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Chapter 0

Introduction

So, you want to write a kernel module. You know C, you’ve written a number of normal
programs to run as processes, and now you want to get to where the real action is, to where
a single wild pointer can wipe out your file system and a core dump means a reboot.

Well, welcome to the club. I once had a wild pointer wipe an important directory under
DOS (thankfully, now it stands for the Dead Operating System), and I don’t see why living
under Linux should be any safer.

Warning: I wrote this and checked the program under versions 2.0.35 and 2.2.3 of the
kernel running on a Pentium. For the most part, it should work on other CPUs and on other
versions of the kernel, as long as they are 2.0.x or 2.2.x, but I can’t promise anything. One
exception is chapter 11, which should not work on any architecture except for x86.

0.1 Who Should Read This

This document is for people who want to write kernel modules. Although I will touch
on how things are done in the kernel in several places, that is not my purpose. There are
enough good sources which do a better job than I could have done.

This document is also for people who know how to write kernel modules, but have not
yet adapted to version 2.2 of the kernel. If you are such a person, I suggest you look at
appendix A to see all the differences I encountered while updating the examples. The list is
nowhere near comprehensive, but I think it covers most of the basic functionality and will
be enough to get you started.

The kernel is a great piece of programming, and I believe that programmers should read
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at least some kernel source files and understand them. Having said that, I also believe in
the value of playing with the system first and asking questions later. When I learn a new
programming language, I don’t start with reading the library code, but by writing a small
‘hello, world’ program. I don’t see why playing with the kernel should be any different.

0.2 Note on the Style

I like to put as many jokes as possible into my documentation. I’m writing this because
I enjoy it, and I assume most of you are reading this for the same reason. If you just want
to get to the point, ignore all the normal text and read the source code. I promise to put all
the important details in remarks.

0.3 Changes

0.3.1 New in version 1.0.1

1. Changes section, 0.3.

2. How to find the minor device number, 2.

3. Fixed the explanation of the difference between character and device files, 2

4. Makefiles for Kernel Modules, 1.1.

5. Symmetrical Multiprocessing, 12.

6. A ‘Bad Ideas’ Chapter, 13.

0.3.2 New in version 1.1.0

1. Support for version 2.2 of the kernel, all over the place.

2. Multi kernel version source files, 2.1.

3. Changes between 2.0 and 2.2, A.

4. Kernel Modules in Multiple Source Files, 1.2.

5. Suggestion not to let modules which mess with system calls be rmmod’ed, 7.
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Chapter 1

Hello, world

When the first caveman programmer chiseled the first program on the walls of the first
cave computer, it was a program to paint the string ‘Hello, world’ in Antelope pictures.
Roman programming textbooks began with the ‘Salut, Mundi’ program. I don’t know
what happens to people who break with this tradition, and I think it’s safer not to find out.

A kernel module has to have at least two functions: init module which is called
when the module is inserted into the kernel, and cleanup module which is called just
before it is removed. Typically, init module either registers a handler for something
with the kernel, or it replaces one of the kernel function with its own code (usually code
to do something and then call the original function). The cleanup module function is
supposed to undo whatever init module did, so the module can be unloaded safely.

hello.c

/* hello.c

* Copyright (C) 1998 by Ori Pomerantz

*

* "Hello, world" - the kernel module version.

*/

/* The necessary header files */

/* Standard in kernel modules */

#include <linux/kernel.h> /* We’re doing kernel work */

5



#include <linux/module.h> /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Initialize the module */

int init_module()

{

printk("Hello, world - this is the kernel speaking\n");

/* If we return a non zero value, it means that

* init_module failed and the kernel module

* can’t be loaded */

return 0;

}

/* Cleanup - undid whatever init_module did */

void cleanup_module()

{

printk("Short is the life of a kernel module\n");

}

1.1 Makefiles for Kernel Modules

A kernel module is not an independant executable, but an object file which will be
linked into the kernel in runtime. As a result, they should be compiled with the -c flag.
Also, all kernel modules have to be compiled with certain symbols defined.



KERNEL — This tells the header files that this code will be run in kernel mode,
not as part of a user process.

MODULE — This tells the header files to give the appropriate definitions for a kernel
module.

LINUX — Technically speaking, this is not necessary. However, if you ever want
to write a serious kernel module which will compile on more than one operating
system, you’ll be happy you did. This will allow you to do conditional compilation
on the parts which are OS dependant.

There are other symbols which have to be included, or not, depending on the flags the
kernel was compiled with. If you’re not sure how the kernel was compiled, look it up in
/usr/include/linux/config.h

SMP — Symmetrical MultiProcessing. This has to be defined if the kernel was
compiled to support symmetrical multiprocessing (even if it’s running just on one
CPU). If you use Symmetrical MultiProcessing, there are other things you need to
do (see chapter 12).

CONFIG MODVERSIONS — If CONFIG MODVERSIONS was enabled, you
need to have it defined when compiling the kernel module and and to include
/usr/include/linux/modversions.h. This can also be done by the code
itself.

Makefile

# Makefile for a basic kernel module

CC=gcc

MODCFLAGS := -Wall -DMODULE -D__KERNEL__ -DLINUX

hello.o: hello.c /usr/include/linux/version.h

$(CC) $(MODCFLAGS) -c hello.c

echo insmod hello.o to turn it on

echo rmmod hello to turn if off

echo

echo X and kernel programming do not mix.



echo Do the insmod and rmmod from outside X.

So, now the only thing left is to su to root (you didn’t compile this as root, did you?
Living on the edge . . . ), and then insmod hello and rmmod hello to your heart’s
content. While you do it, notice your new kernel module in /proc/modules.

By the way, the reason why the Makefile recommends against doing insmod from X
is because when the kernel has a message to print with printk, it sends it to the console.
When you don’t use X, it just goes to the virtual terminal you’re using (the one you chose
with Alt-F n ) and you see it. When you do use X, on the other hand, there are two
possibilities. Either you have a console open with xterm -C, in which case the output
will be sent there, or you don’t, in which case the output will go to virtual terminal 7 — the
one ‘covered’ by X.

If your kernel becomes unstable you’re likelier to get the debug messages without X.
Outside of X, printk goes directly from the kernel to the console. In X, on the other hand,
printk’s go to a user mode process (xterm -C). When that process receives CPU time,
it is supposed to send it to the X server process. Then, when the X server receives the CPU,
it is supposed to display it — but an unstable kernel usually means that the system is about
to crash or reboot, so you don’t want to delay the error messages, which might explain to
you what went wrong, for longer than you have to.

