=ftodule: addigits File: addigits.asA 23 

_CODE 
INCLUDE iO_IIIac 
ilia in PROC 

III0U 
III0U 
PutStr 
GetSt .. 
nwln 
III0U 

AX.@DAIA 
DS.AX 
nUIIlber--prolllpt 
nUIIlber.i1 · 

initialize DS 

; request an input nUIIlbel" 
read input nUIIlber as a string 

OX.OFFSET nUlllber ; BX : - address of nUlllber 
• sub 

}'epeat_add: 
DK.DK DX := 0 -- DL keeps t]le SUIII 

• 
• 

1II0U 
CIllP 
je 
and 
add 

AL.[OKl 
AL.a 
done 
AL.0FH 
DL.AL 
OK 
re~eat_add 

1II0ve the digit to AL 
if it is the NULL character 

SUIII is done 
lIIask off the upper 4 bits 
add the digit to SUIII 
incl"elllent BX to point to next digit 

back 

Figure C.3 TD window after reading the value 1234567890 into number. 

lines. The current instruction is indicated by the arrow and also by highlighting 
the line if the code pane is active. 

The next pane is the register pane and shows the contents of all 16-bit 
registers except flags. (You can display 32-bit registers by using an option in 
the local menu.) The status of flags is shown in the top right pane (flags pane). 
Unlike the DEBUG, the flag values are shown as 1 or 0 to indicate whether the 
flag is set or cleared, respectively. Also, changes in register values and flags 
are highlighted. For example, see registers AX, CX, and the carry flag. 

The bottom left pane (data pane) shows the contents of the data segment. As 
shown in Figure C.4, the data pane shows the contents both in hex and ASCII. 
The fifth pane (stack pane) shows SS:SP and the contents of the stack. The top 
of the stack is indicated by an arrow. Remember that the stack grows toward 
low memory addresses. Therefore, SP values are displayed in decreasing order 
from top to bottom. You can use the tab to move the cursor from one pane to 
the next. 

An interesting feature ofTD is its context-sensitive local menus. Depending 
on where the cursor is, a local pop-up menu can be activated by Alt-FlO or Ctrl
FlO. Figure C.5 shows the pop-up local menu of the data pane. For example, 
we can use the option 



600 Appendix C Debugging Assembly Language Programs 

• _v AL,. [IX) ; _ve the diait IL 
• ClIP AL,.I ; if It 1a the IIILL Chl .... iC. 
• .:Ie do". ; eua 1a done 
• ad AL .. IJIII ; .. k ." tJle uppe .. 4 
• .dd DL ... RL ; add the didt to .... 
• 11\0 IX ; H .... nt IX '0 ~Ht to 
• .:IIIP ..... t..... J ami .1uap .k 
....... 
... v 
call 

Figure C.4 CPU window before the repeaLadd loop. 

Goto ... 

to specify an address to change the area of a data segment memory to be dis
played. If we want to see the contents of number (whose offset is 46H), we 
can use this option of the local menu. The resulting data pane is shown in 
Figure C.6. As you can see, it shows the input number that we have given to 
the program. You also see another similar sequence starting at DS:0064. This 
is actually the buffer into which GetStr reads the input number first before 
copying it into number. 

Now if you want to check the logic of the repeaLadd loop, you can use 
Trace Into (F7) or Step Over (F8) to single step while monitoring the contents of 
the registers and flags. Since there are no procedure calls or loop instructions, 
both F7 and F8 behave the same way for our example program. To see the 
complete execution of repeaLadd loop, move the cursor to the 

push AX 

instruction at CS:0031 and press F4. The resulting state is shown in Figure C.7. 
Now notice that the sum in the DX register is 2DH, which is the hexadecimal 
equivalent of 45D. 



Section C.4 CodeView 601 

Figure C.S CPU window with Data Pane local menu. 

In this brief discussion, we have glossed over numerous features available 
in TD. Now it is up to you to fully utilize the help offered by TD in debugging 
your assembly language programs. 

C.4 Code View 

Microsoft's CodeView is similar in spirit to the Turbo Debugger. As in TD, 
you have to assemble your program using the ZI option and link with the CO 
option. This causes the symbolic information to be placed in the execution file. 

Depending on the version of Code View you are using, some of the details 
might vary. Here we briefly discuss some generic features. 

As in TD, you can add a variable or an expression to the watch list. The 
values of variables in the watch list are displayed in the watch window. The 
watch menu can be used to either add or delete an expression or a variable to 
the watch list. Also, breakpoints can be set or edited, i.e., added, deleted, etc. 
Go (F5) can be used to execute from the next instruction to the completion of 
the program or until a breakpoint is encountered. 



602 Appendix C Debugging Assembly Language Programs 

Figure C.6 CPU window after executing Goto ... command. 

Trace (F8) and step (FlO) commands are also available to control program 
execution. These are similar to trace into and step over commands available in 
Turbo Debugger. 

The register window displays the contents of all registers including the 
flags register. The flags values are reported using the two-letter encoding used 
in DEBUG (see page 590). 

The view menu provides several options to open other windows. For ex
ample, the memory option under this menu can be used to open the memory 
window and the output option switches to the program output window. 

c.s Summary 

We started this appendix with a brief discussion of the basic debugging tech
niques. Since assembly language is a low-level programming language, de
bugging tends to be even more tedious than debugging a program written in a 
high-level language. It is, therefore, imperative to follow good programming 
practices in order to help debug and maintain assembly language programs. 

There are several tools available for debugging programs. We discussed 
three debuggers-DEBUG, Turbo Debugger, and Code View-in this appendix. 



Section C. 6 Exercises 

Figure C.7 CPU window after completing the repeat_add loop. 

While DEBUG is a line-oriented debugger, the other two are window-oriented 
and offer a much better user interface. The best way to learn to use these 
debuggers is by hands-on experience. 

C.6 Exercises 

C-l Discuss some general techniques useful in debugging programs. 

C-2 How are window-oriented debuggers like Turbo Debugger better than 
line-oriented debuggers like DEBUG? 

C-3 What is the difference between T and P commands of DEBUG? 

C-4 Discuss how breakpoints are useful in debugging programs. 

C-5 It has been said that the CPU window of the Turbo Debugger is more 
useful in debugging assembly language programs. Explain the reasons 
for this. 



604 Appendix C Debugging Assembly Language Programs 

C.7 Progamming Exercises 

C-Pl Take a program from Chapter 3 and ask your friend to deliberately in
troduce some logical errors into the program. Then use your debugger 
to locate and fix errors. Discuss the features of your debugger that you 
found most useful. 

C-P2 Using your debugger's capability to modify flags, verify the conditions 
mentioned for conditional jumps in Section 7.3 on page 263. 



Appendix 0 

Pentium I nstruction Set 

Objectives 

• To describe the Pentium instruction format 

• To present selected Pentium instructions 

Instruction format and encoding encompass a variety of factors: addressing 
modes, number of operands, number of registers, sources of operands, etc. In
structions can be of fixed length or variable length. In a fixed-length instruction 
set, all instructions are of the same length. In processors like Pentium that use 
variable-length instructions, instruction length can vary to accommodate the 
complexity of an instruction. Section D.l discusses the instruction format of 
the Pentium processor. A subset of the Pentium instruction set is presented in 
Section D.2. 

D.I Pentium Instruction Format 

Pentium uses variable-length instructions. Instruction length can be between 1 
and 16 bytes. The instruction format of Pentium is shown in Figure 0.1. The 
general instruction format is shown in Figure D.lb. In addition, instructions 
can have several optional instruction prefixes shown in Figure D.la. The next 
two subsections discuss the instruction format in detail. 



606 

Number of Bytes o or 1 

Instruction 
prefix 

Appendix D Pentium Instruction Set 

o or 1 o or 1 

Address-size Operand-size 
prefix prefix 

(a) Optional instruction prefixes 

o or 1 

Segment 
override 

Number of Bytes 1 or 2 Oor 1 o or 1 0,1,2,or4 0,1,2, or 4 

Immediate 

RIM SS Index Base 

7 6 5 4 3 2 OBits 765432 o 

(b) General instruction format 

Figure D.I Pentium instruction format. 

D.I.I Instruction Prefixes 

There are four instruction prefixes, as shown in Figure O.la. These prefixes can 
appear in any order. All four prefixes are optional. When a prefix is present, it 
takes a byte. 

• Instruction Prefixes: Instruction prefixes such as rep were discussed in 
Chapter 9. This group of prefixes consists of rep, repe/repz, repne/ 
repnz, and lock. The three repeat prefixes were discussed in detail in 
Chapter 9. The lock prefix is useful in multiprocessor systems to ensure 
exclusive use of shared memory. 

• Segment Override Prefixes: These prefixes are used to override the de
fault segment association. For example, 05 is the default segment for 
accessing data. We can override this by using a segment prefix. We saw 
an example of this in Chapter 4 (see Program 4.14 on page 151). The 
following segment override prefixes are available: CS, 55, OS, E5, FS, 
and GS. 

• Address-Size Override Prefix: This prefix is useful in overriding the de
fault address size. As discussed in Chapter 2, the 0 bit indicates the 



Section D.l Pentium Instruction Format 607 

default address and operand size. A D bit of 0 indicates the default ad
dress and operand sizes of 16 bits and a D bit of I indicates 32 bits. The 
address size can be either 16 bits or 32 bits long. This prefix can be used 
to switch between the two sizes. 

