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1
H E L L O ,  W O R L D  O F  

A S S E M B L Y L A N G U A G E

This chapter is a “quick-start” chapter 
that lets you start writing basic assembly 

language programs as rapidly as possible. 
This chapter does the following:

Presents the basic syntax of an HLA (High Level Assembly) program

Introduces you to the Intel CPU architecture

Provides a handful of data declarations, machine instructions, and high-
level control statements 

Describes some utility routines you can call in the HLA Standard Library

Shows you how to write some simple assembly language programs

By the conclusion of this chapter, you should understand the basic 
syntax of an HLA program and should understand the prerequisites that are 
needed to start learning new assembly language features in the chapters that 
follow.
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1.1 The Anatomy of an HLA Program 

A typical HLA program takes the form shown in Figure 1-1.

Figure 1-1: Basic HLA program

pgmID in the template above is a user-defined program identifier. You 
must pick an appropriate descriptive name for your program. In particular, 
pgmID would be a horrible choice for any real program. If you are writing 
programs as part of a course assignment, your instructor will probably give 
you the name to use for your main program. If you are writing your own HLA 
program, you will have to choose an appropriate name for your project.

Identifiers in HLA are very similar to identifiers in most high-level 
languages. HLA identifiers may begin with an underscore or an alphabetic 
character and may be followed by zero or more alphanumeric or underscore 
characters. HLA’s identifiers are case neutral. This means that the identifiers 
are case sensitive insofar as you must always spell an identifier exactly the same 
way in your program (even with respect to upper- and lowercase). However, 
unlike in case-sensitive languages such as C/C++, you may not declare two 
identifiers in the program whose name differs only by alphabetic case.

A traditional first program people write, popularized by Kernighan and 
Ritchie’s The C Programming Language, is the “Hello, world!” program. This 
program makes an excellent concrete example for someone who is learning 
a new language. Listing 1-1 presents the HLA helloWorld program.

program helloWorld;
#include( "stdlib.hhf" );

begin helloWorld;

    stdout.put( "Hello, World of Assembly Language", nl );

end helloWorld;

Listing 1-1: The helloWorld program

These identifiers 
specify the name 
of the program. 
They must all be 
the same identifier.

The Declarations section is 
where you declare constants, 
types, variables, procedures, 
and other objects in an HLA 
program.

 The Statements section is 
where you place the 
executable statements 
for your main program.

program pgmID ;

<< Declarations >>

begin pgmID ; 

<< Statements >>

end pgmID ;

program, begin, and end are HLA reserved words that delineate 
the program. Note the placement of the semicolons in this program.
2 Chapter  1
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The #include statement in this program tells the HLA compiler to 
include a set of declarations from the stdlib.hhf (standard library, HLA 
Header File). Among other things, this file contains the declaration of the 
stdout.put code that this program uses. 

The stdout.put statement is the print statement for the HLA language. 
You use it to write data to the standard output device (generally the console). 
To anyone familiar with I/O statements in a high-level language, it should 
be obvious that this statement prints the phrase Hello, World of Assembly 
Language. The nl appearing at the end of this statement is a constant, also 
defined in stdlib.hhf, that corresponds to the newline sequence.

Note that semicolons follow the program, begin, stdout.put, and end 
statements. Technically speaking, a semicolon does not follow the #include 
statement. It is possible to create include files that generate an error if a 
semicolon follows the #include statement, so you may want to get in the 
habit of not putting a semicolon here.

The #include is your first introduction to HLA declarations. The #include 
itself isn’t actually a declaration, but it does tell the HLA compiler to 
substitute the file stdlib.hhf in place of the #include directive, thus inserting 
several declarations at this point in your program. Most HLA programs you 
will write will need to include one or more of the HLA Standard Library 
header files (stdlib.hhf actually includes all the standard library definitions 
into your program).

Compiling this program produces a console application. Running this 
program in a command window prints the specified string, and then control 
returns to the command-line interpreter (or shell in Unix terminology).

HLA is a free-format language. Therefore, you may split statements 
across multiple lines if this helps to make your programs more readable. For 
example, you could write the stdout.put statement in the helloWorld program 
as follows:

     stdout.put
     (
          "Hello, World of Assembly Language",
          nl
     );

Another construction you’ll see appearing in example code throughout 
this text is that HLA automatically concatenates any adjacent string constants 
it finds in your source file. Therefore, the statement above is also equivalent to

     stdout.put
     (
          "Hello, "
          "World of Assembly Language",
          nl
     );
Hel lo,  World of  Assembly Language 3
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Indeed, nl (the newline) is really nothing more than a string constant, 
so (technically) the comma between the nl and the preceding string isn’t 
necessary. You’ll often see the above written as 

     stdout.put( "Hello, World of Assembly Language" nl );

Notice the lack of a comma between the string constant and nl; this turns 
out to be legal in HLA, though it applies only to certain constants; you may 
not, in general, drop the comma. Chapter 4  explains in detail how this 
works. This discussion appears here because you’ll probably see this “trick” 
employed by sample code prior to the formal explanation.

1.2 Running Your First HLA Program

The whole purpose of the “Hello, world!” program is to provide a simple 
example by which someone who is learning a new programming language 
can figure out how to use the tools needed to compile and run programs in 
that language. True, the helloWorld program in Section 1.1 helps demonstrate 
the format and syntax of a simple HLA program, but the real purpose behind 
a program like helloWorld is to learn how to create and run a program from 
beginning to end. Although the previous section presents the layout of an 
HLA program, it did not discuss how to edit, compile, and run that program. 
This section will briefly cover those details. 

All of the software you need to compile and run HLA programs can be 
found at http://www.artofasm.com/ or at http://webster.cs.ucr.edu/. Select High 
Level Assembly from the Quick Navigation Panel and then the Download 
HLA link from that page. HLA is currently available for Windows, Mac OS X, 
Linux, and FreeBSD. Download the appropriate version of the HLA software 
for your system. From the Download HLA web page, you will also be able 
to download all the software associated with this book. If the HLA down-
load doesn’t include them, you will probably want to download the HLA 
reference manual and the HLA Standard Library reference manual along 
with HLA and the software for this book. This text does not describe the 
entire HLA language, nor does it describe the entire HLA Standard Library. 
You’ll want to have these reference manuals handy as you learn assembly 
language using HLA.

This section will not describe how to install and set up the HLA system 
because those instructions change over time. The HLA download page for 
each of the operating systems describes how to install and use HLA. Please 
consult those instructions for the exact installation procedure.

Creating, compiling, and running an HLA program is very similar to the 
process you’d use when creating, compiling, or running a program in any 
computer language. First, because HLA is not an integrated development 
environment (IDE) that allows you to edit, compile, test and debug, and run 
your application all from within the same program, you’ll create and edit 
HLA programs using a text editor.1

1 HIDE (HLA Integrated Development Environment) is an IDE available for Windows users. 
See the High Level Assembly web page for details on downloading HIDE.
4 Chapter  1
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Windows, Mac OS X, Linux, and FreeBSD offer many text editor options. 
You can even use the text editor provided with other IDEs to create and edit 
HLA programs (such as those found in Visual C++, Borland’s Delphi, Apple’s 
Xcode, and similar languages). The only restriction is that HLA expects 
ASCII text files, so the editor you use must be capable of manipulating and 
saving text files. Under Windows you can always use Notepad to create HLA 
programs. If you’re working under Linux and FreeBSD you can use joe, vi, or 
emacs. Under Mac OS X you can use XCode or Text Wrangler or another 
editor of your preference.

The HLA compiler2 is a traditional command-line compiler, which means 
that you need to run it from a Windows command-line prompt or a Linux/
FreeBSD/Mac OS X shell. To do so, enter something like the following into 
the command-line prompt or shell window:

hla hw.hla

This command tells HLA to compile the hw.hla (helloWorld) program to 
an executable file. Assuming there are no errors, you can run the resulting 
program by typing the following command into your command prompt 
window (Windows): 

hw

or into the shell interpreter window (Linux/FreeBSD/Mac OS X): 

./hw

If you’re having problems getting the program to compile and run 
properly, please see the HLA installation instructions on the HLA down-
load page. These instructions describe in great detail how to install, set up, 
and use HLA. 

1.3 Some Basic HLA Data Declarations

HLA provides a wide variety of constant, type, and data declaration state-
ments. Later chapters will cover the declaration sections in more detail, 
but it’s important to know how to declare a few simple variables in an HLA 
program. 

HLA predefines several different signed integer types including int8, 
int16, and int32, corresponding to 8-bit (1-byte) signed integers, 16-bit 
(2-byte) signed integers, and 32-bit (4-byte) signed integers, respectively.3 
Typical variable declarations occur in the HLA static variable section. A 
typical set of variable declarations takes the form shown in Figure 1-2.

2 Traditionally, programmers have always called translators for assembly languages assemblers 
rather than compilers. However, because of HLA’s high-level features, it is more proper to call 
HLA a compiler rather than an assembler.
3 A discussion of bits and bytes will appear in Chapter 2 for those who are unfamiliar with these 
terms.
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Figure 1-2: Static variable declarations

Those who are familiar with the Pascal language should be comfortable 
with this declaration syntax. This example demonstrates how to declare 
three separate integers: i8, i16, and i32. Of course, in a real program you 
should use variable names that are more descriptive. While names like i8 
and i32 describe the type of the object, they do not describe its purpose. 
Variable names should describe the purpose of the object.

In the static declaration section, you can also give a variable an initial 
value that the operating system will assign to the variable when it loads the 
program into memory. Figure 1-3 provides the syntax for this. 

Figure 1-3: Static variable initialization

It is important to realize that the expression following the assignment 
operator (:=) must be a constant expression. You cannot assign the values of 
other variables within a static variable declaration. 

Those familiar with other high-level languages (especially Pascal) should 
note that you can declare only one variable per statement. That is, HLA does 
not allow a comma-delimited list of variable names followed by a colon and a 
type identifier. Each variable declaration consists of a single identifier, a 
colon, a type ID, and a semicolon. 

Listing 1-2 provides a simple HLA program that demonstrates the use of 
variables within an HLA program. 

Program DemoVars;
#include( "stdlib.hhf" )

static
    InitDemo:       int32 := 5;
    NotInitialized: int32;

begin DemoVars;

    // Display the value of the pre-initialized variable:

    stdout.put( "InitDemo's value is ", InitDemo, nl );

    // Input an integer value from the user and display that value:

static is the keyword that begins 
the variable declaration section.

static
    i8:  int8;
    i16: int16;
    i32: int32;

int8, int16, and int32 are the names 
of the data types for each declaration.

i8, i16, and i32 
are the names of 
the variables to 
declare here.

static
    i8:  int8  := 8;
    i16: int16 := 1600;
    i32: int32 := -320000;

The operand after the 
constant assignment 
operator must be a 
constant whose type 
is compatible with the 
variable you are 
initializing.

The constant assignment 
operator, :=, tells HLA 
that you wish to initialize 
the specified variable 
with an initial value.
6 Chapter  1
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    stdout.put( "Enter an integer value: " );
    stdin.get( NotInitialized );
    stdout.put( "You entered: ", NotInitialized, nl );

end DemoVars;

Listing 1-2: Variable declaration and use

In addition to static variable declarations, this example introduces three 
new concepts. First, the stdout.put statement allows multiple parameters. If 
you specify an integer value, stdout.put will convert that value to its string 
representation on output. 

The second new feature introduced in Listing 1-2 is the stdin.get 
statement. This statement reads a value from the standard input device 
(usually the keyboard), converts the value to an integer, and stores the 
integer value into the NotInitialized variable. Finally, Listing 1-2 also 
introduces the syntax for (one form of) HLA comments. The HLA compiler 
ignores all text from the // sequence to the end of the current line. (Those 
familiar with Java, C++, and Delphi should recognize these comments.) 

1.4 Boolean Values

HLA and the HLA Standard Library provide limited support for boolean 
objects. You can declare boolean variables, use boolean literal constants, 
use boolean variables in boolean expressions, and you can print the values 
of boolean variables. 

Boolean literal constants consist of the two predefined identifiers true 
and false. Internally, HLA represents the value true using the numeric value 1; 
HLA represents false using the value 0. Most programs treat 0 as false and 
anything else as true, so HLA’s representations for true and false should 
prove sufficient. 

To declare a boolean variable, you use the boolean data type. HLA uses 
a single byte (the least amount of memory it can allocate) to represent 
boolean values. The following example demonstrates some typical 
declarations: 

static
     BoolVar:     boolean;
     HasClass:    boolean := false;
     IsClear:     boolean := true;

As this example demonstrates, you can initialize boolean variables if you 
desire.

Because boolean variables are byte objects, you can manipulate them 
using any instructions that operate directly on 8-bit values. Furthermore, as 
long as you ensure that your boolean variables only contain 0 and 1 (for 
false and true, respectively), you can use the 80x86 and, or, xor, and not 
instructions to manipulate these boolean values (these instructions are 
covered in Chapter 2). 
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You can print boolean values by making a call to the stdout.put routine. 
For example: 

stdout.put( BoolVar )

This routine prints the text true or false depending upon the value of 
the boolean parameter (0 is false; anything else is true). Note that the HLA 
Standard Library does not allow you to read boolean values via stdin.get. 

1.5 Character Values

HLA lets you declare 1-byte ASCII character objects using the char data type. 
You may initialize character variables with a literal character value by 
surrounding the character with a pair of apostrophes. The following example 
demonstrates how to declare and initialize character variables in HLA: 

static
     c: char;
     LetterA: char := 'A';

You can print character variables use the stdout.put routine, and you can 
read character variables using the stdin.get procedure call.

1.6 An Introduction to the Intel 80x86 CPU Family

Thus far, you’ve seen a couple of HLA programs that will actually compile 
and run. However, all the statements appearing in programs to this point 
have been either data declarations or calls to HLA Standard Library routines. 
There hasn’t been any real assembly language. Before we can progress any 
further and learn some real assembly language, a detour is necessary; unless 
you understand the basic structure of the Intel 80x86 CPU family, the 
machine instructions will make little sense. 

The Intel CPU family is generally classified as a Von Neumann Architecture 
Machine. Von Neumann computer systems contain three main building blocks: 
the central processing unit (CPU), memory, and input/output (I/0) devices. These 
three components are interconnected using the system bus (consisting of the 
address, data, and control buses). The block diagram in Figure 1-4 shows this 
relationship. 

The CPU communicates with memory and I/O devices by placing a 
numeric value on the address bus to select one of the memory locations or 
I/O device port locations, each of which has a unique binary numeric address. 
Then the CPU, memory, and I/O devices pass data among themselves by 
placing the data on the data bus. The control bus contains signals that 
determine the direction of the data transfer (to/from memory and to/from 
an I/O device). 
8 Chapter  1



AAL2E_03.book  Page 9  Thursday, February 18, 2010  12:49 PM
Figure 1-4: Von Neumann computer system block 
diagram

The 80x86 CPU registers can be broken down into four categories: 
general-purpose registers, special-purpose application-accessible registers, 
segment registers, and special-purpose kernel-mode registers. Because 
the segment registers aren’t used much in modern 32-bit operating systems 
(such as Windows, Mac OS X, FreeBSD, and Linux) and because this text is 
geared to writing programs written for 32-bit operating systems, there is little 
need to discuss the segment registers. The special-purpose kernel-mode regis-
ters are intended for writing operating systems, debuggers, and other system-
level tools. Such software construction is well beyond the scope of this text. 

The 80x86 (Intel family) CPUs provide several general-purpose registers 
for application use. These include eight 32-bit registers that have the 
following names: EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP.

The E prefix on each name stands for extended. This prefix differ-
entiates the 32-bit registers from the eight 16-bit registers that have the 
following names: AX, BX, CX, DX, SI, DI, BP, and SP.

Finally, the 80x86 CPUs provide eight 8-bit registers that have the 
following names: AL, AH, BL, BH, CL, CH, DL, and DH.

Unfortunately, these are not all separate registers. That is, the 80x86 
does not provide 24 independent registers. Instead, the 80x86 overlays the 
32-bit registers with the 16-bit registers, and it overlays the 16-bit registers 
with the 8-bit registers. Figure 1-5 shows this relationship. 

The most important thing to note about the general-purpose registers is 
that they are not independent. Modifying one register may modify as many as 
three other registers. For example, modification of the EAX register may very 
well modify the AL, AH, and AX registers. This fact cannot be overemphasized 
here. A very common mistake in programs written by beginning assembly 
language programmers is register value corruption because the programmer 
did not completely understand the ramifications of the relationship shown in 
Figure 1-5. 

CPU

Memory

I/O Devices
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Figure 1-5: 80x86 (Intel CPU) general-purpose registers

The EFLAGS register is a 32-bit register that encapsulates several single-
bit boolean (true/false) values. Most of the bits in the EFLAGS register are 
either reserved for kernel mode (operating system) functions or are of little 
interest to the application programmer. Eight of these bits (or flags) are 
of interest to application programmers writing assembly language programs. 
These are the overflow, direction, interrupt disable,4 sign, zero, auxiliary 
carry, parity, and carry flags. Figure 1-6 shows the layout of the flags within 
the lower 16 bits of the EFLAGS register. 

Figure 1-6: Layout of the FLAGS register (lower 16 bits of EFLAGS)

Of the eight flags that are of interest to application programmers, four 
flags in particular are extremely valuable: the overflow, carry, sign, and zero 
flags. Collectively, we will call these four flags the condition codes.5 The state of 
these flags lets you test the result of previous computations. For example, 
after comparing two values, the condition code flags will tell you whether 
one value is less than, equal to, or greater than a second value. 

4 Application programs cannot modify the interrupt flag, but we’ll look at this flag in Chapter 2; 
hence the discussion of this flag here.
5 Technically the parity flag is also a condition code, but we will not use that flag in this text.
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One important fact that comes as a surprise to those just learning assembly 
language is that almost all calculations on the 80x86 CPU involve a register. 
For example, to add two variables together, storing the sum into a third 
variable, you must load one of the variables into a register, add the second 
operand to the value in the register, and then store the register away in the 
destination variable. Registers are a middleman in nearly every calculation. 
Therefore, registers are very important in 80x86 assembly language programs.

Another thing you should be aware of is that although the registers have 
the name “general purpose,” you should not infer that you can use any register 
for any purpose. All the 80x86 registers have their own special purposes that 
limit their use in certain contexts. The SP/ESP register pair, for example, 
has a very special purpose that effectively prevents you from using it for 
anything else (it’s the stack pointer). Likewise, the BP/EBP register has a 
special purpose that limits its usefulness as a general-purpose register. For 
the time being, you should avoid the use of the ESP and EBP registers for 
generic calculations; also, keep in mind that the remaining registers are not 
completely interchangeable in your programs. 

1.7 The Memory Subsystem

A typical 80x86 processor running a modern 32-bit OS can access a maximum 
of 232 different memory locations, or just over 4 billion bytes. A few years ago, 
4 gigabytes of memory would have seemed like infinity; modern machines, 
however, exceed this limit. Nevertheless, because the 80x86 architecture 
supports a maximum 4GB address space when using a 32-bit operating 
system like Windows, Mac OS X, FreeBSD, or Linux, the following discussion 
will assume the 4GB limit. 

Of course, the first question you should ask is, “What exactly is a memory 
location?” The 80x86 supports byte-addressable memory. Therefore, the basic 
memory unit is a byte, which is sufficient to hold a single character or a 
(very) small integer value (we’ll talk more about that in Chapter 2). 

Think of memory as a linear array of bytes. The address of the first byte 
is 0 and the address of the last byte is 232−1. For an 80x86 processor, the 
following pseudo-Pascal array declaration is a good approximation of 
memory: 

          Memory: array [0..4294967295] of byte;

C/C++ and Java users might prefer the following syntax:

          byte Memory[4294967296];

To execute the equivalent of the Pascal statement Memory [125] := 0; 
the CPU places the value 0 on the data bus, places the address 125 on the 
address bus, and asserts the write line (this generally involves setting that line 
to 0), as shown in Figure 1-7. 
Hel lo,  Wor ld of  Assembly Language 11
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Figure 1-7: Memory write operation

To execute the equivalent of CPU := Memory [125]; the CPU places the 
address 125 on the address bus, asserts the read line (because the CPU is 
reading data from memory), and then reads the resulting data from the data 
bus (see Figure 1-8). 

Figure 1-8: Memory read operation

This discussion applies only when accessing a single byte in memory. So 
what happens when the processor accesses a word or a double word? Because 
memory consists of an array of bytes, how can we possibly deal with values 
larger than a single byte? Easy—to store larger values, the 80x86 uses a 
sequence of consecutive memory locations. Figure 1-9 shows how the 80x86 
stores bytes, words (2 bytes), and double words (4 bytes) in memory. The 
memory address of each of these objects is the address of the first byte of 
each object (that is, the lowest address). 

Modern 80x86 processors don’t actually connect directly to memory. 
Instead, there is a special memory buffer on the CPU known as the cache 
(pronounced “cash”) that acts as a high-speed intermediary between the 
CPU and main memory. Although the cache handles the details auto-
matically for you, one fact you should know is that accessing data objects in 
memory is sometimes more efficient if the address of the object is an even 
multiple of the object’s size. Therefore, it’s a good idea to align 4-byte objects 
(double words) on addresses that are multiples of 4. Likewise, it’s most 
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efficient to align 2-byte objects on even addresses. You can efficiently access 
single-byte objects at any address. You’ll see how to set the alignment of 
memory objects in Section 3.4. 

Figure 1-9: Byte, word, and double-word storage in memory

Before leaving this discussion of memory objects, it’s important to 
understand the correspondence between memory and HLA variables. One 
of the nice things about using an assembler/compiler like HLA is that you 
don’t have to worry about numeric memory addresses. All you need to do is 
declare a variable in HLA, and HLA takes care of associating that variable 
with some unique set of memory addresses. For example, if you have the 
following declaration section:

static
     i8          :int8;
     i16         :int16;
     i32         :int32;

HLA will find some unused 8-bit byte in memory and associate it with the i8 
variable; it will find a pair of consecutive unused bytes and associate i16 with 
them; finally, HLA will find 4 consecutive unused bytes and associate the 
value of i32 with those 4 bytes (32 bits). You’ll always refer to these variables 
by their name. You generally don’t have to concern yourself with their 
numeric address. Still, you should be aware that HLA is doing this for you 
behind your back. 
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1.8 Some Basic Machine Instructions

The 80x86 CPU family provides from just over a hundred to many thousands 
of different machine instructions, depending on how you define a machine 
instruction. Even at the low end of the count (greater than 100), it appears as 
though there are far too many machine instructions to learn in a short time. 
Fortunately, you don’t need to know all the machine instructions. In fact, 
most assembly language programs probably use around 30 different machine 
instructions.6 Indeed, you can certainly write several meaningful programs 
with only a few machine instructions. The purpose of this section is to pro-
vide a small handful of machine instructions so you can start writing simple 
HLA assembly language programs right away. 

Without question, the mov instruction is the most oft-used assembly 
language statement. In a typical program, anywhere from 25 percent to 
40 percent of the instructions are mov instructions. As its name suggests, this 
instruction moves data from one location to another.7 The HLA syntax for 
this instruction is:

mov( source_operand, destination_operand );

The source_operand can be a register, a memory variable, or a constant. 
The destination_operand may be a register or a memory variable. Technically 
the 80x86 instruction set does not allow both operands to be memory 
variables. HLA, however, will automatically translate a mov instruction with 
two-word or double-word memory operands into a pair of instructions that 
will copy the data from one location to another. In a high-level language 
like Pascal or C/C++, the mov instruction is roughly equivalent to the 
following assignment statement: 

destination_operand = source_operand ;

Perhaps the major restriction on the mov instruction’s operands is that 
they must both be the same size. That is, you can move data between a pair of 
byte (8-bit) objects, word (16-bit) objects, or double-word (32-bit) objects; 
you may not, however, mix the sizes of the operands. Table 1-1 lists all the 
legal combinations for the mov instruction. 

You should study this table carefully because most of the general-purpose 
80x86 instructions use this syntax. 

6 Different programs may use a different set of 30 instructions, but few programs use more than 
30 distinct instructions.
7 Technically, mov actually copies data from one location to another. It does not destroy the 
original data in the source operand. Perhaps a better name for this instruction would have been 
copy. Alas, it’s too late to change it now.
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The 80x86 add and sub instructions let you add and subtract two 
operands. Their syntax is nearly identical to the mov instruction: 

     add( source_operand, destination_operand );
     sub( source_operand, destination_operand );

The add and sub operands take the same form as the mov instruction.8 The 
add instruction does the following: 

     destination_operand = destination_operand + source_operand ;
     destination_operand += source_operand;  // For those who prefer C syntax.

The sub instruction does the calculation:

     destination_operand = destination_operand - source_operand ;
     destination_operand -= source_operand ;  // For C fans.

With nothing more than these three instructions, plus the HLA control 
structures that the next section discusses, you can actually write some 
sophisticated programs. Listing 1-3 provides a sample HLA program that 
demonstrates these three instructions. 

Table 1-1: Legal 80x86 mov Instruction Operands

Source Destination

Reg8
*

* The suffix denotes the size of the register or memory location.

Reg8

Reg8 Mem8

Mem8 Reg8

Constant†

† The constant must be small enough to fit in the specified destination operand.

Reg8

Constant Mem8

Reg16 Reg16

Reg16 Mem16

Mem16 Reg16

Constant Reg16

Constant Mem16

Reg32 Reg32

Reg32 Mem32

Mem32 Reg32

Constant Reg32

Constant Mem32

8 Remember, though, that add and sub do not support memory-to-memory operations. 
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program DemoMOVaddSUB;

#include( "stdlib.hhf" )

static
    i8:     int8    := -8;
    i16:    int16   := -16;
    i32:    int32   := -32;

begin DemoMOVaddSUB;

    // First, print the initial values
    // of our variables.

    stdout.put
    (
        nl,
        "Initialized values: i8=", i8, 
        ", i16=", i16, 
        ", i32=", i32, 
        nl 
    );

    // Compute the absolute value of the
    // three different variables and
    // print the result.
    // Note: Because all the numbers are
    // negative, we have to negate them.
    // Using only the mov, add, and sub
    // instructions, we can negate a value
    // by subtracting it from zero.

    mov( 0, al );   // Compute i8 := -i8;
    sub( i8, al );
    mov( al, i8 );
    
    mov( 0, ax );   // Compute i16 := -i16;
    sub( i16, ax );
    mov( ax, i16 );
    
    mov( 0, eax );  // Compute i32 := -i32;
    sub( i32, eax );
    mov( eax, i32 );

    // Display the absolute values:

    stdout.put
    ( 
        nl,
        "After negation: i8=", i8, 
        ", i16=", i16, 
        ", i32=", i32, 
        nl 
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    );

    // Demonstrate add and constant-to-memory
    // operations:

    add( 32323200, i32 );
    stdout.put( nl, "After add: i32=", i32, nl );

    
end DemoMOVaddSUB;

Listing 1-3: Demonstration of the mov, add, and sub instructions

1.9 Some Basic HLA Control Structures

The mov, add, and sub instructions, while valuable, aren’t sufficient to let you 
write meaningful programs. You will need to complement these instructions 
with the ability to make decisions and create loops in your HLA programs 
before you can write anything other than a simple program. HLA provides 
several high-level control structures that are very similar to control structures 
found in high-level languages. These include if..then..elseif..else..endif, 
while..endwhile, repeat..until, and so on. By learning these statements you 
will be armed and ready to write some real programs.

Before discussing these high-level control structures, it’s important to 
point out that these are not real 80x86 assembly language statements. HLA 
compiles these statements into a sequence of one or more real assembly lan-
guage statements for you. In Chapter 7, you’ll learn how HLA compiles the 
statements, and you’ll learn how to write pure assembly language code that 
doesn’t use them. However, there is a lot to learn before you get to that 
point, so we’ll stick with these high-level language statements for now. 

Another important fact to mention is that HLA’s high-level control 
structures are not as high level as they first appear. The purpose behind 
HLA’s high-level control structures is to let you start writing assembly 
language programs as quickly as possible, not to let you avoid the use of 
assembly language altogether. You will soon discover that these statements 
have some severe restrictions associated with them, and you will quickly 
outgrow their capabilities. This is intentional. Once you reach a certain 
level of comfort with HLA’s high-level control structures and decide you 
need more power than they have to offer, it’s time to move on and learn 
the real 80x86 instructions behind these statements. 

Do not let the presence of high-level-like statements in HLA confuse 
you. Many people, after learning about the presence of these statements in 
the HLA language, erroneously come to the conclusion that HLA is just 
some special high-level language and not a true assembly language. This 
isn’t true. HLA is a full low-level assembly language. HLA supports all the 
same machine instructions as any other 80x86 assembler. The difference is 
that HLA has some extra statements that allow you to do more than is poss-
ible with those other 80x86 assemblers. Once you learn 80x86 assembly 
Hel lo,  Wor ld of  Assembly Language 17



AAL2E_03.book  Page 18  Thursday, February 18, 2010  12:49 PM
language with HLA, you may elect to ignore all these extra (high-level) 
statements and write only low-level 80x86 assembly language code if this is 
your desire.

The following sections assume that you’re familiar with at least one 
high-level language. They present the HLA control statements from that 
perspective without bothering to explain how you actually use these state-
ments to accomplish something in a program. One prerequisite this text 
assumes is that you already know how to use these generic control statements 
in a high-level language; you’ll use them in HLA programs in an identical 
manner. 

1.9.1 Boolean Expressions in HLA Statements

Several HLA statements require a boolean (true or false) expression to 
control their execution. Examples include the if, while, and repeat..until 
statements. The syntax for these boolean expressions represents the greatest 
limitation of the HLA high-level control structures. This is one area where 
your familiarity with a high-level language will work against you—you’ll want 
to use the fancy expressions you use in a high-level language, yet HLA 
supports only some basic forms. 