1.2 Multiple File Kernel Modules

Sometimes it makes sense to divide a kernel module between several source files. In
this case, you need to do the following:

1. In all the source files but one, add the line #define NO VERSION . This is im-
portant because module.h normally includes the definition of kernel version,
a global variable with the kernel version the module is compiled for. If you need
version.h, you need to include it yourself, because module.h won’t do it for
you with NO VERSION .

2. Compile all the source files as usual.

3. Combine all the object
files into a single one. Under x86, do it with ld -m elf i386 -r -o name

The reason I prefer not to compile as root is that the least done as root the safer the box is. I work in computer
security, so I’m paranoid



of module .o 1st source file .o 2nd source file .o.

Here’s an example of such a kernel module.

start.c

/* start.c

* Copyright (C) 1999 by Ori Pomerantz

*

* "Hello, world" - the kernel module version.

* This file includes just the start routine

*/

/* The necessary header files */

/* Standard in kernel modules */

#include <linux/kernel.h> /* We’re doing kernel work */

#include <linux/module.h> /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Initialize the module */

int init_module()

{

printk("Hello, world - this is the kernel speaking\n");

/* If we return a non zero value, it means that

* init_module failed and the kernel module

* can’t be loaded */

return 0;



}

stop.c

/* stop.c

* Copyright (C) 1999 by Ori Pomerantz

*

* "Hello, world" - the kernel module version. This

* file includes just the stop routine.

*/

/* The necessary header files */

/* Standard in kernel modules */

#include <linux/kernel.h> /* We’re doing kernel work */

#define __NO_VERSION__ /* This isn’t "the" file

* of the kernel module */

#include <linux/module.h> /* Specifically, a module */

#include <linux/version.h> /* Not included by

* module.h because

* of the __NO_VERSION__ */

/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif



/* Cleanup - undid whatever init_module did */

void cleanup_module()

{

printk("Short is the life of a kernel module\n");

}

Makefile

# Makefile for a multifile kernel module

CC=gcc

MODCFLAGS := -Wall -DMODULE -D__KERNEL__ -DLINUX

hello.o: start.o stop.o

ld -m elf_i386 -r -o hello.o start.o stop.o

start.o: start.c /usr/include/linux/version.h

$(CC) $(MODCFLAGS) -c start.c

stop.o: stop.c /usr/include/linux/version.h

$(CC) $(MODCFLAGS) -c stop.c



Chapter 2

Character Device Files

So, now we’re bold kernel programmers and we know how to write kernel modules to
do nothing. We feel proud of ourselves and we hold our heads up high. But somehow we
get the feeling that something is missing. Catatonic modules are not much fun.

There are two major ways for a kernel module to talk to processes. One is through
device files (like the files in the /dev directory), the other is to use the proc file system.
Since one of the major reasons to write something in the kernel is to support some kind of
hardware device, we’ll begin with device files.

The original purpose of device files is to allow processes to communicate with device
drivers in the kernel, and through them with physical devices (modems, terminals, etc.).
The way this is implemented is the following.

Each device driver, which is responsible for some type of hardware, is assigned
its own major number. The list of drivers and their major numbers is available in
/proc/devices. Each physical device managed by a device driver is assigned a mi-
nor number. The /dev directory is supposed to include a special file, called a device file,
for each of those devices, whether or not it’s really installed on the system.

For example, if you do ls -l /dev/hd[ab]*, you’ll see all of the IDE hard disk
partitions which might be connected to a machine. Notice that all of them use the same
major number, 3, but the minor number changes from one to the other Disclaimer: This
assumes you’re using a PC architecture. I don’t know about devices on Linux running on
other architectures.

When the system was installed, all of those device files were created by the mknod
command. There’s no technical reason why they have to be in the /dev directory, it’s just
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a useful convention. When creating a device file for testing purposes, as with the exercise
here, it would probably make more sense to place it in the directory where you compile the
kernel module.

Devices are divided into two types: character devices and block devices. The difference
is that block devices have a buffer for requests, so they can choose by which order to
respond to them. This is important in the case of storage devices, where it’s faster to read
or write sectors which are close to each other, rather than those which are further apart.
Another difference is that block devices can only accept input and return output in blocks
(whose size can vary according to the device), whereas character devices are allowed to use
as many or as few bytes as they like. Most devices in the world are character, because they
don’t need this type of buffering, and they don’t operate with a fixed block size. You can
tell whether a device file is for a block device or a character device by looking at the first
character in the output of ls -l. If it’s ‘b’ then it’s a block device, and if it’s ‘c’ then it’s
a character device.

This module is divided into two separate parts: The module part which regis-
ters the device and the device driver part. The init module function calls mod-

ule register chrdev to add the device driver to the kernel’s character device driver
table. It also returns the major number to be used for the driver. The cleanup module

function deregisters the device.
This (registering something and unregistering it) is the general functionality of those

two functions. Things in the kernel don’t run on their own initiative, like processes, but
are called, by processes via system calls, or by hardware devices via interrupts, or by other
parts of the kernel (simply by calling specific functions). As a result, when you add code
to the kernel, you’re supposed to register it as the handler for a certain type of event and
when you remove it, you’re supposed to unregister it.

The device driver proper is composed of the four device action functions, which
are called when somebody tries to do something with a device file which has our major
number. The way the kernel knows to call them is via the file operations structure,
Fops, which was given when the device was registered, which includes pointers to those
four functions.

Another point we need to remember here is that we can’t allow the kernel module to
be rmmoded whenever root feels like it. The reason is that if the device file is opened by
a process and then we remove the kernel module, using the file would cause a call to the
memory location where the appropriate function (read/write) used to be. If we’re lucky, no
other code was loaded there, and we’ll get an ugly error message. If we’re unlucky, another
kernel module was loaded into the same location, which means a jump into the middle of



another function within the kernel. The results of this would be impossible to predict, but
they can’t be positive.