• Operand-Size Override Prefix: The use of this prefix allows us to switch 
from one default operand size to the other. For example, in the 16-
bit operand mode, using a 32-bit register, for example, is possible by 
prefixing the instruction with the operand-size override prefix. 

These four prefixes can be used in any combination, and in any order. 

D.l.2 General Instruction Format 

The general instruction format consists of the Opcode, an optional address 
specifier consisting of a Mod RIM byte and SIB (scale-index-base) byte, an 
optional displacement, and an immediate data field, if required. Next we briefly 
discuss these five fields. 

• Opcode: This field can be 1 or 2 bytes long. This is the only field that 
must be present in every instruction. For example, the opcode for the 
papa instruction is 61H, and takes only one byte. On the other hand, 
the opcode for the shld instruction with an immediate value for the 
shift count takes two bytes (the opcode is OFA4H). The opcode field 
also contains other smaller encoding fields. These fields include the 
register encoding, direction of operation (to or from memory), the size 
of displacement, and whether the immediate data must be sign-extended. 
For example, the instructions 

push AX 
push ex 
push OX 
push BX 

are encoded as 50H, 51H, 52H, and 53H, respectively. Each takes only 
one byte that includes the operation code (push) as well as the register 
encoding (AX, ex, DX, or BX). 

• Mod RIM: This byte and the SIB byte together provide addressing in
formation. The Mod RIM byte consists of three fields, as shown in 
Figure D.l. 

- Mod: This field (2 bits) along with the RIM field (3 bits) specify 
one of 32 possible choices: 8 registers and 24 indexing modes. 



608 Appendix D Pentium Instruction Set 

- ReglOpcode: This field (3 bits) specifies either a register number 
or three more bits of opcode information. The first byte of the 
instruction determines the meaning of this field. 

- RIM: This field (3 bits) either specifies a register as the location of 
operand or forms part of the addressing-mode encoding along with 
the Mod field. 

• SIB: The based indexed and scaled indexed modes of 32-bit addressing 
require the SIB byte. The presence of the SIB byte is indicated by certain 
encodings of the Mod RIM byte. The SIB byte consists of three fields, 
as shown in Figure D.l. The SS field (2 bits) specifies the scale factor 
(l, 2, 4, or 8). The index and base fields (3 bits each) specify the index 
and base registers, respectively. 

• Displacement: If an addressing mode requires a displacement value, this 
field provides the required value. When present, it is an 8-, 16-, or 32-bit 
signed integer. For example 

jg SHORT done 
pop BX 

done: 

generates the code 7F 01 for the j g conditional jump instruction. The op
code for j g is 7FH and the displacement is 01 because the pop instruction 
encoding takes only a single byte. 

• Immediate: The immediate field is the last one in the instruction. It is 
present in those instructions that specify an immediate operand. When 
present, it is an 8-, 16-, or 32-bit operand. For example 

mov AX,256 

is encoded as B8 0100. Note that the first bye B8 not only identifies 
the instruction as mov but also specifies the destination register as AX 
(by the least significant three bits of the opcode byte). Pentium uses the 
following encoding for the 16-bit registers: 

AX=O 
CX= 1 
DX=2 
BX=3 

SP=4 
BP=5 
SI = 6 

DI=7 

The last two bytes represent the immediate value 256, which is equal to 
100H. If we change the register from AX to BX, the opcode byte changes 



Section D.2 Selected Pentium Instructions 609 

D.2 Selected Pentium Instructions 

This section gives selected Pentium instructions in alphabetical order. For each 
instruction, the instruction mnemonic, flags affected, format, and a description 
are given. For a more detailed discussion, please refer to the Pentium Proces
sor Family Developer's Manual-Volume 3: Architecture and Programming 
Manual. While most of the components are self-explanatory, the flags section 
requires some explanation regarding the notation used. An instruction can af
fect a flag bit in one of several ways. We use the following notation to represent 
the effect of an instruction on a flag bit. 

o Cleared 
1 Set 

Unchanged 
M Updated according to the result 
* Undefined 

aaa - ASCII adjust after addition I ~ I ~ I ~ I ~ I ~ I ~ I 
Format: 
Description: 

aaa 
ASCII adjusts AL register contents after addition. The AF and CF are set if there is 
a decimal carry; cleared otherwise. See Chapter 11 for details. Clock cycles: 3. 

aad - ASCII adjust before division 

Format: 
Description: 

aad 
ASCII adjusts AX register contents before division. See Chapter 11 for details. Clock 
cycles: 10. 

aam - ASCII adjust after Multiplication 

Format: 
Description: 

aam 
ASCII adjusts AX register contents after multiplication. See Chapter 11 for details. 
Clock cycles: 18. 

aas - ASCII adjust after subtraction I~I~ I~ I~ I~ I~I 
Format: 
Description: 

aas 
ASCII adjusts AL register contents after subtraction. The AF and CF are set if there 
is a decimal carry; cleared otherwise. See Chapter 11 for details. Clock cycles: 3. 



610 Appendix D Pentium Instruction Set 

adc - Add with carry 

Format: 
Description: 

adc dest,src 
Performs integer addition of src and dest with the carry flag. The result 
(dest + src + CF) is assigned to dest. Clock cycles: 1-3. 

add - Add without carry 

Format: 
Description: 

add dest,src 
Performs integer addition of src and dest. The result (dest + src) is assigned to 
dest. Clock cycles: 1-3. 

and - Logical bitwise and 

Format: 
Description: 

and dest,src 
Performs logical bitwise and operation. The result src and dest is stored in dest. 
Clock cycles: 1-3 

bsf - Bit scan forward 

Format: 
Description: 

bsf dest,src 
Scans the bits in src starting with the least significant bit. The ZF flag is set if all bits 
are 0; otherwise, ZF is cleared and the dest register is loaded with the bit index of 
the first set bit. Note that dest and src must be either both 16- or 32-bit operands. 
While the src operand can be either in a register or memory, dest must be a register. 
Clock cycles: 6-35 for 16-bit operands and 6-43 for 32-bit operands. 

bsr - Bit scan reverse 

Format: 
Description: 

bsr dest,src 
Scans the bits in src starting with the most significant bit. The ZF flag is set if all bits 
are 0; otherwise, ZF is is cleared and the dest register is loaded with the bit index of 
the first set bit when scanning src in the reverse direction. Note that dest and src 
must be either both 16- or 32-bit operands. While the src operand can be either in a 
register or memory, dest must be a register. Clock cycles: 7-40 for 16-bit operands 
and 7-72 for 32-bit operands. 



Section D.2 Selected Pentium Instructions 611 

bswap - Byte swap 

Format: 
Description: 

bt-Bittest 

Format: 
Description: 

bswap src 
Reverses the byte order of a 32-bit register src. This effectively converts a value from 
little endian to big endian and vice versa. Note that src must be a 32-bit register. 
Result is undefined if a 16-bit register is used. Clock cycles: 1. 

bt src1,src2 
The value of the bit in src1, whose position is indicated by src2, is saved in the carry 
flag. The first operand src1 can be a 16- or 32-bit value that is either in a register or 
memory. The second operand src2 can be a 16- or 32-bit value located in a register 
or an 8-bit immediate value. Clock cycles: 4-9. 

btc - Bit test and complement I~I~I~ I~ I~ I~I 
Format: 
Description: 

btc src1,src2 
The value of the bit in src1, whose position is indicated by src2, is saved in the 
carry flag and then the bit in src1 is complemented. The first operand src1 can be 
a 16- or 32-bit value that is either in a register or memory. The second operand src2 
can be a 16- or 32-bit value located in a register or an 8-bit immediate value. Clock 
cycles: 7-13. 

btr - Bit test and reset 

Format: 
Description: 

btr src1,src2 
The value of the bit in src1, whose position is indicated by src2, is saved in the carry 
flag and then the bit in src1 is reset (i.e., cleared). The first operand src1 can be a 
16- or 32-bit value that is either in a register or memory. The second operand src2 
can be a 16- or 32-bit value located in a register or an 8-bit immediate value. Clock 
cycles: 7-13. 



612 Appendix D Pentium Instruction Set 

bts - Bit test and set 

Format: 
Description: 

bts srci,src2 
The value of the bit in srci, whose position is indicated by src2, is saved in the 
carry flag and then the bit in src 1 is set (i.e., stores 1). The first operand src 1 can be 
a 16- or 32-bit value that is either in a register or memory. The second operand src2 
can be a 16- or 32-bit value located in a register or an 8-bit immediate value. Clock 
cycles: 7-13. 

call- Call procedure 

Format: 
Description: 

call dest 
The call instruction causes the procedure in the operand to be executed. There are a 
variety of call types. We indicated that the flags are not affected by call. This is true 
only ifthere is no task switch. For more details on the call instruction, see Chapter 4. 
For details on other forms of call, see the Pentium data book. Clock cycles: vary 
depending on the type of call. 

cbw - Convert byte to word 

Format: 
Description: 

cbw 
Converts the signed byte in AL to a signed word in AX by copying the sign bit of AL 
(the most significant bit) to all bits of AH. Clock cycles: 3. 

cdq - Convert doubleword to quadword 

Format: 
Description: 

cdq 
Converts the signed doubleword in EAX to a signed quadword in EDX:EAX by 
copying the sign bit of EAX (the most significant bit) to all bits of EDX. Clock 
cycles: 2. 

clc - Clear carry Hag 

Format: cIc 
Description: Clears the carry flag. Clock cycles: 2. 