HLA boolean expressions take the following forms:9

flag_specification
!flag_specification
register
!register
Boolean_variable
!Boolean_variable
mem_reg relop mem_reg_const
register in LowConst..HiConst
register not in LowConst..HiConst

A flag_specification may be one of the symbols that are described in 
Table 1-2.

9 There are a few additional forms that we’ll cover in Chapter 6.

Table 1-2: Symbols for flag_specification

Symbol Meaning Explanation

@c Carry True if the carry is set (1); false if the carry is clear (0).

@nc No carry True if the carry is clear (0); false if the carry is set (1).

@z Zero True if the zero flag is set; false if it is clear.

@nz Not zero True if the zero flag is clear; false if it is set.

@o Overflow True if the overflow flag is set; false if it is clear.

@no No overflow True if the overflow flag is clear; false if it is set.

@s Sign True if the sign flag is set; false if it is clear.

@ns No sign True if the sign flag is clear; false if it is set.
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The use of the flag values in a boolean expression is somewhat advanced. 
You will begin to see how to use these boolean expression operands in the 
next chapter. 

A register operand can be any of the 8-bit, 16-bit, or 32-bit general-
purpose registers. The expression evaluates false if the register contains a 
zero; it evaluates true if the register contains a nonzero value. 

If you specify a boolean variable as the expression, the program tests it 
for zero (false) or nonzero (true). Because HLA uses the values zero and one 
to represent false and true, respectively, the test works in an intuitive fashion. 
Note that HLA requires such variables be of type boolean. HLA rejects other 
data types. If you want to test some other type against zero/not zero, then use 
the general boolean expression discussed next. 

The most general form of an HLA boolean expression has two operands 
and a relational operator. Table 1-3 lists the legal combinations.

Note that both operands cannot be memory operands. In fact, if you 
think of the right operand as the source operand and the left operand as the 
destination operand, then the two operands must be the same that add and 
sub allow. 

Also like the add and sub instructions, the two operands must be the 
same size. That is, they must both be byte operands, they must both be word 
operands, or they must both be double-word operands. If the right operand 
is a constant, its value must be in the range that is compatible with the left 
operand. 

There is one other issue: if the left operand is a register and the right 
operand is a positive constant or another register, HLA uses an unsigned 
comparison. The next chapter will discuss the ramifications of this; for the 
time being, do not compare negative values in a register against a constant 
or another register. You may not get an intuitive result. 

The in and not in operators let you test a register to see if it is within a 
specified range. For example, the expression eax in 2000..2099 evaluates true 
if the value in the EAX register is between 2,000 and 2,099 (inclusive). The 
not in (two words) operator checks to see if the value in a register is outside 
the specified range. For example, al not in 'a'..'z' evaluates true if the 
character in the AL register is not a lowercase alphabetic character. 

Table 1-3: Legal Boolean Expressions

Left Operand Relational Operator Right Operand

Memory variable or 
register

= or ==
<> or !=
<
<=
>
>=

Variable, register, or 
constant
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Here are some examples of legal boolean expressions in HLA: 

@c
Bool_var
al
esi
eax < ebx
ebx > 5
i32 < -2
i8 > 128
al < i8
eax in 1..100
ch not in 'a'..'z'

1.9.2 The HLA if..then..elseif..else..endif Statement

The HLA if statement uses the syntax shown in Figure 1-10.

Figure 1-10: HLA if statement syntax

The expressions appearing in an if statement must take one of the forms 
from the previous section. If the boolean expression is true, the code after 
the then executes; otherwise control transfers to the next elseif or else clause 
in the statement. 

Because the elseif and else clauses are optional, an if statement could 
take the form of a single if..then clause, followed by a sequence of state-
ments and a closing endif clause. The following is such a statement: 

if( eax = 0 ) then

     stdout.put( "error: NULL value", nl );

endif;

The elseif clause is optional. Zero or more 
elseif clauses may appear in an if statement. 
If more than one elseif clause appears, all the 
elseif clauses must appear before the else clause 
(or before the endif if there is no else clause).

if( expression ) then

    << sequence of
    one or more
    statements >>

elseif( expression ) then

    << sequence of
    one or more
    statements >>

else

    << sequence of
    one or more
    statements >>

endif;

The else clause is optional. At most one 
else clause may appear within an if statement 
and it must be the last clause before the endif.
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If, during program execution, the expression evaluates true, then the 
code between the then and the endif executes. If the expression evaluates 
false, then the program skips over the code between the then and the endif. 

Another common form of the if statement has a single else clause. The 
following is an example of an if statement with an optional else clause: 

if( eax = 0 ) then

     stdout.put( "error: NULL pointer encountered", nl );

else

     stdout.put( "Pointer is valid", nl );

endif;

If the expression evaluates true, the code between the then and the else 
executes; otherwise the code between the else and the endif clauses executes. 

You can create sophisticated decision-making logic by incorporating the 
elseif clause into an if statement. For example, if the CH register contains a 
character value, you can select from a menu of items using code like the 
following: 

if( ch = 'a' ) then

     stdout.put( "You selected the 'a' menu item", nl );

elseif( ch = 'b' ) then

     stdout.put( "You selected the 'b' menu item", nl );

elseif( ch = 'c' ) then

     stdout.put( "You selected the 'c' menu item", nl );

else

     stdout.put( "Error: illegal menu item selection", nl );

endif;

Although this simple example doesn’t demonstrate it, HLA does not 
require an else clause at the end of a sequence of elseif clauses. However, 
when making multiway decisions, it’s always a good idea to provide an else 
clause just in case an error arises. Even if you think it’s impossible for the 
else clause to execute, just keep in mind that future modifications to the 
code could void this assertion, so it’s a good idea to have error-reporting 
statements in your code. 
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1.9.3 Conjunction, Disjunction, and Negation in Boolean Expressions

Some obvious omissions in the list of operators in the previous sections are 
the conjunction (logical and), disjunction (logical or), and negation (logical 
not) operators. This section describes their use in boolean expressions (the 
discussion had to wait until after describing the if statement in order to 
present realistic examples). 

HLA uses the && operator to denote logical and in a runtime boolean 
expression. This is a dyadic (two-operand) operator, and the two operands 
must be legal runtime boolean expressions. This operator evaluates to true if 
both operands evaluate to true. For example: 

     if( eax > 0 && ch = 'a' ) then

          mov( eax, ebx );
          mov( ' ', ch );

     endif;

The two mov statements above execute only if EAX is greater than zero 
and CH is equal to the character a. If either of these conditions is false, then 
program execution skips over these mov instructions.

Note that the expressions on either side of the && operator may be any 
legal boolean expressions; these expressions don’t have to be comparisons 
using the relational operators. For example, the following are all legal 
expressions: 

     @z && al in 5..10
     al in 'a'..'z' && ebx
     boolVar && !eax

HLA uses short-circuit evaluation when compiling the && operator. If the 
leftmost operand evaluates false, then the code that HLA generates does not 
bother evaluating the second operand (because the whole expression must 
be false at that point). Therefore, in the last expression above, the code will 
not check EAX against zero if boolVar evaluates false. 

Note that an expression like eax < 10 && ebx <> eax is itself a legal boolean 
expression and, therefore, may appear as the left or right operand of the && 
operator. Therefore, expressions like the following are perfectly legal: 

     eax < 0  &&  ebx <> eax    &&    !ecx

The && operator is left associative, so the code that HLA generates 
evaluates the expression above in a left-to-right fashion. If EAX is less than 
zero, the CPU will not test either of the remaining expressions. Likewise, if 
EAX is not less than zero but EBX is equal to EAX, this code will not evaluate 
the third expression because the whole expression is false regardless of ECX’s 
value. 
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HLA uses the || operator to denote disjunction (logical or) in a runtime 
boolean expression. Like the && operator, this operator expects two legal 
runtime boolean expressions as operands. This operator evaluates true if 
either (or both) operands evaluate true. Like the && operator, the disjunction 
operator uses short-circuit evaluation. If the left operand evaluates true, then 
the code that HLA generates doesn’t bother to test the value of the second 
operand. Instead, the code will transfer to the location that handles the 
situation when the boolean expression evaluates true. Here are some examples 
of legal expressions using the || operator: 

     @z || al = 10
     al in 'a'..'z' || ebx
     !boolVar || eax

Like the && operator, the disjunction operator is left associative, so mul-
tiple instances of the || operator may appear within the same expression. 
Should this be the case, the code that HLA generates will evaluate the 
expressions from left to right. For example: 

     eax < 0  ||  ebx <> eax    ||   !ecx

The code above evaluates to true if EAX is less than zero, EBX does not 
equal EAX, or ECX is zero. Note that if the first comparison is true, the code 
doesn’t bother testing the other conditions. Likewise, if the first comparison 
is false and the second is true, the code doesn’t bother checking to see if 
ECX is zero. The check for ECX equal to zero occurs only if the first two 
comparisons are false. 

If both the conjunction and disjunction operators appear in the same 
expression, then the && operator takes precedence over the || operator. 
Consider the following expression: 

     eax < 0 || ebx <> eax  && !ecx

The machine code HLA generates evaluates this as

     eax < 0 || (ebx <> eax  && !ecx)

If EAX is less than zero, then the code HLA generates does not bother to 
check the remainder of the expression, and the entire expression evaluates 
true. However, if EAX is not less than zero, then both of the following con-
ditions must evaluate true in order for the overall expression to evaluate true. 

HLA allows you to use parentheses to surround subexpressions involving 
&& and || if you need to adjust the precedence of the operators. Consider the 
following expression: 

     (eax < 0 || ebx <> eax)  && !ecx
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For this expression to evaluate true, ECX must contain zero and either 
EAX must be less than zero or EBX must not equal EAX. Contrast this to the 
result the expression produces without the parentheses. 

HLA uses the ! operator to denote logical negation. However, the ! 
operator may only prefix a register or boolean variable; you may not use it 
as part of a larger expression (e.g., !eax < 0). To achieve logical negative of 
an existing boolean expression, you must surround that expression with 
parentheses and prefix the parentheses with the ! operator. For example: 

     !( eax < 0 ) 

This expression evaluates true if EAX is not less than zero. 
The logical not operator is primarily useful for surrounding complex 

expressions involving the conjunction and disjunction operators. While it is 
occasionally useful for short expressions like the one above, it’s usually easier 
(and more readable) to simply state the logic directly rather than convolute 
it with the logical not operator. 

Note that HLA also provides the | and & operators, but they are distinct 
from || and && and have completely different meanings. See the HLA 
reference manual for more details on these (compile-time) operators. 

1.9.4 The while..endwhile Statement

The while statement uses the basic syntax shown in Figure 1-11.   

Figure 1-11: HLA while statement syntax

This statement evaluates the boolean expression. If it is false, control 
immediately transfers to the first statement following the endwhile clause. If 
the value of the expression is true, then the CPU executes the body of the 
loop. After the loop body executes, control transfers back to the top of the 
loop, where the while statement retests the loop control expression. This 
process repeats until the expression evaluates false. 

Note that the while loop, like its high-level-language counterpart, tests 
for loop termination at the top of the loop. Therefore, it is quite possible 
that the statements in the body of the loop will not execute (if the expression 
is false when the code first executes the while statement). Also note that the 
body of the while loop must, at some point, modify the value of the boolean 
expression or an infinite loop will result. 

The expression in the while 
statement has the same 
restrictions as the if statement.

while( expression ) do

    << sequence of
    one or more
    statements >>

endwhile; Loop body
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Here’s an example of an HLA while loop: 

mov( 0, i );
while( i < 10 ) do

     stdout.put( "i=", i, nl );
     add( 1, i );

endwhile;

1.9.5 The for..endfor Statement

The HLA for loop takes the following general form:

for( Initial_Stmt; Termination_Expression; Post_Body_Statement ) do

     << Loop body >>

endfor;

This is equivalent to the following while statement:

Initial_Stmt;
while( Termination_Expression ) do

     << Loop body >>  

     Post_Body_Statement;

endwhile;

Initial_Stmt can be any single HLA/80x86 instruction. Generally this 
statement initializes a register or memory location (the loop counter) with 
zero or some other initial value. Termination_Expression is an HLA boolean 
expression (same format that while allows). This expression determines 
whether the loop body executes. Post_Body_Statement executes at the bottom 
of the loop (as shown in the while example above). This is a single HLA 
statement. Usually an instruction like add modifies the value of the loop 
control variable. 

The following gives a complete example: 

for( mov( 0, i ); i < 10; add(1, i )) do

     stdout.put( "i=", i, nl );

endfor;
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The above, rewritten as a while loop, becomes:

mov( 0, i );
while( i < 10 ) do

     stdout.put( "i=", i, nl );

     add( 1, i );

endwhile;

1.9.6 The repeat..until Statement

The HLA repeat..until statement uses the syntax shown in Figure 1-12. 
C/C++/C# and Java users should note that the repeat..until statement is 
very similar to the do..while statement. 

Figure 1-12: HLA repeat..until statement syntax

The HLA repeat..until statement tests for loop termination at the 
bottom of the loop. Therefore, the statements in the loop body always 
execute at least once. Upon encountering the until clause, the program 
will evaluate the expression and repeat the loop if the expression is false 
(that is, it repeats while false). If the expression evaluates true, the control 
transfers to the first statement following the until clause. 

The following simple example demonstrates the repeat..until statement: 

mov( 10, ecx );
repeat

     stdout.put( "ecx = ", ecx, nl );
     sub( 1, ecx );

until( ecx = 0 );

If the loop body will always execute at least once, then it is usually more 
efficient to use a repeat..until loop rather than a while loop. 

The expression in the until 
statement has the same 
restrictions as the if statement.

repeat

    << sequence of
    one or more
    statements >>

until( expression );

Loop body
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1.9.7 The break and breakif Statements

The break and breakif statements provide the ability to prematurely exit from 
a loop. Figure 1-13 shows the syntax for these two statements.  

Figure 1-13: HLA break and breakif syntax

The break statement exits the loop that immediately contains the break. 
The breakif statement evaluates the boolean expression and exits the 
containing loop if the expression evaluates true. 

Note that the break and breakif statements do not allow you to break out 
of more than one nested loop. HLA does provide statements that do this, the 
begin..end block and the exit/exitif statements. Please consult the HLA 
reference manual for more details. HLA also provides the continue/continueif 
pair that lets you repeat a loop body. Again, see the HLA reference manual 
for more details. 

1.9.8 The forever..endfor Statement

Figure 1-14 shows the syntax for the forever statement.

Figure 1-14: HLA forever loop syntax

This statement creates an infinite loop. You may also use the break and 
breakif statements along with forever..endfor to create a loop that tests for 
loop termination in the middle of the loop. Indeed, this is probably the most 
common use of this loop, as the following example demonstrates: 

forever

     stdout.put( "Enter an integer less than 10: ");
     stdin.get( i );
     breakif( i < 10 );
     stdout.put( "The value needs to be less than 10!", nl );

endfor;

The expression in the breakif 
statement has the same 
restrictions as the if statement.

break;
breakif( expression );

forever

    << sequence of
    one or more
    statements >>

endfor; Loop body
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1.9.9 The try..exception..endtry Statement

The HLA try..exception..endtry statement provides very powerful exception 
handling capabilities. The syntax for this statement appears in Figure 1-15. 

Figure 1-15: HLA try..exception..endtry statement syntax

The try..endtry statement protects a block of statements during 
execution. If the statements between the try clause and the first exception 
clause (the protected block), execute without incident, control transfers to the 
first statement after the endtry immediately after executing the last statement 
in the protected block. If an error (exception) occurs, then the program 
interrupts control at the point of the exception (that is, the program raises an 
exception). Each exception has an unsigned integer constant associated with 
it, known as the exception ID. The excepts.hhf header file in the HLA Standard 
Library predefines several exception IDs, although you may create new ones 
for your own purposes. When an exception occurs, the system compares the 
exception ID against the values appearing in each of the exception clauses 
following the protected code. If the current exception ID matches one of the 
exception values, control continues with the block of statements immediately 
following that exception. After the exception-handling code completes exe-
cution, control transfers to the first statement following the endtry. 

If an exception occurs and there is no active try..endtry statement, or 
the active try..endtry statements do not handle the specific exception, the 
program will abort with an error message. 

The following code fragment demonstrates how to use the try..endtry 
statement to protect the program from bad user input: 

repeat

     mov( false, GoodInteger );   // Note: GoodInteger must be a boolean var.
     try

          stdout.put( "Enter an integer: " );

At least one exception 
handling block

Zero or more (optional)
exception handling blocks

try

    << sequence of
    one or more
    statements >>

exception( exceptionID )

    << sequence of
    one or more
    statements >>

exception( exceptionID )

    << sequence of
    one or more
    statements >>

endtry;

Statements to test
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          stdin.get( i );
          mov( true, GoodInteger );

     exception( ex.ConversionError );

          stdout.put( "Illegal numeric value, please re-enter", nl );

     exception( ex.ValueOutOfRange );

          stdout.put( "Value is out of range, please re-enter", nl );

     endtry;

until( GoodInteger );

The repeat..until loop repeats this code as long as there is an error 
during input. Should an exception occur because of bad input, control 
transfers to the exception clauses to see if a conversion error (e.g., illegal 
characters in the number) or a numeric overflow occurs. If either of these 
exceptions occur, then they print the appropriate message, control falls out 
of the try..endtry statement, and the repeat..until loop repeats because the 
code will not have set GoodInteger to true. If a different exception occurs (one 
that is not handled in this code), then the program aborts with the specified 
error message.10

Table 1-4 lists the exceptions provided in the excepts.hhf header file at 
the time this was being written. See the excepts.hhf  header file provided with 
HLA for the most current list of exceptions. 

10 An experienced programmer may wonder why this code uses a boolean variable rather than a 
breakif statement to exit the repeat..until loop. There are some technical reasons for this that 
you will learn about in Section 1.11.

Table 1-4: Exceptions Provided in excepts.hhf 

Exception Description

ex.StringOverflow Attempt to store a string that is too large into a string 
variable.

ex.StringIndexError Attempt to access a character that is not present in a 
string.

ex.StringOverlap Attempt to copy a string onto itself.

ex.StringMetaData Corrupted string value.

ex.StringAlignment Attempt to store a string an at unaligned address.

ex.StringUnderflow Attempt to extract “negative” characters from a string.

ex.IllegalStringOperation Operation not permitted on string data.

ex.ValueOutOfRange Value is too large for the current operation.

ex.IllegalChar Operation encountered a character code whose ASCII 
code is not in the range 0..127.

ex.TooManyCmdLnParms Command line contains too many program parameters.

ex.BadObjPtr Pointer to class object is illegal.
(continued)
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ex.InvalidAlignment Argument was not aligned on a proper memory address.

ex.InvalidArgument Function call (generally OS API call) contains an invalid 
argument value.

ex.BufferOverflow Buffer or blob object exceeded declared size.

ex.BufferUnderflow Attempt to retrieve nonexistent data from a blob or buffer.

ex.IllegalSize Argument’s data size is incorrect.

ex.ConversionError String-to-numeric conversion operation contains illegal 
(nonnumeric) characters.

ex.BadFileHandle Program attempted a file access using an invalid file 
handle value.

ex.FileNotFound Program attempted to access a nonexistent file.

ex.FileOpenFailure Operating system could not open the file (file not found).

ex.FileCloseError Operating system could not close the file.

ex.FileWriteError Error writing data to a file.

ex.FileReadError Error reading data from a file.

ex.FileSeekError Attempted to seek to a nonexistent position in a file.

ex.DiskFullError Attempted to write data to a full disk.

ex.AccessDenied User does not have sufficient priviledges to access file 
data.

ex.EndOfFile Program attempted to read beyond the end of file.

ex.CannotCreateDir Attempt to create a directory failed.

ex.CannotRemoveDir Attempt to delete a directory failed.

ex.CannotRemoveFile Attempt to delete a file failed.

ex.CDFailed Attempt to change to a new directory failed.

ex.CannotRenameFile Attempt to rename a file failed.

ex.MemoryAllocationFailure Insufficient system memory for allocation request.

ex.MemoryFreeFailure Could not free the specified memory block (corrupted 
memory management system).

ex.MemoryAllocationCorruption Corrupted memory management system.

ex.AttemptToFreeNULL Caller attempted to free a NULL pointer.

ex.AttemptToDerefNULL Program attempted to access data indirectly using a NULL 
pointer.

ex.BlockAlreadyFree Caller attempted to free a block that was already freed.

ex.CannotFreeMemory Memory free operation failure.

ex.PointerNotInHeap Caller attempted to free a block of memory that was not 
allocated on the heap.

ex.WidthTooBig Format width for numeric to string conversion was too 
large.

ex.FractionTooBig Format size for fractional portion in floating-point-to-string 
conversion was too large.

ex.ArrayShapeViolation Attempted operation on two arrays whose dimensions 
don’t match.

Table 1-4: Exceptions Provided in excepts.hhf  (continued)

Exception Description
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Most of these exceptions occur in situations that are well beyond the 
scope of this chapter. Their appearance here is strictly for completeness. 
See the HLA reference manual, the HLA Standard Library documentation, 
and the HLA Standard Library source code for more details concerning these 
exceptions. The ex.ConversionError, ex.ValueOutOfRange, and ex.StringOverflow 
exceptions are the ones you’ll most commonly use. 

We’ll return to the discussion of the try..endtry statement in Section 1.11. 
First, however, we need to cover a little more material. 

ex.ArrayBounds Attempted to access an element of an array, but the index 
was out of bounds.

ex.InvalidDate Attempted date operation with an illegal date.

ex.InvalidDateFormat Conversion from string to date contains illegal characters.

ex.TimeOverflow Overflow during time arithmetic.

ex.InvalidTime Attempted time operation with an illegal time.

ex.InvalidTimeFormat Conversion from string to time contains illegal characters.

ex.SocketError Network communication failure.

ex.ThreadError Generic thread (multitasking) error.

ex.AssertionFailed assert statement encountered a failed assertion.

ex.ExecutedAbstract Attempt to execute an abstract class method.

ex.AccessViolation Attempt to access an illegal memory location.

ex.InPageError OS memory access error.

ex.NoMemory OS memory failure.

ex.InvalidHandle Bad handle passed to OS API call.

ex.ControlC CTRL-C was pressed on system console (functionality is 
OS specific).

ex.Breakpoint Program executed a breakpoint instruction (INT 3).

ex.SingleStep Program is operating with the trace flag set.

ex.PrivInstr Program attempted to execute a kernel-only instruction.

ex.IllegalInstr Program attempted to execute an illegal machine 
instruction.

ex.BoundInstr Bound instruction execution with “out of bounds” value.

ex.IntoInstr Into instruction execution with the overflow flag set.

ex.DivideError Program attempted division by zero or other divide error.

ex.fDenormal Floating point exception (see Chapter 6).

ex.fDivByZero Floating point exception (see Chapter 6).

ex.fInexactResult Floating point exception (see Chapter 6).

ex.fInvalidOperation Floating point exception (see Chapter 6).

ex.fOverflow Floating point exception (see Chapter 6).

ex.fStackCheck Floating point exception (see Chapter 6).

ex.fUnderflow Floating point exception (see Chapter 6).

ex.InvalidHandle OS reported an invalid handle for some operation.

Table 1-4: Exceptions Provided in excepts.hhf  (continued)

Exception Description
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1.10 Introduction to the HLA Standard Library

There are two reasons HLA is much easier to learn and use than standard 
assembly language. The first reason is HLA’s high-level syntax for declarations 
and control structures. This leverages your high-level language knowledge, 
allowing you to learn assembly language more efficiently. The other half of 
the equation is the HLA Standard Library. The HLA Standard Library 
provides many common, easy-to-use, assembly language routines that you 
can call without having to write this code yourself (and, more importantly, 
having to learn how to write yourself). This eliminates one of the larger 
stumbling blocks many people have when learning assembly language: the 
need for sophisticated I/O and support code in order to write basic state-
ments. Prior to the advent of a standardized assembly language library, it 
often took considerable study before a new assembly language programmer 
could do as much as print a string to the display. With the HLA Standard 
Library, this roadblock is removed, and you can concentrate on learning 
assembly language concepts rather than learning low-level I/O details that 
are specific to a given operating system. 

A wide variety of library routines is only part of HLA’s support. After all, 
assembly language libraries have been around for quite some time.11 HLA’s 
Standard Library complements HLA by providing a high-level language 
interface to these routines. Indeed, the HLA language itself was originally 
designed specifically to allow the creation of a high-level set of library 
routines. This high-level interface, combined with the high-level nature 
of many of the routines in the library, packs a surprising amount of power 
in an easy-to-use package. 

The HLA Standard Library consists of several modules organized by 
category. Table 1-5 lists many of the modules that are available.12

11 For example, see the UCR Standard Library for 80x86 Assembly Language Programmers.
12 Because the HLA Standard Library is expanding, this list is probably out of date. See the HLA 
documentation for a current list of Standard Library modules.

Table 1-5: HLA Standard Library Modules

Name Description

args Command-line parameter-parsing support routines.

arrays Array declarations and operations.

bits Bit-manipulation functions.

blobs Binary large objects—operations on large blocks of binary data.

bsd OS API calls for FreeBSD (HLA FreeBSD version only).

chars Operations on character data.

console Portable console (text screen) operations (cursor movement, screen clears, etc.).

conv Various conversions between strings and other values.

coroutines Support for coroutines (“cooperative multitasking”).

cset Character set functions.

DateTime Calendar, date, and time functions.
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Later sections of this text will explain many of these modules in greater 
detail. This section will concentrate on the most important routines (at least 
to beginning HLA programmers), the stdio library. 

1.10.1 Predefined Constants in the stdio Module

Perhaps the first place to start is with a description of some common constants 
that the stdio module defines for you. Consider the following (typical) 
example:

stdout.put( "Hello World", nl );

The nl appearing at the end of this statement stands for newline. The nl 
identifier is not a special HLA reserved word, nor is it specific to the stdout.put 
statement. Instead, it’s simply a predefined constant that corresponds to the 

env Access to OS environment variables.

excepts Exception-handling routines.

fileclass Object-oriented file input and output.

fileio File input and output routines.

filesys Access to the OS file system.

hla Special HLA constants and other values.

Linux Linux system calls (HLA Linux version only).

lists An HLA class for manipulating linked lists.

mac OS API calls for Mac OS X (HLA Mac OS X version only).

math Extended-precision arithmetic, transcendental functions, and other mathematical 
functions.

memmap Memory-mapped file operations.

memory Memory allocation, deallocation, and support code.

patterns The HLA pattern-matching library.

random Pseudo-random number generators and support code.

sockets A set of network communication functions and classes.

stderr Provides user output and several other support functions.

stdin User input routines.

stdio A support module for stderr, stdin, and stdout.

stdout Provides user output and several other support routines.

strings HLA’s powerful string library.

tables Table (associative array) support routines.

threads Support for multithreaded applications and process synchronization.

timers Support for timing events in an application.

win32 Constants used in Windows calls (HLA Windows version only).

x86 Constants and other items specific to the 80x86 CPU.

Table 1-5: HLA Standard Library Modules (continued)

Name Description
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string containing the standard end-of-line sequence (a carriage return/line 
feed pair under Windows or just a line feed under Linux, FreeBSD, and 
Mac OS X). 

In addition to the nl constant, the HLA standard I/O library module 
defines several other useful character constants, as listed in Table 1-6.

Except for nl, these characters appear in the stdio namespace13 (and 
therefore require the stdio. prefix). The placement of these ASCII constants 
within the stdio namespace helps avoid naming conflicts with your own 
variables. The nl name does not appear within a namespace because you will 
use it very often, and typing stdio.nl would get tiresome very quickly. 

1.10.2 Standard In and Standard Out

Many of the HLA I/O routines have a stdin or stdout prefix. Technically, this 
means that the standard library defines these names in a namespace. In 
practice, this prefix suggests where the input is coming from (the standard 
input device) or going to (the standard output device). By default, the 
standard input device is the system keyboard. Likewise, the default standard 
output device is the console display. So, in general, statements that have 
stdin or stdout prefixes will read and write data on the console device. 

When you run a program from the command-line window (or shell), 
you have the option of redirecting the standard input and/or standard output 
devices. A command-line parameter of the form >outfile redirects the standard 
output device to the specified file (outfile). A command-line parameter of 
the form <infile redirects the standard input so that its data comes from the 
specified input file (infile). The following examples demonstrate how to use 
these parameters when running a program named testpgm in the command 
window:14

                    testpgm <input.data
                    testpgm >output.txt
                    testpgm <in.txt >output.txt

Table 1-6: Character Constants Defined by the HLA Standard I/O Library

Character Definition

stdio.bell The ASCII bell character; beeps the speaker when printed

stdio.bs The ASCII backspace character

stdio.tab The ASCII tab character

stdio.lf The ASCII linefeed character

stdio.cr The ASCII carriage return character

13 Namespaces are the subject of Chapter 5.
14 For Linux, FreeBSD, and Mac OS X users, depending on how your system is set up, you may 
need to type ./ in front of the program’s name to actually execute the program (e.g., ./testpgm 
<input.data).
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1.10.3 The stdout.newln Routine

The stdout.newln procedure prints a newline sequence to the standard 
output device. This is functionally equivalent to saying stdout.put( nl );. 
The call to stdout.newln is sometimes a little more convenient. For example: 

                    stdout.newln();

1.10.4 The stdout.putiX Routines

The stdout.puti8, stdout.puti16, and stdout.puti32 library routines print a 
single parameter (one byte, two bytes, or four bytes, respectively) as a signed 
integer value. The parameter may be a constant, a register, or a memory 
variable, as long as the size of the actual parameter is the same as the size of 
the formal parameter. 