Normally, when you don’t want to allow something, you return an error code (a negative
number) from the function which is supposed to do it. With cleanup module that is
impossible because it’s a void function. Once cleanup module is called, the module is
dead. However, there is a use counter which counts how many other kernel modules are
using this kernel module, called the reference count (that’s the last number of the line in
/proc/modules). If this number isn’t zero, rmmod will fail. The module’s reference
count is available in the variable mod use count . Since there are macros defined for
handling this variable (MOD INC USE COUNT and MOD DEC USE COUNT), we prefer to
use them, rather than mod use count directly, so we’ll be safe if the implementation
changes in the future.

chardev.c

/* chardev.c

* Copyright (C) 1998-1999 by Ori Pomerantz

*

* Create a character device (read only)

*/

/* The necessary header files */

/* Standard in kernel modules */

#include <linux/kernel.h> /* We’re doing kernel work */

#include <linux/module.h> /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* For character devices */

#include <linux/fs.h> /* The character device

* definitions are here */

#include <linux/wrapper.h> /* A wrapper which does



* next to nothing at

* at present, but may

* help for compatibility

* with future versions

* of Linux */

/* In 2.2.3 /usr/include/linux/version.h includes

* a macro for this, but 2.0.35 doesn’t - so I add

* it here if necessary. */

#ifndef KERNEL_VERSION

#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))

#endif

/* Conditional compilation. LINUX_VERSION_CODE is

* the code (as per KERNEL_VERSION) of this version. */

#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)

#include <asm/uaccess.h> /* for put_user */

#endif

#define SUCCESS 0

/* Device Declarations **************************** */

/* The name for our device, as it will appear

* in /proc/devices */

#define DEVICE_NAME "char_dev"

/* The maximum length of the message from the device */

#define BUF_LEN 80



/* Is the device open right now? Used to prevent

* concurent access into the same device */

static int Device_Open = 0;

/* The message the device will give when asked */

static char Message[BUF_LEN];

/* How far did the process reading the message

* get? Useful if the message is larger than the size

* of the buffer we get to fill in device_read. */

static char *Message_Ptr;

/* This function is called whenever a process

* attempts to open the device file */

static int device_open(struct inode *inode,

struct file *file)

{

static int counter = 0;

#ifdef DEBUG

printk ("device_open(%p,%p)\n", inode, file);

#endif

/* This is how you get the minor device number in

* case you have more than one physical device using

* the driver. */

printk("Device: %d.%d\n",

inode->i_rdev >> 8, inode->i_rdev & 0xFF);

/* We don’t want to talk to two processes at the

* same time */

if (Device_Open)

return -EBUSY;

/* If this was a process, we would have had to be



* more careful here.

*

* In the case of processes, the danger would be

* that one process might have check Device_Open

* and then be replaced by the schedualer by another

* process which runs this function. Then, when the

* first process was back on the CPU, it would assume

* the device is still not open.

*

* However, Linux guarantees that a process won’t be

* replaced while it is running in kernel context.

*

* In the case of SMP, one CPU might increment

* Device_Open while another CPU is here, right after

* the check. However, in version 2.0 of the

* kernel this is not a problem because there’s a lock

* to guarantee only one CPU will be kernel module at

* the same time. This is bad in terms of

* performance, so version 2.2 changed it.

* Unfortunately, I don’t have access to an SMP box

* to check how it works with SMP.

*/

Device_Open++;

/* Initialize the message. */

sprintf(Message,

"If I told you once, I told you %d times - %s",

counter++,

"Hello, world\n");

/* The only reason we’re allowed to do this sprintf

* is because the maximum length of the message

* (assuming 32 bit integers - up to 10 digits

* with the minus sign) is less than BUF_LEN, which

* is 80. BE CAREFUL NOT TO OVERFLOW BUFFERS,

* ESPECIALLY IN THE KERNEL!!!



*/

Message_Ptr = Message;

/* Make sure that the module isn’t removed while

* the file is open by incrementing the usage count

* (the number of opened references to the module, if

* it’s not zero rmmod will fail)

*/

MOD_INC_USE_COUNT;

return SUCCESS;

}

/* This function is called when a process closes the

* device file. It doesn’t have a return value in

* version 2.0.x because it can’t fail (you must ALWAYS

* be able to close a device). In version 2.2.x it is

* allowed to fail - but we won’t let it.

*/

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static int device_release(struct inode *inode,

struct file *file)

#else

static void device_release(struct inode *inode,

struct file *file)

#endif

{

#ifdef DEBUG

printk ("device_release(%p,%p)\n", inode, file);

#endif

/* We’re now ready for our next caller */

Device_Open --;



/* Decrement the usage count, otherwise once you

* opened the file you’ll never get rid of the module.

*/

MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

return 0;

#endif

}

/* This function is called whenever a process which

* have already opened the device file attempts to

* read from it. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static ssize_t device_read(struct file *file,

char *buffer, /* The buffer to fill with data */

size_t length, /* The length of the buffer */

loff_t *offset) /* Our offset in the file */

#else

static int device_read(struct inode *inode,

struct file *file,

char *buffer, /* The buffer to fill with

* the data */

int length) /* The length of the buffer

* (mustn’t write beyond that!) */

#endif

{

/* Number of bytes actually written to the buffer */

int bytes_read = 0;

/* If we’re at the end of the message, return 0

* (which signifies end of file) */

if (*Message_Ptr == 0)



return 0;

/* Actually put the data into the buffer */

while (length && *Message_Ptr) {

/* Because the buffer is in the user data segment,

* not the kernel data segment, assignment wouldn’t

* work. Instead, we have to use put_user which

* copies data from the kernel data segment to the

* user data segment. */

put_user(*(Message_Ptr++), buffer++);

length --;

bytes_read ++;

}

#ifdef DEBUG

printk ("Read %d bytes, %d left\n",

bytes_read, length);

#endif

/* Read functions are supposed to return the number

* of bytes actually inserted into the buffer */

return bytes_read;

}

/* This function is called when somebody tries to write

* into our device file - unsupported in this example. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static ssize_t device_write(struct file *file,

const char *buffer, /* The buffer */

size_t length, /* The length of the buffer */



loff_t *offset) /* Our offset in the file */

#else

static int device_write(struct inode *inode,

struct file *file,

const char *buffer,

int length)

#endif

{

return -EINVAL;

}

/* Module Declarations ***************************** */

/* The major device number for the device. This is

* global (well, static, which in this context is global

* within this file) because it has to be accessible

* both for registration and for release. */

static int Major;

/* This structure will hold the functions to be

* called when a process does something to the device

* we created. Since a pointer to this structure is

* kept in the devices table, it can’t be local to

* init_module. NULL is for unimplemented functions. */

struct file_operations Fops = {

NULL, /* seek */

device_read,

device_write,

NULL, /* readdir */

NULL, /* select */

NULL, /* ioctl */



NULL, /* mmap */

device_open,

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

NULL, /* flush */

#endif

device_release /* a.k.a. close */

};

/* Initialize the module - Register the character device */

int init_module()

{

/* Register the character device (atleast try) */

Major = module_register_chrdev(0,

DEVICE_NAME,

&Fops);

/* Negative values signify an error */

if (Major < 0) {

printk ("%s device failed with %d\n",

"Sorry, registering the character",

Major);

return Major;