Section D.2 Selected Pentium Instructions 613 

c1d - Clear direction flag 

Format: cld 
Description: Clears the direction flag. Clock cycles: 2. 

cli - Clear interrupt flag 

Format: 
Description: 

cli 
Clears the interrupt flag. Note that maskable interrupts are disabled when the interrupt 
flag is cleared. Clock cycles: 7. 

cmc - Complement carry flag 

Format: cmc 
Description: Complements the carry flag. Clock cycles: 2. 

cmp - Compare two operands 
I ~ I ~ I ~ I ~ I ~ I ~ I 

Format: 
Description: 

cmp dest,src 
Compares the two operands specified by performing dest - src. However, the 
result of this subtraction is not stored (unlike the sub instruction), but only the flags 
are updated to reflect the result of the subtract operation. This instruction is typically 
used in conjunction with conditional jumps. If an operand greater than I byte is 
compared to an immediate byte, the byte value is first sign-extended. Clock cycles: 
1 if no memory operand is involved; 2 if one of the operands is in memory. 



614 Appendix D Pentium Instruction Set 

cmps - Compare string operands 

Format: 

Description: 

cmps dest,src 
cmpsb 
cmpsw 
cmpsd 
Compares the byte, word, or doubleword pointed by the source index register (SI or 
ESI) with an operand of equal size pointed by the destination index register (01 or 
EDI). If the address size is 16 bits, SI and 01 registers are used; ESI and EDI registers 
are used for 32-bit addresses. The comparison is done by subtracting the operand 
pointed by the 01 or EDI register from that by the SI or ESI register. That is, the 
cmps instructions performs either [SI]-[DI] or [ESI]-[EDI]. The result is not stored 
but used to update the flags, as in the cmp instruction. After the comparison, both 
source and destination index registers are automatically updated. Whether these two 
registers are incremented or decremented depends on the direction flag (OF). The 
registers are incremented if OF is 0 (see the cld instruction to clear the direction 
flag); if the OF is 1, both index registers are decremented (see the std instruction to 
set the direction flag). The two registers are incremented or decremented by 1 for 
byte comparisons, 2 for word comparisons, and 4 for doubleword comparisons. 
Note that the specification of the operands in cmps is not really required, as the two 
operands are assumed to be pointed by the index registers. The cmpsb, cmpsw, and 
cmpsd are synonyms for the byte, word, and doubleword cmps instructions, respec
tively. 
The repeat prefix instructions (i.e., rep, repe, or repne) can precede the cmps in
structions for array or string comparisons. See rep instruction for details. Clock 
cycles: 5. 

cwd - Convert word to doubleword 

Format: 
Description: 

cwd 
Converts the signed word in AX to a signed doubleword in OX:AX by copying the sign 
bit of AX (the most significant bit) to all bits of OX. In fact, cdq and this instruction 
use the same opcode (99H). Which one is executed depends on the default operand 
size. If the operand size is 16 bits, cwd is performed; cdq is performed for 32-bit 
operands. Clock cycles: 2. 



Section D.2 Selected Pentium Instructions 615 

cwde - Convert word to doubleword 

Format: 
Description: 

cwde 
Converts the signed word in AX to a signed doubleword in EAX by copying the sign 
bit of AX (the most significant bit) to all bits of the upper word of EAX. In fact, 
cbw and cwde are the same instructions (Le., share the same opcode of 98H). The 
action performed depends on the operand size. If the operand size is 16 bits, cbw is 
performed; cwde is performed for 32-bit operands. Clock cycles: 3. 

daa - Decimal adjust after addition 

Format: 
Description: 

daa 
The daa instruction is useful in BCD arithmetic. It adjusts the AL register to contain 
the correct two-digit packed decimal result. This instruction should be used after an 
addition instruction, as described in Chapter 11. Both AF and CF flags are set if there 
is a decimal carry; these two flags are cleared otherwise. The ZF, SF, and PF flags 
are set according to the result. Clock cycles: 3. 

das - Decimal adjust after subtraction 

Format: 
Description: 

daB 
The daB instruction is useful in the BCD arithmetic. It adjusts the AL register to 
contain the correct two-digit packed decimal result. This instruction should be used 
after a subtract instruction, as described in Chapter 11. Both AF and CF flags are set 
if there is a decimal borrow; these two flags are cleared otherwise. The ZF, SF, and 
PF flags are set according to the result. Clock cycles: 3. 

dec - Decrement by 1 

Format: 
Description: 

dec deBt 
The dec instruction decrements the deBt operand by 1. The carry flag is not affected. 
Clock cycles: 1 if deBt is a register; 3 if deBt is in memory. 



616 Appendix D Pentium Instruction Set 

div - Unsigned divide 

Format: 
Description: 

hit-Halt 

Format: 
Description: 

div divisor 
The div instruction performs unsigned division. The divisor can be an 8-, 16-, or 
32-bit operand, located either in a register or in memory. The dividend is assumed 
to be either in AX (for byte divisor), DX:AX (for word divisor), or EDX:EAX (for 
doubleword divisor). The quotient is stored in AL, AX, or EAX for 8-, 16-, and 32-bit 
divisors, respectively. The remainder is stored in AH, DX, or EDX for 8-, 16-, and 
32-bit divisors, respectively. It generates interrupt 0 if the result cannot fit the quotient 
register (AL, AX, or EAX), or if the divisor is zero. See Chapter 6 for details. Clock 
cycles: 17 for an 8-bit divisor, 25 for a 16-bit divisor, and 41 for a 32-bit divisor. 

hlt 
This instruction halts instruction execution indefinitely. An interrupt or a reset will 
enable instruction execution. Clock cycles: 00. 

idiv - Signed divide 

Format: 
Description: 

idiv divisor 
Similar to the di v instruction except that idi v performs signed division. The divisor 
can be an 8-, 16-, or 32-bit operand, located either in a register or in memory. The 
dividend is assumed to be either in AX (for byte divisor), DX:AX (for word divisor), 
or EDX:EAX (for doubleword divisor). The quotient is stored in AL, AX, or EAX 
for 8-, 16-, and 32-bit divisors, respectively. The remainder is stored in AH, DX, 
or EDX for 8-, 16-, and 32-bit divisors, respectively. It generates interrupt 0 if the 
result cannot fit the quotient register (AL, AX, or EAX), or if the divisor is zero. See 
Chapter 6 for details. Clock cycles: 22 for an 8-bit divisor, 30 for a 16-bit divisor, 
and 46 for a 32-bit divisor. 



Section D.2 Selected Pentium Instructions 617 

imul- Signed multiplication 

Format: 

Description: 

imul src 
imul dest,src 
imul dest,src,constant 
This instruction performs signed multiplication. The number of operands for imul 
can be between 1 and 3, depending on the format used. In the one-operand format, the 
other operand is assumed to be in the AL, AX, or EAX register depending on whether 
the src operand is 8,16, or 32 bits long, respectively. The src operand can be either 
in a register or in memory. The result, which is twice as long as the src operand, is 
placed in AX, DX:AX, or EDX:EAX for 8-, 16-, or 32-bit src operands, respectively. 
In the other two forms, the result is of the same length as the input operands. 
The two-operand format specifies both operands required for multiplication. In this 
case, src and dest must both be either 16-bit or 32-bit operands. While src can be 
either in a register or memory, dest must be a register. 
In the three-operand format, a constant can be specified as an immediate operand. 
The result (src x constant) is stored in dest. As in the two-operand format, the 
dest operand must be a register. The src can be either in a register or memory. The 
immediate constant can be an 8-, 16-, or 32-bit value. For additional restrictions, 
refer to the Pentium data book. Clock cycles: 10 (11 if the one-operand format is 
used with either 8- or 16-bit operands). 

in - Input from a port 

Format: 

Description: 

in dest,port 
in dest,DX 
This instruction has two formats. In both formats, dest must be the AL, AX, or EAX 
register. In the first format, it reads a byte, word, or doubleword from port into the 
AL, AX, or EAX register, respectively. Note that port is an 8-bit immediate value. 
This format is restrictive in the sense that only the first 256 ports can be accessed. 
The other format is more flexible and allows access to the complete 110 space (i.e., 
any port between 0 and 65,535). In this format, the port number is assumed to be in 
the DX register. Clock cycles: varies-see Pentium data book. 

inc - Increment by 1 

Format: 
Description: 

inc dest 
The inc instruction increments the dest operand by 1. The carry flag is not affected. 
Clock cycles: I if dest is a register; 3 if dest is in memory. 