These routines print the value of their specified parameter to the standard 
output device. These routines will print the value using the minimum number 
of print positions possible. If the number is negative, these routines will print 
a leading minus sign. Here are some examples of calls to these routines: 

                    stdout.puti8( 123 );
                    stdout.puti16( dx );
                    stdout.puti32( i32Var );

1.10.5 The stdout.putiXSize Routines

The stdout.puti8Size, stdout.puti16Size, and stdout.puti32Size routines output 
signed integer values to the standard output, just like the stdout.putiX routines. 
These routines, however, provide more control over the output; they let you 
specify the (minimum) number of print positions the value will require on 
output. These routines also let you specify a padding character should the 
print field be larger than the minimum needed to display the value. These 
routines require the following parameters: 

                    stdout.puti8Size( Value8, width, padchar );
                    stdout.puti16Size( Value16, width, padchar );
                    stdout.puti32Size( Value32, width, padchar );

The Value* parameter can be a constant, a register, or a memory location 
of the specified size. The width parameter can be any signed integer constant 
that is between −256 and +256; this parameter may be a constant, register 
(32-bit), or memory location (32-bit). The padchar parameter should be a 
single-character value. 

Like the stdout.putiX routines, these routines print the specified value 
as a signed integer constant to the standard output device. These routines, 
however, let you specify the field width for the value. The field width is the 
minimum number of print positions these routines will use when printing 
the value. The width parameter specifies the minimum field width. If the 
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number would require more print positions (e.g., if you attempt to print 
1234 with a field width of 2), then these routines will print however many 
characters are necessary to properly display the value. On the other hand, 
if the width parameter is greater than the number of character positions 
required to display the value, then these routines will print some extra 
padding characters to ensure that the output has at least width character 
positions. If the width value is negative, the number is left justified in the 
print field; if the width value is positive, the number is right justified in 
the print field. 

If the absolute value of the width parameter is greater than the mini-
mum number of print positions, then these stdout.putiXSize routines will 
print a padding character before or after the number. The padchar param-
eter specifies which character these routines will print. Most of the time 
you would specify a space as the pad character; for special cases, you might 
specify some other character. Remember, the padchar parameter is a char-
acter value; in HLA character constants are surrounded by apostrophes, not 
quotation marks. You may also specify an 8-bit register as this parameter. 

Listing 1-4 provides a short HLA program that demonstrates the use of 
the stdout.puti32Size routine to display a list of values in tabular form. 

program NumsInColumns;

#include( "stdlib.hhf" )

var
    i32:    int32;
    ColCnt: int8;

begin NumsInColumns;

    mov( 96, i32 );
    mov( 0, ColCnt );
    while( i32 > 0 ) do

        if( ColCnt = 8 ) then

            stdout.newln();
            mov( 0, ColCnt );

        endif;
        stdout.puti32Size( i32, 5, ' ' );
        sub( 1, i32 );
        add( 1, ColCnt );

    endwhile;
    stdout.newln();

end NumsInColumns;

Listing 1-4: Tabular output demonstration using stdio.Puti32Size
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1.10.6 The stdout.put Routine

The stdout.put routine15 is the one of the most flexible output routines in 
the standard output library module. It combines most of the other output 
routines into a single, easy-to-use procedure. 

The generic form for the stdout.put routine is the following: 

stdout.put( list_of_values_to_output );

The stdout.put parameter list consists of one or more constants, registers, 
or memory variables, each separated by a comma. This routine displays the 
value associated with each parameter appearing in the list. Because we’ve 
already been using this routine throughout this chapter, you’ve already seen 
many examples of this routine’s basic form. It is worth pointing out that 
this routine has several additional features not apparent in the examples 
appearing in this chapter. In particular, each parameter can take one of the 
following two forms: 

value
value:width

The value may be any legal constant, register, or memory variable 
object. In this chapter, you’ve seen string constants and memory variables 
appearing in the stdout.put parameter list. These parameters correspond to 
the first form above. The second parameter form above lets you specify a 
minimum field width, similar to the stdout.putiXSize routines.16 The program 
in Listing 1-5 produces the same output as the program in Listing 1-4; how-
ever, Listing 1-5 uses stdout.put rather than stdout.puti32Size. 

program NumsInColumns2;

#include( "stdlib.hhf" )

var
    i32:    int32;
    ColCnt: int8;

begin NumsInColumns2;

    mov( 96, i32 );
    mov( 0, ColCnt );
    while( i32 > 0 ) do

        if( ColCnt = 8 ) then

15 stdout.put is actually a macro, not a procedure. The distinction between the two is beyond the 
scope of this chapter. Chapter 9 describes their differences.
16 Note that you cannot specify a padding character when using the stdout.put routine; the 
padding character defaults to the space character. If you need to use a different padding 
character, call the stdout.putiXSize routines.
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            stdout.newln();
            mov( 0, ColCnt );

        endif;
        stdout.put( i32:5 );
        sub( 1, i32 );
        add( 1, ColCnt );

    endwhile;
    stdout.put( nl );

end NumsInColumns2;

Listing 1-5: Demonstration of the stdout.put field width specification

The stdout.put routine is capable of much more than the few attributes 
this section describes. This text will introduce those additional capabilities as 
appropriate. 

1.10.7 The stdin.getc Routine

The stdin.getc routine reads the next available character from the standard 
input device’s input buffer.17 It returns this character in the CPU’s AL register. 
The program in Listing 1-6 demonstrates a simple use of this routine. 

program charInput;

#include( "stdlib.hhf" )

var
    counter: int32;

begin charInput;
        
    // The following repeats as long as the user
    // confirms the repetition.
    
    repeat
    
        // Print out 14 values.
        
        mov( 14, counter );
        while( counter > 0 ) do
        
            stdout.put( counter:3 );
            sub( 1, counter );
            
        endwhile;
        
        // Wait until the user enters 'y' or 'n'.
        

17 Buffer is just a fancy term for an array.
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        stdout.put( nl, nl, "Do you wish to see it again? (y/n):" );
        forever
        
            stdin.readLn();
            stdin.getc();
            breakif( al = 'n' );
            breakif( al = 'y' );
            stdout.put( "Error, please enter only 'y' or 'n': " );
            
        endfor;
        stdout.newln();
        
    until( al = 'n' );
            
end charInput;

Listing 1-6: Demonstration of the stdin.getc() routine

This program uses the stdin.ReadLn routine to force a new line of input 
from the user. A description of stdin.ReadLn appears in Section 1.10.9.

1.10.8 The stdin.getiX Routines
The stdin.geti8, stdin.geti16, and stdin.geti32 routines read 8-, 16-, and 
32-bit signed integer values from the standard input device. These routines 
return their values in the AL, AX, or EAX register, respectively. They provide 
the standard mechanism for reading signed integer values from the user 
in HLA. 

Like the stdin.getc routine, these routines read a sequence of characters 
from the standard input buffer. They begin by skipping over any whitespace 
characters (spaces, tabs, and so on) and then convert the following stream 
of decimal digits (with an optional leading minus sign) into the correspond-
ing integer. These routines raise an exception (that you can trap with the 
try..endtry statement) if the input sequence is not a valid integer string or if 
the user input is too large to fit in the specified integer size. Note that values 
read by stdin.geti8 must be in the range −128..+127; values read by stdin.geti16 
must be in the range −32,768..+32,767; and values read by stdin.geti32 must 
be in the range −2,147,483,648..+2,147,483,647. 

The sample program in Listing 1-7 demonstrates the use of these routines.

program intInput;

#include( "stdlib.hhf" )

var
    i8:     int8;
    i16:    int16;
    i32:    int32;

begin intInput;
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    // Read integers of varying sizes from the user:
        
    stdout.put( "Enter a small integer between -128 and +127: " );
    stdin.geti8();
    mov( al, i8 );
    
    stdout.put( "Enter a small integer between -32768 and +32767: " );
    stdin.geti16();
    mov( ax, i16 );
    
    stdout.put( "Enter an integer between +/- 2 billion: " );
    stdin.geti32();
    mov( eax, i32 );
    
    // Display the input values.
    
    stdout.put
    (
        nl, 
        "Here are the numbers you entered:", nl, nl,
        "Eight-bit integer: ", i8:12, nl,
        "16-bit integer:    ", i16:12, nl,
        "32-bit integer:    ", i32:12, nl
    );
    
    
            
end intInput;

Listing 1-7: stdin.getiX example code

You should compile and run this program and then test what happens 
when you enter a value that is out of range or enter an illegal string of 
characters. 

1.10.9 The stdin.readLn and stdin.flushInput Routines

Whenever you call an input routine like stdin.getc or stdin.geti32, the 
program does not necessarily read the value from the user at that moment. 
Instead, the HLA Standard Library buffers the input by reading a whole line 
of text from the user. Calls to input routines will fetch data from this input 
buffer until the buffer is empty. While this buffering scheme is efficient and 
convenient, sometimes it can be confusing. Consider the following code 
sequence: 

stdout.put( "Enter a small integer between -128 and +127: " );
stdin.geti8();
mov( al, i8 );
    
stdout.put( "Enter a small integer between -32768 and +32767: " );
stdin.geti16();
mov( ax, i16 );
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Intuitively, you would expect the program to print the first prompt 
message, wait for user input, print the second prompt message, and wait for 
the second user input. However, this isn’t exactly what happens. For example, 
if you run this code (from the sample program in the previous section) and 
enter the text 123  456 in response to the first prompt, the program will not 
stop for additional user input at the second prompt. Instead, it will read the 
second integer (456) from the input buffer read during the execution of the 
stdin.geti16 call. 

In general, the stdin routines read text from the user only when the input 
buffer is empty. As long as the input buffer contains additional characters, 
the input routines will attempt to read their data from the buffer. You can 
take advantage of this behavior by writing code sequences such as the 
following: 

stdout.put( "Enter two integer values: " );
stdin.geti32();
mov( eax, intval );
stdin.geti32();
mov( eax, AnotherIntVal );

This sequence allows the user to enter both values on the same line 
(separated by one or more whitespace characters), thus preserving space 
on the screen. So the input buffer behavior is desirable every now and then. 
The buffered behavior of the input routines can be counterintuitive at other 
times. 

Fortunately, the HLA Standard Library provides two routines, stdin.readLn 
and stdin.flushInput, that let you control the standard input buffer. The 
stdin.readLn routine discards everything that is in the input buffer and 
immediately requires the user to enter a new line of text. The stdin.flushInput 
routine simply discards everything that is in the buffer. The next time an 
input routine executes, the system will require a new line of input from the 
user. You would typically call stdin.readLn immediately before some standard 
input routine; you would normally call stdin.flushInput immediately after a 
call to a standard input routine. 

NOTE If you are calling stdin.readLn and you find that you are having to input your data 
twice, this is a good indication that you should be calling stdin.flushInput rather 
than stdin.readLn. In general, you should always be able to call stdin.flushInput 
to flush the input buffer and read a new line of data on the next input call. The 
stdin.readLn routine is rarely necessary, so you should use stdin.flushInput unless 
you really need to immediately force the input of a new line of text. 

1.10.10 The stdin.get Routine
The stdin.get routine combines many of the standard input routines into 
a single call, just as the stdout.put combines all of the output routines into a 
single call. Actually, stdin.get is a bit easier to use than stdout.put because 
the only parameters to this routine are a list of variable names. 
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Let’s rewrite the example given in the previous section: 

stdout.put( "Enter two integer values: " );
stdin.geti32();
mov( eax, intval );
stdin.geti32();
mov( eax, AnotherIntVal );

Using the stdin.get routine, we could rewrite this code as:

stdout.put( "Enter two integer values: " );
stdin.get( intval, AnotherIntVal );

As you can see, the stdin.get routine is a little more convenient to use. 
Note that stdin.get stores the input values directly into the memory 

variables you specify in the parameter list; it does not return the values in a 
register unless you actually specify a register as a parameter. The stdin.get 
parameters must all be variables or registers. 

1.11 Additional Details About try..endtry

As you may recall, the try..endtry statement surrounds a block of statements 
in order to capture any exceptions that occur during the execution of those 
statements. The system raises exceptions in one of three ways: through a hard-
ware fault (such as a divide-by-zero error), through an operating system–
generated exception, or through the execution of the HLA raise statement. 
You can write an exception handler to intercept specific exceptions using the 
exception clause. The program in Listing 1-8 provides a typical example of the 
use of this statement. 

program testBadInput;
#include( "stdlib.hhf" )

static
    u:      int32;
    

begin testBadInput;

    try
    
        stdout.put( "Enter a signed integer:" );
        stdin.get( u );
        stdout.put( "You entered: ", u, nl );
        
      exception( ex.ConversionError )
      
        stdout.put( "Your input contained illegal characters" nl );
        
      exception( ex.ValueOutOfRange )
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        stdout.put( "The value was too large" nl );
        
    endtry;

                    
end testBadInput;

Listing 1-8: try..endtry example

HLA refers to the statements between the try clause and the first exception 
clause as the protected statements. If an exception occurs within the protected 
statements, then the program will scan through each of the exceptions and 
compare the value of the current exception against the value in the paren-
theses after each of the exception clauses.18 This exception value is simply a 
32-bit value. The value in the parentheses after each exception clause, there-
fore, must be a 32-bit value. The HLA excepts.hhf header file predefines several 
exception constants. Although it would be an incredibly bad style violation, 
you could substitute the numeric values for the two exception clauses above. 

1.11.1 Nesting try..endtry Statements

If the program scans through all the exception clauses in a try..endtry state-
ment and does not match the current exception value, then the program 
searches through the exception clauses of a dynamically nested try..endtry 
block in an attempt to find an appropriate exception handler. For example, 
consider the code in Listing 1-9. 

program testBadInput2;
#include( "stdlib.hhf" )

static
    u:      int32;
    
begin testBadInput2;

    try
    
        try
    
            stdout.put( "Enter a signed integer: " );
            stdin.get( u );
            stdout.put( "You entered: ", u, nl );
            
          exception( ex.ConversionError )
          
            stdout.put( "Your input contained illegal characters" nl );
            
        endtry;
        

18 Note that HLA loads this value into the EAX register. So upon entry into an exception clause, 
EAX contains the exception number.
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        stdout.put( "Input did not fail due to a value out of range" nl );
        
        
      exception( ex.ValueOutOfRange )
      
        stdout.put( "The value was too large" nl );
        
    endtry;

end testBadInput2;

Listing 1-9: Nested try..endtry statements

In Listing 1-9 one try statement is nested inside another. During the 
execution of the stdin.get statement, if the user enters a value greater than 
four billion and some change, then stdin.get will raise the ex.ValueOutOfRange 
exception. When the HLA runtime system receives this exception, it first 
searches through all the exception clauses in the try..endtry statement imme-
diately surrounding the statement that raised the exception (this would be 
the nested try..endtry in the example above). If the HLA runtime system 
fails to locate an exception handler for ex.ValueOutOfRange, then it checks 
to see if the current try..endtry is nested inside another try..endtry (as is 
the case in Listing 1-9). If so, the HLA runtime system searches for the 
appropriate exception clause in the outer try..endtry statement. Within 
the try..endtry block appearing in Listing 1-9 the program finds an appro-
priate exception handler, so control transfers to the statements after the 
exception( ex.ValueOutOfRange ) clause. 

After leaving a try..endtry block, the HLA runtime system no longer 
considers that block active and will not search through its list of exceptions 
when the program raises an exception.19 This allows you to handle the same 
exception differently in other parts of the program. 

If two try..endtry statements handle the same exception, and one of 
the try..endtry blocks is nested inside the protected section of the other 
try..endtry statement, and the program raises an exception while executing 
in the innermost try..endtry sequence, then HLA transfers control directly 
to the exception handler provided by the innermost try..endtry block. HLA 
does not automatically transfer control to the exception handler provided by 
the outer try..endtry sequence. 

In the previous example (Listing 1-9) the second try..endtry statement 
was statically nested inside the enclosing try..endtry statement.20 As mentioned 
without comment earlier, if the most recently activated try..endtry statement 
does not handle a specific exception, the program will search through the 
exception clauses of any dynamically nesting try..endtry blocks. Dynamic 
nesting does not require the nested try..endtry block to physically appear 
within the enclosing try..endtry statement. Instead, control could transfer 

19 Unless, of course, the program re-enters the try..endtry block via a loop or other control 
structure.
20 Statically nested means that one statement is physically nested within another in the source 
code. When we say one statement is nested within another, this typically means that the 
statement is statically nested within the other statement.
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from inside the enclosing try..endtry protected block to some other point in 
the program. Execution of a try..endtry statement at that other point dynami-
cally nests the two try statements. Although there are many ways to dynamically 
nest code, there is one method you are probably familiar with from your 
high-level language experience: the procedure call. In Chapter 5, when you 
learn how to write procedures (functions) in assembly language, you should 
keep in mind that any call to a procedure within the protected section of a 
try..endtry block can create a dynamically nested try..endtry if the program 
executes a try..endtry within that procedure. 

1.11.2 The unprotected Clause in a try..endtry Statement
Whenever a program executes the try clause, it preserves the current 
exception environment and sets up the system to transfer control to the 
exception clauses within that try..endtry statement should an exception 
occur. If the program successfully completes the execution of a try..endtry 
protected block, the program restores the original exception environment 
and control transfers to the first statement beyond the endtry clause. This last 
step, restoring the execution environment, is very important. If the program 
skips this step, any future exceptions will transfer control to this try..endtry 
statement even though the program has already left the try..endtry block. 
Listing 1-10 demonstrates this problem. 

program testBadInput3;
#include( "stdlib.hhf" )

static
    input:  int32;  

begin testBadInput3;

    // This forever loop repeats until the user enters
    // a good integer and the break statement below
    // exits the loop.
    
    forever
    
        try

            stdout.put( "Enter an integer value: " );
            stdin.get( input );
            stdout.put( "The first input value was: ", input, nl );
            break;
                    
          exception( ex.ValueOutOfRange )
          
            stdout.put( "The value was too large, re-enter." nl );
            
          exception( ex.ConversionError )
          
            stdout.put( "The input contained illegal characters, re-enter." nl );
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        endtry;
        
    endfor;
    
    // Note that the following code is outside the loop and there
    // is no try..endtry statement protecting this code.
    
    stdout.put( "Enter another number: " );
    stdin.get( input );
    stdout.put( "The new number is: ", input, nl );

end testBadInput3;

Listing 1-10: Improperly exiting a try..endtry statement

This example attempts to create a robust input system by putting a loop 
around the try..endtry statement and forcing the user to reenter the data if 
the stdin.get routine raises an exception (because of bad input data). While 
this is a good idea, there is a big problem with this implementation: the break 
statement immediately exits the forever..endfor loop without first restoring 
the exception environment. Therefore, when the program executes the 
second stdin.get statement, at the bottom of the program, the HLA 
exception-handling code still thinks that it’s inside the try..endtry block. 
If an exception occurs, HLA transfers control back into the try..endtry 
statement looking for an appropriate exception handler. Assuming the 
exception was ex.ValueOutOfRange or ex.ConversionError, the program in 
Listing 1-10 will print an appropriate error message and then force the user to 
re-enter the first value. This isn’t desirable. 

Transferring control to the wrong try..endtry exception handlers is only 
part of the problem. Another big problem with the code in Listing 1-10 has 
to do with the way HLA preserves and restores the exception environment: 
specifically, HLA saves the old execution environment information in a special 
region of memory known as the stack. If you exit a try..endtry without restor-
ing the exception environment, this leaves the old execution environment 
information on the stack, and this extra data on could cause your program to 
malfunction. 

Although this discussion makes it quite clear that a program should not 
exit from a try..endtry statement in the manner that Listing 1-10 uses, it 
would be nice if you could use a loop around a try..endtry block to force the 
reentry of bad data as this program attempts to do. To allow for this, HLA’s 
try..endtry statement provides an unprotected section. Consider the code in 
Listing 1-11. 

program testBadInput4;
#include( "stdlib.hhf" )

static
    input:  int32;  

begin testBadInput4;
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    // This forever loop repeats until the user enters
    // a good integer and the break statement below
    // exits the loop. Note that the break statement
    // appears in an unprotected section of the try..endtry
    // statement.
    
    forever
    
        try

            stdout.put( "Enter an integer value: " );
            stdin.get( input );
            stdout.put( "The first input value was: ", input, nl );
          
          unprotected
          
            break;
                    
          exception( ex.ValueOutOfRange )
          
            stdout.put( "The value was too large, re-enter." nl );
            
          exception( ex.ConversionError )
          
            stdout.put( "The input contained illegal characters, re-enter." nl );
            
        endtry;
        
    endfor;
    
    // Note that the following code is outside the loop and there
    // is no try..endtry statement protecting this code.
    
    stdout.put( "Enter another number: " );
    stdin.get( input );
    stdout.put( "The new number is: ", input, nl );

end testBadInput4;

Listing 1-11: The try..endtry unprotected section

Whenever the try..endtry statement hits the unprotected clause, it 
immediately restores the exception environment. As the phrase suggests, 
the execution of statements in the unprotected section is no longer protec-
ted by that try..endtry block (note, however, that any dynamically nesting 
try..endtry statements will still be active; unprotected turns off only the 
exception handling of the try..endtry statement containing the unprotected 
clause). Because the break statement in Listing 1-11 appears inside the 
unprotected section, it can safely transfer control out of the try..endtry 
block without “executing” the endtry because the program has already 
restored the former exception environment. 
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Note that the unprotected keyword must appear in the try..endtry 
statement immediately after the protected block. That is, it must precede 
all exception keywords. 

If an exception occurs during the execution of a try..endtry sequence, 
HLA automatically restores the execution environment. Therefore, you may 
execute a break statement (or any other instruction that transfers control out 
of the try..endtry block) within an exception clause. 

Because the program restores the exception environment upon encoun-
tering an unprotected block or an exception block, an exception that occurs 
within one of these areas immediately transfers control to the previous 
(dynamically nesting) active try..endtry sequence. If there is no nesting 
try..endtry sequence, the program aborts with an appropriate error message.

1.11.3 The anyexception Clause in a try..endtry Statement

In a typical situation, you will use a try..endtry statement with a set of excep-
tion clauses that will handle all possible exceptions that can occur in the pro-
tected section of the try..endtry sequence. Often, it is important to ensure 
that a try..endtry statement handles all possible exceptions to prevent the 
program from prematurely aborting due to an unhandled exception. If 
you have written all the code in the protected section, you will know the 
exceptions it can raise, so you can handle all possible exceptions. However, 
if you are calling a library routine (especially a third-party library routine), 
making a OS API call, or otherwise executing code that you have no control 
over, it may not be possible for you to anticipate all possible exceptions this 
code could raise (especially when considering past, present, and future 
versions of the code). If that code raises an exception for which you do not 
have an exception clause, this could cause your program to fail. Fortunately, 
HLA’s try..endtry statement provides the anyexception clause that will auto-
matically trap any exception the existing exception clauses do not handle. 

The anyexception clause is similar to the exception clause except it does 
not require an exception number parameter (because it handles any excep-
tion). If the anyexception clause appears in a try..endtry statement with other 
exception sections, the anyexception section must be the last exception handler 
in the try..endtry statement. An anyexception section may be the only exception 
handler in a try..endtry statement. 

If an otherwise unhandled exception transfers control to an anyexception 
section, the EAX register will contain the exception number. Your code in the 
anyexception block can test this value to determine the cause of the exception. 

1.11.4 Registers and the try..endtry Statement

The try..endtry statement preserves several bytes of data whenever you enter 
a try..endtry statement. Upon leaving the try..endtry block (or hitting the 
unprotected clause), the program restores the exception environment. As 
long as no exception occurs, the try..endtry statement does not affect the 
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values of any registers upon entry to or upon exit from the try..endtry 
statement. However, this claim is not true if an exception occurs during the 
execution of the protected statements. 

Upon entry into an exception clause, the EAX register contains the 
exception number, but the values of all other general-purpose registers are 
undefined. Because the operating system may have raised the exception in 
response to a hardware error (and, therefore, has played around with the 
registers), you can’t even assume that the general-purpose registers contain 
whatever values they happened to contain at the point of the exception. The 
underlying code that HLA generates for exceptions is subject to change in 
different versions of the compiler, and certainly it changes across operating 
systems, so it is never a good idea to experimentally determine what values 
registers contain in an exception handler and depend on those values in 
your code. 

Because entry into an exception handler can scramble the register 
values, you must ensure that you reload important registers if the code 
following your endtry clause assumes that the registers contain certain values 
(i.e., values set in the protected section or values set prior to executing the 
try..endtry statement). Failure to do so will introduce some nasty defects into 
your program (and these defects may be very intermittent and difficult to 
detect because exceptions rarely occur and may not always destroy the value 
in a particular register). The following code fragment provides a typical 
example of this problem and its solution: 

static
     sum: int32;
          .
          .
          .
     mov( 0, sum );
     for( mov( 0, ebx ); ebx < 8; inc( ebx )) do

          push( ebx );  // Must preserve ebx in case there is an exception.
          forever
               try

                    stdin.geti32();
                    unprotected break;

                 exception( ex.ConversionError )

                    stdout.put( "Illegal input, please re-enter value: " );

               endtry;
          endfor;
          pop( ebx );  // Restore ebx's value.
          add( ebx, eax );
          add( eax, sum );

     endfor;
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Because the HLA exception-handling mechanism messes with the 
registers, and because exception handling is a relatively inefficient process, 
you should never use the try..endtry statement as a generic control structure 
(e.g., using it to simulate a switch/case statement by raising an integer 
exception value and using the exception clauses as the cases to process). 
Doing so will have a very negative impact on the performance of your 
program and may introduce subtle defects because exceptions scramble 
the registers. 

For proper operation, the try..endtry statement assumes that you use 
the EBP register only to point at activation records (Chapter 5 discusses 
activation records). By default, HLA programs automatically use EBP for 
this purpose; as long as you do not modify the value in EBP, your programs 
will automatically use EBP to maintain a pointer to the current activation 
record. If you attempt to use the EBP register as a general-purpose register 
to hold values and compute arithmetic results, HLA’s exception-handling 
capabilities will no longer function properly (along with other possible 
problems). Therefore, you should never use the EBP register as a general-
purpose register. Of course, this same discussion applies to the ESP register. 

1.12 High-Level Assembly Language vs. Low-Level 
Assembly Language

Before concluding this chapter, it’s important to remind you that none 
of the control statements appearing in this chapter are “real” assembly 
language. The 80x86 CPU does not support machine instructions like if, 
while, repeat, for, break, breakif, and try. Whenever HLA encounters these 
statements, it compiles them into a sequence of one or more true machine 
instructions that do the operation as the high-level statements you’ve used. 
While these statements are convenient to use, and in many cases just as 
efficient as the sequence of low-level machine instructions into which HLA 
translates them, don’t lose sight of the fact that they are not true machine 
instructions. 

The purpose of this text is to teach you low-level assembly language 
programming; these high-level control structures are simply a means to that 
end. Remember, learning the HLA high-level control structures allows you to 
leverage your high-level language knowledge early on in the educational 
process so you don’t have to learn everything about assembly language all at 
once. By using high-level control structures that you’re already comfortable 
with, this text can put off the discussion of the actual machine instructions 
you’d normally use for control flow until much later. By doing so, this text 
can regulate how much material it presents, so, hopefully, you’ll find learn-
ing assembly language to be much more pleasant. However, you must always 
remember that these high-level control statements are just a pedagogical tool 
to help you learn assembly language. Though you’re free to use them in your 
assembly programs once you master the real control-flow statements, you 
really must learn the low-level control statements if you want to learn assembly 
language programming. Since, presumably, that’s why you’re reading this 
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book, don’t allow the high-level control structures to become a crutch. When 
you get to the point where you learn how to really write low-level control 
statements, embrace and use them (exclusively). As you gain experience with 
the low-level control statements and learn their advantages and disadvantages, 
you’ll be in a good position to decide whether a high-level or low-level code 
sequence is most appropriate for a given application. However, until you gain 
considerable experience with the low-level control structures, you’ll not be 
able to make an educated decision. Remember, you can’t really call yourself 
an assembly language programmer unless you’ve mastered the low-level 
statements. 

Another thing to keep in mind is that the HLA Standard Library func-
tions are not part of the assembly language. They’re just some convenient 
functions that have been prewritten for you. Although there is nothing 
wrong with calling these functions, always remember that they are not 
machine instructions and that there is nothing special about these routines; as 
you gain experience writing assembly language code, you can write your own 
versions of each of these routines (and even write them more efficiently). 

If you’re learning assembly language because you want to write the most 
efficient programs possible (either the fastest or the smallest code), you need 
to understand that you won’t achieve this goal completely if you’re using 
high-level control statements and making a lot of calls to the HLA Standard 
Library. HLA’s code generator and the HLA Standard Library aren’t horribly 
inefficient, but the only true way to write efficient programs in assembly 
language is to think in assembly language. HLA’s high-level control statements 
and many of the routines in the HLA Standard Library are great because 
they let you avoid thinking in assembly language. While this is great while 
you’re first learning assembly, if your ultimate goal is to write efficient code, 
then you have to learn to think in assembly language. This text will get you 
to that point (and will do so much more rapidly because it uses HLA’s high-
level features), but don’t forget that your ultimate goal is to give up these 
high-level features in favor of low-level coding. 

1.13 For More Information

This chapter has covered a lot of ground! While you still have a lot to learn 
about assembly language programming, this chapter, combined with your 
knowledge of high-level languages, provides just enough information to let 
you start writing real assembly language programs.