}

printk ("%s The major device number is %d.\n",

"Registeration is a success.",

Major);

printk ("If you want to talk to the device driver,\n");

printk ("you’ll have to create a device file. \n");

printk ("We suggest you use:\n");

printk ("mknod <name> c %d <minor>\n", Major);

printk ("You can try different minor numbers %s",

"and see what happens.\n");

return 0;



}

/* Cleanup - unregister the appropriate file from /proc */

void cleanup_module()

{

int ret;

/* Unregister the device */

ret = module_unregister_chrdev(Major, DEVICE_NAME);

/* If there’s an error, report it */

if (ret < 0)

printk("Error in unregister_chrdev: %d\n", ret);

}

2.1 Multiple Kernel Versions Source Files

The system calls, which are the major interface the kernel shows to the processes,
generally stay the same across versions. A new system call may be added, but usually the
old ones will behave exactly like they used to. This is necessary for backward compatibility
— a new kernel version is not supposed to break regular processes. In most cases, the
device files will also remain the same. On the other hand, the internal interfaces within the
kernel can and do change between versions.

The Linux kernel versions are divided between the stable versions (n. even
number .m) and the development versions (n. odd number .m). The development ver-
sions include all the cool new ideas, including those which will be considered a mistake,
or reimplemented, in the next version. As a result, you can’t trust the interface to remain
the same in those versions (which is why I don’t bother to support them in this book, it’s
too much work and it would become dated too quickly). In the stable versions, on the other
hand, we can expect the interface to remain the same regardless of the bug fix version (the
m number).

This version of the MPG includes support for both version 2.0.x and version 2.2.x
of the Linux kernel. Since there are differences between the two, this requires condi-



tional compilation depending on the kernel version. The way to do this to use the macro
LINUX VERSION CODE. In version a.b.c of the kernel, the value of this macro would
be . To get the value for a specific kernel version, we can use the KER-
NEL VERSION macro. Since it’s not defined in 2.0.35, we define it ourselves if necessary.



Chapter 3

The /proc File System

In Linux there is an additional mechanism for the kernel and kernel modules to send
information to processes — the /proc file system. Originally designed to allow easy
access to information about processes (hence the name), it is now used by every bit of the
kernel which has something interesting to report, such as /proc/moduleswhich has the
list of modules and /proc/meminfo which has memory usage statistics.

The method to use the proc file system is very similar to the one used with device
drivers — you create a structure with all the information needed for the /proc file, in-
cluding pointers to any handler functions (in our case there is only one, the one called
when somebody attempts to read from the /proc file). Then, init module registers
the structure with the kernel and cleanup module unregisters it.

The reason we use proc register dynamic is because we don’t want to deter-
mine the inode number used for our file in advance, but to allow the kernel to determine it
to prevent clashes. Normal file systems are located on a disk, rather than just in memory
(which is where /proc is), and in that case the inode number is a pointer to a disk loca-
tion where the file’s index-node (inode for short) is located. The inode contains information
about the file, for example the file’s permissions, together with a pointer to the disk location
or locations where the file’s data can be found.

Because we don’t get called when the file is opened or closed, there’s no where for us
to put MOD INC USE COUNT and MOD DEC USE COUNT in this module, and if the file
is opened and then the module is removed, there’s no way to avoid the consequences. In
the next chapter we’ll see a harder to implement, but more flexible, way of dealing with

In version 2.0, in version 2.2 this is done for us automatically if we set the inode to zero.
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/proc files which will allow us to protect against this problem as well.

procfs.c

/* procfs.c - create a "file" in /proc

* Copyright (C) 1998-1999 by Ori Pomerantz

*/

/* The necessary header files */

/* Standard in kernel modules */

#include <linux/kernel.h> /* We’re doing kernel work */

#include <linux/module.h> /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Necessary because we use the proc fs */

#include <linux/proc_fs.h>

/* In 2.2.3 /usr/include/linux/version.h includes a

* macro for this, but 2.0.35 doesn’t - so I add it

* here if necessary. */

#ifndef KERNEL_VERSION

#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))

#endif

/* Put data into the proc fs file.



Arguments

=========

1. The buffer where the data is to be inserted, if

you decide to use it.

2. A pointer to a pointer to characters. This is

useful if you don’t want to use the buffer

allocated by the kernel.

3. The current position in the file.

4. The size of the buffer in the first argument.

5. Zero (for future use?).

Usage and Return Value

======================

If you use your own buffer, like I do, put its

location in the second argument and return the

number of bytes used in the buffer.

A return value of zero means you have no further

information at this time (end of file). A negative

return value is an error condition.

For More Information

====================

The way I discovered what to do with this function

wasn’t by reading documentation, but by reading the

code which used it. I just looked to see what uses

the get_info field of proc_dir_entry struct (I used a

combination of find and grep, if you’re interested),

and I saw that it is used in <kernel source

directory>/fs/proc/array.c.

If something is unknown about the kernel, this is

usually the way to go. In Linux we have the great



advantage of having the kernel source code for

free - use it.

*/

int procfile_read(char *buffer,

char **buffer_location,

off_t offset,

int buffer_length,

int zero)

{

int len; /* The number of bytes actually used */

/* This is static so it will still be in memory

* when we leave this function */

static char my_buffer[80];

static int count = 1;

/* We give all of our information in one go, so if the

* user asks us if we have more information the

* answer should always be no.

*

* This is important because the standard read

* function from the library would continue to issue

* the read system call until the kernel replies

* that it has no more information, or until its

* buffer is filled.

*/

if (offset > 0)

return 0;

/* Fill the buffer and get its length */

len = sprintf(my_buffer,

"For the %d%s time, go away!\n", count,

(count % 100 > 10 && count % 100 < 14) ? "th" :

(count % 10 == 1) ? "st" :

(count % 10 == 2) ? "nd" :



(count % 10 == 3) ? "rd" : "th" );

count++;

/* Tell the function which called us where the

* buffer is */

*buffer_location = my_buffer;

/* Return the length */

return len;

}

struct proc_dir_entry Our_Proc_File =

{

0, /* Inode number - ignore, it will be filled by

* proc_register[_dynamic] */

4, /* Length of the file name */

"test", /* The file name */

S_IFREG | S_IRUGO, /* File mode - this is a regular

* file which can be read by its

* owner, its group, and everybody

* else */

1, /* Number of links (directories where the

* file is referenced) */

0, 0, /* The uid and gid for the file - we give it

* to root */

80, /* The size of the file reported by ls. */

NULL, /* functions which can be done on the inode

* (linking, removing, etc.) - we don’t

* support any. */

procfile_read, /* The read function for this file,

* the function called when somebody

* tries to read something from it. */

NULL /* We could have here a function to fill the

* file’s inode, to enable us to play with

* permissions, ownership, etc. */



};

/* Initialize the module - register the proc file */

int init_module()

{

/* Success if proc_register[_dynamic] is a success,

* failure otherwise. */

#if LINUX_VERSION_CODE > KERNEL_VERSION(2,2,0)

/* In version 2.2, proc_register assign a dynamic

* inode number automatically if it is zero in the

* structure , so there’s no more need for

* proc_register_dynamic

*/

return proc_register(&proc_root, &Our_Proc_File);

#else

return proc_register_dynamic(&proc_root, &Our_Proc_File);

#endif

/* proc_root is the root directory for the proc

* fs (/proc). This is where we want our file to be

* located.