618 Appendix D Pentium Instruction Set 

ins - Input from a port to string 

Format: insb 
ins'W 
insd 

Description: This instruction transfers 8-, 16-, or 32-bit data from the input port specified in the DX 
register to a location in memory pointed by ES:(E)DI. The DI index register is used 
if the address size is 16 bits, and the EDI index register is used for 32-bit addresses. 
Unlike the in instruction, the ins instruction does not allow the specification of the 
port number as an immediate value. After the data transfer, the index register is 
updated automatically. The index register is incremented if DF is 0; it is decremented 
if DF is 1. The index register is incremented or decremented by 1, 2, or 4 for byte, 
word, or doubleword operands, respectively. The repeat prefix can be used along with 
the ins instruction to transfer a block of data (the number of data transfers is indicated 
by the CX register-see the rep instruction for details). Clock cycles: varies-see 
Pentium data book. 

int _ Interrupt I C I ~ I Z I SIP I A I 
Format: int interrupt-type 
Description: The int instruction calls an interrupt service routine or handler associated with 

interrupt-type. The interrupt-type is an immediate 8-bit operand. This value 
is used as an index into the Interrupt Descriptor table (IDT). See Chapter 12 for de
tails on the interrupt invocation mechanism. Clock cycles: varies-see Pentium data 
book. 

into - Interrupt on overflow 

Format: 
Description: 

into 
The into instruction is a conditional software interrupt identical to int 4 except that 
the int is implicit and the interrupt handler is invoked conditionally only when the 
overflow flag is set. Clock cycles: varies-see Pentium data book. 



Section D.2 Selected Pentium Instructions 619 

iret - Interrupt return 

Format: 

Description: 

iret 
iretd 
The iret instruction returns control from an interrupt handler. In real address mode, 
it loads the instruction pointer and the flags register with values from the stack and 
resumes the interrupted routine. Both iret and iretd are synonymous (and use 
the opcode CFH). The operand size in effect determines whether the 16-bit or 32-bit 
instruction pointer (IP or EIP) and flags (FLAGS or EFLAGS) are to be used. See 
Chapter 12 for more details. This instruction affects all flags as the flags register is 
popped from the stack. Clock cycles: varies-see Pentium data book. 

jcc - Jump if condition cc is satisfied 

Format: 
Description: 

jcc target 
The j cc instruction alters program execution by transferring control conditionally to 
the target location in the same segment. The target operand is a relative offset 
(relative to the instruction following the conditional jump instruction). The relative 
offset can be a signed 8-, 16-, or 32-bit value. Most efficient instruction encoding 
results if 8-bit offsets are used. With 8-bit offsets, the target should be within -128 
to + 127 of the first byte of the next instruction. For 16- and 32-bit offsets, the 
corresponding values are 2 15 to 215 - 1 and 231 to 231 - 1, respectively. When the 
target is in another segment, test for the opposite condition and use the unconditional 
jmp instruction, as explained in Chapter 7. See Chapter 7 for details on the various 
conditions tested like j a, jbe, etc. The j cxz instruction tests the contents of the 
CX or ECX register and jumps to the target location only if (E)CX = O. The default 
operand size determines whether CX or ECX is used for comparison. Clock cycles: 
I for all conditional jumps (except j cxz, which takes 5 or 6 cycles). 

jmp - Unconditional jump 

Format: 
Description: 

jmp target 
The jmp instruction alters program execution by transferring control unconditionally 
to the target location. This instruction allows jumps to another segment. In direct 
jumps, the target operand is a relative offset (relative to the instruction following 
the jmp instruction). The relative offset can be an 8-, 16-, or 32-bit value as in the 
conditional jump instruction. In addition, the relative offset can be specified indirectly 
via a register or memory location. See Chapter 7 for an example. For other forms of 
the jmp instruction, see the Pentium data book. Note: Flags are not affected unless 
there is a task switch, in which case all flags are affected. Clock cycles: 1 for direct 
jumps, 2 for indirect jumps (more clock cycles for other types of jumps). 



620 Appendix D Pentium Instruction Set 

lahf - Load flags into AU register 

Format: 
Description: 

lahf 
The lahf instruction loads the AH register with the low byte of the flags register. 
AH := SF, ZF, *, AF, *, PF, *, CF, where * represents an indeterminate value. Clock 
cycles: 2. 

Idsllesllfsllgsllss - Load full pointer 

Format: 

Description: 

Ids dest,src 
les dest,src 
lfs dest,src 
Igs dest,src 
Iss dest,src 
These instructions read a full pointer from memory (given by the src operand) and 
load corresponding segment registers (e.g., the DS register for the Ids instruction, 
the ES register for the les instruction, etc.) and the dest register. The dest operand 
must be a 16- or 32-bit register. The first 2 or 4 bytes (depending on whether the dest 
is a 16- or 32-bit register) at the effective address given by the src operand is loaded 
into the dest register and the next 2 bytes into the corresponding segment register. 
Clock cycles: 4 (except Iss). 

lea - Load effective address 

Format: 
Description: 

lea dest,src 
The lea instruction computes the effective address of a memory operand given by 
src and stores it in the dest register. The dest must be either a 16- or 32-bit register. 
If the dest register is a 16-bit register and the address size is 32, only the lower 16 
bits are stored. On the other hand, if a 32-bit register is specified when the address 
size is 16 bits, the effective address is zero-extended to 32 bits. Clock cycles: 1. 



Section D.2 Selected Pentium Instructions 621 

loels - Load string operand 

Format: 

Description: 

lodsb 
lodsw 
lodsd 
The lods instruction loads the AL, AX, or EAX register with the memory byte, 
word, or doubleword at the location pointed by DS:SI or DS:ESI. The address size 
attribute determines whether the SI or ESI register is used. The lodsw and loadsd 
instructions share the same opcode (ADH). The operand size is used to load either a 
word or doubleword. After loading, the source index register is updated automatically. 
The index register is incremented if DF is 0; it is decremented if DF is 1. The index 
register is incremented or decremented by 1, 2, or 4 for byte, word, or doubleword 
operands, respectively. The rep prefix can be used with this instruction but is not 
useful, as explained in Chapter 9. This instruction is typically used in a loop (see the 
loop instruction). Clock cycles: 2. 

looplloopeJIoopne - Loop control 

Format: 

Description: 

loop target 
loope/loopz target 
loopne/loopnz target 
The loop instruction decrements the count register (CX if the address size attribute 
is 16 and ECX if it is 32) and jumps to target if the count register is not zero. This 
instruction decrements the (E)CX register without changing any flags. The operand 
target is a relative 8-bit offset (i.e., the target must be in the range -128 to + 127 
bytes). 
The loope instruction is similar to loop except that it also checks the ZF value to 
jump to the target. That is, control is transferred to target if, after decrementing 
the (E)CX register, the count register is not zero and ZF = 1. The loopz is a synonym 
for the loope instruction. 
The loopne instruction is similar to loopne except that it transfers control to the 
target if ZF is 0 (instead of 1 as in the loope instruction). See Chapter 7 for more 
details on these instructions. Clock cycles: 5 or 6 for loop and 7 or 8 for the other 
two. 
Note that the unconditional loop instruction takes longer to execute than a functionally 
equivalent two-instruction sequence that decrements the (E)CX register and jumps 
conditionally. 



622 Appendix D Pentium Instruction Set 

mov - Copy data 

Format: 
Description: 

mov dest,sre 
Copies data from sre to dest. Clock cycles: 1 for most mov instructions except 
when copying into a segment register, which takes more clock cycles. 

movs - Copy string data 

Format: 

Description: 

movs dest,sre 
movsb 
movsw 
movsd 
Copies the byte, word, or doubleword pointed by the source index register (SI or ESI) 
to the byte, word, or doubleword pointed by the destination index register (01 or EDI). 
If the address size is 16 bits, the SI and 01 registers are used; ESI and EDI registers 
are used for 32-bit addresses. The default segment for the source is DS and ES for 
the destination. The segment override prefix can be used only for the source operand. 
After the move, both source and destination index registers are automatically updated 
as in the cmps instruction. 
The rep prefix instruction can precede the movs instruction for block movement of 
data. See the rep instruction for details. Clock cycles: 4. 

movsx - Copy with sign extension 

Format: 

Description: 

movsx reg16,sre8 
movsx reg32,sre8 
movsx reg32,sre16 
Copies the sign-extended source operand sre8/sre16 into the destination 
reg16/reg32. The destination can be either a 16-bit or 32-bit register only. The 
source can be a register or memory byte or word operand. Note that reg16 and 
reg32 represent a 16- and 32-bit register, respectively. Similarly, sre8 and sre16 
represent a byte and word operand, respectively. Clock cycles: 3. 

movzx - Copy with zero extension 

Format: 

Description: 

movzx reg16,src8 
movzx reg32,src8 
movzx reg32,src16 
Similar to the movsx instruction except movzx copies the zero-extended source 
operand into destination. Clock cycles: 3. 



Section D.2 Selected Pentium Instructions 623 

mul - Unsigned multiplication 

Format: 

Description: 

mul AL,sre8 
mul AX,srei6 
mul EAX,sre32 
Performs unsigned multiplication of two 8-, 16-, or 32-bit operands. Only one of the 
operands needs to be specified; the other operand, matching in size, is assumed to be 
in the AL, AX, or EAX register. 

• For 8-bit multiplication, the result is in the AX register. CF and OF are cleared 
if AH is zero; otherwise, they are set. 