Although this chapter has covered many different topics, the three 
primary topics of interest are the 80x86 CPU architecture, the syntax for 
simple HLA programs, and the HLA Standard Library. For additional topics 
on this subject, please consult the (unabridged) electronic version of this 
text, the HLA reference manual, and the HLA Standard Library manual. All 
three are available at http://www.artofasm.com/ and http://webster.cs.ucr.edu/.
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2
D A T A  R E P R E S E N T A T I O N

A major stumbling block many beginners 
encounter when attempting to learn 

assembly language is the common use 
of the binary and hexadecimal numbering 

systems. Although hexadecimal numbers are a little 
strange, their advantages outweigh their disadvantages 
by a large margin. Understanding the binary and hexadecimal numbering 
systems is important because their use simplifies the discussion of other 
topics, including bit operations, signed numeric representation, character 
codes, and packed data.

This chapter discusses several important concepts, including:

The binary and hexadecimal numbering systems

Binary data organization (bits, nibbles, bytes, words, and double words) 

Signed and unsigned numbering systems
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Arithmetic, logical, shift, and rotate operations on binary values

Bit fields and packed data 

This is basic material, and the remainder of this text depends on your 
understanding these concepts. If you are already familiar with these terms 
from other courses or study, you should at least skim this material before 
proceeding to the next chapter. If you are unfamiliar with this material, or 
only vaguely familiar with it, you should study it carefully before proceeding. 
All of the material in this chapter is important! Do not skip over any material. 

2.1 Numbering Systems

Most modern computer systems do not represent numeric values using 
the decimal (base-10) system. Instead, they typically use a binary or two’s 
complement numbering system. 

2.1.1 A Review of the Decimal System

You’ve been using the decimal numbering system for so long that you prob-
ably take it for granted. When you see a number like 123, you don’t think 
about the value 123; rather, you generate a mental image of how many items 
this value represents. In reality, however, the number 123 represents:

1*102 + 2*101 + 3*100

or 

100 + 20 + 3

In a decimal positional numbering system, each digit appearing to 
the left of the decimal point represents a value between 0 and 9 times an 
increasing power of 10. Digits appearing to the right of the decimal point 
represent a value between 0 and 9 times an increasing negative power of 10. 
For example, the value 123.456 means:

1*102 + 2*101 + 3*100 + 4*10−1 + 5*10−2 + 6*10−3

or 

100 + 20 + 3 + 0.4 + 0.05 + 0.006

2.1.2 The Binary Numbering System

Most modern computer systems operate using binary logic. The computer 
represents values using two voltage levels (usually 0v and +2.4..5v). Two such 
levels can represent exactly two unique values. These could be any two 
different values, but they typically represent the values 0 and 1. These values, 
coincidentally, correspond to the two digits in the binary numbering system. 
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The binary numbering system works just like the decimal numbering 
system, with two exceptions: Binary allows only the digits 0 and 1 (rather than 
0..9), and binary uses powers of 2 rather than powers of 10. Therefore, it is 
very easy to convert a binary number to decimal. For each 1 in the binary 
string, add in 2n where n is the zero-based position of the binary digit. For 
example, the binary value 110010102 represents:

1*27 + 1*26 + 0*25 + 0*24 + 1*23 + 0*22 + 1*21 + 0*20

=
 128 + 64 + 8 + 2 
=
20210

To convert decimal to binary is slightly more difficult. You must find 
those powers of 2 that, when added together, produce the decimal result. 

A simple way to convert decimal to binary is the even/odd - divide by two 
algorithm. This algorithm uses the following steps:

1. If the number is even, emit a 0. If the number is odd, emit a 1.

2. Divide the number by 2 and throw away any fractional component or 
remainder.

3. If the quotient is 0, the algorithm is complete.

4. If the quotient is not 0 and is odd, insert a 1 before the current string; if 
the number is even, prefix your binary string with 0.

5. Go back to step 2 and repeat.

Binary numbers, although they have little importance in high-level 
languages, appear everywhere in assembly language programs. So you should 
be somewhat comfortable with them.

2.1.3 Binary Formats
In the purest sense, every binary number contains an infinite number of 
digits (or bits, which is short for binary digits). For example, we can represent 
the number 5 by any of the following: 

101 00000101 0000000000101 ...000000000000101

Any number of leading zero digits may precede the binary number 
without changing its value. 

We will adopt the convention of ignoring any leading zeros present in a 
value. For example, 1012 represents the number 5 but because the 80x86 
typically works with groups of 8 bits, we’ll find it much easier to zero extend 
all binary numbers to some multiple of 4 or 8 bits. Therefore, following this 
convention, we’d represent the number 5 as 01012 or 000001012.

In the United States, most people separate every three digits with a 
comma to make larger numbers easier to read. For example, 1,023,435,208 
is much easier to read and comprehend than 1023435208. We’ll adopt a 
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similar convention in this text for binary numbers. We will separate each 
group of four binary bits with an underscore. For example, we will write the 
binary value 1010111110110010 as 1010_1111_1011_0010.

We’ll number each bit as follows:

1. The rightmost bit in a binary number is bit position 0. 

2. Each bit to the left is given the next successive bit number.

An 8-bit binary value uses bits 0..7:

X7 X6 X5 X4 X3 X2 X1 X0

A 16-bit binary value uses bit positions 0..15:

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

A 32-bit binary value uses bit positions 0..31, and so on.
Bit 0 is the low-order (L.O.) bit (some refer to this as the least significant bit). 

The leftmost bit is called the high-order (H.O.) bit (or the most significant bit). 
We’ll refer to the intermediate bits by their respective bit numbers.

2.2 The Hexadecimal Numbering System

Unfortunately, binary numbers are verbose. To represent the value 20210 
requires eight binary digits. The decimal version requires only three decimal 
digits and thus represents numbers much more compactly than in binary. 
This fact is not lost on the engineers who design binary computer systems. 
When dealing with large values, binary numbers quickly become unwieldy. 
Unfortunately, the computer “thinks” in binary, so most of the time it is 
convenient to use the binary numbering system. Although we can convert 
between decimal and binary, the conversion is not a trivial task. The hexa-
decimal (base 16) numbering system solves many of the problems inherent 
in the binary system. Hexadecimal numbers offer the two features we’re 
looking for: They’re very compact, and it’s simple to convert them to binary 
and vice versa. For this reason, most engineers use the hexadecimal num-
bering system. 

Because the radix (base) of a hexadecimal number is 16, each hexa-
decimal digit to the left of the hexadecimal point represents some value 
times a successive power of 16. For example, the number 123416 is equal to:

1*163 + 2*162 + 3*161 + 4*160

or 

4096 + 512 + 48 + 4 = 466010

Each hexadecimal digit can represent one of 16 values between 0 and 
1510. Because there are only 10 decimal digits, we need to invent 6 additional 
digits to represent the values in the range 1010..1510. Rather than create new 
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symbols for these digits, we’ll use the letters A..F. The following are all 
examples of valid hexadecimal numbers:

123416 DEAD16 BEEF16 0AFB16 FEED16 DEAF16

Because we’ll often need to enter hexadecimal numbers into the com-
puter system, we’ll need a different mechanism for representing hexadecimal 
numbers. After all, on most computer systems you cannot enter a subscript 
to denote the radix of the associated value. We’ll adopt the following 
conventions:

All hexadecimal values begin with a $ character; for example, $123A4.

All binary values begin with a percent sign (%).

Decimal numbers do not have a prefix character.

If the radix is clear from the context, this book may drop the leading $ or 
% character.

Here are some examples of valid hexadecimal numbers:

$1234 $DEAD $BEEF $AFB $FEED $DEAF

As you can see, hexadecimal numbers are compact and easy to read. In 
addition, you can easily convert between hexadecimal and binary. Consider 
Table 2-1. This table provides all the information you’ll ever need to convert 
any hexadecimal number into a binary number or vice versa. 

.

Table 2-1: Binary/Hexadecimal Conversion

Binary Hexadecimal

%0000 $0

%0001 $1

%0010 $2

%0011 $3

%0100 $4

%0101 $5

%0110 $6

%0111 $7

%1000 $8

%1001 $9

%1010 $A

%1011 $B

%1100 $C

%1101 $D

%1110 $E

%1111 $F
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To convert a hexadecimal number into a binary number, simply sub-
stitute the corresponding 4 bits for each hexadecimal digit in the number. 
For example, to convert $ABCD into a binary value, simply convert each 
hexadecimal digit according to Table 2-1, as shown here:

To convert a binary number into hexadecimal format is almost as easy. 
The first step is to pad the binary number with zeros to make sure that there 
is a multiple of 4 bits in the number. For example, given the binary number 
1011001010, the first step would be to add 2 bits to the left of the number so 
that it contains 12 bits. The converted binary value is 001011001010. The 
next step is to separate the binary value into groups of 4 bits, for example, 
0010_1100_1010. Finally, look up these binary values in Table 2-1 and 
substitute the appropriate hexadecimal digits, that is, $2CA. Contrast this 
with the difficulty of conversion between decimal and binary or decimal and 
hexadecimal! 

Because converting between hexadecimal and binary is an operation you 
will need to perform over and over again, you should take a few minutes and 
memorize the conversion table. Even if you have a calculator that will do the 
conversion for you, you’ll find manual conversion to be a lot faster and more 
convenient when converting between binary and hex.

2.3 Data Organization

In pure mathematics a value’s representation may take require an arbitrary 
number of bits. Computers, on the other hand, generally work with some 
specific number of bits. Common collections are single bits, groups of 4 bits 
(called nibbles), groups of 8 bits (bytes), groups of 16 bits (words), groups of 32 
bits (double words or dwords), groups of 64 bits (quad words or qwords), groups 
of 128 bits (long words or lwords), and more. The sizes are not arbitrary. There 
is a good reason for these particular values. This section will describe the bit 
groups commonly used on the Intel 80x86 chips.

2.3.1 Bits

The smallest unit of data on a binary computer is a single bit. With a single 
bit, you can represent any two distinct items. Examples include 0 or 1, true 
or false, on or off, male or female, and right or wrong. However, you are not 
limited to representing binary data types (that is, those objects that have only 
two distinct values). You could use a single bit to represent the numbers 723 
and 1,245 or, perhaps, the values 6,254 and 5. You could also use a single bit 
to represent the colors red and blue. You could even represent two unrelated 
objects with a single bit. For example, you could represent the color red and 
the number 3,256 with a single bit. You can represent any two different values 
with a single bit. However, you can represent only two different values with a 
single bit.

A B C D Hexadecimal
1010 1011 1100 1101 Binary
58 Chapte r  2



AAL2E_03.book  Page 59  Thursday, February 18, 2010  12:49 PM
To confuse things even more, different bits can represent different 
things. For example, you could use one bit to represent the values 0 and 1, 
while a different bit could represent the values true and false. How can you 
tell by looking at the bits? The answer, of course, is that you can’t. But this 
illustrates the whole idea behind computer data structures: data is what you 
define it to be. If you use a bit to represent a boolean (true/false) value, then 
that bit (by your definition) represents true or false. For the bit to have 
any real meaning, you must be consistent. If you’re using a bit to represent 
true or false at one point in your program, you shouldn’t use that value to 
represent red or blue later. 

Because most items you’ll be trying to model require more than two 
different values, single-bit values aren’t the most popular data type you’ll use. 
However, because everything else consists of groups of bits, bits will play an 
important role in your programs. Of course, there are several data types 
that require two distinct values, so it would seem that bits are important by 
themselves. However, you will soon see that individual bits are difficult to 
manipulate, so we’ll often use other data types to represent two-state values.

2.3.2 Nibbles

A nibble is a collection of 4 bits. It wouldn’t be a particularly interesting data 
structure except for two facts: binary-coded decimal (BCD) numbers1 and hexa-
decimal numbers. It takes 4 bits to represent a single BCD or hexadecimal 
digit. With a nibble, we can represent up to 16 distinct values because there 
are 16 unique combinations of a string of 4 bits:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

In the case of hexadecimal numbers, the values 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
A, B, C, D, E, and F are represented with 4 bits. BCD uses 10 different digits 
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) and requires also 4 bits (because we can only repre-
sent 8 different values with 3 bits, the additional 6 values we can represent 

1 Binary-coded decimal is a numeric scheme used to represent decimal numbers using 4 bits for 
each decimal digit.
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with 4 bits are never used in BCD representation). In fact, any 16 distinct 
values can be represented with a nibble, though hexadecimal and BCD digits 
are the primary items we can represent with a single nibble.

2.3.3 Bytes
Without question, the most important data structure used by the 80x86 
microprocessor is the byte, which consists of 8 bits. Main memory and I/O 
addresses on the 80x86 are all byte addresses. This means that the smallest 
item that can be individually accessed by an 80x86 program is an 8-bit value. 
To access anything smaller requires that we read the byte containing the data 
and eliminate the unwanted bits. The bits in a byte are normally numbered 
from 0 to 7, as shown in Figure 2-1.

Figure 2-1: Bit numbering

Bit 0 is the low-order bit or least significant bit, and bit 7 is the high-order bit 
or most significant bit of the byte. We’ll refer to all other bits by their number. 

Note that a byte also contains exactly two nibbles (see Figure 2-2). 

Figure 2-2: The two nibbles in a byte

Bits 0..3 compose the low-order nibble, and bits 4..7 form the high-order 
nibble. Because a byte contains exactly two nibbles, byte values require two 
hexadecimal digits. 

Because a byte contains 8 bits, it can represent 28 (256) different values. 
Generally, we’ll use a byte to represent numeric values in the range 0..255, 
signed numbers in the range −128..+127 (see Section 2.8), ASCII/IBM 
character codes, and other special data types requiring no more than 256 
different values. Many data types have fewer than 256 items, so 8 bits is 
usually sufficient. 

Because the 80x86 is a byte-addressable machine, it turns out to be more 
efficient to manipulate a whole byte than an individual bit or nibble. For this 
reason, most programmers use a whole byte to represent data types that 
require no more than 256 items, even if fewer than 8 bits would suffice. 
For example, we’ll often represent the boolean values true and false by 
000000012 and 000000002, respectively. 

Probably the most important use for a byte is holding a character value. 
Characters typed at the keyboard, displayed on the screen, and printed on 
the printer all have numeric values. To communicate with the rest of the 

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

H.O. Nibble L.O. Nibble
60 Chapte r  2



AAL2E_03.book  Page 61  Thursday, February 18, 2010  12:49 PM
world, PCs typically use a variant of the ASCII character set. There are 128 
defined codes in the ASCII character set. 

Because bytes are the smallest unit of storage in the 80x86 memory 
space, bytes also happen to be the smallest variable you can create in an 
HLA program. As you saw in the last chapter, you can declare an 8-bit signed 
integer variable using the int8 data type. Because int8 objects are signed, you 
can represent values in the range −128..+127 using an int8 variable. You 
should only store signed values into int8 variables; if you want to create an 
arbitrary byte variable, you should use the byte data type, as follows:

static
          byteVar: byte;

The byte data type is a partially untyped data type. The only type infor-
mation associated with a byte object is its size (1 byte). You may store any 8-bit 
value (small signed integers, small unsigned integers, characters, and the 
like) into a byte variable. It is up to you to keep track of the type of object 
you’ve put into a byte variable.

2.3.4 Words

A word is a group of 16 bits. We’ll number the bits in a word from 0 to 15, as 
Figure 2-3 shows. Like the byte, bit 0 is the low-order bit. For words, bit 15 is 
the high-order bit. When referencing the other bits in a word, we’ll use their 
bit position number.

Figure 2-3: Bit numbers in a word

Notice that a word contains exactly 2 bytes. Bits 0..7 form the low-order 
byte, and bits 8..15 form the high-order byte (see Figure 2-4).

i

Figure 2-4: The two bytes in a word

Of course, a word may be further broken down into four nibbles, as shown 
in Figure 2-5. Nibble 0 is the low-order nibble in the word, and nibble 3 is the 
high-order nibble of the word. We’ll simply refer to the other two nibbles as 
nibble 1 or nibble 2.

15 14 13 12 11 10 7 6 5 4 3 29 8 1 0

15 14 13 12 11 10 7 6 5 4 3 29 8 1 0

H.O. Byte L.O. Byte
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o

Figure 2-5: Nibbles in a word

With 16 bits, you can represent 216 (65,536) different values. These 
could be the values in the range 0..65,535 or, as is usually the case, the 
signed values −32,768..+32,767, or any other data type with no more than 
65,536 values. The three major uses for words are short signed integer 
values, short unsigned integer values, and Unicode characters. 

Words can represent integer values in the range 0..65,535 or 
−32,768..32,767. Unsigned numeric values are represented by the binary 
value corresponding to the bits in the word. Signed numeric values use the 
two’s complement form for numeric values (see Section 2.8). As Unicode 
characters, words can represent up to 65,536 different characters, allowing 
the use of non-Roman character sets in a computer program. Unicode is an 
international standard, like ASCII, that allows computers to process non-
Roman characters such as Asian, Greek, and Russian characters.

As with bytes, you can also create word variables in an HLA program. 
Of course, in the last chapter you saw how to create 16-bit signed integer 
variables using the int16 data type. To create an arbitrary word variable, just 
use the word data type, as follows:

static
          w: word;

2.3.5 Double Words

A double word is exactly what its name implies, a pair of words. Therefore, a 
double-word quantity is 32 bits long, as shown in Figure 2-6.

Figure 2-6: Bit numbers in a double word

Naturally, this double word can be divided into a high-order word and a 
low-order word, four different bytes, or eight different nibbles (see Figure 2-7).

Double words (dwords) can represent all kinds of different things. A 
common item you will represent with a double word is a 32-bit integer value 
(that allows unsigned numbers in the range 0..4,294,967,295 or signed 
numbers in the range −2,147,483,648..2,147,483,647). 32-bit floating-point 
values also fit into a double word. Another common use for double-word 
objects is to store pointer values. 

15 14 13 12 11 10 7 6 5 4 3 29 8 1 0

H.O. Nibble L.O. Nibble

Nibble 3 Nibble 2 Nibble 1 Nibble 0

31 23 15 7 0
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Figure 2-7: Nibbles, bytes, and words in a double word

In Chapter 1, you saw how to create 32-bit signed integer variables using 
the int32 data type. You can also create an arbitrary double-word variable 
using the dword data type, as the following example demonstrates:

static
          d: dword;

2.3.6 Quad Words and Long Words

Obviously, we can keep on defining larger and larger word sizes. However, 
the 80x86 supports only certain native sizes, so there is little reason to keep 
on defining terms for larger and larger objects. Although bytes, words, and 
double words are the most common sizes you’ll find in 80x86 programs, 
quad word (64-bit) values are also important because certain floating-point 
data types require 64 bits. Likewise, the SSE/MMX instruction set of modern 
80x86 processors can manipulate 64-bit values. In a similar vein, long-word 
(128-bit) values are also important because the SSE instruction set on later 
80x86 processors can manipulate 128-bit values. HLA allows the declaration 
of 64- and 128-bit values using the qword and lword types, as follows:

static
     q     :qword;
     l     :lword;

Note that you may also define 64-bit and 128-bit integer values using 
HLA declarations like the following:

static
     i64          :int64;
     i128         :int128;

31 23 15 7 0

H.O. Word L.O. Word

Nibble

31 23 15 7 0

H.O. L.O.
7 6 5 4 3 2 1 0

31 23 15 7 0

H.O. Byte L.O. ByteByte 2 Byte 1
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However, you may not directly manipulate 64-bit and 128-bit integer 
objects using standard instructions like mov, add, and sub because the standard 
80x86 integer registers process only 32 bits at a time. In Chapter 8, you will 
see how to manipulate these extended-precision values.

2.4 Arithmetic Operations on Binary and Hexadecimal 
Numbers

There are several operations we can perform on binary and hexadecimal 
numbers. For example, we can add, subtract, multiply, divide, and perform 
other arithmetic operations. Although you needn’t become an expert at it, 
you should be able to, in a pinch, perform these operations manually using 
a piece of paper and a pencil. Having just said that you should be able to 
perform these operations manually, the correct way to perform such arith-
metic operations is to have a calculator that does them for you. There are 
several such calculators on the market; the following list shows some of the 
manufacturers of hexadecimal calculators (in 2010):

Casio

Hewlett-Packard

Sharp

Texas Instruments

This list is by no means exhaustive. Other calculator manufacturers 
probably produce these devices as well. The Hewlett-Packard devices are 
arguably the best of the bunch. However, they are more expensive than the 
others. Sharp and Casio produce units that sell for well under fifty dollars. If 
you plan on doing any assembly language programming at all, owning one of 
these calculators is essential. 

To understand why you should spend the money on a calculator, consider 
the following arithmetic problem:

$9
+ $1
----

You’re probably tempted to write in the answer $10 as the solution to this 
problem. But that is not correct! The correct answer is 10, which is $A, not 16, 
which is $10. A similar problem exists with the following subtraction problem:

$10
- $1
----

You’re probably tempted to answer $9 even though the correct answer is 
$F. Remember, this problem is asking, “What is the difference between 16 
and 1?” The answer, of course, is 15, which is $F.

Even if these two problems don’t bother you, in a stressful situation your 
brain will switch back into decimal while you’re thinking about something 
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else and you’ll produce the incorrect result. Moral of the story—if you must 
do an arithmetic computation using hexadecimal numbers by hand, take 
your time and be careful about it. Either that, or convert the numbers to 
decimal, perform the operation in decimal, and convert them back to 
hexadecimal. 

2.5 A Note About Numbers vs. Representation
Many people confuse numbers and their representation. A common question 
beginning assembly language students ask is, “I have a binary number in the 
EAX register; how do I convert that to a hexadecimal number in the EAX 
register?” The answer is, “You don’t.” Although a strong argument could be 
made that numbers in memory or in registers are represented in binary, it’s 
best to view values in memory or in a register as abstract numeric quantities. 
Strings of symbols like 128, $80, or %1000_0000 are not different numbers; 
they are simply different representations for the same abstract quantity that 
we refer to as “one hundred twenty-eight.” Inside the computer, a number is 
a number regardless of representation; the only time representation matters 
is when you input or output the value in a human-readable form.

Human-readable forms of numeric quantities are always strings of 
characters. To print the value 128 in human-readable form, you must convert 
the numeric value 128 to the three-character sequence 1 followed by 2 
followed by 8. This would provide the decimal representation of the numeric 
quantity. If you prefer, you could convert the numeric value 128 to the three-
character sequence $80. It’s the same number, but we’ve converted it to a 
different sequence of characters because (presumably) we wanted to view the 
number using hexadecimal representation rather than decimal. Likewise, if 
we want to see the number in binary, then we must convert this numeric 
value to a string containing a 1 followed by seven 0s.

By default, HLA displays all byte, word, dword, qword, and lword variables 
using the hexadecimal numbering system when using the stdout.put routine. 
Likewise, HLA’s stdout.put routine will display all register values in hexa-
decimal form. Consider the program in Listing 2-1, which converts values 
input as decimal numbers to their hexadecimal equivalents.

program ConvertToHex;
#include( "stdlib.hhf" )
static 
    value: int32;
    
begin ConvertToHex; 

    stdout.put( "Input a decimal value:" );    
    stdin.get( value );    
    mov( value, eax ); 
    stdout.put( "The value ", value, " converted to hex is $", eax, nl );
    
end ConvertToHex;

Listing 2-1: Decimal-to-hexadecimal conversion program
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In a similar fashion, the default input base is also hexadecimal for 
registers and byte, word, dword, qword, or lword variables. The program in 
Listing 2-2 is the converse of the one in Listing 2-1; it inputs a hexadecimal 
value and outputs it as decimal.

program ConvertToDecimal;
#include( "stdlib.hhf" )
static 
    value: int32;

begin ConvertToDecimal; 

    stdout.put( "Input a hexadecimal value: " );   
    stdin.get( ebx );  
    mov( ebx, value ); 
    stdout.put( "The value $", ebx, " converted to decimal is ", value, nl );
    
end ConvertToDecimal;

Listing 2-2: Hexadecimal-to-decimal conversion program

Just because the HLA stdout.put routine chooses decimal as the default 
output base for int8, int16, and int32 variables doesn’t mean that these 
variables hold decimal numbers. Remember, memory and registers hold 
numeric values, not hexadecimal or decimal values. The stdout.put routine 
converts these numeric values to strings and prints the resulting strings. The 
choice of hexadecimal versus decimal output was a design choice in the HLA 
language, nothing more. You could very easily modify HLA so that it outputs 
registers and byte, word, dword, qword, or lword variables as decimal values rather 
than as hexadecimal. If you need to print the value of a register or byte, word, 
or dword variable as a decimal value, simply call one of the putiX routines to do 
this. The stdout.puti8 routine will output its parameter as an 8-bit signed 
integer. Any 8-bit parameter will work. So you could pass an 8-bit register, an 
int8 variable, or a byte variable as the parameter to stdout.puti8 and the result 
will always be decimal. The stdout.puti16 and stdout.puti32 routines provide 
the same capabilities for 16-bit and 32-bit objects. The program in Listing 2-3 
demonstrates the decimal conversion program (Listing 2-2) using only the 
EBX register (that is, it does not use the variable iValue).

program ConvertToDecimal2;
#include( "stdlib.hhf" )
begin ConvertToDecimal2; 
    
    stdout.put( "Input a hexadecimal value: " );   
    stdin.get( ebx );  
    stdout.put( "The value $", ebx, " converted to decimal is " ); 
    stdout.puti32( ebx );  
    stdout.newln();
    
end ConvertToDecimal2;

Listing 2-3: Variable-less hexadecimal-to-decimal converter
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Note that HLA’s stdin.get routine uses the same default base for input 
as stdout.put uses for output. That is, if you attempt to read an int8, int16, 
or int32 variable, the default input base is decimal. If you attempt to read a 
register or byte, word, dword, qword, or lword variable, the default input base is 
hexadecimal. If you want to change the default input base to decimal when 
reading a register or a byte, word, dword, qword, or lword variable, then you can 
use stdin.geti8, stdin.geti16, stdin.geti32, stdin.geti64, or stdin.geti128.

If you want to go in the opposite direction, that is you want to input or 
output an int8, int16, int32, int64, or int128 variable as a hexadecimal value, 
you can call the stdout.puth8, stdout.puth16, stdout.puth32, stdout.puth64, 
stdout.puth128, stdin.geth8, stdin.geth16, stdin.geth32, stdin.geth64, or 
stdin.geth128 routines. The stdout.puth8, stdout.puth16, stdout.puth32, 
stdout.puth64, and stdout.puth128 routines write 8-bit, 16-bit, 32-bit, 64-bit, 
or 128-bit objects as hexadecimal values. The stdin.geth8, stdin.geth16, 
stdin.geth32, stdin.geth64, and stdin.geth128 routines read 8-, 16-, 32-, 64-, 
and 128-bit values, respectively; they return their results in the AL, AX, or 
EAX registers (or in a parameter location for 64-bit and 128-bit values). The 
program in Listing 2-4 demonstrates the use of a few of these routines:

program HexIO;

#include( "stdlib.hhf" )

static
    i32: int32;

begin HexIO;

    stdout.put( "Enter a hexadecimal value: " );
    stdin.geth32();
    mov( eax, i32 );
    stdout.put( "The value you entered was $" );
    stdout.puth32( i32 );
    stdout.newln();
    
end HexIO;

Listing 2-4: Demonstration of stdin.geth32 and stdout.puth32

2.6 Logical Operations on Bits

There are four primary logical operations we’ll do with hexadecimal and 
binary numbers: and, or, xor (exclusive-or), and not. Unlike for the arithmetic 
operations, a hexadecimal calculator isn’t necessary to perform these oper-
ations. It is often easier to do them by hand than to use an electronic device 
to compute them. The logical and operation is a dyadic2 operation (meaning 

2 Many texts call this a binary operation. The term dyadic means the same thing and avoids the 
confusion with the binary numbering system.
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it accepts exactly two operands). These operands are individual binary bits. 
The and operation is:

               0 and 0 = 0
               0 and 1 = 0
               1 and 0 = 0
               1 and 1 = 1

A compact way to represent the logical and operation is with a truth table. 
A truth table takes the form shown in Table 2-2. 

This is just like the multiplication tables you’ve encountered in school. 
The values in the left column correspond to the leftmost operand of the and 
operation. The values in the top row correspond to the rightmost operand of 
the and operation. The value located at the intersection of the row and column 
(for a particular pair of input values) is the result of logically anding those two 
values together. 

In English, the logical and operation is, “If the first operand is 1 and the 
second operand is 1, the result is 1; otherwise the result is 0.” We could also 
state this as, “If either or both operands are 0, the result is 0.”

One important fact to note about the logical and operation is that you 
can use it to force a 0 result. If one of the operands is 0, the result is always 0 
regardless of the other operand. In the truth table above, for example, the 
row labeled with a 0 input contains only 0s, and the column labeled with a 0 
contains only 0 results. Conversely, if one operand contains a 1, the result is 
exactly the value of the second operand. These results of the and operation 
are very important, particularly when we want to force bits to 0. We will inves-
tigate these uses of the logical and operation in the next section.

The logical or operation is also a dyadic operation. Its definition is:

               0 or 0 = 0
               0 or 1 = 1
               1 or 0 = 1
               1 or 1 = 1

The truth table for the or operation takes the form appearing in Table 2-3.

Table 2-2: and Truth Table

and 0 1

0 0 0

1 0 1

Table 2-3: or Truth Table

or 0 1

0 0 1

1 1 1
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Colloquially, the logical or operation is, “If the first operand or the 
second operand (or both) is 1, the result is 1; otherwise the result is 0.” 
This is also known as the inclusive-or operation.