*/

}

/* Cleanup - unregister our file from /proc */

void cleanup_module()

{

proc_unregister(&proc_root, Our_Proc_File.low_ino);

}





Chapter 4

Using /proc For Input

So far we have two ways to generate output from kernel modules: we can register a
device driver and mknod a device file, or we can create a /proc file. This allows the
kernel module to tell us anything it likes. The only problem is that there is no way for us to
talk back. The first way we’ll send input to kernel modules will be by writing back to the
/proc file.

Because the proc filesystem was written mainly to allow the kernel to report its situa-
tion to processes, there are no special provisions for input. The proc dir entry struct
doesn’t include a pointer to an input function, the way it includes a pointer to an output
function. Instead, to write into a /proc file, we need to use the standard filesystem mech-
anism.

In Linux there is a standard mechanism for file system registration. Since every file
system has to have its own functions to handle inode and file operations , there is a special
structure to hold pointers to all those functions, struct inode operations, which
includes a pointer to struct file operations. In /proc, whenever we register a
new file, we’re allowed to specify which struct inode operations will be used for
access to it. This is the mechanism we use, a struct inode operations which in-
cludes a pointer to a struct file operations which includes pointers to our mod-
ule input and module output functions.

It’s important to note that the standard roles of read and write are reversed in the kernel.
Read functions are used for output, whereas write functions are used for input. The reason

The difference between the two is that file operations deal with the file itself, and inode operations deal with
ways of referencing the file, such as creating links to it.

32



for that is that read and write refer to the user’s point of view — if a process reads something
from the kernel, then the kernel needs to output it, and if a process writes something to the
kernel, then the kernel receives it as input.

Another interesting point here is the module permission function. This function
is called whenever a process tries to do something with the /proc file, and it can decide
whether to allow access or not. Right now it is only based on the operation and the uid of the
current used (as available in current, a pointer to a structure which includes information
on the currently running process), but it could be based on anything we like, such as what
other processes are doing with the same file, the time of day, or the last input we received.

The reason for put user and get user is that Linux memory (under Intel archi-
tecture, it may be different under some other processors) is segmented. This means that
a pointer, by itself, does not reference a unique location in memory, only a location in a
memory segment, and you need to know which memory segment it is to be able to use it.
There is one memory segment for the kernel, and one of each of the processes.

The only memory segment accessible to a process is its own, so when writing regular
programs to run as processes, there’s no need to worry about segments. When you write a
kernel module, normally you want to access the kernel memory segment, which is handled
automatically by the system. However, when the content of a memory buffer needs to be
passed between the currently running process and the kernel, the kernel function receives
a pointer to the memory buffer which is in the process segment. The put user and
get user macros allow you to access that memory.

procfs.c

/* procfs.c - create a "file" in /proc, which allows

* both input and output. */

/* Copyright (C) 1998-1999 by Ori Pomerantz */

/* The necessary header files */

/* Standard in kernel modules */

#include <linux/kernel.h> /* We’re doing kernel work */

#include <linux/module.h> /* Specifically, a module */



/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif

/* Necessary because we use proc fs */

#include <linux/proc_fs.h>

/* In 2.2.3 /usr/include/linux/version.h includes a

* macro for this, but 2.0.35 doesn’t - so I add it

* here if necessary. */

#ifndef KERNEL_VERSION

#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))

#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

#include <asm/uaccess.h> /* for get_user and put_user */

#endif

/* The module’s file functions ********************** */

/* Here we keep the last message received, to prove

* that we can process our input */

#define MESSAGE_LENGTH 80

static char Message[MESSAGE_LENGTH];

/* Since we use the file operations struct, we can’t

* use the special proc output provisions - we have to

* use a standard read function, which is this function */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)



static ssize_t module_output(

struct file *file, /* The file read */

char *buf, /* The buffer to put data to (in the

* user segment) */

size_t len, /* The length of the buffer */

loff_t *offset) /* Offset in the file - ignore */

#else

static int module_output(

struct inode *inode, /* The inode read */

struct file *file, /* The file read */

char *buf, /* The buffer to put data to (in the

* user segment) */

int len) /* The length of the buffer */

#endif

{

static int finished = 0;

int i;

char message[MESSAGE_LENGTH+30];

/* We return 0 to indicate end of file, that we have

* no more information. Otherwise, processes will

* continue to read from us in an endless loop. */

if (finished) {

finished = 0;

return 0;

}

/* We use put_user to copy the string from the kernel’s

* memory segment to the memory segment of the process

* that called us. get_user, BTW, is

* used for the reverse. */

sprintf(message, "Last input:%s", Message);

for(i=0; i<len && message[i]; i++)

put_user(message[i], buf+i);



/* Notice, we assume here that the size of the message

* is below len, or it will be received cut. In a real

* life situation, if the size of the message is less

* than len then we’d return len and on the second call

* start filling the buffer with the len+1’th byte of

* the message. */

finished = 1;

return i; /* Return the number of bytes "read" */

}

/* This function receives input from the user when the

* user writes to the /proc file. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static ssize_t module_input(

struct file *file, /* The file itself */

const char *buf, /* The buffer with input */

size_t length, /* The buffer’s length */

loff_t *offset) /* offset to file - ignore */

#else

static int module_input(

struct inode *inode, /* The file’s inode */

struct file *file, /* The file itself */

const char *buf, /* The buffer with the input */

int length) /* The buffer’s length */

#endif

{

int i;

/* Put the input into Message, where module_output

* will later be able to use it */

for(i=0; i<MESSAGE_LENGTH-1 && i<length; i++)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

get_user(Message[i], buf+i);

/* In version 2.2 the semantics of get_user changed,



* it not longer returns a character, but expects a

* variable to fill up as its first argument and a

* user segment pointer to fill it from as the its

* second.