• For 16-bit multiplication, the result is in the DX:AX register pair. The higher
order 16 bits are in DX. CF and OF are cleared if DX is zero; otherwise, they 
are set. 

• For 32-bit multiplication, the result is in the EDX:EAX register pair. The 
higher-order 32 bits are in EDX. CF and OF are cleared if EDX is zero; oth
erwise, they are set. 

Clock cycles: 11 for 8- or 16-bit operands and 10 for 32-bit operands. 

neg - Negate sign (two's complement) 

Format: 
Description: 

neg operand 
Performs 2's complement negation (sign reversal) of the operand specified. The 
operand specified can be 8, 16, or 32 bits in size and can be located in a register or 
memory. The operand is subtracted from zero and the result is stored back in the 
operand. The CF flag is set for nonzero result; cleared otherwise. Other flags are 
set according to the result. Clock cycles: 1 for register operands and 3 for memory 
operands. 

nop - No operation 

Format: nap 
Description: Performs no operation. Interestingly, nap instruction is an alias for the 

xehg (E) AX, (E) AX instruction. Clock cycles: 1. 

not - Logical bitwise not 

Format: 
Description: 

not operand 
Performs l's complement bitwise not operation (a 1 becomes 0 and vice versa). Clock 
cycles: 1 for register operands and 3 for memory operands. 



624 Appendix D Pentium Instruction Set 

or - Logical bitwise or 

Format: 
Description: 

or dest,src 
Performs bitwise or operation. The result (dest or src) is stored in dest. Clock 
cycles: 1 for register and immediate operands and 3 if a memory operand is involved. 

out - Output to a port 

Format: 

Description: 

out port,src 
out DX,src 
Like the in instruction, this instruction has two formats. In both formats, src must 
be the AL, AX, or EAX register. In the first format, it outputs a byte, word, or 
doubleword from src to the I/O port specified by the first operand port. Note that 
port is an 8-bit immediate value. This format limits access to the first 256 I/O ports 
in the I/O space. The other format is more general and allows access to the full I/O 
space (i.e., any port between 0 and 65535). In this format, the port number is assumed 
to be in the DX register. Clock cycles: varies-see Pentium data book. 

outs - Output from a string to a port 

Format: 

Description: 

outsb 

outsw 
outsd 
This instruction transfers 8-, 16-, or 32-bit data from a string (pointed by the source 
index register) to the output port specified in the OX register. Similar to the ins 
instruction, it uses the SI index register for 16-bit addresses and the ESI register if 
the address size is 32. The (E)SI register is automatically updated after the transfer 
of a data item. The index register is incremented if OF is 0; it is decremented if OF 
is 1. The index register is incremented or decremented by 1, 2, or 4 for byte, word, 
or doubleword operands, respectively. The repeat prefix can be used with outs for 
block transfer of data. Clock cycles: varies-see Pentium data book. 



Section D.2 Selected Pentium Instrnctions 625 

pop - Pop a word from the stack 

Format: 
Description: 

pop dest 
Pops a word or doubleword from the top of the stack. If the address size attribute is 
16 bits, SS:SP is used as the top of the stack pointer; otherwise, SS:ESP is used. dest 
can be a register or memory operand. In addition, it can also be a segment register 
DS, ES, SS, FS, or GS (e.g., pop DS). The stack pointer is incremented by 2 (if the 
operand size is 16 bits) or 4 (if the operand size is 32 bits). Note that pop CS is not 
allowed. This can be done only indirectly by the ret instruction. Clock cycles: 1 if 
dest is a general register; 3 if dest is a segment register or memory operand. 

popa - Pop all general registers 

Format: 

Description: 

popa 
popad 
Pops all eight 16-bit (popa) or 32-bit (pop ad) general registers from the top of the 
stack. The popa loads the registers in the order 01, SI, BP, and discards the next two 
bytes (to skip loading into SP), BX, DX, CX, and AX. That is, 01 is popped first and 
AX last. The popad instruction follows the same order on the 32-bit registers. Clock 
cycles: 5. 

popf - Pop flags register 

Format: 

Description: 

popf 
popfd 
Pops the 16-bit (popf) or 32-bit (popfd) flags register (FLAGS or EFLAGS) from the 
top of the stack. Bits 16 (VM flag) and 17 (RF flag) of the EFLAGS register are not 
affected by this instruction. Clock cycles: 6 in the real mode and 4 in the protected 
mode. 



626 Appendix D Pentium Instruction Set 

push - Push a word onto the stack 

Format: 
Description: 

push src 
Pushes a word or doubleword onto the top of the stack. If the address size attribute 
is 16 bits, SS:SP is used as the top of the stack pointer; otherwise, SS:ESP is used. 
src can be (i) a register, (ii) a memory operand, (iii) a segment register (CS, SS, 
OS, ES, FS, or GS), or (iv) an immediate byte, word, or doubleword operand. The 
stack pointer is decremented by 2 (if the operand size is 16 bits) or 4 (if the operand 
size is 32 bits). The push ESP instruction pushes the ESP register value before it 
was decremented by the push instruction. On the other hand, push SP pushes the 
decremented SP value onto the stack. Clock cycles: 1 (except when the operand is in 
memory, in which case it takes 2 clock cycles). 

pusha - Push all general registers 

Format: 

Description: 

pusha 
pushad 

Pushes all eight 16-bit (pusha) or 32-bit (pushad) general registers onto the stack. 
The pusha pushes the registers onto the stack in the order AX, CX, OX, BX, SP, BP, 
SI, and 01. That is, AX is pushed first and DI last. The pushad instruction follows 
the same order on the 32-bit registers. It decrements the stack pointer SP by 16 for 
word operands; it decrements ESP by 32 for doubleword operands. Clock cycles: 5. 

pushf - Push flags register 

Format: 

Description: 

pushf 
pushfd 

Pushes the 16-bit (pushf) or 32-bit (pushfd) flags register (FLAGS or EFLAGS) 
onto the stack. It decrements SP by 2 (pushf) for word operands and decrements 
ESP by 4 (pushfd) for doubleword operands. Clock cycles: 4 in the real mode and 
3 in the protected mode. 



Section D.2 Selected Pentium Instructions 627 

roVror/rcVrcr - Rotate instructions 

Format: 

Description: 

rol/ror/rcl/rcr src,l 
rol/ror/rcl/rcr src,count 
rol/ror/rcl/rcr src,CL 
This group of instructions support rotation of 8-, 16-, or 32-bit data. The rol (rotate 
left) and ror (rotate right) instructions rotate the src data as explained in Chapter 8. 
The second operand gives the number of times src is to be rotated. This operand can 
be given as an immediate value (a constant lor a byte value count) or preloaded into 
the CL register. The other two rotate instructions rcl (rotate left including CF) and 
rcr (rotate right including CF) rotate the src data with the carry flag (CF) included 
in the rotation process, as explained in Chapter 8. The OF flag is affected only for 
single bit rotates; it is undefined for multi-bit rotates. Clock cycles: rol and ror 
take 1 (if src is a register) or 3 (if src is a memory operand) for the immediate mode 
(constant 1 or count) and 4 for the CL version; for the other two instructions, it can 
take as many as 27 clock cycles-see the Pentium data book for details. 

rep/repe/repz/repne/repnz - Repeat instruction 

Format: 

Description: 

rep string-inst 
repe/repz string-inst 
repne/repnz string-inst 
These three prefixes repeat the specified string instruction until the conditions are 
met. The rep instruction decrements the count register (CX or ECX) each time the 
string instruction is executed. The string instruction is repeatedly executed until the 
count register is zero. The repe (repeat while equal) has an additional termination 
condition: ZF = O. The repz is an alias for the repe instruction. The repne (repeat 
while not equal) is similar to repe except that the additional termination condition 
is ZF = 1. The repnz is an alias for the repne instruction. The ZF flag is affected 
by rep cmps and rep scas instructions. For more details, see Chapter 9. Clock 
cycles: varies-see the Pentium data book for details. 



628 Appendix D Pentium Instruction Set 

ret - Return form a procedure 

Format: 

Description: 

ret 
ret value 
Transfers control to the instruction following the corresponding call instruction. 
The optional immediate value specifies the number of bytes (for 16-bit operands) or 
number of words (for 32-bit operands) that are to be cleared from the stack after the 
return. This parameter is usually used to clear the stack of the input parameters. See 
Chapter 4 for more details. Clock cycles: 2 for near return and 3 for far return; if 
the optional value is specified, add one more clock cycle. Changing privilege levels 
takes more clocks-see the Pentium data book. 

sabf - Store AU into flags register 

Format: 
Description: 

sahf 
The AH register bits 7, 6, 4, 2, and 0 are loaded into flags SF, ZF, AF, PF, and CF, 
respectively. Clock cycles: 2. 

saVsarlshVshr - Shift instructions 

Format: 

Description: 

sal/sar/shl/shr src,! 
sal/sar/shl/shr src,count 
sal/sar/shl/shr src,CL 
This group of instructions support shifting of 8-, 16-, or 32-bit data. The format is 
similar to the rotate instructions. The sal (shift arithmetic left) and its synonym shl 
(shift left) instructions shift the src data left. The shifted out bit goes into CF and 
the vacated bit is cleared, as explained in Chapter 8. The second operand gives the 
number of times src is to be shifted. This operand can be given as an immediate 
value (a constant I or a byte value count) or preloaded into the CL register. The shr 
(shift right) is similar to shl except for the direction of shift. The sar (shift arithmetic 
right) is similar to sal except for two differences: the shift direction is right and the 
sign bit is copied into the vacated bits. If the shift count is zero, no flags are affected. 
The CF flag contains the last bit shifted out. The OF flag is defined only for single 
shifts; it is undefined for multi-bit shifts. Clock cycles: 1 (if src is a register) or 3 (if 
src is a memory operand) for the immediate mode (constant I or count) and 4 for 
the CL version. 