If one of the operands to the logical or operation is a 1, the result is 
always 1 regardless of the second operand’s value. If one operand is 0, the 
result is always the value of the second operand. Like the logical and oper-
ation, this is an important side effect of the logical or operation that will 
prove quite useful.

Note that there is a difference between this form of the inclusive logical 
or operation and the standard English meaning. Consider the phrase “I am 
going to the store or I am going to the park.” Such a statement implies that 
the speaker is going to the store or to the park but not to both places. There-
fore, the English version of logical or is slightly different from the inclusive-or 
operation; indeed, this is the definition of the exclusive-or operation.

The logical xor (exclusive-or) operation is also a dyadic operation. Its 
definition follows:

               0 xor 0 = 0
               0 xor 1 = 1
               1 xor 0 = 1
               1 xor 1 = 0

The truth table for the xor operation takes the form shown in Table 2-4.

In English, the logical xor operation is, “If the first operand or the 
second operand, but not both, is 1, the result is 1; otherwise the result is 0.” 
Note that the exclusive-or operation is closer to the English meaning of the 
word or than is the logical or operation.

If one of the operands to the logical exclusive-or operation is a 1, the 
result is always the inverse of the other operand; that is, if one operand is 1, 
the result is 0 if the other operand is 1, and the result is 1 if the other operand 
is 0. If the first operand contains a 0, then the result is exactly the value of the 
second operand. This feature lets you selectively invert bits in a bit string.

 The logical not operation is a monadic operation (meaning it accepts 
only one operand):

               not 0 = 1
               not 1 = 0

The truth table for the not operation appears in Table 2-5. 

Table 2-4: xor Truth Table

xor 0 1

0 0 1

1 1 0
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2.7 Logical Operations on Binary Numbers and Bit Strings

The previous section defines the logical functions for single-bit operands. 
Because the 80x86 uses groups of 8, 16, or 32 bits, we need to extend the 
definition of these functions to deal with more than 2 bits. Logical functions 
on the 80x86 operate on a bit-by-bit (or bitwise) basis. Given two values, these 
functions operate on bit 0, producing bit 0 of the result. They operate on 
bit 1 of the input values, producing bit 1 of the result, and so on. For example, 
if you want to compute the logical and of the following two 8-bit numbers, you 
would perform the logical and operation on each column independently of 
the others:

                         %1011_0101
                         %1110_1110
                         ----------
                         %1010_0100

You may apply this bit-by-bit calculation to the other logical functions 
as well.

Because we’ve defined logical operations in terms of binary values, you’ll 
find it much easier to perform logical operations on binary values than on 
other representations. Therefore, if you want to perform a logical operation 
on two hexadecimal numbers, you should convert them to binary first. This 
applies to most of the basic logical operations on binary numbers (e.g., and, 
or, xor, etc.).

The ability to force bits to 0 or 1 using the logical and/or operations and 
the ability to invert bits using the logical xor operation are very important 
when working with strings of bits (e.g., binary numbers). These operations 
let you selectively manipulate certain bits within some bit string while leaving 
other bits unaffected. For example, if you have an 8-bit binary value X and 
you want to guarantee that bits 4..7 contain 0s, you could logically and the 
value X with the binary value %0000_1111. This bitwise logical and operation 
would force the H.O. 4 bits to 0 and pass the L.O. 4 bits of X unchanged. 
Likewise, you could force the L.O. bit of X to 1 and invert bit 2 of X by 
logically oring X with %0000_0001 and logically exclusive-oring X with 
%0000_0100, respectively. Using the logical and, or, and xor operations to 
manipulate bit strings in this fashion is known as masking bit strings. We use 
the term masking because we can use certain values (1 for and, 0 for or/xor) to 
mask out or mask in certain bits from the operation when forcing bits to 0, 1, 
or their inverse. 

The 80x86 CPUs support four instructions that apply these bitwise 
logical operations to their operands. The instructions are and, or, xor, and not. 

Table 2-5: not Truth Table

not 0 1

1 0
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The and, or, and xor instructions use the same syntax as the add and sub 
instructions:

and( source, dest );
 or( source, dest );
xor( source, dest );

These operands have the same limitations as the add operands. 
Specifically, the source operand has to be a constant, memory, or register 
operand, and the dest operand must be a memory or register operand. Also, 
the operands must be the same size and they cannot both be memory oper-
ands. These instructions compute the obvious bitwise logical operation via 
the following equation:

dest = dest operator source

The 80x86 logical not instruction, because it has only a single operand, 
uses a slightly different syntax. This instruction takes the following form:

not( dest );

This instruction computes the following result:

dest = not( dest )

The dest operand must be a register or memory operand. This instruction 
inverts all the bits in the specified destination operand.

The program in Listing 2-5 inputs two hexadecimal values from the user 
and calculates their logical and, or, xor, and not:

program LogicalOp;
#include( "stdlib.hhf" )
begin LogicalOp;

    stdout.put( "Input left operand: " );
    stdin.get( eax );
    stdout.put( "Input right operand: " );
    stdin.get( ebx );
                                                           
    mov( eax, ecx );
    and( ebx, ecx );
    stdout.put( "$", eax, " and $", ebx, " = $", ecx, nl );
                                                           
    mov( eax, ecx );
    or( ebx, ecx );
    stdout.put( "$", eax, " or $", ebx, " = $", ecx, nl );
                                           
    mov( eax, ecx );
    xor( ebx, ecx );
    stdout.put( "$", eax, " xor $", ebx, " = $", ecx, nl );
    
    mov( eax, ecx );                                                       
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    not( ecx );
    stdout.put( "not $", eax, " = $", ecx, nl );
    
    mov( ebx, ecx );                                                       
    not( ecx );
    stdout.put( "not $", ebx, " = $", ecx, nl );
    
end LogicalOp;

Listing 2-5: and, or, xor, and not example

2.8 Signed and Unsigned Numbers

Thus far, we’ve treated binary numbers as unsigned values. The binary 
number ...00000 represents 0, ...00001 represents 1, ...00010 represents 2, 
and so on toward infinity. What about negative numbers? Signed values have 
been tossed around in previous sections, and we’ve mentioned the two’s 
complement numbering system, but we haven’t discussed how to represent 
negative numbers using the binary numbering system. Now it is time to 
describe the two’s complement numbering system.

To represent signed numbers using the binary numbering system, we 
have to place a restriction on our numbers: They must have a finite and fixed 
number of bits. For our purposes, we’re going to severely limit the number 
of bits to 8, 16, 32, 64, 128, or some other small number of bits. 

With a fixed number of bits we can represent only a certain number of 
objects. For example, with 8 bits we can represent only 256 different values. 
Negative values are objects in their own right, just like positive numbers and 
0; therefore, we’ll have to use some of the 256 different 8-bit values to repre-
sent negative numbers. In other words, we have to use up some of the bit 
combinations to represent negative numbers. To make things fair, we’ll 
assign half of the possible combinations to the negative values and half to the 
positive values and 0. So we can represent the negative values −128..−1 and the 
nonnegative values 0..127 with a single 8-bit byte. With a 16-bit word we can 
represent values in the range −32,768..+32,767. With a 32-bit double word we 
can represent values in the range −2,147,483,648..+2,147,483,647. In general, 
with n bits we can represent the signed values in the range −2n−1 to +2n−1−1. 

Okay, so we can represent negative values. Exactly how do we do it? 
Well, there are many possible ways, but the 80x86 microprocessor uses 
the two’s complement notation, so it makes sense to study that method. 
In the two’s complement system, the H.O. bit of a number is a sign bit. If 
the H.O. bit is 0, the number is positive; if the H.O. bit is 1, the number is 
negative. Following are some examples. 

For 16-bit numbers:

      $8000 is negative because the H.O. bit is 1.
      $100 is positive because the H.O. bit is 0.
      $7FFF is positive.
      $FFFF is negative.
      $FFF ($0FFF) is positive.
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If the H.O. bit is 0, then the number is positive and uses the standard 
binary format. If the H.O. bit is 1, then the number is negative and uses the 
two’s complement form. To convert a positive number to its negative, two’s 
complement form, you use the following algorithm:

1. Invert all the bits in the number; that is, apply the logical not function.

2. Add 1 to the inverted result and ignore any overflow out of the H.O. bit.

For example, to compute the 8-bit equivalent of −5:

%0000_0101 5 (in binary).
%1111_1010 Invert all the bits.
%1111_1011 Add 1 to obtain result.

If we take −5 and perform the two’s complement operation on it, we get 
our original value, %0000_0101, back again, just as we expect:

%1111_1011 Two's complement for -5.
%0000_0100 Invert all the bits.
%0000_0101 Add 1 to obtain result (+5).

 The following examples provide some positive and negative 16-bit 
signed values: 

     $7FFF: +32767, the largest 16-bit positive number.
     $8000: -32768, the smallest 16-bit negative number.
     $4000: +16384. 

To convert the numbers above to their negative counterpart (that is, to 
negate them), do the following:

$7FFF:          %0111_1111_1111_1111   +32,767
                %1000_0000_0000_0000   Invert all the bits (8000h)
                %1000_0000_0000_0001   Add 1 (8001h or -32,767)

4000h:          %0100_0000_0000_0000   16,384
                %1011_1111_1111_1111   Invert all the bits ($BFFF)
                %1100_0000_0000_0000   Add 1 ($C000 or -16,384)

$8000:          %1000_0000_0000_0000   -32,768
                %0111_1111_1111_1111   Invert all the bits ($7FFF)
                %1000_0000_0000_0000   Add one (8000h or -32,768)

$8000 inverted becomes $7FFF. After adding 1 we obtain $8000! Wait, 
what’s going on here? −(−32,768) is −32,768? Of course not. But the value 
+32,768 cannot be represented with a 16-bit signed number, so we cannot 
negate the smallest negative value. 

Why bother with such a miserable numbering system? Why not use the 
H.O. bit as a sign flag, storing the positive equivalent of the number in the 
remaining bits? (This, by the way, is known as the one’s complement numbering 
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system.) The answer lies in the hardware. As it turns out, negating values is the 
only tedious job. With the two’s complement system, most other operations 
are as easy as the binary system. For example, suppose you were to perform 
the addition 5 + (−5). The result is 0. Consider what happens when we add 
these two values in the two’s complement system:

                          % 0000_0101
                          % 1111_1011
                          ------------
                          %1_0000_0000

We end up with a carry into the ninth bit, and all other bits are 0. As it 
turns out, if we ignore the carry out of the H.O. bit, adding two signed values 
always produces the correct result when using the two’s complement num-
bering system. This means we can use the same hardware for signed and 
unsigned addition and subtraction. This wouldn’t be the case with other 
numbering systems. 

Usually, you will not need to perform the two’s complement operation 
by hand. The 80x86 microprocessor provides an instruction, neg (negate), 
that performs this operation for you. Furthermore, hexadecimal calculators 
perform this operation by pressing the change sign key (+/− or CHS). 
Nevertheless, manually computing the two’s complement is easy, and you 
should know how to do it. 

Remember that the data represented by a set of binary bits depends 
entirely on the context. The 8-bit binary value %1100_0000 could represent 
a character, it could represent the unsigned decimal value 192, or it could 
represent the signed decimal value −64. As the programmer, it is your respon-
sibility to define the data’s format and then use the data consistently.

The 80x86 negate instruction, neg, uses the same syntax as the not 
instruction; that is, it takes a single destination operand:

neg( dest );

This instruction computes dest = -dest; and the operand has the same 
limitations as for not (it must be a memory location or a register). neg oper-
ates on byte-, word-, and dword-sized objects. Because this is a signed integer 
operation, it only makes sense to operate on signed integer values. The 
program in Listing 2-6 demonstrates the two’s complement operation by 
using the neg instruction:

program twosComplement;
#include( "stdlib.hhf" )

static
    PosValue:   int8;
    NegValue:   int8;

begin twosComplement;
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    stdout.put( "Enter an integer between 0 and 127: " );
    stdin.get( PosValue );

    stdout.put( nl, "Value in hexadecimal: $" );
    stdout.puth8( PosValue );

    mov( PosValue, al );
    not( al );
    stdout.put( nl, "Invert all the bits: $", al, nl );
    add( 1, al );
    stdout.put( "Add one: $", al, nl );
    mov( al, NegValue );
    stdout.put( "Result in decimal: ", NegValue, nl );

    stdout.put
    ( 
        nl, 
        "Now do the same thing with the NEG instruction: ", 
        nl 
    );
    mov( PosValue, al );
    neg( al );
    mov( al, NegValue );
    stdout.put( "Hex result = $", al, nl );
    stdout.put( "Decimal result = ", NegValue, nl );

end twosComplement;

Listing 2-6: twosComplement example

As you’ve seen previously, you use the int8, int16, int32, int64, and int128 
data types to reserve storage for signed integer variables. You’ve also seen 
routines like stdout.puti8 and stdin.geti32 that read and write signed integer 
values. Because this section has made it abundantly clear that you must differ-
entiate signed and unsigned calculations in your programs, you should 
probably be asking yourself, “How do I declare and use unsigned integer 
variables?”

The first part of the question, “How do I declare unsigned integer vari-
ables,” is the easiest to answer. You simply use the uns8, uns16, uns32, uns64, 
and uns128 data types when declaring the variables. For example:

static
     u8:          uns8;
     u16:         uns16;
     u32:         uns32;
     u64:         uns64;
     u128:        uns128;

As for using these unsigned variables, the HLA Standard Library provides 
a complementary set of input/output routines for reading and displaying 
unsigned variables. As you can probably guess, these routines include 
stdout.putu8, stdout.putu16, stdout.putu32, stdout.putu64, stdout.putu128, 
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stdout.putu8Size, stdout.putu16Size, stdout.putu32Size, stdout.putu64Size, 
stdout.putu128Size, stdin.getu8, stdin.getu16, stdin.getu32, stdin.getu64, 
and stdin.getu128. You use these routines just as you would use their signed 
integer counterparts except you get to use the full range of the unsigned 
values with these routines. The source code in Listing 2-7 demonstrates 
unsigned I/O as well as demonstrates what can happen if you mix signed 
and unsigned operations in the same calculation.

program UnsExample;
#include( "stdlib.hhf" )

static
    UnsValue:   uns16;

begin UnsExample;

    stdout.put( "Enter an integer between 32,768 and 65,535: " );
    stdin.getu16();
    mov( ax, UnsValue );
    
    stdout.put
    ( 
        "You entered ", 
        UnsValue, 
        ".  If you treat this as a signed integer, it is "
    );
    stdout.puti16( UnsValue );
    stdout.newln();

end UnsExample;

Listing 2-7: Unsigned I/O

2.9 Sign Extension, Zero Extension, Contraction, and 
Saturation

Because two’s complement format integers have a fixed length, a small 
problem develops. What happens if you need to convert an 8-bit two’s 
complement value to 16 bits? This problem and its converse (converting a 
16-bit value to 8 bits) can be accomplished via sign extension and contraction 
operations.

Consider the value −64. The 8-bit two’s complement value for this num-
ber is $C0. The 16-bit equivalent of this number is $FFC0. Now consider the 
value +64. The 8- and 16-bit versions of this value are $40 and $0040, respec-
tively. The difference between the 8- and 16-bit numbers can be described 
by the rule, “If the number is negative, the H.O. byte of the 16-bit number 
contains $FF; if the number is positive, the H.O. byte of the 16-bit quantity 
is 0.”

To extend a signed value from some number of bits to a greater number 
of bits is easy; just copy the sign bit into all the additional bits in the new 
76 Chapte r  2



AAL2E_03.book  Page 77  Thursday, February 18, 2010  12:49 PM
format. For example, to sign extend an 8-bit number to a 16-bit number, 
simply copy bit 7 of the 8-bit number into bits 8..15 of the 16-bit number. To 
sign extend a 16-bit number to a double word, simply copy bit 15 into bits 
16..31 of the double word. 

You must use sign extension when manipulating signed values of varying 
lengths. Often you’ll need to add a byte quantity to a word quantity. You 
must sign extend the byte quantity to a word before the operation takes 
place. Other operations (multiplication and division, in particular) may 
require a sign extension to 32 bits: 

Sign Extension:
8 Bits 16 Bits 32 Bits

$80        $FF80         $FFFF_FF80
$28        $0028         $0000_0028
$9A        $FF9A         $FFFF_FF9A
$7F        $007F         $0000_007F
        $1020         $0000_1020
        $8086         $FFFF_8086

To extend an unsigned value to a larger one, you must zero extend the 
value. Zero extension is very easy—just store a 0 into the H.O. byte(s) of the 
larger operand. For example, to zero extend the 8-bit value $82 to 16 bits, 
you simply add a 0 to the H.O. byte, yielding $0082. 

Zero Extension:
8 Bits 16 Bits 32 Bits

$80 $0080 $0000_0080
$28 $0028 $0000_0028
$9A $009A $0000_009A
$7F $007F $0000_007F
    $1020 $0000_1020
    $8086 $0000_8086

The 80x86 provides several instructions that will let you sign or zero 
extend a smaller number to a larger number. Table 2-6 lists a group of 
instructions that will sign extend the AL, AX, or EAX register. 

Note that the cwd (convert word to double word) instruction does not 
sign extend the word in AX to the double word in EAX. Instead, it stores the 

Table 2-6: Instructions for Extending AL, AX, and EAX

Instruction Explanation

cbw(); Converts the byte in AL to a word in AX via sign extension.

cwd(); Converts the word in AX to a double word in DX:AX via sign extension.

cdq(); Converts the double word in EAX to the quad word in EDX:EAX via sign 
extension.

cwde(); Converts the word in AX to a double word in EAX via sign extension.
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H.O. word of the sign extension into the DX register (the notation DX:AX 
tells you that you have a double-word value with DX containing the upper 
16 bits and AX containing the lower 16 bits of the value). If you want the 
sign extension of AX to go into EAX, you should use the cwde (convert word 
to double word, extended) instruction.

The four instructions above are unusual in the sense that these are the 
first instructions you’ve seen that do not have any operands. These instruc-
tions’ operands are implied by the instructions themselves.

Within a few chapters you will discover just how important these instruc-
tions are and why the cwd and cdq instructions involve the DX and EDX 
registers. However, for simple sign extension operations, these instructions 
have a few major drawbacks—you do not get to specify the source and desti-
nation operands, and the operands must be registers.

For general sign extension operations, the 80x86 provides an extension 
of the mov instruction, movsx (move with sign extension), that copies data and 
sign extends the data while copying it. The movsx instruction’s syntax is very 
similar to the mov instruction:

movsx( source, dest );

The big difference in syntax between this instruction and the mov 
instruction is the fact that the destination operand must be larger than 
the source operand. That is, if the source operand is a byte, the destination 
operand must be a word or a double word. Likewise, if the source operand is 
a word, the destination operand must be a double word. Another difference 
is that the destination operand has to be a register; the source operand, 
however, can be a memory location.3 The movsx instruction does not allow 
constant operands.

To zero extend a value, you can use the movzx instruction. It has the same 
syntax and restrictions as the movsx instruction. Zero extending certain 8-bit 
registers (AL, BL, CL, and DL) into their corresponding 16-bit registers is 
easily accomplished without using movzx by loading the complementary H.O. 
register (AH, BH, CH, or DH) with 0. Obviously, to zero extend AX into 
DX:AX or EAX into EDX:EAX, all you need to do is load DX or EDX with 0.4

The sample program in Listing 2-8 demonstrates the use of the sign 
extension instructions.

program signExtension;
#include( "stdlib.hhf" )

static
    i8:     int8;
    i16:    int16;
    i32:    int32;

3 This doesn’t turn out to be much of a limitation because sign extension almost always precedes 
an arithmetic operation that must take place in a register.
4 Zero extending into DX:AX or EDX:EAX is just as necessary as the CWD and CDQ instructions, 
as you will eventually see.
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begin signExtension;

    stdout.put( "Enter a small negative number: " );
    stdin.get( i8 );

    stdout.put( nl, "Sign extension using CBW and CWDE:", nl, nl );
    
    mov( i8, al );  
    stdout.put( "You entered ", i8, " ($", al, ")", nl );
    
    cbw();
    mov( ax, i16 );
    stdout.put( "16-bit sign extension: ", i16, " ($", ax, ")", nl );
    
    cwde();
    mov( eax, i32 );
    stdout.put( "32-bit sign extension: ", i32, " ($", eax, ")", nl );
   
    stdout.put( nl, "Sign extension using MOVSX:", nl, nl );
    
    movsx( i8, ax );
    mov( ax, i16 );
    stdout.put( "16-bit sign extension: ", i16, " ($", ax, ")", nl );
    
    movsx( i8, eax );
    mov( eax, i32 );
    stdout.put( "32-bit sign extension: ", i32, " ($", eax, ")", nl );
    
end signExtension;

Listing 2-8: Sign extension instructions

Sign contraction, converting a value with some number of bits to the 
identical value with a fewer number of bits, is a little more troublesome. Sign 
extension never fails. Given an m -bit signed value, you can always convert it 
to an n -bit number (where n > m) using sign extension. Unfortunately, given 
an n -bit number, you cannot always convert it to an m -bit number if m < n. 
For example, consider the value −448. As a 16-bit signed number, its hexa-
decimal representation is $FE40. Unfortunately, the magnitude of this number 
is too large for an 8-bit value, so you cannot sign contract it to 8 bits. This is 
an example of an overflow condition that occurs upon conversion. 

To properly sign contract a value, you must look at the H.O. byte(s) that 
you want to discard. The H.O. bytes must all contain either 0 or $FF. If you 
encounter any other values, you cannot contract it without overflow. Finally, 
the H.O. bit of your resulting value must match every bit you’ve removed 
from the number. Here are some examples (16 bits to 8 bits):

          $FF80 can be sign contracted to $80.
          $0040 can be sign contracted to $40.
          $FE40 cannot be sign contracted to 8 bits.
          $0100 cannot be sign contracted to 8 bits.
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Another way to reduce the size of an integer is by saturation. Saturation is 
useful in situations where you must convert a larger object to a smaller object, 
and you’re willing to live with possible loss of precision. To convert a value via 
saturation you simply copy the larger value to the smaller value if it is not 
outside the range of the smaller object. If the larger value is outside the 
range of the smaller value, then you clip the value by setting it to the largest 
(or smallest) value within the range of the smaller object.

For example, when converting a 16-bit signed integer to an 8-bit signed 
integer, if the 16-bit value is in the range −128..+127, you simply copy the 
L.O. byte of the 16-bit object to the 8-bit object. If the 16-bit signed value is 
greater than +127, then you clip the value to +127 and store +127 into the 
8-bit object. Likewise, if the value is less than −128, you clip the final 8-bit 
object to −128. Saturation works the same way when clipping 32-bit values to 
smaller values. If the larger value is outside the range of the smaller value, 
then you simply set the smaller value to the value closest to the out-of-range 
value that you can represent with the smaller value.

Obviously, if the larger value is outside the range of the smaller value, 
then there will be a loss of precision during the conversion. While clipping 
the value to the limits the smaller object imposes is never desirable, some-
times this is acceptable because the alternative is to raise an exception or 
otherwise reject the calculation. For many applications, such as audio or 
video processing, the clipped result is still recognizable, so this is a reason-
able conversion.

2.10 Shifts and Rotates

Another set of logical operations that apply to bit strings is the shift and 
rotate operations. These two categories can be further broken down into left 
shifts, left rotates, right shifts, and right rotates. These operations turn out to be 
extremely useful.

The left-shift operation moves each bit in a bit string one position to the 
left (Figure 2-8 provides an example of an 8-bit shift).

Figure 2-8: Shift-left operation

Bit 0 moves into bit position 1, the previous value in bit position 1 moves 
into bit position 2, and so on. There are, of course, two questions that naturally 
arise: “What goes into bit 0?” and “Where does the high-order bit go?” We’ll 
shift a 0 into bit 0, and the previous value of the high-order bit will become 
the carry out of this operation.

The 80x86 provides a shift-left instruction, shl, that performs this useful 
operation. The syntax for the shl instruction is:

shl( count, dest );

7 6 5 4 3 2 1 0
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The count operand is either CL or a constant in the range 0..n, where n 
is one less than the number of bits in the destination operand (for example, 
n = 7 for 8-bit operands, n = 15 for 16-bit operands, and n = 31 for 32-bit 
operands). The dest operand is a typical destination operand. It can be 
either a memory location or a register.

When the count operand is the constant 1, the shl instruction does the 
operation shown in Figure 2-9.

Figure 2-9: Shift-left operation

In Figure 2-9, the C represents the carry flag. That is, the H.O. bit shifted 
out of the operand moves into the carry flag. Therefore, you can test for over-
flow after a shl( 1, dest ); instruction by testing the carry flag immediately 
after executing the instruction (e.g., by using if( @c ) then... or if( @nc ) 
then...).

Intel’s literature suggests that the state of the carry flag is undefined if 
the shift count is a value other than 1. Usually, the carry flag contains the 
last bit shifted out of the destination operand, but Intel doesn’t seem to 
guarantee this.

Note that shifting a value to the left is the same thing as multiplying it by its 
radix. For example, shifting a decimal number one position to the left (adding 
a 0 to the right of the number) effectively multiplies it by 10 (the radix):

1234 shl 1 = 12340

(shl 1 means shift one digit position to the left.)
 Because the radix of a binary number is 2, shifting it left multiplies it by 2. 

If you shift a binary value to the left twice, you multiply it by 2 twice (that is, 
you multiply it by 4). If you shift a binary value to the left three times, you 
multiply it by 8 (2*2*2). In general, if you shift a value to the left n times, 
you multiply that value by 2n.

A right-shift operation works the same way, except we’re moving the data 
in the opposite direction. For a byte value, bit 7 moves into bit 6, bit 6 moves 
into bit 5, bit 5 moves into bit 4, and so on. During a right shift, we’ll move a 
0 into bit 7, and bit 0 will be the carry out of the operation (see Figure 2-10).

Figure 2-10: Shift-right operation

As you would probably expect, the 80x86 provides a shr instruction that 
will shift the bits to the right in a destination operand. The syntax is the same 
as the shl instruction except, of course, you specify shr rather than shl:

shr( count, dest );

4 3 2 1 0

C

H.O. Bit

. . . 0

7 6 5 4 3 2 1 0

C0
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This instruction shifts a 0 into the H.O. bit of the destination operand, it 
shifts the other bits one place to the right (that is, from a higher bit number to 
a lower bit number). Finally, bit 0 is shifted into the carry flag. If you specify a 
count of 1, the shr instruction does the operation shown in Figure 2-11.

Figure 2-11: Shift-right operation

Once again, Intel’s documents suggest that shifts of more than 1 bit 
leave the carry in an undefined state.

Because a left shift is equivalent to a multiplication by 2, it should come 
as no surprise that a right shift is roughly comparable to a division by 2 (or, 
in general, a division by the radix of the number). If you perform n right 
shifts, you will divide that number by 2n.

There is one problem with shift rights with respect to division: A shift 
right is only equivalent to an unsigned division by 2. For example, if you shift 
the unsigned representation of 254 ($FE) one place to the right, you get 127 
($7F), exactly what you would expect. However, if you shift the binary repre-
sentation of −2 ($FE) to the right one position, you get 127 ($7F), which is 
not correct. This problem occurs because we’re shifting a 0 into bit 7. If bit 7 
previously contained a 1, we’re changing it from a negative to a positive 
number. Not a good thing to do when dividing by 2.

To use the shift right as a division operator, we must define a third shift 
operation: arithmetic shift right.5 An arithmetic shift right works just like the 
normal shift-right operation (a logical shift right) with one exception: Instead 
of shifting a 0 into the high-order bit, an arithmetic shift-right operation 
copies the high-order bit back into itself; that is, during the shift operation 
it does not modify the high-order bit, as Figure 2-12 shows. 

Figure 2-12: Arithmetic shift-right operation

An arithmetic shift right generally produces the result you expect. For 
example, if you perform the arithmetic shift-right operation on −2 ($FE), 
you get −1 ($FF). Keep one thing in mind about arithmetic shift right, 
however. This operation always rounds the numbers to the closest integer 
that is less than or equal to the actual result. Based on experiences with high-
level programming languages and the standard rules of integer truncation, 
most people assume this means that a division always truncates toward 0. 
But this simply isn’t the case. For example, if you apply the arithmetic shift-
right operation on −1 ($FF), the result is −1, not 0. Because −1 is less than 0, 

5 There is no need for an arithmetic shift left. The standard shift-left operation works for both 
signed and unsigned numbers, assuming no overflow occurs.
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the arithmetic shift-right operation rounds toward −1. This is not a bug in the 
arithmetic shift-right operation; it just uses a different (though valid) defini-
tion of integer division.

The 80x86 provides an arithmetic shift-right instruction, sar (shift arith-
metic right). This instruction’s syntax is nearly identical to shl and shr. The 
syntax is:

sar( count, dest );

The usual limitations on the count and destination operands apply. This 
instruction operates as shown in Figure 2-13 if the count is 1.

Figure 2-13: sar( 1, dest ) operation

Once again, Intel’s documents suggest that shifts of more than 1 bit 
leave the carry in an undefined state.

Another pair of useful operations are rotate left and rotate right. These 
operations behave like the shift-left and shift-right operations with one major 
difference: The bit shifted out from one end is shifted back in at the other 
end. Figure 2-14 diagrams these operations.

Figure 2-14: Rotate-left and rotate-right operations

The 80x86 provides rol (rotate left) and ror (rotate right) instructions 
that do these basic operations on their operands. The syntax for these two 
instructions is similar to the shift instructions:

rol( count, dest );
ror( count, dest );

Once again, these instructions provide a special behavior if the shift 
count is 1. Under this condition these two instructions also copy the bit 
shifted out of the destination operand into the carry flag as Figures 2-15 
and 2-16 show.
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Figure 2-15: rol( 1, dest ) operation

Note that Intel’s documents suggest that rotates of more than 1 bit leave 
the carry in an undefined state.