*

* The reason for this change is that the version 2.2

* get_user can also read an short or an int. The way

* it knows the type of the variable it should read

* is by using sizeof, and for that it needs the

* variable itself.

*/

#else

Message[i] = get_user(buf+i);

#endif

Message[i] = ’\0’; /* we want a standard, zero

* terminated string */

/* We need to return the number of input characters

* used */

return i;

}

/* This function decides whether to allow an operation

* (return zero) or not allow it (return a non-zero

* which indicates why it is not allowed).

*

* The operation can be one of the following values:

* 0 - Execute (run the "file" - meaningless in our case)

* 2 - Write (input to the kernel module)

* 4 - Read (output from the kernel module)

*

* This is the real function that checks file

* permissions. The permissions returned by ls -l are

* for referece only, and can be overridden here.



*/

static int module_permission(struct inode *inode, int op)

{

/* We allow everybody to read from our module, but

* only root (uid 0) may write to it */

if (op == 4 || (op == 2 && current->euid == 0))

return 0;

/* If it’s anything else, access is denied */

return -EACCES;

}

/* The file is opened - we don’t really care about

* that, but it does mean we need to increment the

* module’s reference count. */

int module_open(struct inode *inode, struct file *file)

{

MOD_INC_USE_COUNT;

return 0;

}

/* The file is closed - again, interesting only because

* of the reference count. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

int module_close(struct inode *inode, struct file *file)

#else

void module_close(struct inode *inode, struct file *file)

#endif

{

MOD_DEC_USE_COUNT;



#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

return 0; /* success */

#endif

}

/* Structures to register as the /proc file, with

* pointers to all the relevant functions. ********** */

/* File operations for our proc file. This is where we

* place pointers to all the functions called when

* somebody tries to do something to our file. NULL

* means we don’t want to deal with something. */

static struct file_operations File_Ops_4_Our_Proc_File =

{

NULL, /* lseek */

module_output, /* "read" from the file */

module_input, /* "write" to the file */

NULL, /* readdir */

NULL, /* select */

NULL, /* ioctl */

NULL, /* mmap */

module_open, /* Somebody opened the file */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

NULL, /* flush, added here in version 2.2 */

#endif

module_close, /* Somebody closed the file */

/* etc. etc. etc. (they are all given in

* /usr/include/linux/fs.h). Since we don’t put

* anything here, the system will keep the default

* data, which in Unix is zeros (NULLs when taken as

* pointers). */

};



/* Inode operations for our proc file. We need it so

* we’ll have some place to specify the file operations

* structure we want to use, and the function we use for

* permissions. It’s also possible to specify functions

* to be called for anything else which could be done to

* an inode (although we don’t bother, we just put

* NULL). */

static struct inode_operations Inode_Ops_4_Our_Proc_File =

{

&File_Ops_4_Our_Proc_File,

NULL, /* create */

NULL, /* lookup */

NULL, /* link */

NULL, /* unlink */

NULL, /* symlink */

NULL, /* mkdir */

NULL, /* rmdir */

NULL, /* mknod */

NULL, /* rename */

NULL, /* readlink */

NULL, /* follow_link */

NULL, /* readpage */

NULL, /* writepage */

NULL, /* bmap */

NULL, /* truncate */

module_permission /* check for permissions */

};

/* Directory entry */

static struct proc_dir_entry Our_Proc_File =

{

0, /* Inode number - ignore, it will be filled by

* proc_register[_dynamic] */



7, /* Length of the file name */

"rw_test", /* The file name */

S_IFREG | S_IRUGO | S_IWUSR,

/* File mode - this is a regular file which

* can be read by its owner, its group, and everybody

* else. Also, its owner can write to it.

*

* Actually, this field is just for reference, it’s

* module_permission that does the actual check. It

* could use this field, but in our implementation it

* doesn’t, for simplicity. */

1, /* Number of links (directories where the

* file is referenced) */

0, 0, /* The uid and gid for the file -

* we give it to root */

80, /* The size of the file reported by ls. */

&Inode_Ops_4_Our_Proc_File,

/* A pointer to the inode structure for

* the file, if we need it. In our case we

* do, because we need a write function. */

NULL

/* The read function for the file. Irrelevant,

* because we put it in the inode structure above */

};

/* Module initialization and cleanup ******************* */

/* Initialize the module - register the proc file */

int init_module()

{

/* Success if proc_register[_dynamic] is a success,

* failure otherwise */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

/* In version 2.2, proc_register assign a dynamic



* inode number automatically if it is zero in the

* structure , so there’s no more need for

* proc_register_dynamic

*/

return proc_register(&proc_root, &Our_Proc_File);

#else

return proc_register_dynamic(&proc_root, &Our_Proc_File);

#endif

}

/* Cleanup - unregister our file from /proc */

void cleanup_module()

{

proc_unregister(&proc_root, Our_Proc_File.low_ino);

}



Chapter 5

Talking to Device Files (writes
and IOCTLs)

Device files are supposed to represent physical devices. Most physical devices are used
for output as well as input, so there has to be some mechanism for device drivers in the
kernel to get the output to send to the device from processes. This is done by opening the
device file for output and writing to it, just like writing to a file. In the following example,
this is implemented by device write.

This is not always enough. Imagine you had a serial port connected to a modem (even
if you have an internal modem, it is still implemented from the CPU’s perspective as a
serial port connected to a modem, so you don’t have to tax your imagination too hard). The
natural thing to do would be to use the device file to write things to the modem (either mo-
dem commands or data to be sent through the phone line) and read things from the modem
(either responses for commands or the data received through the phone line). However, this
leaves open the question of what to do when you need to talk to the serial port itself, for
example to send the rate at which data is sent and received.

The answer in Unix is to use a special function called ioctl (short for input output
control). Every device can have its own ioctl commands, which can be read ioctl’s
(to send information from a process to the kernel), write ioctl’s (to return information
to a process), both or neither. The ioctl function is called with three parameters: the file
descriptor of the appropriate device file, the ioctl number, and a parameter, which is of type

Notice that here the roles of read and write are reversed again, so in ioctl’s read is to send information to
the kernel and write is to receive information from the kernel.
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long so you can use a cast to use it to pass anything.
The ioctl number encodes the major device number, the type of the ioctl, the command,

and the type of the parameter. This ioctl number is usually created by a macro call ( IO,
IOR, IOW or IOWR — depending on the type) in a header file. This header file should

then be #include’d both by the programs which will use ioctl (so they can generate
the appropriate ioctl’s) and by the kernel module (so it can understand it). In the example
below, the header file is chardev.h and the program which uses it is ioctl.c.