Section D.2 Selected Pentium Instructions 629 

sbb - Subtract with borrow 

Format: 
Description: 

sbb dest,sre 
Performs integer subtraction with borrow. The dest is assigned the result of dest 
- (sre+CF). Clock cycles: 1-3. 

scas - Compare string operands 

Format: 

Description: 

seas 
seasb 
scasw 
seasd 

operand 

Subtracts the memory byte, word, or doubleword pointed by the destination index 
register (DI or EDI) from the AL, AX, or EAX register, respectively. The result is not 
stored but used to update the flags. The memory operand must be addressable from 
the ES register. Segment override is not allowed in this instruction. If the address 
size is 16 bits, the DI register is used; the EDI register is used for 32-bit addresses. 
After the subtraction, the destination index register is updated automatically. Whether 
the register is incremented or decremented depends on the direction flag (DF). The 
register is incremented if DF is 0 (see the eld instruction to clear the direction flag); 
if the DF is 1, the index register is decremented (see the std instruction to set the 
direction flag). The amount of increment or decrement is 1 (for byte operands), 2 (for 
word operands), or 4 (for doubleword operands). 
Note that the specification of the operand in seas is not really required, as the memory 
operand is assumed to be pointed by the index register. The seasb, seasw, and seasd 
are synonyms for the byte, word, and doubleword seas instructions, respectively. 
The repeat prefix instructions (i.e., repe or repne) can precede the seas instructions 
for array or string comparisons. See the rep instruction for details. Clock cycles: 4. 

setCC - Byte set on condition operands 

Format: 
Description: 

setCC dest 
Sets dest byte to 1 if the condition CC is met; otherwise, sets to zero. The operand 
dest must be either an 8-bit register or memory operand. The conditions tested are 
similar to the conditional jump instruction (see the j ee instruction). The conditions 
are: A, AE, B, BE, E, NE, G, GE, L, LE, NA, NAE, NB, NBE, NG, NGE, NL, NLE, 
C, NC, 0, NO, P, PE, PO, NP, 0, NO, S, NS, Z, NZ. The conditions can specify 
signed and unsigned comparisons as well as flag values. Clock cycles: 1 for register 
operand and 2 for memory operand. 



630 Appendix D Pentium Instruction Set 

shldlshrd - Double precision shift 

Format: 
Description: 

shld/shrd dest,src,count 
The shld instruction performs left shift of dest by count times. The second operand 
src provides the bits to shift in from the right. In other words, the shld instruction 
performs a left shift of dest concatenated with src and the result in the upper half 
is copied into dest. The dest and src operands can both be either 16- or 32-bit 
operands. While dest can be a register or memory operand, src must be a register 
of the same size as dest. The third operand count can be an immediate byte value, 
or the CL register can be used as in the shift instructions. The contents of the src 
register are not altered. 
The shrd instruction (double precision shift right) is similar to shld except for the 
direction of shift. 
If the shift count is zero, no flags are affected. The CF flag contains the last bit shifted 
out. The OF flag is defined only for single shifts; it is undefined for multi-bit shifts. 
The SF, ZF, and PF flags are set according to the result. 
Clock cycles: 4 (5 if dest is a memory operand and the CL register is used for count). 

stc - Set carry flag 

Format: stc 
Description: Sets the carry flag to 1. Clock cycles: 2. 

std - Set direction flag 

Format: std 
Description: Sets the direction flag to 1. Clock cycles: 2. 

sti - Set interrupt flag 

Format: sti 
Description: Sets the interrupt flag to 1. Clock cycles: 7. 



Section D.2 Selected Pentium Instructions 631 

stos - Store string operand 

Format: stosb 
stosw 
stosd 

Description: Stores the contents of the AL, AX, or EAX register at the memory byte, word, or 
doubleword pointed by the destination index register (DI or EDI), respectively. If 
the address size is 16 bits, the DI register is used; the EDI register is used for 32-bit 
addresses. After the load, the destination index register is automatically updated. 
Whether this register is incremented or decremented depends on the direction flag 
(OF). The register is incremented if OF is 0 (see the cld instruction to clear the 
direction flag); if OF is 1, the index register is decremented (see the std instruction to 
set the direction flag). The amount of increment or decrement depends on the operand 
size (1 for byte operands, 2 for word operands, and 4 for doubleword operands). 
The repeat prefix instruction rep can precede the stos instruction to fill a block of 
CXlECX bytes, words, or doublewords. Clock cycles: 3. 

sub - Subtract I ~ I ~ I ~ I ~ I ~ I ~ I 
Format: sub dest ,src 
Description: Performs integer subtraction. The dest is assigned the result of dest - src. Clock 

cycles: 1-3. 

test - Logical compare 

Format: 
Description: 

test dest,src 
Performs logical and operation (dest and src). However, the result of the and 
operation is discarded. The dest operand can be either in a register or in memory. 
The src operand can be either an immediate value or a register. Both dest and src 
operands are not affected. Sets SF, ZF, and PF flags according to the result. Clock 
cycles: 1 if dest is a register operand and 2 if it is a memory operand. 

xchg - Exchange data 

Format: 
Description: 

xchg dest,src 
Exchanges the values of the two operands src and dest. Clock cycles: 2 if both 
operands are registers or 3 if one of them is a memory operand. 



632 Appendix D Pentium Instruction Set 

xlat - Translate byte 

Format: 

Description: 

xlat table-offset 
xlatb 
Translates the data in the AL register using a table lookup. It changes the AL register 
from the table index to the corresponding table contents. The contents of the BX (for 
16-bit addresses) or EBX (for 32-bit addresses) registers are used as the offset to the 
the translation table base. The contents of the AL register are treated as an index into 
this table. The byte value at this index replaces the index value in AL. The default 
segment for the translation table is DS. This is used in both formats. However, in the 
operand version, a segment override is possible. Clock cycles: 4. 

xor - Logical bitwise exclusive-or 

Format: 
Description: 

xor dest,src 
Performs logical bitwise exclusive-or (xor) operation (dest xor src) and the result 
is stored in dest. Sets the SF, ZF, and PF flags according to the result. Clock cycles: 
1-3. 



Appendix E 

ASCII Character Set 

The next two pages give the standard ASCII (American Standard Code for Information Inter
change) character set. We divide the character set into control and printable characters. The 
control character codes are given on the next page and the printable ASCII characters are on 
page 635. 



634 Appendix E ASCII Character Set 

Control Codes 

Hex Decimal Character Meaning 
00 0 NUL NULL 
01 1 SOH Start of heading 
02 2 STX Start of text 
03 3 ETX End of text 
04 4 EOT End of transmission 
05 5 ENQ Enquiry 
06 6 ACK Acknowledgment 
07 7 BEL Bell 
08 8 BS Backspace 
09 9 HT Horizontal tab 
OA 10 LF Line feed 
OB 11 VT Vertical tab 
OC 12 FF Form feed 
OD 13 CR Carriage return 
OE 14 SO Shift out 
OF 15 SI Shift in 
10 16 DLE Data link escape 
11 17 DC1 Device control 1 
12 18 DC2 Device control 2 
13 19 DC3 Device control 3 
14 20 DC4 Device control 4 
15 21 NAK Negative acknowledgment 
16 22 SYN Synchronous idle 
17 23 ETB End of transmission block 
18 24 CAN Cancel 
19 25 EM End of medium 
lA 26 SUB Substitute 
IB 27 ESC Escape 
lC 28 FS File separator 
ID 29 GS Group separator 
IE 30 RS Record separator 
IF 31 US Unit separator 
7F 127 DEL Delete 



Appendix E ASCII Character Set 635 

Printable Character Codes 

Hex Decimal Character Hex Decimal Character Hex Decimal Character 
20 32 Space 40 64 <D 60 96 , 

21 33 ! 41 65 A 61 97 a 
22 34 " 42 66 B 62 98 b 
23 35 # 43 67 C 63 99 c 
24 36 $ 44 68 D 64 100 d 
25 37 % 45 69 E 65 101 e 
26 38 & 46 70 F 66 102 f 
27 39 , 47 71 G 67 103 g 
28 40 ( 48 72 H 68 104 h 
29 41 ) 49 73 I 69 105 1 

2A 42 * 4A 74 J 6A 106 j 
2B 43 + 4B 75 K 6B 107 k 
2C 44 , 4C 76 L 6C 108 1 
2D 45 - 4D 77 M 6D 109 m 
2E 46 4E 78 N 6E 110 n 
2F 47 / 4F 79 0 6F 111 0 

30 48 0 50 80 P 70 112 P 
31 49 1 51 81 Q 71 113 q 
32 50 2 52 82 R 72 114 r 
33 51 3 53 83 S 73 115 s 
34 52 4 54 84 T 74 116 t 
35 53 5 55 85 U 75 117 u 
36 54 6 56 86 V 76 118 v 
37 55 7 57 87 W 77 119 w 
38 56 8 58 88 X 78 120 x 
39 57 9 59 89 Y 79 121 Y 
3A 58 5A 90 Z 7A 122 z 
3B 59 , 5B 91 [ 7B 123 { 
3C 60 < 5C 92 \ 7C 124 I 
3D 61 = 5D 93 ] 7D 125 } 
3E 62 > 5E 94 - 7E 126 -
3F 63 ? 5F 95 -

Note that 7FH (127 in decimal) is a control character listed on the previous page. 