Figure 2-16: ror( 1, dest ) operation

It is often more convenient for the rotate operation to shift the output 
bit through the carry and shift the previous carry value back into the input bit 
of the shift operation. The 80x86 rcl (rotate through carry left) and rcr 
(rotate through carry right) instructions achieve this for you. These instruc-
tions use the following syntax:

rcl( count, dest );
rcr( count, dest );

As is true for the other shift and rotate instructions, the count operand is 
either a constant or the CL register, and the dest operand is a memory location 
or register. The count operand must be a value that is less than the number of 
bits in the dest operand. For a count value of 1, these two instructions do the 
rotation shown in Figure 2-17.

Figure 2-17: rcl( 1, dest ) and rcr( 1, dest ) operations
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Again, Intel’s documents suggest that rotates of more than 1 bit leave the 
carry in an undefined state.

2.11 Bit Fields and Packed Data

Although the 80x86 operates most efficiently on byte, word, and dword data 
types, occasionally you’ll need to work with a data type that uses some 
number of bits other than 8, 16, or 32. For example, consider a date of the 
form 04/02/01. It takes three numeric values to represent this date: month, 
day, and year values. Months, of course, take on the values 1..12. It will 
require at least 4 bits (maximum of 16 different values) to represent the 
month. Days range between 1 and 31. So it will take 5 bits (maximum of 32 
different values) to represent the day entry. The year value, assuming that 
we’re working with values in the range 0..99, requires 7 bits (that can be used 
to represent up to 128 different values). 4 + 5 + 7 = 16 bits, or 2 bytes. In 
other words, we can pack our date data into 2 bytes rather than the 3 that 
would be required if we used a separate byte for each of the month, day, 
and year values. This saves 1 byte of memory for each date stored, which 
could be a substantial saving if you need to store many dates. The bits could 
be arranged as shown in Figure 2-18.

Figure 2-18: Short packed date format (2 bytes)

MMMM represents the 4 bits making up the month value, DDDDD 
represents the 5 bits making up the day, and YYYYYYY is the 7 bits com-
posing the year. Each collection of bits representing a data item is a bit field. 
For example, April 2, 2001, would be represented as $4101:

          0100      00010   0000001          = %0100_0001_0000_0001 or $4101
           4          2       01

Although packed values are space efficient (that is, very efficient in terms 
of memory usage), they are computationally inefficient (slow!). The reason? It 
takes extra instructions to unpack the data packed into the various bit fields. 
These extra instructions take additional time to execute (and additional 
bytes to hold the instructions); hence, you must carefully consider whether 
packed data fields will save you anything. The sample program in Listing 2-9 
demonstrates the effort that must go into packing and unpacking this 16-bit 
date format.

program dateDemo;

#include( "stdlib.hhf" )

static

15 14 13 12 11 10 7 6 5 4 3 29 8 1 0

M M M M D D D Y Y Y Y YD D Y Y
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    day:        uns8;
    month:      uns8;
    year:       uns8;
    
    packedDate: word;
    
begin dateDemo;

    stdout.put( "Enter the current month, day, and year: " );
    stdin.get( month, day, year );
    
    // Pack the data into the following bits:
    //
    //  15 14 13 12 11 10  9  8  7  6  5  4  3  2  1  0
    //   m  m  m  m  d  d  d  d  d  y  y  y  y  y  y  y
    
    mov( 0, ax );
    mov( ax, packedDate );  // Just in case there is an error.
    if( month > 12 ) then
    
        stdout.put( "Month value is too large", nl );
        
    elseif( month = 0 ) then
    
        stdout.put( "Month value must be in the range 1..12", nl );
        
    elseif( day > 31 ) then
    
        stdout.put( "Day value is too large", nl );
        
    elseif( day = 0 ) then
    
        stdout.put( "Day value must be in the range 1..31", nl );
        
    elseif( year > 99 ) then
    
        stdout.put( "Year value must be in the range 0..99", nl );
        
    else
    
        mov( month, al );
        shl( 5, ax );
        or( day, al );
        shl( 7, ax );
        or( year, al );
        mov( ax, packedDate );

    endif;
    
    // Okay, display the packed value:
    
    stdout.put( "Packed data = $", packedDate, nl );
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    // Unpack the date:

    mov( packedDate, ax );
    and( $7f, al );         // Retrieve the year value.
    mov( al, year );
    
    mov( packedDate, ax );  // Retrieve the day value.
    shr( 7, ax );
    and( %1_1111, al );
    mov( al, day );
    
    mov( packedDate, ax );  // Retrieve the month value.
    rol( 4, ax );
    and( %1111, al );
    mov( al, month );

    stdout.put( "The date is ", month, "/", day, "/", year, nl );   
    
        
   
end dateDemo;

Listing 2-9: Packing and unpacking date data

Of course, having gone through the problems with Y2K (Year 2000), you 
know that using a date format that limits you to 100 years (or even 127 years) 
would be quite foolish at this time. If you are concerned about your software 
running 100 years from now, perhaps it would be wise to use a 3-byte date 
format rather than a 2-byte format. As you will see in the chapter on arrays, 
however, you should always try to create data objects whose length is an 
even power of 2 (1 byte, 2 bytes, 4 bytes, 8 bytes, and so on) or you will pay 
a performance penalty. Hence, it is probably wise to go ahead and use 4 bytes 
and pack this data into a double-word variable. Figure 2-19 shows one possible 
data organization for a 4-byte date.

Figure 2-19: Long packed date format (4 bytes)

In this long packed date format we made several changes beyond simply 
extending the number of bits associated with the year. First, because there 
are extra bits in a 32-bit double-word variable, this format allocates extra bits 
to the month and day fields. Because these two fields now consist of 8 bits 
each, they can be easily extracted as a byte object from the double word. This 
leaves fewer bits for the year, but 65,536 years is probably sufficient; you can 
probably assume without too much concern that your software will not still 
be in use 63,000 years from now when this date format will no longer work.

Of course, you could argue that this is no longer a packed date format. 
After all, we needed three numeric values, two of which fit just nicely into 1 
byte each and one that should probably have at least 2 bytes. Because this 
“packed” date format consumes the same 4 bytes as the unpacked version, 

31 16 15 8 7 0

Year (0–65535) Month (1–12) Day (1–31)
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what is so special about this format? Well, another difference you will note 
between this long packed date format and the short date format appearing in 
Figure 2-18 is the fact that this long date format rearranges the bits so the Year 
field is in the H.O. bit positions, the Month field is in the middle bit positions, 
and the Day field is in the L.O. bit positions. This is important because it allows 
you to very easily compare two dates to see if one date is less than, equal to, or 
greater than another date. Consider the following code:

     mov( Date1, eax );          // Assume Date1 and Date2 are dword variables
     if( eax > Date2 ) then // using the Long Packed Date format.

          << Do something if Date1 > Date2 >>

     endif;

Had you kept the different date fields in separate variables, or organized 
the fields differently, you would not have been able to compare Date1 and 
Date2 in such an easy fashion. Therefore, this example demonstrates another 
reason for packing data even if you don’t realize any space savings—it can 
make certain computations more convenient or even more efficient (contrary 
to what normally happens when you pack data).

Examples of practical packed data types abound. You could pack eight 
boolean values into a single byte, you could pack two BCD digits into a byte, 
and so on. Of course, a classic example of packed data is the EFLAGS register 
(see Figure 2-20). This register packs nine important boolean objects (along 
with seven important system flags) into a single 16-bit register. You will 
commonly need to access many of these flags. For this reason, the 80x86 
instruction set provides many ways to manipulate the individual bits in the 
EFLAGS register. Of course, you can test many of the condition code flags 
using the HLA pseudo-boolean variables such as @c, @nc, @z, and @nz in an if 
statement or other statement using a boolean expression.

In addition to the condition codes, the 80x86 provides instructions that 
directly affect certain flags (Table 2-7). 

Table 2-7: Instructions That Affect Certain Flags

Instruction Explanation

cld(); Clears (sets to 0) the direction flag.

std(); Sets (to 1) the direction flag.

cli(); Clears the interrupt disable flag.

sti(); Sets the interrupt disable flag.

clc(); Clears the carry flag.

stc(); Sets the carry flag.

cmc(); Complements (inverts) the carry flag.

sahf(); Stores the AH register into the L.O. 8 bits of the EFLAGS register.

lahf(); Loads AH from the L.O. 8 bits of the EFLAGS register.
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There are other instructions that affect the EFLAGS register as well; 
these instructions, however, demonstrate how to access several of the packed 
boolean values in the EFLAGS register. The lahf and sahf instructions, in 
particular, provide a convenient way to access the L.O. 8 bits of the EFLAGS 
register as an 8-bit byte (rather than as eight separate 1-bit values). See 
Figure 2-20 for a layout of the EFLAGS register.

Figure 2-20: EFLAGS register as packed boolean data

The lahf (load AH with the L.O. 8 bits of the EFLAGS register) and the 
sahf (store AH into the L.O. byte of the EFLAGS register) use the following 
syntax:

          lahf();
          sahf();

2.12 An Introduction to Floating-Point Arithmetic

Integer arithmetic does not let you represent fractional numeric values. There-
fore, modern CPUs support an approximation of real arithmetic: floating-
point arithmetic. A big problem with floating-point arithmetic is that it does 
not follow the standard rules of algebra. Nevertheless, many programmers 
apply normal algebraic rules when using floating-point arithmetic. This is a 
source of defects in many programs. One of the primary goals of this section 
is to describe the limitations of floating-point arithmetic so you will understand 
how to use it properly.

Normal algebraic rules apply only to infinite precision arithmetic. 
Consider the simple statement x  := x + 1, where x is an integer. On any 
modern computer this statement follows the normal rules of algebra as long 
as overflow does not occur. That is, this statement is valid only for certain values 
of x (minint <= x < maxint). Most programmers do not have a problem with 
this because they are well aware of the fact that integers in a program do 
not follow the standard algebraic rules (e.g., 5/2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any 
of the (integer) values above the maximum integer or below the minimum 
integer. Floating-point values suffer from this same problem, only worse. After 
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all, the integers are a subset of the real numbers. Therefore, the floating-
point values must represent the same infinite set of integers. However, there 
are an infinite number of real values between any two integer values, so this 
problem is infinitely worse. Therefore, as well as having to limit your values 
between a maximum and minimum range, you cannot represent all the 
values between those two ranges either.

To represent real numbers, most floating-point formats employ scientific 
notation and use some number of bits to represent a mantissa and a smaller 
number of bits to represent an exponent. The end result is that floating-point 
numbers can only represent numbers with a specific number of significant 
digits. This has a big impact on how floating-point arithmetic operates. To 
easily see the impact of limited precision arithmetic, we will adopt a sim-
plified decimal floating-point format for our examples. Our floating-point 
format will provide a mantissa with three significant digits and a decimal 
exponent with two digits. The mantissa and exponents are both signed 
values, as shown in Figure 2-21.

Figure 2-21: A floating-point format

When adding and subtracting two numbers in scientific notation, we must 
adjust the two values so that their exponents are the same. For example, 
when adding 1.23e1 and 4.56e0, we must adjust the values so they have the 
same exponent. One way to do this is to convert 4.56e0 to 0.456e1 and then 
add. This produces 1.686e1. Unfortunately, the result does not fit into three 
significant digits, so we must either round or truncate the result to three signi-
ficant digits. Rounding generally produces the most accurate result, so let’s 
round the result to obtain 1.69e1. As you can see, the lack of precision (the 
number of digits or bits we maintain in a computation) affects the accuracy 
(the correctness of the computation).

In the previous example, we were able to round the result because we 
maintained four significant digits during the calculation. If our floating-point 
calculation had been limited to three significant digits during computation, 
we would have had to truncate the last digit of the smaller number, obtaining 
1.68e1, a value that is even less accurate. To improve the accuracy of floating-
point calculations, it is necessary to add extra digits for use during the calcu-
lation. Extra digits available during a computation are known as guard digits 
(or guard bits in the case of a binary format). They greatly enhance accuracy 
during a long chain of computations.

The accuracy loss during a single computation usually isn’t enough to 
worry about unless you are greatly concerned about the accuracy of your 
computations. However, if you compute a value that is the result of a sequence 
of floating-point operations, the error can accumulate and greatly affect the 
computation itself. For example, suppose we were to add 1.23e3 to 1.00e0. 
Adjusting the numbers so their exponents are the same before the addition 
produces 1.23e3 + 0.001e3. The sum of these two values, even after rounding, 
is 1.23e3. This might seem perfectly reasonable to you; after all, we can 
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maintain only three significant digits, so adding in a small value shouldn’t 
affect the result at all. However, suppose we were to add 1.00e0 to 1.23e3 ten 
times. The first time we add 1.00e0 to 1.23e3 we get 1.23e3. Likewise, we get 
this same result the second, third, fourth . . . and tenth times we add 1.00e0 
to 1.23e3. On the other hand, had we added 1.00e0 to itself 10 times, then 
added the result (1.00e1) to 1.23e3, we would have gotten a different result, 
1.24e3. This is an important thing to know about limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result. 
You will get more accurate results if the relative magnitudes (that is, 
the exponents) are close to one another when adding and subtracting 
floating-point values. If you are performing a chain calculation involv-
ing addition and subtraction, you should attempt to group the values 
appropriately.

Another problem with addition and subtraction is that you can wind 
up with false precision. Consider the computation 1.23e0 − 1.22e0. This 
produces 0.01e0. Although this is mathematically equivalent to 1.00e − 2, 
this latter form suggests that the last two digits are exactly 0. Unfortu-
nately, we have only a single significant digit at this time. Indeed, some 
floating-point unit (FPU) software packages might actually insert ran-
dom digits (or bits) into the L.O. positions. This brings up a second 
important rule concerning limited precision arithmetic:

When subtracting two numbers with the same signs or adding two numbers 
with different signs, the accuracy of the result may be less than the precision 
available in the floating-point format.

Multiplication and division do not suffer from the same problems as 
addition and subtraction because you do not have to adjust the expo-
nents before the operation; all you need to do is add the exponents 
and multiply the mantissas (or subtract the exponents and divide the 
mantissas). By themselves, multiplication and division do not produce 
particularly poor results. However, they tend to multiply any error that 
already exists in a value. For example, if you multiply 1.23e0 by 2, when 
you should be multiplying 1.24e0 by 2, the result is even less accurate. 
This brings up a third important rule when working with limited-
precision arithmetic:

When performing a chain of calculations involving addition, subtraction, 
multiplication, and division, try to perform the multiplication and division 
operations first.

Often, by applying normal algebraic transformations, you can arrange a 
calculation so the multiply and divide operations occur first. For example, 
suppose you want to compute x * (y + z). Normally you would add y and z 
together and multiply their sum by x. However, you will get a little more 
accuracy if you transform x * (y + z) to get x * y + x * z and compute the 
result by performing the multiplications first.6

6 Of course, the drawback is that you must now perform two multiplications rather than one, so 
the result may be slower.
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Multiplication and division are not without their own problems. 
When multiplying two very large or very small numbers, it is quite 
possible for overflow or underflow to occur. The same situation occurs 
when dividing a small number by a large number or dividing a large 
number by a small number. This brings up a fourth rule you should 
attempt to follow when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange the 
multiplications so that they multiply large and small numbers together; 
likewise, try to divide numbers that have the same relative magnitudes.

Comparing floating-point numbers is very dangerous. Given the inaccu-
racies present in any computation (including converting an input string 
to a floating-point value), you should never compare two floating-point 
values to see if they are equal. In a binary floating-point format, different 
computations that produce the same (mathematical) result may differ in 
their least significant bits. For example, 1.31e0 + 1.69e0 should produce 
3.00e0. Likewise, 1.50e0 + 1.50e0 should produce 3.00e0. However, if 
you were to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0), you 
might find out that these sums are not equal to one another. The test for 
equality succeeds if and only if all bits (or digits) in the two operands are 
exactly the same. Because this is not necessarily true after two different 
floating-point computations that should produce the same result, a 
straight test for equality may not work.

The standard way to test for equality between floating-point numbers 
is to determine how much error (or tolerance) you will allow in a com-
parison and check to see if one value is within this error range of the 
other. The usual way to do this is to use a test like the following:

     if Value1 >= (Value2-error) and Value1 <= (Value2+error) then ...

Another common way to handle this same comparison is to use a 
statement of the form

     if abs(Value1-Value2) <= error then ...

You must exercise care when choosing the value for error. This 
should be a value slightly greater than the largest amount of error that 
will creep into your computations. The exact value will depend upon the 
particular floating-point format you use, but more on that a little later. 
Here is the final rule we will state in this section: 

When comparing two floating-point numbers, always compare one value to 
see if it is in the range given by the second value plus or minus some small 
error value.

There are many other little problems that can occur when using floating-
point values. This text can only point out some of the major problems 
and make you aware of the fact that you cannot treat floating-point 
arithmetic like real arithmetic—the inaccuracies present in limited-
precision arithmetic can get you into trouble if you are not careful. A 
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good text on numerical analysis or even scientific computing can help 
fill in the details that are beyond the scope of this text. If you are going 
to be working with floating-point arithmetic, in any language, you should 
take the time to study the effects of limited-precision arithmetic on your 
computations.

HLA’s if statement does not support boolean expressions involving 
floating-point operands. Therefore, you cannot use statements like 
if( x < 3.141) then... in your programs. Chapter 6 will teach you how to 
do floating-point comparisons.

2.12.1 IEEE Floating-Point Formats
When Intel planned to introduce a floating-point unit for its new 8086 
microprocessor, it was smart enough to realize that the electrical engineers 
and solid-state physicists who design chips were probably not the best people 
to pick the best possible binary representation for a floating-point format. So 
Intel went out and hired the best numerical analyst it could find to design a 
floating-point format for its 8087 FPU. That person then hired two other 
experts in the field, and the three of them (Kahn, Coonan, and Stone) 
designed Intel’s floating-point format. They did such a good job designing 
the KCS Floating-Point Standard that the IEEE organization adopted this 
format for the IEEE floating-point format.7 

To handle a wide range of performance and accuracy requirements, Intel 
actually introduced three floating-point formats: single-precision, double-
precision, and extended-precision. The single- and double-precision formats 
corresponded to C’s float and double types or FORTRAN’s real and double-
precision types. Intel intended to use extended-precision for long chains of 
computations. Extended-precision contains 16 extra bits that the calculations 
could use as guard bits before rounding down to a double-precision value 
when storing the result.

The single-precision format uses a one’s complement 24-bit mantissa and an 
8-bit excess-127 exponent. The mantissa usually represents a value from 1.0 to 
just under 2.0. The H.O. bit of the mantissa is always assumed to be 1 and 
represents a value just to the left of the binary point.8 The remaining 23 
mantissa bits appear to the right of the binary point. Therefore, the mantissa 
represents the value

1.mmmmmmm mmmmmmmm mmmmmmmm

The mmmm characters represent the 23 bits of the mantissa. Keep in mind 
that we are working with binary numbers here. Therefore, each position to 
the right of the binary point represents a value (0 or 1) times a successive 
negative power of 2. The implied 1 bit is always multiplied by 20, which is 1. 
This is why the mantissa is always greater than or equal to 1. Even if the other 

7 There were some minor changes to the way certain degenerate operations were handled, but 
the bit representation remained essentially unchanged.
8 The binary point is the same thing as the decimal point except it appears in binary numbers 
rather than decimal numbers.
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mantissa bits are all 0, the implied 1 bit always gives us the value 19. Of course, 
even if we had an almost infinite number of 1 bits after the binary point, they 
still would not add up to 2. This is why the mantissa can represent values in 
the range 1 to just under 2.

Although there are an infinite number of values between 1 and 2, we can 
only represent 8 million of them because we use a 23-bit mantissa (the 24th bit 
is always 1). This is the reason for inaccuracy in floating-point arithmetic—we 
are limited to 23 bits of precision in computations involving single-precision 
floating-point values.

The mantissa uses a one’s complement format rather than two’s 
complement. This means that the 24-bit value of the mantissa is simply an 
unsigned binary number, and the sign bit determines whether that value is 
positive or negative. One’s complement numbers have the unusual property 
that there are two representations for 0 (with the sign bit set or clear). 
Generally, this is important only to the person designing the floating-point 
software or hardware system. We will assume that the value 0 always has the 
sign bit clear.

To represent values outside the range 1.0 to just under 2.0, the exponent 
portion of the floating-point format comes into play. The floating-point 
format raises 2 to the power specified by the exponent and then multiplies 
the mantissa by this value. The exponent is 8 bits and is stored in an excess-127 
format. In excess-127 format, the exponent 20 is represented by the value 127 
($7F). Therefore, to convert an exponent to excess-127 format, simply add 
127 to the exponent value. The use of excess-127 format makes it easier to 
compare floating-point values. The single-precision floating-point format 
takes the form shown in Figure 2-22. 

Figure 2-22: Single-precision (32-bit) floating-point format

With a 24-bit mantissa, you will get approximately 6 ½ digits of precision 
(½ digit of precision means that the first six digits can all be in the range 0..9, 
but the seventh digit can only be in the range 0..x, where x < 9 and is generally 
close to 5). With an 8-bit excess-127 exponent, the dynamic range of single-
precision floating-point numbers is approximately 2 ± 128 or about 10 ± 38.

Although single-precision floating-point numbers are perfectly suitable for 
many applications, the dynamic range is somewhat limited and is unsuitable 
for many financial, scientific, and other applications. Furthermore, during 
long chains of computations, the limited accuracy of the single-precision 
format may introduce serious error.

9 Actually, this isn’t necessarily true. The IEEE floating-point format supports denormalized values 
where the H.O. bit is not 0. However, we will ignore denormalized values in our discussion.
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The double-precision format helps overcome the problems of single-
precision floating-point. Using twice the space, the double-precision format 
has an 11-bit excess-1023 exponent and a 53-bit mantissa (with an implied 
H.O. bit of 1) plus a sign bit. This provides a dynamic range of about 10±308 
and 14 ½ digits of precision, sufficient for most applications. Double-precision 
floating-point values take the form shown in Figure 2-23.

Figure 2-23: 64-bit double-precision floating-point format

In order to help ensure accuracy during long chains of computations 
involving double-precision floating-point numbers, Intel designed the 
extended-precision format. The extended-precision format uses 80 bits. 
Twelve of the additional 16 bits are appended to the mantissa and four of the 
additional bits are appended to the end of the exponent. Unlike the single- 
and double-precision values, the extended-precision format’s mantissa does 
not have an implied H.O. bit, which is always 1. Therefore, the extended-
precision format provides a 64-bit mantissa, a 15-bit excess-16383 exponent, 
and a 1-bit sign. The format for the extended-precision floating-point value is 
shown in Figure 2-24.

Figure 2-24: 80-bit extended-precision floating-point format

On the FPUs all computations are done using the extended-precision 
format. Whenever you load a single or double-precision value, the FPU auto-
matically converts it to an extended-precision value. Likewise, when you store 
a single or double-precision value to memory, the FPU automatically rounds 
the value down to the appropriate size before storing it. By always working 
with the extended-precision format, Intel guarantees a large number of 
guard bits are present to ensure the accuracy of your computations. 

To maintain maximum precision during computation, most computations 
use normalized values. A normalized floating-point value is one whose H.O. 
mantissa bit contains 1. Almost any nonnormalized value can be normalized; 
shift the mantissa bits to the left and decrement the exponent until a 1 appears 
in the H.O. bit of the mantissa. Remember, the exponent is a binary exponent. 
Each time you increment the exponent, you multiply the floating-point value 
by 2. Likewise, whenever you decrement the exponent, you divide the floating-
point value by 2. By the same token, shifting the mantissa to the left one bit 
position multiplies the floating-point value by 2; likewise, shifting the mantissa 
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to the right divides the floating-point value by 2. Therefore, shifting the 
mantissa to the left one position and decrementing the exponent does not 
change the value of the floating-point number at all.

Keeping floating-point numbers normalized is beneficial because it 
maintains the maximum number of bits of precision for a computation. If 
the H.O. bits of the mantissa are all 0, the mantissa has that many fewer bits 
of precision available for computation. Therefore, a floating-point computa-
tion will be more accurate if it involves only normalized values.

There are two important cases where a floating-point number cannot 
be normalized. Zero is one of these special cases. Obviously it cannot be 
normalized because the floating-point representation for 0 has no 1 bits in 
the mantissa. This, however, is not a problem because we can exactly repre-
sent the value 0 with only a single bit. 

The second case is when we have some H.O. bits in the mantissa that are 0 
but the biased exponent is also 0 (and we cannot decrement it to normalize 
the mantissa). Rather than disallow certain small values, whose H.O. mantissa 
bits and biased exponent are 0 (the most negative exponent possible), the 
IEEE standard allows special denormalized values to represent these smaller 
values.10 Although the use of denormalized values allows IEEE floating-point 
computations to produce better results than if underflow occurred, keep in 
mind that denormalized values offer less bits of precision.

2.12.2 HLA Support for Floating-Point Values

HLA provides several data types and library routines to support the use of 
floating-point data in your assembly language programs. These include 
built-in types to declare floating-point variables as well as routines that 
provide floating-point input, output, and conversion.

Perhaps the best place to start when discussing HLA’s floating-point 
facilities is with a description of floating-point literal constants. HLA 
floating-point constants allow the following syntax:

An optional + or - symbol, denoting the sign of the mantissa (if this is not 
present, HLA assumes that the mantissa is positive) 

Followed by one or more decimal digits

Optionally followed by a decimal point and one or more decimal digits

Optionally followed by an e or E, optionally followed by a sign (+ or -) 
and one or more decimal digits

Note that the decimal point or the e/E must be present in order to differ-
entiate this value from an integer or unsigned literal constant. Here are some 
examples of legal literal floating-point constants:

1.234  3.75e2  -1.0  1.1e-1  1e+4  0.1  -123.456e+789  +25e0

10 The alternative would be to underflow the values to 0.
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Notice that a floating-point literal constant cannot begin with a decimal 
point; it must begin with a decimal digit, so you must use 0.1 to represent .1 
in your programs. 

HLA also allows you to place an underscore character (_) between any 
two consecutive decimal digits in a floating-point literal constant. You may 
use the underscore character in place of a comma (or other language-
specific separator character) to help make your large floating-point numbers 
easier to read. Here are some examples:

          1_234_837.25  1_000.00  789_934.99  9_999.99

To declare a floating-point variable you use the real32, real64, or real80 
data types. Like their integer and unsigned brethren, the number at the end 
of these data type declarations specifies the number of bits used for each 
type’s binary representation. Therefore, you use real32 to declare single-
precision real values, real64 to declare double-precision floating-point values, 
and real80 to declare extended-precision floating-point values. Other than 
the fact that you use these types to declare floating-point variables rather 
than integers, their use is nearly identical to that for int8, int16, int32, and so 
on. The following examples demonstrate these declarations and their syntax:

static

          fltVar1:      real32;
          fltVar1a:     real32 := 2.7;
          pi:           real32 := 3.14159;
          DblVar:       real64;
          DblVar2:      real64 := 1.23456789e+10;
          XPVar:        real80;
          XPVar2:       real80 := -1.0e-104;

To output a floating-point variable in ASCII form, you would use one of 
the stdout.putr32, stdout.putr64, or stdout.putr80 routines. These procedures 
display a number in decimal notation, that is, a string of digits, an optional 
decimal point, and a closing string of digits. Other than their names, these 
three routines use exactly the same calling sequence. Here are the calls and 
parameters for each of these routines:

stdout.putr80( r:real80; width:uns32; decpts:uns32 );
stdout.putr64( r:real64; width:uns32; decpts:uns32 );
stdout.putr32( r:real32; width:uns32; decpts:uns32 );

The first parameter to these procedures is the floating-point value you 
wish to print. The size of this parameter must match the procedure’s name 
(e.g., the r parameter must be an 80-bit extended-precision floating-point 
variable when calling the stdout.putr80 routine). The second parameter 
specifies the field width for the output text; this is the number of print 
Data Represen ta t ion 97



AAL2E_03.book  Page 98  Thursday, February 18, 2010  12:49 PM
positions the number will require when the procedure displays it. Note that 
this width must include print positions for the sign of the number and the 
decimal point. The third parameter specifies the number of print positions 
after the decimal point. For example:

stdout.putr32( pi, 10, 4 );

displays the value

_ _ _ _ 3.1416

(underscores represent leading spaces in this example).
Of course, if the number is very large or very small, you will want to 

use scientific notation rather than decimal notation for your floating-point 
numeric output. The HLA Standard Library stdout.pute32, stdout.pute64, and 
stdout.pute80 routines provide this facility. These routines use the following 
procedure prototypes:

stdout.pute80( r:real80; width:uns32 );
stdout.pute64( r:real64; width:uns32 );
stdout.pute32( r:real32; width:uns32 );

Unlike the decimal output routines, these scientific notation output 
routines do not require a third parameter specifying the number of digits 
after the decimal point to display. The width parameter indirectly specifies 
this value because all but one of the mantissa digits always appear to the right 
of the decimal point. These routines output their values in decimal notation, 
similar to the following:

1.23456789e+10  -1.0e-104  1e+2

You can also output floating-point values using the HLA Standard 
Library stdout.put routine. If you specify the name of a floating-point variable 
in the stdout.put parameter list, the stdout.put code will output the value 
using scientific notation. The actual field width varies depending on the size 
of the floating-point variable (the stdout.put routine attempts to output as 
many significant digits as possible, in this case). Here’s an example:

stdout.put( "XPVar2 = ", XPVar2 );

If you specify a field width, by using a colon followed by a signed integer 
value, then the stdout.put routine will use the appropriate stdout.puteXX 
routine to display the value. That is, the number will still appear in scientific 
notation, but you get to control the field width of the output value. Like the 
field width for integer and unsigned values, a positive field width right justi-
fies the number in the specified field, and a negative number left justifies the 
value. 
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Here is an example that prints the XPVar2 variable using 10 print positions:

stdout.put( "XPVar2 = ", XPVar2:10 );

If you wish to use stdout.put to print a floating-point value in decimal 
notation, you need to use the following syntax:

Variable_Name : Width : DecPts

Note that the DecPts field must be a nonnegative integer value. 
When stdout.put contains a parameter of this form, it calls the corre-

sponding stdout.putrXX routine to display the specified floating-point value. 
As an example, consider the following call:

stdout.put( "Pi = ", pi:5:3 );

The corresponding output is:

3.142

The HLA Standard Library provides several other useful routines you 
can use when outputting floating-point values. Consult the HLA Standard 
Library reference manual for more information on these routines.