If you want to use ioctl’s in your own kernel modules, it is best to receive an official
ioctl assignment, so if you accidentally get somebody else’s ioctl’s, or if they get
yours, you’ll know something is wrong. For more information, consult the kernel source
tree at ‘Documentation/ioctl-number.txt’.

chardev.c

/* chardev.c

*

* Create an input/output character device

*/

/* Copyright (C) 1998-99 by Ori Pomerantz */

/* The necessary header files */

/* Standard in kernel modules */

#include <linux/kernel.h> /* We’re doing kernel work */

#include <linux/module.h> /* Specifically, a module */

/* Deal with CONFIG_MODVERSIONS */

#if CONFIG_MODVERSIONS==1

#define MODVERSIONS

#include <linux/modversions.h>

#endif

This isn’t exact. You won’t be able to pass a structure, for example, through an ioctl — but you will be able
to pass a pointer to the structure.



/* For character devices */

/* The character device definitions are here */

#include <linux/fs.h>

/* A wrapper which does next to nothing at

* at present, but may help for compatibility

* with future versions of Linux */

#include <linux/wrapper.h>

/* Our own ioctl numbers */

#include "chardev.h"

/* In 2.2.3 /usr/include/linux/version.h includes a

* macro for this, but 2.0.35 doesn’t - so I add it

* here if necessary. */

#ifndef KERNEL_VERSION

#define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c))

#endif

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

#include <asm/uaccess.h> /* for get_user and put_user */

#endif

#define SUCCESS 0

/* Device Declarations ******************************** */



/* The name for our device, as it will appear in

* /proc/devices */

#define DEVICE_NAME "char_dev"

/* The maximum length of the message for the device */

#define BUF_LEN 80

/* Is the device open right now? Used to prevent

* concurent access into the same device */

static int Device_Open = 0;

/* The message the device will give when asked */

static char Message[BUF_LEN];

/* How far did the process reading the message get?

* Useful if the message is larger than the size of the

* buffer we get to fill in device_read. */

static char *Message_Ptr;

/* This function is called whenever a process attempts

* to open the device file */

static int device_open(struct inode *inode,

struct file *file)

{

#ifdef DEBUG

printk ("device_open(%p)\n", file);

#endif

/* We don’t want to talk to two processes at the

* same time */

if (Device_Open)

return -EBUSY;



/* If this was a process, we would have had to be

* more careful here, because one process might have

* checked Device_Open right before the other one

* tried to increment it. However, we’re in the

* kernel, so we’re protected against context switches.

*

* This is NOT the right attitude to take, because we

* might be running on an SMP box, but we’ll deal with

* SMP in a later chapter.

*/

Device_Open++;

/* Initialize the message */

Message_Ptr = Message;

MOD_INC_USE_COUNT;

return SUCCESS;

}

/* This function is called when a process closes the

* device file. It doesn’t have a return value because

* it cannot fail. Regardless of what else happens, you

* should always be able to close a device (in 2.0, a 2.2

* device file could be impossible to close). */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static int device_release(struct inode *inode,

struct file *file)

#else

static void device_release(struct inode *inode,

struct file *file)

#endif

{

#ifdef DEBUG



printk ("device_release(%p,%p)\n", inode, file);

#endif

/* We’re now ready for our next caller */

Device_Open --;

MOD_DEC_USE_COUNT;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

return 0;

#endif

}

/* This function is called whenever a process which

* has already opened the device file attempts to

* read from it. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static ssize_t device_read(

struct file *file,

char *buffer, /* The buffer to fill with the data */

size_t length, /* The length of the buffer */

loff_t *offset) /* offset to the file */

#else

static int device_read(

struct inode *inode,

struct file *file,

char *buffer, /* The buffer to fill with the data */

int length) /* The length of the buffer

* (mustn’t write beyond that!) */

#endif

{

/* Number of bytes actually written to the buffer */

int bytes_read = 0;



#ifdef DEBUG

printk("device_read(%p,%p,%d)\n",

file, buffer, length);

#endif

/* If we’re at the end of the message, return 0

* (which signifies end of file) */

if (*Message_Ptr == 0)

return 0;

/* Actually put the data into the buffer */

while (length && *Message_Ptr) {

/* Because the buffer is in the user data segment,

* not the kernel data segment, assignment wouldn’t

* work. Instead, we have to use put_user which

* copies data from the kernel data segment to the

* user data segment. */

put_user(*(Message_Ptr++), buffer++);

length --;

bytes_read ++;

}

#ifdef DEBUG

printk ("Read %d bytes, %d left\n",

bytes_read, length);

#endif

/* Read functions are supposed to return the number

* of bytes actually inserted into the buffer */

return bytes_read;

}

/* This function is called when somebody tries to

* write into our device file. */



#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

static ssize_t device_write(struct file *file,

const char *buffer,

size_t length,

loff_t *offset)

#else

static int device_write(struct inode *inode,

struct file *file,

const char *buffer,

int length)

#endif

{

int i;

#ifdef DEBUG

printk ("device_write(%p,%s,%d)",

file, buffer, length);

#endif

for(i=0; i<length && i<BUF_LEN; i++)

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

get_user(Message[i], buffer+i);

#else

Message[i] = get_user(buffer+i);

#endif

Message_Ptr = Message;

/* Again, return the number of input characters used */

return i;

}

/* This function is called whenever a process tries to

* do an ioctl on our device file. We get two extra

* parameters (additional to the inode and file



* structures, which all device functions get): the number

* of the ioctl called and the parameter given to the

* ioctl function.

*

* If the ioctl is write or read/write (meaning output

* is returned to the calling process), the ioctl call

* returns the output of this function.

*/

int device_ioctl(

struct inode *inode,

struct file *file,

unsigned int ioctl_num,/* The number of the ioctl */

unsigned long ioctl_param) /* The parameter to it */

{

int i;

char *temp;

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

char ch;

#endif

/* Switch according to the ioctl called */

switch (ioctl_num) {

case IOCTL_SET_MSG:

/* Receive a pointer to a message (in user space)

* and set that to be the device’s message. */

/* Get the parameter given to ioctl by the process */

temp = (char *) ioctl_param;

/* Find the length of the message */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

get_user(ch, temp);

for (i=0; ch && i<BUF_LEN; i++, temp++)

get_user(ch, temp);

#else

for (i=0; get_user(temp) && i<BUF_LEN; i++, temp++)



;

#endif

/* Don’t reinvent the wheel - call device_write */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

device_write(file, (char *) ioctl_param, i, 0);

#else

device_write(inode, file, (char *) ioctl_param, i);

#endif

break;

case IOCTL_GET_MSG:

/* Give the current message to the calling

* process - the parameter we got is a pointer,

* fill it. */

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

i = device_read(file, (char *) ioctl_param, 99, 0);

#else

i = device_read(inode, file, (char *) ioctl_param,

99);

#endif

/* Warning - we assume here the buffer length is

* 100. If it’s less than that we might overflow

* the buffer, causing the process to core dump.