Index 

!, character operator, 391 
< > string operator, 390 
.486,564 
.CODE directive, 564 
.DATA directive, 564 
.EXIT directive, 564, 585 
.INCLUDE directive, 564 
.LALL directive, 393 
.LIST directive, 392 
.MODEL directive, 161, 563 
.SALL directive, 393 
.STACK,120 
.STACK directive, 564 
.STARTUP directive, 564, 585 
.xALL directive, 393 
.XLIST directive, 392 
;; operator, 386 
= directive, 94, 378, 393 
@DATA,564 
#pragma directive, 511 
% expression evaluate operator, 391 
%OUT directive, 403 
& substitute operator, 388 
$, location counter, 196, 344 
1 's complement, 540 
64-bit arithmetic, 241-250 

addition, 241 
division, 247 
multiplication, 242 
subtraction, 241 

8086 family processors, 31-32 
8255 programmable peripheral interface, 

475-476 
8259 programmable interrupt controller, 

472-475 

Address bus, 22 

Address translation, 39 
protected mode, 43, 44 
real mode, 40 

Addressing modes, 71-75,174-184 
16-bit, 176 
32-bit, 174 
based addressing mode, 181 
based-indexed addressing mode, 183 
direct addressing mode, 73, 178 
immediate addressing mode, 72, 175 
indexed addressing mode, 182 
indirect addressing mode, 74 
register addressing mode, 72, 174 
register indirect addressing mode, 179 
usefulness, 198 

Alignment check flag, 29 
ARG directive, 505 
Arrays, 191-198 

column-major order, 194 
multidimensional, 193 
one-dimensional, 192 
row-major order, 194 

ASCII addition, 420 
multidigit, 424 

ASCII division, 423 
ASCII multiplication, 423 
ASCII number representation, 418 
ASCII subtraction, 422 
ASCIIZ string, 345 
asm, 509 
Assembler, 7 
Assembler directives, 60 
Assembly language 

advantages, 8-10 
applications, 10 
performance, 11-14 
what is it, 6-7 



638 

Assembly (continued) 
why learn, 11 

Assembly process, 570 

BCD number representation, 419 
packed,419 
unpacked,419 

Binary search, 187 
Bit, 32 
Bit manipulation, 313, 325 

clearing bits, 302 
cutting and pasting, 306 
isolating bits, 303 
toggling, 308 

Bubble sort, 12, 146 
Burst cycle, 22 
Bus cycle, 23 
Bus grant, 23 
Bus protocol, 23 
Bus request, 23 
Bus transactions, 22 
Byte, 32 
Byte addressable memory, 32 
Byte ordering 

big endian, 36 
little endian, 36 

Character representation, 554 
ASCII,555 
EBCDIC,555 
extended ASCII, 556 

Clock cycle, 30 
Clock rate, 30 
CodeView, 601--602 
COMMENT directive, 562 
Conditional assembly, ~7 

IF directive, 401 
IFB directive, 405 
IFDEF directive, 403 
IFDIF directive, 406 
IFE directive, 40 1 
IFIDN directive, 406 
IFNB directive, 405 
IFNDEF directive, 403 

Control bus, 22 
CPUID instruction, 29 

Data alignment, 52-55 

2-byte data, 54 
4-byte data, 54 
8-byte data, 54 
hard alignment, 55 
soft alignment, 55 
unaligned, 53 
word-aligned, 53 

Data allocation, 62-71 
define directives, 63--65 
multiple definitions, 66--67 
multiple initializations, 67-68 

Data bus, 22 
DB directive, 63 
DO directive, 63 
DEBUG, 586-595 

commands, 587 
Default segments, 179 

16-bit addresses, 180 
32-bit addresses, 180 
overriding, 180 

Device driver, 447 
Direction flag, 348 
DQ directive, 63 
DT directive, 63, 430 
DUP directive, 67 
DW directive, 63 

Effective address, 73, 74,178 
EIP register, 27, 444 
ENDP directive, 128,564 
EQU directive, 93, 378, 393 
Even parity, 302, 305 
Exceptions, 441, 464 

aborts, 464 
faults, 464 
segment-not-present, 47, 464 
traps, 464 

Executable instructions, 60 
Execution cycle, 24 
EXITM directive, 406 
Extended keys, 451 
EXTRN directive, 160, 507 

Flags register, 27 
arithmetic flags, 27 
auxiliary flag, 218 
carry flag, 211 
CF,211 

Index 



Index 639 

control flags, 27 in, 471 
direction flag, 348, 472 ins, 472 
EFLAGS, 27 Qut,471 
FLAGS, 27 Quts,472 
IF flag, 469 110 routines, 566 
OF,214 GetCh,565 
overflow flag, 214 GetInt, 567 
parity flag, 220 GetLInt, 568 
PF,220 GetStr, 567 
SF,217 PutCh,565 
sign flag, 217 PutInt, 567 
status flags, 27, 208-222 PutLInt, 568 
system flags, 27 PutStr, 567 
trap flag, 465 IEEE 754 floating-point standard, 551 
zero flag, 209 IF directive, 401 
ZF,209 IFB directive, 405 

Full adder, 531 IFDEF directive, 403 
IFDIF directive, 406 

GetInt8,237 IFE directive, 401 
GetStr, 452 IFIDN directive, 406 

IFNB directive, 405 
Half adder, 531 IFNDEF directive, 403 
Hardware interrupt Indirect procedure call, 368 

example, 477 Inline assembly, 509 
Hardware interrupts, 442, 469 Input/output 

INTA signal, 470 110 address space, 51 
INTR input, 469 interrupt-driven 110, 482 
maskable, 443, 469 isolated 110, 52 
NMI,469 memory-mapped 110, 51 
nonmaskable, 443, 469 programmed 110, 482 

High-level language structures Insertion sort, 184, 200 
conditional, 272 Instruction decoding, 25 
iterative, 275 Instruction execution, 25 

for, 276 Instruction fetch, 24, 49 
repeat-until, 276 Instruction pointer, 27 
while, 275 int 09H, 447, 467, 477 

switch,286 int 16H BIOS services, 454 
Hybrid programs, 11 OOH keyboard input, 454 

OlH check keyboard buffer, 455 
110 address space, 470 02H check keyboard status, 455 
110 controller, 50, 447 int 17H BIOS printer services 
110 device, 50 OOH print character, 462 
110 port, 51 01 H Initialize printer, 463 
110 ports, 470 02H Get printer status, 463 

16-bit ports, 470 int 21H, 564 
32-bit ports, 470 int 21 H DOS services 
8-bit ports, 470 01H keyboard input, 449 
accessing, 471 02H display character, 460 



640 Index 

int (continued) Jump instructions 
05H print character, 462 backward jump, 259 
06H Console I/O, 449 conditional jump, 263-269 
06H console I/O, 460 far jump, 260 
07H keyboard input, 449 forward jump, 259 
08H keyboard input, 450 indirect jump, 284-287 
09H display string, 460 intersegment jump, 259 
OAH keyboard input, 450 intrasegment jump, 259 
OBH check keyboard buffer, 451 near jump, 260 
OCH clear keyboard buffer, 451 SHORT directive, 260 
25H set interrupt vector, 466 short jump, 260 
2AH get date, 487, 510, 514 unconditional jump, 258 
2CH get time, 487, 513 direct, 258 
35H get interrupt vector, 466 
4CH return control, 564 Keyboard scan codes, 448 

int 3, 465 
int 4,465 LABEL directive, 70, 430 
Interrupt 1, 465 Left-pusher language, 493 
Interrupt 2, 469 Linear search, 278 
Interrupt 23H, 449 LINK,163 
Interrupt 4, 464 Linking, 579 
Interrupt descriptor table, 443 List control directives, 392-393 
Interrupt flag, 28, 469 .LALL,393 
Interrupt handler, 440 .LIST,392 
Interrupt processing .SALL,393 

protected mode, 443 .XALL,393 
real mode, 444 .xLIST,392 

Interrupt service routine, 440 LOCAL directive, 385 
Interrupt-driven I/O, 482 Logical expressions, 289, 323 
Interrupts full evaluation, 289 

breakpoint, 465 partial evaluation, 289 
dedicated, 464 
divide error, 464 Machine language, 4 
exceptions, 441, 464 MACRO directive, 378, 379 
handler, 440 Macro expansion, 60 
hardware, 469 Macro instructions, 380 
hardware interrupts, 442 Macros, 60, 378 
ISR,44O comments, 386 
maskable, 443 EXITM directive, 406 
nonmaskable, 443 instructions, 380 
overflow, 465 labels, 385 
single-step, 465 LOCAL directive, 385 
software interrupts, 440 MACRO directive, 379 
taxonomy, 441, 442 nested,408 

into, 465 parameters, 380 
IP register, 27, 444 Masking bit, 302 
IRP directive, 397 MASM, 6, 69,163,400 
IRPC directive, 398 Memory 