The HLA Standard Library provides several routines to let you display 
floating-point values in a wide variety of formats. In contrast, the HLA 
Standard Library provides only two routines to support floating-point input: 
stdin.getf() and stdin.get(). The stdin.getf() routine requires the use 
of the 80x86 FPU stack, a hardware component that this chapter doesn’t 
cover. Therefore, we’ll defer the discussion of the stdin.getf() routine until 
Chapter 6. Because the stdin.get() routine provides all the capabilities of 
the stdin.getf() routine, this deferral will not be a problem.

You’ve already seen the syntax for the stdin.get() routine; its parameter 
list simply contains a list of variable names. The stdin.get() function reads 
appropriate values for the user for each of the variables appearing in the 
parameter list. If you specify the name of a floating-point variable, the 
stdin.get() routine automatically reads a floating-point value from the user 
and stores the result into the specified variable. The following example 
demonstrates the use of this routine:

     stdout.put( "Input a double-precision floating-point value: " );
     stdin.get( DblVar );

WARNING This section discussed how you would declare floating-point variables and how you 
would input and output them. It did not discuss arithmetic. Floating-point arithmetic 
is different from integer arithmetic; you cannot use the 80x86 add and sub instructions 
to operate on floating-point values. Floating-point arithmetic will be the subject of 
Chapter 6.
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2.13 Binary-Coded Decimal Representation

Although the integer and floating-point formats cover most of the numeric 
needs of an average program, there are some special cases where other 
numeric representations are convenient. In this section we’ll discuss the 
binary-coded decimal format because the 80x86 CPU provides a small 
amount of hardware support for this data representation.

BCD values are a sequence of nibbles, with each nibble representing a 
value in the range 0..9. Of course you can represent values in the range 0..15 
using a nibble; the BCD format, however, uses only 10 of the possible 16 
different values for each nibble.

Each nibble in a BCD value represents a single decimal digit. Therefore, 
with a single byte (i.e., two digits) we can represent values containing two 
decimal digits, or values in the range 0..99 (see Figure 2-25). With a word, 
we can represent values having four decimal digits, or values in the range 
0..9,999. Likewise, with a double word we can represent values with up to eight 
decimal digits (because there are eight nibbles in a double-word value).

Figure 2-25: CD data representation in 
memory

As you can see, BCD storage isn’t particularly memory efficient. For 
example, an 8-bit BCD variable can represent values in the range 0..99 while 
that same 8 bits, when holding a binary value, can represent values in the 
range 0..255. Likewise, a 16-bit binary value can represent values in the range 
0..65,535, while a 16-bit BCD value can represent only about one-sixth of those 
values (0..9,999). Inefficient storage isn’t the only problem. BCD calculations 
tend to be slower than binary calculations.

At this point, you’re probably wondering why anyone would ever use the 
BCD format. The BCD format does have two saving graces: It’s very easy to 
convert BCD values between the internal numeric representation and their 
string representation; also, it’s very easy to encode multidigit decimal values 
in hardware (e.g., using a thumb wheel or dial) using BCD. For these two 
reasons, you’re likely to see people using BCD in embedded systems (such as 
toaster ovens, alarm clocks, and nuclear reactors) but rarely in general-
purpose computer software.

A few decades ago people mistakenly thought that calculations involving 
BCD (or just decimal) arithmetic were more accurate than binary calcula-
tions. Therefore, they would often perform important calculations, like 
those involving dollars and cents (or other monetary units) using decimal-
based arithmetic. While it is true that certain calculations can produce more 
accurate results in BCD, this statement is not true in general. Indeed, for 
most calculations (even those involving fixed-point decimal arithmetic), the 
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binary representation is more accurate. For this reason, most modern com-
puter programs represent all values in a binary form. For example, the Intel 
80x86 floating-point unit supports a pair of instructions for loading and 
storing BCD values. Internally, however, the FPU converts these BCD 
values to binary and performs all calculations in binary. It uses BCD only 
as an external data format (external to the FPU, that is). This generally 
produces more accurate results and requires far less silicon than having a 
separate coprocessor that supports decimal arithmetic.

2.14 Characters

Perhaps the most important data type on a personal computer is the character 
data type. The term character refers to a human or machine-readable symbol 
that is typically a nonnumeric entity. In general, the term character refers to 
any symbol that you can normally type on a keyboard (including some symbols 
that may require multiple key presses to produce) or display on a video 
display. Many beginners often confuse the terms character and alphabetic 
character. These terms are not the same. Punctuation symbols, numeric digits, 
spaces, tabs, carriage returns (enter), other control characters, and other 
special symbols are also characters. When this text uses the term character it 
refers to any of these characters, not just the alphabetic characters. When 
this text refers to alphabetic characters, it will use phrases like “alphabetic 
characters,” “uppercase characters,” or “lowercase characters.”

Another common problem beginners have when they first encounter the 
character data type is differentiating between numeric characters and num-
bers. The character 1 is different from the value 1. The computer (generally) 
uses two different internal representations for numeric characters (0, 1, ..., 9) 
versus the numeric values 0..9. You must take care not to confuse the two.

Most computer systems use a 1- or 2-byte sequence to encode the various 
characters in binary form. Windows, Mac OS X, FreeBSD, and Linux certainly 
fall into this category, using either the ASCII or Unicode encodings for char-
acters. This section will discuss the ASCII character set and the character 
declaration facilities that HLA provides.

2.14.1 The ASCII Character Encoding

The ASCII (American Standard Code for Information Interchange) 
character set maps 128 textual characters to the unsigned integer values 
0..127 ($0..$7F). Internally, of course, the computer represents everything 
using binary numbers, so it should come as no surprise that the computer 
also uses binary values to represent nonnumeric entities such as characters. 
Although the exact mapping of characters to numeric values is arbitrary and 
unimportant, it is important to use a standardized code for this mapping 
because you will need to communicate with other programs and peripheral 
devices and you need to talk the same “language” as these other programs 
and devices. This is where the ASCII code comes into play; it is a standard-
ized code that nearly everyone has agreed on. Therefore, if you use the 
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ASCII code 65 to represent the character 'A', then you know that some 
peripheral device (such as a printer) will correctly interpret this value as 
the character 'A' whenever you transmit data to that device.

You should not get the impression that ASCII is the only character set 
in use on computer systems. IBM uses the EBCDIC character set family on 
many of its mainframe computer systems. Another common character set in 
use is the Unicode character set. Unicode is an extension to the ASCII char-
acter set that uses 16 bits rather than 7 bits to represent characters. This 
allows the use of 65,536 different characters in the character set, allowing the 
inclusion of most symbols in the world’s different languages into a single 
unified character set.

Because the ASCII character set provides only 128 different characters 
and a byte can represent 256 different values, an interesting question arises: 
“What do we do with the values 128..255 that one could store into a byte?” 
One answer is to ignore those extra values. That will be the primary approach 
of this text. Another possibility is to extend the ASCII character set and add 
an additional 128 characters to it. Of course, this would tend to defeat the 
whole purpose of having a standardized character set unless you could get 
everyone to agree on the extensions. That is a difficult task. 

When IBM first created its IBM-PC, it defined these extra 128 character 
codes to contain various non-English alphabetic characters, some line-
drawing graphics characters, some mathematical symbols, and several other 
special characters. Because IBM’s PC was the foundation for what we typically 
call a PC today, that character set has become a pseudo-standard on all IBM-
PC compatible machines. Even on modern machines, which are not IBM-PC 
compatible and cannot run early PC software, the IBM extended character 
set survives. Note, however, that this PC character set (an extension of the 
ASCII character set) is not universal. Most printers will not print the extended 
characters when using native fonts, and many programs (particularly in non-
English-speaking countries) do not use those characters for the upper 128 
codes in an 8-bit value. For these reasons, this text will generally stick to the 
standard 128-character ASCII character set.

Despite the fact that it is a standard, simply encoding your data using 
standard ASCII characters does not guarantee compatibility across systems. 
While it’s true that an 'A' on one machine is most likely an 'A' on another 
machine, there is very little standardization across machines with respect to 
the use of the control characters. Indeed, of the 32 control codes plus delete, 
there are only four control codes commonly supported—backspace (BS), 
tab, carriage return (CR), and line feed (LF). Worse still, different machines 
often use these control codes in different ways. End of line is a particularly 
troublesome example. Windows, MS-DOS, CP/M, and other systems mark 
end of line by the two-character sequence CR/LF. Older Apple Macintosh 
computers (Mac OS 9 and earlier) and many other systems mark the end of 
a line by a single CR character. Linux, Mac OS X, FreeBSD, and other Unix 
systems mark the end of a line with a single LF character. Needless to say, 
attempting to exchange simple text files between such systems can be an 
experience in frustration. Even if you use standard ASCII characters in all 
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your files on these systems, you will still need to convert the data when 
exchanging files between them. Fortunately, such conversions are rather 
simple.

Despite some major shortcomings, ASCII data is the standard for data 
interchange across computer systems and programs. Most programs can 
accept ASCII data; likewise most programs can produce ASCII data. Because 
you will be dealing with ASCII characters in assembly language, it would be 
wise to study the layout of the character set and memorize a few key ASCII 
codes (e.g., for '0', 'A', 'a', etc.).

The ASCII character set is divided into four groups of 32 characters. The 
first 32 characters, ASCII codes 0..$1F (31), form a special set of nonprinting 
characters, the control characters. We call them control characters because 
they perform various printer/display control operations rather than display 
symbols. Examples include carriage return, which positions the cursor to the 
left side of the current line of characters;11 line feed, which moves the cursor 
down one line on the output device; and backspace, which moves the cursor 
back one position to the left. Unfortunately, different control characters 
perform different operations on different output devices. There is very little 
standardization among output devices. To find out exactly how a control 
character affects a particular device, you will need to consult its manual. 

The second group of 32 ASCII character codes contains various punctu-
ation symbols, special characters, and the numeric digits. The most notable 
characters in this group include the space character (ASCII code $20) and 
the numeric digits (ASCII codes $30..$39).

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters 'A'..'Z' lie in the range 
$41..$5A (65..90). Because there are only 26 different alphabetic characters, 
the remaining 6 codes hold various special symbols. 

The fourth, and final, group of 32 ASCII character codes represents the 
lowercase alphabetic symbols, 5 additional special symbols, and another 
control character (delete). Note that the lowercase character symbols use the 
ASCII codes $61..$7A. If you convert the codes for the upper- and lowercase 
characters to binary, you will notice that the uppercase symbols differ from 
their lowercase equivalents in exactly one bit position. For example, consider 
the character codes for 'E' and 'e' appearing in Figure 2-26.

Figure 2-26: ASCII codes for E and e

11 Historically, carriage return refers to the paper carriage used on typewriters. A carriage return 
consisted of physically moving the carriage all the way to the right so that the next character 
typed would appear at the left-hand side of the paper.

7 6 5 4 3 2 1 0

0 1 0 0 0 01 1

7 6 5 4 3 2 1 0

0 1 0 0 01 1 1

E

e
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The only place these two codes differ is in bit 5. Uppercase characters 
always contain a 0 in bit 5; lowercase alphabetic characters always contain a 
1 in bit 5. You can use this fact to quickly convert between upper- and lower-
case. If you have an uppercase character, you can force it to lowercase by 
setting bit 5 to 1. If you have a lowercase character and you wish to force it to 
uppercase, you can do so by setting bit 5 to 0. You can toggle an alphabetic 
character between upper- and lowercase by simply inverting bit 5.

Indeed, bits 5 and 6 determine which of the four groups in the ASCII 
character set you’re in, as Table 2-8 shows.

So you could, for instance, convert any upper- or lowercase (or corre-
sponding special) character to its equivalent control character by setting 
bits 5 and 6 to 0. 

Consider, for a moment, the ASCII codes of the numeric digit characters 
appearing in Table 2-9.

The decimal representations of these ASCII codes are not very enlight-
ening. However, the hexadecimal representation of these ASCII codes reveals 
something very important—the L.O. nibble of the ASCII code is the binary 
equivalent of the represented number. By stripping away (i.e., setting to 0) 
the H.O. nibble of a numeric character, you can convert that character code 
to the corresponding binary representation. Conversely, you can convert a 
binary value in the range 0..9 to its ASCII character representation by simply 
setting the H.O. nibble to 3. Note that you can use the logical and operation 

Table 2-8: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and punctuation

1 0 Uppercase and special

1 1 Lowercase and special

Table 2-9: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal

0 48 $30

1 49 $31

2 50 $32

3 51 $33

4 52 $34

5 53 $35

6 54 $36

7 55 $37

8 56 $38

9 57 $39
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to force the H.O. bits to 0; likewise, you can use the logical or operation to 
force the H.O. bits to %0011 (3).

Note that you cannot convert a string of numeric characters to their 
equivalent binary representation by simply stripping the H.O. nibble from 
each digit in the string. Converting 123 ($31 $32 $33) in this fashion yields 3 
bytes: $010203; the correct value for 123 is $7B. Converting a string of digits 
to an integer requires more sophistication than this; the conversion above 
works only for single digits.

2.14.2 HLA Support for ASCII Characters
Although you could easily store character values in byte variables and use 
the corresponding numeric equivalent ASCII code when using a character 
literal in your program, such agony is unnecessary. HLA provides support 
for character variables and literals in your assembly language programs.

Character literal constants in HLA take one of two forms: a single 
character surrounded by apostrophes or a hash mark (#) followed by a 
numeric constant in the range 0..127 (specifying the ASCII code of the 
character). Here are some examples:

          'A'   #65    #$41    #%0100_0001

Note that these examples all represent the same character ('A') because 
the ASCII code of 'A' is 65.

With one exception, only a single character may appear between the 
apostrophes in a literal character constant. That single exception is the apos-
trophe character itself. If you wish to create an apostrophe literal constant, 
place four apostrophes in a row (i.e., double up the apostrophe inside the 
surrounding apostrophes):

          '''' 

The hash mark operator (#) must precede a legal HLA numeric constant 
(either decimal, hexadecimal, or binary, as the examples above indicate). In 
particular, the hash mark is not a generic character conversion function; it 
cannot precede registers or variable names, only constants. 

As a general rule, you should always use the apostrophe form of the char-
acter literal constant for graphic characters (that is, those that are printable 
or displayable). Use the hash mark form for control characters (that are 
invisible or do funny things when you print them) or for extended ASCII 
characters that may not display or print properly within your source code.

Notice the difference between a character literal constant and a string 
literal constant in your programs. Strings are sequences of zero or more 
characters surrounded by quotation marks; characters are surrounded by 
apostrophes. 

It is especially important to realize that

          'A' =/ "A"
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The character constant 'A' and the string containing the single character 
A have two completely different internal representations. If you attempt to 
use a string containing a single character where HLA expects a character 
constant, HLA will report an error. Strings and string constants are the 
subject of Chapter 4.

To declare a character variable in an HLA program, you use the char 
data type. For example, the following declaration demonstrates how to 
declare a variable named UserInput:

static
     UserInput:          char;

This declaration reserves 1 byte of storage that you could use to store any 
character value (including 8-bit extended ASCII characters). You can also 
initialize character variables as the following example demonstrates:

static

     TheCharA:          char := 'A';
     ExtendedChar:      char := #128;

Because character variables are 8-bit objects, you can manipulate them 
using 8-bit registers. You can move character variables into 8-bit registers, 
and you can store the value of an 8-bit register into a character variable.

The HLA Standard Library provides a handful of routines that you 
can use for character I/O and manipulation; these include stdout.putc, 
stdout.putcSize, stdout.put, stdin.getc, and stdin.get.

The stdout.putc routine uses the following calling sequence:

      stdout.putc( charvar );

This procedure outputs the single-character parameter passed to it as a 
character to the standard output device. The parameter may be any char 
constant or variable, or a byte variable or register.12

The stdout.putcSize routine provides output width control when 
displaying character variables. The calling sequence for this procedure is

      stdout.putcSize( charvar, widthInt32, fillchar );

This routine prints the specified character (parameter c) using at least 
widthInt32 print positions.13 If the absolute value of widthInt32 is greater than 
1, then stdout.putcSize prints the fillchar character as padding. If the value 
of widthInt32 is positive, then stdout.putcSize prints the character right justified 

12 If you specify a byte variable or a byte-sized register as the parameter, the stdout.putc routine 
will output the character whose ASCII code appears in the variable or register.
13 The only time stdout.putcSize uses more print positions than you specify is when you specify 0 
as the width; then this routine uses exactly one print position.
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in the print field; if widthInt32 is negative, then stdout.putcSize prints the 
character left justified in the print field. Because character output is usually 
left justified in a field, the widthInt32 value will normally be negative for this 
call. The space character is the most common fillchar value.

You can also print character values using the generic stdout.put routine. If 
a character variable appears in the stdout.put parameter list, then stdout.put 
will automatically print it as a character value. For example:

     stdout.put( "Character c = '", c, "'", nl );

You can read characters from the standard input using the stdin.getc 
and stdin.get routines. The stdin.getc routine does not have any parameters. 
It reads a single character from the standard input buffer and returns this 
character in the AL register. You may then store the character value away 
or otherwise manipulate the character in the AL register. The program in 
Listing 2-10 reads a single character from the user, converts it to uppercase if 
it is a lowercase character, and then displays the character.

program charInputDemo;
#include( "stdlib.hhf" )
begin charInputDemo;

    stdout.put( "Enter a character: " );
    stdin.getc();
    if( al >= 'a' ) then
    
        if( al <= 'z' ) then
        
            and( $5f, al );
            
        endif;
        
    endif;
    stdout.put
    ( 
        "The character you entered, possibly ", nl,
        "converted to uppercase, was '"
    );
    stdout.putc( al );
    stdout.put( "'", nl );
   
end charInputDemo;

Listing 2-10: Character input sample

You can also use the generic stdin.get routine to read character variables 
from the user. If a stdin.get parameter is a character variable, then the 
stdin.get routine will read a character from the user and store the character 
value into the specified variable. Listing 2-11 is a rewrite of Listing 2-10 using 
the stdin.get routine.
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program charInputDemo2;
#include( "stdlib.hhf" )
static
    c:char;
    
begin charInputDemo2;

    stdout.put( "Enter a character: " );
    stdin.get(c);
    if( c >= 'a' ) then
    
        if( c <= 'z' ) then
        
            and( $5f, c );
            
        endif;
        
    endif;
    stdout.put
    ( 
        "The character you entered, possibly ", nl,
        "converted to uppercase, was '",
        c,
        "'", nl 
    );
   
end charInputDemo2;

Listing 2-11: stdin.get character input sample

As you may recall from the last chapter, the HLA Standard Library 
buffers its input. Whenever you read a character from the standard input 
using stdin.getc or stdin.get, the library routines read the next available 
character from the buffer; if the buffer is empty, then the program reads a 
new line of text from the user and returns the first character from that line. 
If you want to guarantee that the program reads a new line of text from the 
user when you read a character variable, you should call the stdin.flushInput 
routine before attempting to read the character. This will flush the current 
input buffer and force the input of a new line of text on the next input 
(probably a stdin.getc or stdin.get call).

The end of line is problematic. Different operating systems handle the 
end of line differently on output versus input. From the console device, 
pressing the ENTER key signals the end of a line; however, when reading data 
from a file, you get an end-of-line sequence that is a linefeed or a carriage 
return/line feed pair (under Windows) or just a line feed (under Linux/
Mac OS X/FreeBSD). To help solve this problem, HLA’s Standard Library 
provides an “end of line” function. This procedure returns true (1) in the 
AL register if all the current input characters have been exhausted; it returns 
false (0) otherwise. The sample program in Listing 2-12 demonstrates the 
stdin.eoln function.
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program eolnDemo;
#include( "stdlib.hhf" )
begin eolnDemo;

    stdout.put( "Enter a short line of text: " );
    stdin.flushInput();
    repeat
    
        stdin.getc();
        stdout.putc( al );
        stdout.put( "=$", al, nl );
        
    until( stdin.eoln() );
    
end eolnDemo;

Listing 2-12: Testing for end of line using stdin.eoln

The HLA language and the HLA Standard Library provide many other 
procedures and additional support for character objects. Chapters 4 and 11, 
as well as the HLA reference documentation, describe how to use these 
features.

2.15 The Unicode Character Set

Although the ASCII character set is, unquestionably, the most popular char-
acter representation on computers, it is certainly not the only format around. 
For example, IBM uses the EBCDIC code on many of its mainframe and mini-
computer lines. Because EBCDIC appears mainly on IBM’s big iron and you’ll 
rarely encounter it on personal computer systems, we will not consider that 
character set in this text. Another character representation that is becoming 
popular on small computer systems (and large ones, for that matter) is the 
Unicode character set. Unicode overcomes two of ASCII’s greatest limitations: 
the limited character space (i.e., a maximum of 128/256 characters in an 8-bit 
byte) and the lack of international (beyond the United States) characters.

Unicode uses a 16-bit word to represent a single character. Therefore, 
Unicode supports up to 65,536 different character codes. This is obviously a 
huge advance over the 256 possible codes we can represent with an 8-bit byte. 
Unicode is upward compatible from ASCII. Specifically, if the H.O. 9 bits 
of a Unicode character contain 0, then the L.O. 7 bits represent the same 
character as the ASCII character with the same character code. If the H.O. 
9 bits contain some nonzero value, then the character represents some 
other value. If you’re wondering why so many different character codes are 
necessary, simply note that certain Asian character sets contain 4,096 char-
acters (at least their Unicode subset does).

This text will stick to the ASCII character set except for a few brief 
mentions of Unicode here and there. Eventually, this text may have to 
eliminate the discussion of ASCII in favor of Unicode because many new 
operating systems are using Unicode internally (and converting to ASCII as 
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necessary). Unfortunately, many string algorithms are not as conveniently 
written for Unicode as for ASCII (especially character set functions), so we’ll 
stick with ASCII in this text as long as possible.

2.16 For More Information

The electronic edition of this book (on Webster at http://webster.cs.ucr.edu/ 
or http://artofasm.com/) contains some additional information on data 
representation you may find useful. For general information about data 
representation, you should consider reading my book Write Great Code, 
Volume 1 (No Starch Press, 2004), or a textbook on data structures and 
algorithms (available at any bookstore).
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3
M E M O R Y  A C C E S S  A N D  

O R G A N I Z A T I O N

Chapters 1 and 2 show you how to declare 
and access simple variables in an assembly 

language program. This chapter fully explains 
80x86 memory access. You will learn how to 

efficiently organize your variable declarations to speed 
up access to their data. This chapter will teach you about the 80x86 stack and 
how to manipulate data on the stack. Finally, this chapter will teach you about 
dynamic memory allocation and the heap.

This chapter discusses several important concepts, including:

80x86 memory addressing modes

Indexed and scaled-indexed addressing modes 

Memory organization

Memory allocation by program

Data type coercion
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The 80x86 stack

Dynamic memory allocation 

This chapter will teach to you make efficient use of your computer’s 
memory resources.

3.1 The 80x86 Addressing Modes

The 80x86 processors let you access memory in many different ways. 
Until now, you’ve seen only a single way to access a variable, the so-called 
displacement-only addressing mode. In this section you’ll see some additional 
ways your programs can access memory using 80x86 memory addressing modes. 
The 80x86 memory addressing modes provide flexible access to memory, 
allowing you to easily access variables, arrays, records, pointers, and other 
complex data types. Mastery of the 80x86 addressing modes is the first step 
toward mastering 80x86 assembly language.

When Intel designed the original 8086 processor, it provided the 
processor with a flexible, though limited, set of memory addressing modes. 
Intel added several new addressing modes when it introduced the 80386 
microprocessor. However, in 32-bit environments like Windows, Mac OS X, 
FreeBSD, and Linux, these earlier addressing modes are not very useful; 
indeed, HLA doesn’t even support the use of these older, 16-bit-only address-
ing modes. Fortunately, anything you can do with the older addressing modes 
can be done with the new addressing modes. Therefore, you won’t need to 
bother learning the old 16-bit addressing modes when writing code for today’s 
high-performance operating systems. Do keep in mind, however, that if you 
intend to work under MS-DOS or some other 16-bit operating system, you 
will need to study up on those old addressing modes (see the 16-bit edition 
of this book at http://webster.cs.ucr.edu/ for details).

3.1.1 80x86 Register Addressing Modes

Most 80x86 instructions can operate on the 80x86’s general-purpose register 
set. By specifying the name of the register as an operand to the instruction, 
you can access the contents of that register. Consider the 80x86 mov (move) 
instruction:

mov( source, destination );

This instruction copies the data from the source operand to the 
destination operand. The 8-bit, 16-bit, and 32-bit registers are certainly valid 
operands for this instruction. The only restriction is that both operands must 
be the same size. Now let’s look at some actual 80x86 mov instructions:

     mov( bx, ax );          // Copies the value from bx into ax
     mov( al, dl );          // Copies the value from al into dl
     mov( edx, esi );        // Copies the value from edx into esi
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     mov( bp, sp );          // Copies the value from bp into sp
     mov( cl, dh );          // Copies the value from cl into dh
     mov( ax, ax );          // Yes, this is legal!

The registers are the best place to keep variables. Instructions using the 
registers are shorter and faster than those that access memory. Of course, 
most computations require at least one register operand, so the register 
addressing mode is very popular in 80x86 assembly code.

3.1.2 80x86 32-Bit Memory Addressing Modes

The 80x86 provides hundreds of different ways to access memory. This may 
seem like quite a lot at first, but fortunately most of the addressing modes are 
simple variants of one another, so they’re very easy to learn. And learn them 
you should! The key to good assembly language programming is the proper 
use of memory addressing modes.

The addressing modes provided by the 80x86 family include displacement-
only, base, displacement plus base, base plus indexed, and displacement plus 
base plus indexed. Variations on these five forms provide all the different 
addressing modes on the 80x86. See, from hundreds down to five. It’s not so 
bad after all! 

3.1.2.1 The Displacement-Only Addressing Mode

The most common addressing mode, and the one that’s easiest to understand, 
is the displacement-only (or direct) addressing mode. The displacement-only 
addressing mode consists of a 32-bit constant that specifies the address of 
the target location. Assuming that variable j is an int8 variable appearing at 
address $8088, the instruction mov( j, al ); loads the AL register with a copy 
of the byte at memory location $8088. Likewise, if int8 variable k is at address 
$1234 in memory, then the instruction mov( dl, k ); stores the value in the 
DL register to memory location $1234 (see Figure 3-1).

Figure 3-1: Displacement-only (direct) addressing mode

The displacement-only addressing mode is perfect for accessing simple 
scalar variables. This is named the displacement-only addressing mode 
because a 32-bit constant (displacement) follows the mov opcode in memory. 
On the 80x86 processors, this displacement is an offset from the beginning 
of memory (that is, address 0). The examples in this chapter often access 

$8088 (Address of j)AL

DL $1234 (Address of k)

mov( j, al );

mov( dl, k );
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bytes in memory. Don’t forget, however, that you can also access words and 
double words on the 80x86 processors by specifying the address of their first 
byte (see Figure 3-2).

Figure 3-2: Accessing a word or dword using the displacement-only 
addressing mode

3.1.2.2 The Register-Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register using 
the register-indirect addressing modes. The term indirect means that the 
operand is not the actual address, but rather the operand’s value specifies 
the memory address to use. In the case of the register-indirect addressing 
modes, the value held in the register is the address of the memory location to 
access. For example, the instruction mov( eax, [ebx] ); tells the CPU to store 
EAX’s value at the location whose address is in EBX (the square brackets 
around EBX tell HLA to use the register-indirect addressing mode).

There are eight forms of this addressing mode on the 80x86. The follow-
ing instructions are examples of these eight forms:

          mov( [eax], al );
          mov( [ebx], al );
          mov( [ecx], al );
          mov( [edx], al );
          mov( [edi], al );
          mov( [esi], al );
          mov( [ebp], al );
          mov( [esp], al );

These eight addressing modes reference the memory location at the 
offset found in the register enclosed by brackets (EAX, EBX, ECX, EDX, 
EDI, ESI, EBP, or ESP, respectively). 

Note that the register-indirect addressing modes require a 32-bit 
register. You cannot specify a 16-bit or 8-bit register when using an indirect 
addressing mode.1 Technically, you could load a 32-bit register with an 

1 Actually, the 80x86 does support addressing modes involving certain 16-bit registers, as 
mentioned earlier. However, HLA does not support these modes and they are not useful 
under 32-bit operating systems.

$1235AX $1234 (Address of k)

$1003
$1002
$1002EDX

mov( k, ax );

mov( edx, m ); $1000 (Address of m)
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arbitrary numeric value and access that location indirectly using the 
register-indirect addressing mode:

          mov( $1234_5678, ebx );
          mov( [ebx], al );     // Attempts to access location $1234_5678.