*

* The reason we only allow up to 99 characters is

* that the NULL which terminates the string also

* needs room. */

/* Put a zero at the end of the buffer, so it

* will be properly terminated */

put_user(’\0’, (char *) ioctl_param+i);

break;

case IOCTL_GET_NTH_BYTE:

/* This ioctl is both input (ioctl_param) and



* output (the return value of this function) */

return Message[ioctl_param];

break;

}

return SUCCESS;

}

/* Module Declarations *************************** */

/* This structure will hold the functions to be called

* when a process does something to the device we

* created. Since a pointer to this structure is kept in

* the devices table, it can’t be local to

* init_module. NULL is for unimplemented functions. */

struct file_operations Fops = {

NULL, /* seek */

device_read,

device_write,

NULL, /* readdir */

NULL, /* select */

device_ioctl, /* ioctl */

NULL, /* mmap */

device_open,

#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)

NULL, /* flush */

#endif

device_release /* a.k.a. close */

};

/* Initialize the module - Register the character device */

int init_module()

{



int ret_val;

/* Register the character device (atleast try) */

ret_val = module_register_chrdev(MAJOR_NUM,

DEVICE_NAME,

&Fops);

/* Negative values signify an error */

if (ret_val < 0) {

printk ("%s failed with %d\n",

"Sorry, registering the character device ",

ret_val);

return ret_val;

}

printk ("%s The major device number is %d.\n",

"Registeration is a success",

MAJOR_NUM);

printk ("If you want to talk to the device driver,\n");

printk ("you’ll have to create a device file. \n");

printk ("We suggest you use:\n");

printk ("mknod %s c %d 0\n", DEVICE_FILE_NAME,

MAJOR_NUM);

printk ("The device file name is important, because\n");

printk ("the ioctl program assumes that’s the\n");

printk ("file you’ll use.\n");

return 0;

}

/* Cleanup - unregister the appropriate file from /proc */

void cleanup_module()

{

int ret;



/* Unregister the device */

ret = module_unregister_chrdev(MAJOR_NUM, DEVICE_NAME);

/* If there’s an error, report it */

if (ret < 0)

printk("Error in module_unregister_chrdev: %d\n", ret);

}

chardev.h

/* chardev.h - the header file with the ioctl definitions.

*

* The declarations here have to be in a header file,

* because they need to be known both to the kernel

* module (in chardev.c) and the process calling ioctl

* (ioctl.c)

*/

#ifndef CHARDEV_H

#define CHARDEV_H

#include <linux/ioctl.h>

/* The major device number. We can’t rely on dynamic

* registration any more, because ioctls need to know

* it. */

#define MAJOR_NUM 100

/* Set the message of the device driver */



#define IOCTL_SET_MSG _IOR(MAJOR_NUM, 0, char *)

/* _IOR means that we’re creating an ioctl command

* number for passing information from a user process

* to the kernel module.

*

* The first arguments, MAJOR_NUM, is the major device

* number we’re using.

*

* The second argument is the number of the command

* (there could be several with different meanings).

*

* The third argument is the type we want to get from

* the process to the kernel.

*/

/* Get the message of the device driver */

#define IOCTL_GET_MSG _IOR(MAJOR_NUM, 1, char *)

/* This IOCTL is used for output, to get the message

* of the device driver. However, we still need the

* buffer to place the message in to be input,

* as it is allocated by the process.

*/

/* Get the n’th byte of the message */

#define IOCTL_GET_NTH_BYTE _IOWR(MAJOR_NUM, 2, int)

/* The IOCTL is used for both input and output. It

* receives from the user a number, n, and returns

* Message[n]. */

/* The name of the device file */

#define DEVICE_FILE_NAME "char_dev"

#endif



ioctl.c

/* ioctl.c - the process to use ioctl’s to control the

* kernel module

*

* Until now we could have used cat for input and

* output. But now we need to do ioctl’s, which require

* writing our own process.

*/

/* Copyright (C) 1998 by Ori Pomerantz */

/* device specifics, such as ioctl numbers and the

* major device file. */

#include "chardev.h"

#include <fcntl.h> /* open */

#include <unistd.h> /* exit */

#include <sys/ioctl.h> /* ioctl */

/* Functions for the ioctl calls */

ioctl_set_msg(int file_desc, char *message)

{

int ret_val;



ret_val = ioctl(file_desc, IOCTL_SET_MSG, message);

if (ret_val < 0) {

printf ("ioctl_set_msg failed:%d\n", ret_val);

exit(-1);

}

}

ioctl_get_msg(int file_desc)

{

int ret_val;

char message[100];

/* Warning - this is dangerous because we don’t tell

* the kernel how far it’s allowed to write, so it

* might overflow the buffer. In a real production

* program, we would have used two ioctls - one to tell

* the kernel the buffer length and another to give

* it the buffer to fill

*/

ret_val = ioctl(file_desc, IOCTL_GET_MSG, message);

if (ret_val < 0) {

printf ("ioctl_get_msg failed:%d\n", ret_val);

exit(-1);

}

printf("get_msg message:%s\n", message);

}

ioctl_get_nth_byte(int file_desc)

{



int i;

char c;

printf("get_nth_byte message:");

i = 0;

while (c != 0) {

c = ioctl(file_desc, IOCTL_GET_NTH_BYTE, i++);

if (c < 0) {

printf(

"ioctl_get_nth_byte failed at the %d’th byte:\n", i);

exit(-1);

}

putchar(c);

}

putchar(’\n’);

}

/* Main - Call the ioctl functions */

main()

{

int file_desc, ret_val;

char *msg = "Message passed by ioctl\n";

file_desc = open(DEVICE_FILE_NAME, 0);

if (file_desc < 0) {

printf ("Can’t open device file: %s\n",

DEVICE_FILE_NAME);

exit(-1);

}



ioctl_get_nth_byte(file_desc);

ioctl_get_msg(file_desc);

ioctl_set_msg(file_desc, msg);

close(file_desc);

}