Index 

access time, 33 
address, 32 
address space, 33 
address translation, 39 
byte addressable, 32 
cycle time, 33 
DRAM,35 
dynamic,35 
effective address, 39 
EPROM,35 
linear address, 43 
logical address, 39 
nonvolatile, 35 
offset, 39 
physical address, 39 
PROM,35 
RAM,35 
read cycle, 34 
read-only, 34 
read/write, 34 
ROM,35 
segmentation models, 48 
segmented organization, 39 
SRAM,35 
static, 35 
volatile, 35 
wait cycles, 34 
write cycle, 34 

Memory access time, 33 
Memory address space, 33 
Memory architecture 

Pentium, 37-50 
Protected mode, 43-44 
Real mode, 38-43 

Memory cycle time, 33 
Memory read cycle, 34 
Memory write cycle, 34 
Merge sort, 296 
Mixed mode operation, 48 
Mixed-mode programs, 11, 490 

compiling, 492, 512 
parameter passing, 493 

Multibyte data, 36 

Nested macros, 408 
Number representation 

conversion, 331, 552 
floating-point, 545-554 

signed integer, 538 
I 's complement, 540 
2's complement, 543 
excess-M,539 
signed-magnitude, 538 

unsigned integer, 530 
addition, 531 
division, 536 
multiplication, 534 
subtraction, 533 

Number systems, 520 
base, 520 
binary, 520, 522 
conversion, 523, 525, 527, 528 
decimal, 520, 522 
hexadecimal, 520, 523 
notation, 521 
octal, 520, 522 
radix, 520 

Octal-to-binary conversion, 331 
OFFSET directive, 74 
Override prefix, 48 

address size, 177, 200 
operand size, 177, 200, 575 
segment override, 150, 180 

Packed BCD numbers 
addition, 426 
processing, 426 
subtraction, 427 

Paging, 38 
Parameter passing, 131-149,493 

call-by-reference, 126 
call-by-value, 126 
register method, 131 
stack method, 135 

641 

variable number of parameters, 149-153 
Parity conversion, 308 
Pentium instructions 

aaa,419-421,609 
aad,419,424,609 
aam,419,423,609 
aas,419,422,609 
adc, 224, 610 
add, 80, 223, 610 
and, 86, 300,610 
Arithmetic instructions, 223-234 



642 

Pentium (continued) 
bit instructions, 325-327 
brf,326 
bsf, 326, 610 
bsr,610 
bswap, 37, 78, 611 
bt, 325, 611 
btc,325,611 
btr, 325, 611 
bts,325,612 
call, 129,368,612 
cbw,233,612 
cdq,233,612 
ele,212,612 
eld, 348, 613 
eli, 445, 469, 613 
eme, 212, 613 
emp, 82, 262, 613 
emps, 352, 614 
conditional jump, 619 
ewd,233,614 
ewde, 233, 615 
daa,420,426,615 
das, 420, 427, 615 
dec, 79, 214, 226, 615 
div, 231, 464, 616 
double shift instructions, 318 
hIt, 616 
idiv,231,464,616 
imu1,229,617 
in, 471, 617 
inc, 79, 214, 224, 617 
ins, 472,618 
insb,618 
insd,618 
insw,618 
int,446,618 
into, 618 
iret,444,619 
iretd,619 
ja,266 
jae,266 
jb,266 
jbe,266 
je, 84, 212, 264 
jee,619 
jexz, 264, 271, 619 
je, 84,264, 266,268 

jg, 84, 268 
jge,84,268 
jl, 84, 268 
jle, 84, 268 
jmp, 82, 258,284, 619 
jna,266 
jnae,266 
jnb,266 
jnbe,266 
jnc,84,212,264 
jne, 84,264,266, 268 
jng,268 

. jnge,268 
jnl,268 
jnle,268 
jno,216, 264, 465 
jnp, 220, 264 
jns, 217, 264 
jnz, 84,209, 264, 266, 268 
jo, 216, 264, 465 
jp, 220, 264 
jpe,264 
jpo,264 
js, 217, 264 
jz,84,209,264,266,268 
lahf,340,620 
Ids, 44, 355, 620 
lea, 75, 620 
1es, 44,355, 620 
lfs,44,620 
19dt,48 
19s,44,620 
lidt,443 
lldt,48 
lods, 350, 621 
lodsb, 350, 621 
lodsd,350,621 
lodsw, 350, 621 
logical instructions, 300--311 
loop, 85, 270,271,621 
loop instructions, 269 
loope,270 
loope/loopz,621 
loopne,270 
loopne/loopnz,621 
loopnz,270 
loopz,270 
Iss, 44, 620 

Index 



Index 643 

maY, 44, 75,622 shld, 318, 630 
maYs, 349, 622 shr, 89, 312, 628 
moysb, 349, 622 shrd,318,630 
moysd,349,622 sidt,443 
moysw,349,622 sldt,48 
moysx,233,622 ste, 212, 630 
movzx,233,622 std, 348, 630 
mul,228,623 sti,444,445,469,630 
neg, 226, 623 stos, 351, 631 
nap, 623 stosb, 351, 631 
not, 86, 310,623 stosd, 351,631 
or, 86, 304, 624 stosw, 351,631 
out, 471, 624 sub, 81,225,631 
outs, 472, 624 test, 88, 310, 631 
pop, 44, 49, 122,625 xehg, 37,77, 631 
papa, 123, 141,625 xlat, 78, 106,632 
popad, 123 xor,306,632 
popf,123,466,625 Pentium registers, 25-30 
popfd,625 control registers, 27 
push, 49, 122,626 data registers, 25 
pusha, 123, 141,626 index registers, 26 
pushad, 123 pointer registers, 26 
pushf,123,466,626 Peripheral device, 50 
reI, 92, 321,627 Peripheral support chips, 472-476 
rer,92,321,627 8255 PPI, 475 
rep, 347, 472,627 8259 PIC, 472 
repe, 347, 472 Polling, 482 
repe/repz,627 PROC directive, 128,564 
repne,347,472 Procedures 
repne/repnz,627 FAR, 128 
repnz,347 indirect call, 368 
repz,347 local variables, 153 
ret, 130, 139,628 NEAR, 128 
rol,90, 319, 627 overheads, 163 
ror,90, 319, 627 Programmed 110, 482 
rotate instructions, 319-322 Programmer productivity, 9 
sahf, 340, 628 PTR directive, 77 
sal, 315,628 PUBLIC directive, 160, 507 
sar, 315, 628 PutInt8,235 
sbb, 225, 629 
seas, 354,629 Real-time applications, 10 
scasb,354,629 Repeat block directives, 394--400 
seasd,354,629 IRP directive, 397 
seasw,354,629 IRPC directive, 398 
setCC,629 REPT directive, 394 
sgdt,48 WHILE directive, 396 
shift instructions, 311-319 REPT directive, 394 
shl,89,312,628 Right-pusher language, 493 



644 

Segment descriptor, 45-47 
Segment descriptor tables, 47-48 

GDT,47 
IDT,47 
LDT,47 

Segment registers, 29, 44-45 
CS register, 29 
DS register, 30 
ES register, 30 
FS register, 30 
GS register, 30 
SS register, 30 

Segmentation, 38 
Segmentation models 

flat, 48 
multisegment, 48 

Segmented memory organization, 39 
segment base, 39 
segment offset, 39 

Selection sort, 281 
SHORT directive, 260 
Software interrupts, 440, 446 

exceptions, 441 
system-defined,441 
user-defined,441 

Space-efficiency, 9, 490 
Stack 

activation record, 154 
frame pointer, 154 
operations, 122 
operations on flags, 123 
overflow, 121, 125 
Pentium implementation, 119 
stack frame, 154 
top-of-stack, 118, 119 
underflow, 120, 125 
use, 123 
what is it, 118 

String processing 

string compare, 360 
string concatenate, 359 
string convert, 363 
string copy, 357 
string length, 356 
string move, 365 
string search, 362 

String representation, 344 
fixed-length, 344 
variable-length, 344 

Symbol table, 68, 73, 578 
System bus, 22 
System clock, 30 

cycle, 30 
period,30 
rate, 30 

Index 

TASM, 6, 69,163,400,506,570,572,595 
Time-critical applications, 10 
Time-efficiency, 9, 490 
TITLE directive, 562, 574 
TLINK, 163,580,595 
Trap flag, 28, 465 
Turbo debugger (TD), 572, 595-601 
TYPE operator, 402 
Type specifier, 77 

BYTE,77 
DWORD,77 
QWORD,77 
TBYTE,77 
WORD,77 

Types of memory, 34-36 

VM flag, 29 

Wait cycles, 34 
WHILE directive, 396 

Zero flag, 28 