Unfortunately (or fortunately, depending on how you look at it), 
this will probably cause the operating system to generate a protection fault 
because it’s not always legal to access arbitrary memory locations. As it turns 
out, there are better ways to load the address of some object into a register; 
you’ll see how to do this shortly.

The register-indirect addressing modes have many uses. You can use them 
to access data referenced by a pointer, you can use them to step through 
array data, and, in general, you can use them whenever you need to modify 
the address of a variable while your program is running.

The register-indirect addressing mode provides an example of an anon-
ymous variable. When using a register-indirect addressing mode, you refer to 
the value of a variable by its numeric memory address (e.g., the value you 
load into a register) rather than by the name of the variable—hence the 
phrase anonymous variable.

HLA provides a simple operator that you can use to take the address 
of a static variable and put this address into a 32-bit register. This is the & 
(address-of) operator (note that this is the same symbol that C/C++ uses for 
the address-of operator). The following example loads the address of variable j 
into EBX and then stores EAX’s current value into j using a register-indirect 
addressing mode:

     mov( &j, ebx );               // Load address of j into ebx.
     mov( eax, [ebx] );            // Store eax into j.

Of course, it would have been easier to store EAX’s value directly into j 
rather than using two instructions to do this indirectly. However, you can easily 
imagine a code sequence where the program loads one of several different 
addresses into EBX prior to the execution of the mov( eax, [ebx]); statement, 
thus storing EAX into one of several different locations depending on the 
execution path of the program.

WARNING The & (address-of) operator is not a general address-of operator like the & operator in 
C/C++. You may apply this operator only to static variables.2 You cannot apply it to 
generic address expressions or other types of variables. In Section 3.13, you will learn 
about the load effective address instruction that provides a general solution for 
obtaining the address of some variable in memory.

2 The term static here indicates a static, readonly, or storage object.
Memory Access and Organizat ion 115



AAL2E_03.book  Page 116  Thursday, February 18, 2010  12:49 PM
3.1.2.3 Indexed Addressing Modes

The indexed addressing modes use the following syntax:

     mov( VarName[ eax ], al );
     mov( VarName[ ebx ], al );
     mov( VarName[ ecx ], al );
     mov( VarName[ edx ], al );
     mov( VarName[ edi ], al );
     mov( VarName[ esi ], al );
     mov( VarName[ ebp ], al );
     mov( VarName[ esp ], al );

VarName is the name of some variable in your program.
The indexed addressing modes compute an effective address3 by add-

ing the address of the variable to the value of the 32-bit register appearing 
inside the square brackets. Their sum is the actual memory address the instruc-
tion accesses. So if VarName is at address $1100 in memory and EBX contains 8, 
then mov(VarName[ ebx ], al); loads the byte at address $1108 into the AL 
register (see Figure 3-3).

Figure 3-3: Indexed addressing mode

The indexed addressing modes are really handy for accessing elements 
of arrays. You will see how to use these addressing modes for that purpose in 
Chapter 4.

3.1.2.4 Variations on the Indexed Addressing Mode

There are two important syntactical variations of the indexed addressing 
mode. Both forms generate the same basic machine instructions, but their 
syntax suggests other uses for these variants.

The first variant uses the following syntax:

     mov( [ ebx + constant ], al );
     mov( [ ebx - constant ], al );

These examples use only the EBX register. However, you can use any of 
the other 32-bit general-purpose registers in place of EBX. This form com-
putes its effective address by adding the value in EBX to the specified constant 
or subtracting the specified constant from EBX (see Figures 3-4 and 3-5).

3 The effective address is the ultimate address in memory that an instruction will access, once all 
the address calculations are complete.

mov( VarName[ ebx ], al );

EBX

VarName

$08 +

AL$1108

This is the
address of
VarName.

$1100
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Figure 3-4: Indexed addressing mode using a register plus a constant

Figure 3-5: Indexed addressing mode using a register minus a constant

This particular variant of the addressing mode is useful if a 32-bit 
register contains the base address of a multibyte object and you wish to 
access a memory location some number of bytes before or after that location. 
One important use of this addressing mode is accessing fields of a record (or 
structure) when you have a pointer to the record data. This addressing mode 
is also invaluable for accessing automatic (local) variables in procedures (see 
Chapter 5 for more details).

The second variant of the indexed addressing mode is actually a combi-
nation of the previous two forms. The syntax for this version is the following:

     mov( VarName[ ebx + constant ], al );
     mov( VarName[ ebx - constant ], al );

Once again, this example uses only the EBX register. You may substi-
tute any of the 32-bit general-purpose registers in lieu of EBX in these two 
examples. This particular form is useful when accessing elements of an array 
of records (structures) in an assembly language program (more on that in 
Chapter 4).

These instructions compute their effective address by adding or subtract-
ing the constant value from VarName’s address and then adding the value in 
EBX to this result. Note that HLA, not the CPU, computes the sum or differ-
ence of VarName’s address and constant. The actual machine instructions above 
contain a single constant value that the instructions add to the value in EBX 
at runtime. Because HLA substitutes a constant for VarName, it can reduce an 
instruction of the form

mov( VarName[ ebx + constant], al );

mov( [ ebx + constant ], al );

EBX

constant +

AL

mov( [ ebx - constant ], al );

−

AL

EBX

constant
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to an instruction of the form

mov( constant1[ ebx + constant2], al );

Because of the way these addressing modes work, this is semantically 
equivalent to

mov( [ebx + (constant1 + constant2)], al );

HLA will add the two constants together at compile time, effectively 
producing the following instruction:

mov( [ebx + constant_sum], al );

Of course, there is nothing special about subtraction. You can easily 
convert the addressing mode involving subtraction to addition by simply 
taking the two’s complement of the 32-bit constant and then adding this 
complemented value (rather than subtracting the original value).

3.1.2.5 Scaled-Indexed Addressing Modes

The scaled-indexed addressing modes are similar to the indexed addressing 
modes with two differences: (1) The scaled-indexed addressing modes allow 
you to combine two registers plus a displacement, and (2) the scaled-indexed 
addressing modes let you multiply the index register by a (scaling) factor of 
1, 2, 4, or 8. The syntax for these addressing modes is 

     VarName[ IndexReg32*scale ]
     VarName[ IndexReg32*scale + displacement ]
     VarName[ IndexReg32*scale - displacement ]

     [ BaseReg32 + IndexReg32*scale ]
     [ BaseReg32 + IndexReg32*scale + displacement ]
     [ BaseReg32 + IndexReg32*scale - displacement ]

     VarName[ BaseReg32 + IndexReg32*scale ]
     VarName[ BaseReg32 + IndexReg32*scale + displacement ]
     VarName[ BaseReg32 + IndexReg32*scale - displacement ]

In these examples, BaseReg32 represents any general-purpose 32-bit 
register, IndexReg32 represents any general-purpose 32-bit register except 
ESP, and scale must be one of the constants 1, 2, 4, or 8.

The primary difference between the scaled-indexed addressing modes 
and the indexed addressing modes is the inclusion of the IndexReg32*scale 
component. These modes compute the effective address by adding in the 
value of this new register multiplied by the specified scaling factor (see 
Figure 3-6 for an example involving EBX as the base register and ESI as 
the index register).
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Figure 3-6: Scaled-indexed addressing mode

In Figure 3-6, suppose that EBX contains $100, ESI contains $20, and 
VarName is at base address $2000 in memory; then the following instruction

mov( VarName[ ebx + esi*4 + 4 ], al );

will move the byte at address $2184 ($100 + $20*4 + 4) into the AL register.
The scaled-indexed addressing modes are useful for accessing elements 

of arrays whose elements are 2, 4, or 8 bytes each. These addressing modes 
are also useful for access elements of an array when you have a pointer to the 
beginning of the array. 

3.1.2.6 Addressing Mode Wrap-up

Well, believe it or not, you’ve just learned several hundred addressing modes! 
That wasn’t hard now, was it? If you’re wondering where all these modes 
came from, just note that the register-indirect addressing mode isn’t a single 
addressing mode but eight different addressing modes (involving the eight 
different registers). Combinations of registers, constant sizes, and other 
factors multiply the number of possible addressing modes on the system. In 
fact, you need only memorize about two dozen forms and you’ve got it made. 
In practice, you’ll use less than half the available addressing modes in any 
given program (and many addressing modes you may never use at all). So 
learning all these addressing modes is actually much easier than it sounds.

3.2 Runtime Memory Organization

An operating system like Mac OS X, FreeBSD, Linux, or Windows tends to 
put different types of data into different sections (or segments) of memory. 
Although it is possible to reconfigure memory to your choice by running the 
linker and specifying various parameters, by default Windows loads an HLA 
program into memory using the organization appearing in Figure 3-7 (Linux, 
Mac OS X, and FreeBSD are similar, though they rearrange some of the 
sections).

mov( VarName[ ebx + esi*scale ], al );

AL

EBX

+

+

VarName

ESI * scale
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Figure 3-7: HLA typical runtime memory organization

The operating system reserves the lowest memory addresses. Generally, 
your application cannot access data (or execute instructions) at these low 
addresses. One reason the operating system reserves this space is to help trap 
NULL pointer references. If you attempt to access memory location 0, the 
operating system will generate a general protection fault, meaning you’ve 
accessed a memory location that doesn’t contain valid data. Because program-
mers often initialize pointers to NULL (0) to indicate that the pointer is not 
pointing anywhere, an access of location 0 typically means that the program-
mer has made a mistake and has not properly initialized a pointer to a legal 
(non-NULL) value. 

The remaining six areas in the memory map hold different types of 
data associated with your program. These sections of memory include the 
stack section, the heap section, the code section, the readonly section, the 
static section, and the storage section. Each of these memory sections 
correspond to some type of data you can create in your HLA programs. 
Each section is discussed in detail below.

3.2.1 The code Section
The code section contains the machine instructions that appear in an HLA 
program. HLA translates each machine instruction you write into a sequence 
of one or more byte values. The CPU interprets these byte values as machine 
instructions during program execution.

By default, when HLA links your program it tells the system that your 
program can execute instructions in the code segment and you can read data 
from the code segment. Note, specifically, that you cannot write data to the 
code segment. The operating system will generate a general protection fault 
if you attempt to store any data into the code segment.

Remember, machine instructions are nothing more than data bytes. In 
theory, you could write a program that stores data values into memory and 
then transfers control to the data it just wrote, thereby producing a program 
that writes itself as it executes. This possibility produces romantic visions of 
Artificial Intelligence programs that modify themselves to produce some desired 

High Addresses

Adrs = $0

Storage (Uninitialized) Variables

Static Variables

Read-Only Data

Constants (not user accessible)

Code (program instructions)

Heap (default size = 16MB)

Stack (default size = 16MB)

Reserved by OS (typically 128KB)
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result. In real life, the effect is somewhat less glamorous. Generally, self-
modifying programs are very difficult to debug because the instructions are 
constantly changing behind the programmer’s back. Because most modern 
operating systems make it very difficult to write self-modifying programs, we 
will not consider them any further in this text.

HLA automatically stores the data associated with your machine code 
into the code section. In addition to machine instructions, you can also store 
data into the code section by using the following pseudo-opcodes:4

The following byte statement exemplifies the syntax for each of these 
pseudo-opcodes:

byte comma_separated_list_of_byte_constants ;

Here are some examples:

     boolean true;
     char 'A';
     byte 0, 1, 2;
     byte "Hello", 0
     word 0, 2;
     int8 -5;
     uns32 356789, 0;

If more than one value appears in the list of values after the pseudo-
opcode, HLA emits each successive value to the code stream. So the first byte 
statement above emits 3 bytes to the code stream, the values 0, 1, and 2. If a 
string appears within a byte statement, HLA emits 1 byte of data for each 
character in the string. Therefore, the second byte statement above emits 6 
bytes: the characters H, e, l, l, and o, followed by a 0 byte.

Keep in mind that the CPU will attempt to treat data you emit to the 
code stream as machine instructions unless you take special care not to allow 
the execution of the data. For example, if you write something like the 
following:

          mov( 0, ax );
          byte 0,1,2,3;
          add( bx, cx );

4 This isn’t a complete list. HLA generally allows you to use any scalar data type name as a 
statement to reserve storage in the code section. You’ll learn more about the available data 
types in Chapter 4.

byte int8

word int16

dword in32

uns8 boolean

uns16 char

uns32
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your program will attempt to execute the 0, 1, 2, and 3 byte values as machine 
instructions after executing the mov. Unless you know the machine code for a 
particular instruction sequence, sticking such data values into the middle of 
your code will generally crash your program. Typically when you place such 
data in your programs, you’ll execute some code that transfers control 
around the data.

3.2.2 The static Section

The static section is where you will typically declare your variables. Although 
the static section syntactically appears as part of a program or procedure, 
keep in mind that HLA moves all static variables to the static section in 
memory. Therefore, HLA does not sandwich the variables you declare in 
the static section between procedures in the code section.

In addition to declaring static variables, you can also embed lists of data 
into the static declaration section. You use the same technique to embed 
data into your static section that you use to embed data into the code section: 
You use the byte, word, dword, uns32, and so on pseudo-opcodes. Consider the 
following example:

static
     b:   byte := 0;
          byte 1,2,3;

     u:   uns32 := 1;
          uns32 5,2,10;

     c:   char;
          char 'a', 'b', 'c', 'd', 'e', 'f';

     bn: boolean;
          boolean true;

Data that HLA writes to the static memory segment using these pseudo-
opcodes is written to the segment after the preceding variables. For example, 
the byte values 1, 2, and 3 are emitted to the static section after b’s 0 byte. 
Because there aren’t any labels associated with these values, you do not 
have direct access to these values in your program. You can use the indexed 
addressing modes to access these extra values (examples appear in Chapter 4).

In the examples above, note that the c and bn variables do not have an 
(explicit) initial value. However, if you don’t provide an initial value, HLA 
will initialize the variables in the static section to all 0 bits, so HLA assigns 
the NUL character (ASCII code 0) to c as its initial value. Likewise, HLA 
assigns false as the initial value for bn. In particular, you should note that your 
variable declarations in the static section always consume memory, even if 
you haven’t assigned them an initial value. 
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3.2.3 The readonly Data Section

The readonly data section holds constants, tables, and other data that your 
program cannot change during execution. You create read-only objects by 
declaring them in the readonly declaration section. The readonly section is 
very similar to the static section with three primary differences:

The readonly section begins with the reserved word readonly rather than 
static.

All declarations in the readonly section generally have an initializer.

The system does not allow you to store data into a readonly object while 
the program is running.

Here’s an example:

readonly
     pi:              real32 := 3.14159;
     e:               real32 := 2.71;
     MaxU16:          uns16 := 65_535;
     MaxI16:          int16 := 32_767;

All readonly object declarations must have an initializer because you 
cannot initialize the value under program control.5 For all intents and 
purposes, you can think of readonly objects as constants. However, these 
constants consume memory, and other than the fact that you cannot write 
data to readonly objects, they behave like static variables. Because they 
behave like static objects, you cannot use a readonly object everywhere a 
constant is allowed; in particular, readonly objects are memory objects, so you 
cannot supply a readonly object (which you are treating like a constant) and 
some other memory object as the operands to an instruction.

As with the static section, you may embed data values in the readonly 
section using the byte, word, dword, and so on data declarations. For example:

readonly
     roArray: byte := 0;
              byte 1, 2, 3, 4, 5;
     qwVal: qword := 1;

qword 0;

3.2.4 The storage Section

The readonly section requires that you initialize all objects you declare. The 
static section lets you optionally initialize objects (or leave them uninitial-
ized, in which case they have the default initial value of 0). The storage 
section completes the initialization coverage: you use it to declare variables 

5 There is one exception you’ll see in Chapter 5.
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that are always uninitialized when the program begins running. The storage 
section begins with the storage reserved word and contains variable declara-
tions without initializers. Here is an example:

storage
     UninitUns32:     uns32;
     i:               int32;
     character:       char;
     b:               byte;

Linux, FreeBSD, Mac OS X, and Windows will initialize all storage objects 
to 0 when they load your program into memory. However, it’s probably not 
a good idea to depend on this implicit initialization. If you need an object 
initialized with 0, declare it in a static section and explicitly set it to 0.

Variables you declare in the storage section may consume less disk space 
in the executable file for the program. This is because HLA writes out initial 
values for readonly and static objects to the executable file, but it may use a 
compact representation for uninitialized variables you declare in the storage 
section; note, however, that this behavior is OS- and object-module-format 
dependent.

Because the storage section does not allow initialized values, you cannot 
put unlabeled values in the storage section using the byte, word, dword, and so 
on pseudo-opcodes.

3.2.5 The @nostorage Attribute

The @nostorage attribute lets you declare variables in the static data declara-
tion sections (i.e., static, readonly, and storage) without actually allocating 
memory for the variable. The @nostorage option tells HLA to assign the 
current address in a declaration section to a variable but not to allocate any 
storage for the object. That variable will share the same memory address as 
the next object appearing in the variable declaration section. Here is the 
syntax for the @nostorage option:

     variableName: varType; @nostorage;

Note that you follow the type name with @nostorage; rather than some 
initial value or just a semicolon. The following code sequence provides an 
example of using the @nostorage option in the readonly section:

readonly
     abcd: dword; nostorage;
           byte 'a', 'b', 'c', 'd';

In this example, abcd is a double word whose L.O. byte contains 97 ('a'), 
byte 1 contains 98 ('b'), byte 2 contains 99 ('c'), and the H.O. byte contains 
100 ('d'). HLA does not reserve storage for the abcd variable, so HLA associates 
the following 4 bytes in memory (allocated by the byte directive) with abcd.
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Note that the @nostorage attribute is legal only in the static, storage, and 
readonly sections (the so-called static declarations sections). HLA does not 
allow its use in the var section that you’ll read about next.

3.2.6 The var Section

HLA provides another variable declaration section, the var section, that 
you can use to create automatic variables. Your program will allocate storage 
for automatic variables whenever a program unit (i.e., main program or 
procedure) begins execution, and it will deallocate storage for automatic 
variables when that program unit returns to its caller. Of course, any auto-
matic variables you declare in your main program have the same lifetime6 as all 
the static, readonly, and storage objects, so the automatic allocation feature 
of the var section is wasted in the main program. In general, you should use 
automatic objects only in procedures (see Chapter 5 for details). HLA allows 
them in your main program’s declaration section as a generalization.

Because variables you declare in the var section are created at runtime, 
HLA does not allow initializers on variables you declare in this section. So the 
syntax for the var section is nearly identical to that for the storage section; 
the only real difference in the syntax between the two is the use of the var 
reserved word rather than the storage reserved word.7 The following example 
illustrates this:

var
     vInt:      int32;
     vChar:     char;

HLA allocates variables you declare within the var section within the 
stack memory section. HLA does not allocate var objects at fixed locations; 
instead, it allocates these variables in an activation record associated with 
the current program unit. Chapter 5 discusses activation records in greater 
detail; for now it is important only to realize that HLA programs use the EBP 
register as a pointer to the current activation record. Therefore, whenever 
you access a var object, HLA automatically replaces the variable name with 
[EBP±displacement]. Displacement is the offset of the object within the activa-
tion record. This means that you cannot use the full scaled-indexed addressing 
mode (a base register plus a scaled index register) with var objects because 
var objects already use the EBP register as their base register. Although you 
will not directly use the two register addressing modes often, the fact that the 
var section has this limitation is a good reason to avoid using the var section 
in your main program.

6 The lifetime of a variable is the point from which memory is first allocated to the point the 
memory is deallocated for that variable.
7 Actually, there are a few other, minor, differences, but we won’t deal with those differences in 
this text. See the HLA language reference manual for more details.
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3.2.7 Organization of Declaration Sections Within Your Programs

The static, readonly, storage, and var sections may appear zero or more times 
between the program header and the associated begin for the main program. 
Between these two points in your program, the declaration sections may 
appear in any order, as the following example demonstrates:

program demoDeclarations;

static
     i_static:     int32;

var
     i_auto:       int32;

storage
     i_uninit:     int32;

readonly
     i_readonly:   int32 := 5;

static
     j:            uns32;

var
     k:            char;

readonly
     i2:           uns8 := 9;

storage
     c:            char;

storage
     d:            dword;

begin demoDeclarations;
 
     << Code goes here. >>

end demoDeclarations;

In addition to demonstrating that the sections may appear in an arbi-
trary order, this section also demonstrates that a given declaration section 
may appear more than once in your program. When multiple declaration 
sections of the same type (for example, the three storage sections above) 
appear in a declaration section of your program, HLA combines them into 
a single group. 
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3.3 How HLA Allocates Memory for Variables

As you’ve seen, the 80x86 CPU doesn’t deal with variables that have names 
like I, Profits, and LineCnt. The CPU deals strictly with numeric addresses it 
can place on the address bus like $1234_5678, $0400_1000, and $8000_CC00. 
HLA, on the other hand, does not force to you refer to variable objects 
by their addresses (which is nice, because names are so much easier to 
remember). This is good, but it does obscure what is really going on. In this 
section, we’ll take a look at how HLA associates numeric addresses with your 
variables so you’ll understand (and appreciate) the process that is taking 
place behind your back.

Take another look at Figure 3-7. As you can see, the various memory 
sections tend to be adjacent to one another. Therefore, if the size of one 
memory section changes, then this affects the starting address of all the 
following sections in memory. For example, if you add a few additional 
machine instructions to your program and increase the size of the code 
section, this may affect the starting address of the static section in memory, 
thus changing the addresses of all your static variables. Keeping track of 
variables by their numeric address (rather than by their names) is difficult 
enough; imagine how much worse it would be if the addresses are constantly 
shifting around as you add and remove machine instructions in your program! 
Fortunately, you don’t have to keep track of variable addresses; HLA does 
that bookkeeping for you.

HLA associates a current location counter with each of the three static 
declaration sections (static, readonly, and storage). These location counters 
initially contain 0, and whenever you declare a variable in one of the static 
sections, HLA associates the current value of that section’s location counter 
with the variable; HLA also bumps up the value of that location counter by 
the size of the object you’re declaring. As an example, assume that the 
following is the only static declaration section in a program:

static
     b     :byte;                    // Location counter = 0, size = 1
     w     :word;                    // Location counter = 1, size = 2
     d     :dword;                   // Location counter = 3, size = 4
     q     :qword;                   // Location counter = 7, size = 8
     l     :lword;                   // Location counter = 15, size = 16
                                     // Location counter is now 31.

Of course, the runtime address of each of these variables is not the value 
of the location counter. First of all, HLA adds in the base address of the 
static memory section to each of these location counter values (which we 
call displacements or offsets). Second, there may be other static objects in 
modules that you link with your program (e.g., from the HLA Standard 
Library) or even additional static sections in the same source file, and the 
linker has to merge the static sections together. Hence, these offsets may 
have very little bearing on the final address of these variables in memory. 
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Nevertheless, one important fact remains: HLA allocates variables you 
declare in a single static declaration section in contiguous memory locations. 
That is, given the declaration above, w will immediately follow b in memory, d 
will immediately follow w in memory, q will immediately follow d, and so on. 
Generally, it’s not good coding style to assume that the system allocates 
variables this way, but sometimes it’s convenient to do so.

Note that HLA allocates memory objects you declare in readonly, static, 
and storage sections in completely different regions of memory. Therefore, 
you cannot assume that the following three memory objects appear in 
adjacent memory locations (indeed, they probably will not):

static
     b     :byte;
readonly
     w     :word := $1234;
storage
     d     :dword;

In fact, HLA will not even guarantee that variables you declare in 
separate static (or whatever) sections are adjacent in memory, even if there 
is nothing between the declarations in your code (for example, you cannot 
assume that b, w, and d are in adjacent memory locations in the following 
declarations, nor can you assume that they won’t be adjacent in memory):

static
     b     :byte;
static
     w     :word := $1234;
static
     d     :dword;

If your code requires these variables to consume adjacent memory 
locations, you must declare them in the same static section.

Note that HLA handles variables you declare in the var section a little 
differently than the variables you declare in one of the static sections. We’ll 
discuss the allocation of offsets to var objects in Chapter 5.

3.4 HLA Support for Data Alignment

In order to write fast programs, you need to ensure that you properly align 
data objects in memory. Proper alignment means that the starting address 
for an object is a multiple of some size, usually the size of an object if the 
object’s size is a power of 2 for values up to 16 bytes in length. For objects 
greater than 16 bytes, aligning the object on an 8-byte or 16-byte address 
boundary is probably sufficient. For objects less than 16 bytes, aligning the 
object at an address that is the next power of 2 greater than the object’s size 
is usually fine. Accessing data that is not aligned at an appropriate address 
may require extra time; so if you want to ensure that your program runs as 
rapidly as possible, you should try to align data objects according to their size.
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Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare a 
byte variable, it will consume 1 byte of storage, and the next variable you 
declare in that declaration section will have the address of that byte object 
plus 1. If the byte variable’s address happens to be an even address, then 
the variable following that byte will start at an odd address. If that following 
variable is a word or double-word object, then its starting address will not be 
optimal. In this section, we’ll explore ways to ensure that a variable is aligned 
at an appropriate starting address based on that object’s size.

Consider the following HLA variable declarations:

static
     dw:    dword;
     b:     byte;
     w:     word;
     dw2:   dword;
     w2:    word;
     b2:    byte;
     dw3:   dword;

The first static declaration in a program (running under Windows, 
Mac OS X, FreeBSD, Linux, and most 32-bit operating systems) places its vari-
ables at an address that is an even multiple of 4,096 bytes. Whatever variable 
first appears in the static declaration is guaranteed to be aligned on a 
reasonable address. Each successive variable is allocated at an address that is 
the sum of the sizes of all the preceding variables plus the starting address of 
that static section. Therefore, assuming HLA allocates the variables in the 
previous example at a starting address of 4096, HLA will allocate them at the 
following addresses:

                         // Start Adrs              Length
     dw:    dword;       //     4096                    4
     b:     byte;        //     4100                    1
     w:     word;        //     4101                    2
     dw2:   dword;       //     4103                    4
     w2:    word;        //     4107                    2
     b2:    byte;        //     4109                    1
     dw3:   dword;       //     4110                    4

With the exception of the first variable (which is aligned on a 4KB 
boundary) and the byte variables (whose alignment doesn’t matter), all 
of these variables are misaligned. The w, w2, and dw2 variables start at odd 
addresses, and the dw3 variable is aligned on an even address that is not a 
multiple of 4.

An easy way to guarantee that your variables are aligned properly is to 
put all the double-word variables first, the word variables second, and the 
byte variables last in the declaration, as shown here:

static
     dw:    dword;
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     dw2:   dword;
     dw3:   dword;
     w:     word;
     w2:    word;
     b:     byte;
     b2:    byte;

This organization produces the following addresses in memory:

                       // Start Adrs          Length
     dw:    dword;     //     4096                4
     dw2:   dword;     //     4100                4
     dw3:   dword;     //     4104                4
     w:     word;      //     4108                2
     w2:    word;      //     4110                2
     b:     byte;      //     4112                1
     b2:    byte;      //     4113                1

As you can see, these variables are all aligned at reasonable addresses.
Unfortunately, it is rarely possible for you to arrange your variables in 

this manner. While there are many technical reasons that make this align-
ment impossible, a good practical reason for not doing this is that it doesn’t 
let you organize your variable declarations by logical function (that is, you 
probably want to keep related variables next to one another regardless of 
their size).

To resolve this problem, HLA provides the align directive. The align 
directive uses the following syntax:

align( integer_constant );

The integer constant must be one of the following small unsigned 
integer values: 1, 2, 4, 8, or 16. If HLA encounters the align directive in a 
static section, it will align the very next variable on an address that is an 
even multiple of the specified alignment constant. The previous example 
could be rewritten, using the align directive, as follows:

static
     align( 4 );
     dw:     dword;
     b:      byte;
     align( 2 );
     w:      word;
     align( 4 );
     dw2:    dword;
     w2:     word;
     b2:     byte;
     align( 4 );
     dw3:    dword;

If you’re wondering how the align directive works, it’s really quite simple. 
If HLA determines that the current address (location counter value) is not 
130 Chapte r  3



AAL2E_03.book  Page 131  Thursday, February 18, 2010  12:49 PM
an even multiple of the specified value, HLA will quietly emit extra bytes of 
padding after the previous variable declaration until the current address in 
the static section is an even multiple of the specified value. This has the 
effect of making your program slightly larger (by a few bytes) in exchange 
for faster access to your data. Given that your program will grow by only a 
few bytes when you use this feature, this is probably a good trade-off.

As a general rule, if you want the fastest possible access, you should choose 
an alignment value that is equal to the size of the object you want to align. 
That is, you should align words to even boundaries using an align(2); state-
ment, double words to 4-byte boundaries using align(4);, quad words to 
8-byte boundaries using align(8);, and so on. If the object’s size is not a 
power of 2, align it to the next higher power of 2 (up to a maximum of 
16 bytes). Note, however, that you need only align real80 (and tbyte) 
objects on an 8-byte boundary.

Note that data alignment isn’t always necessary. The cache architecture 
of modern 80x86 CPUs actually handles most misaligned data. Therefore, 
you should use the alignment directives only with variables for which speedy 
access is absolutely critical. This is a reasonable space/speed trade-off.

3.5 Address Expressions

Earlier, this chapter points out that addressing modes take a couple generic 
forms, including the following:

VarName[ Reg32 ]
VarName[ Reg32 + offset ]
VarName[ RegNotESP32*scale ]
VarName[ Reg32 + RegNotESP32*scale ]
VarName[ RegNotESP32*scale + offset ]
VarName[ Reg32 + RegNotESP32*scale + offset ]

Another legal form, which isn’t actually a new addressing mode but 
simply an extension of the displacement-only addressing mode, is:

VarName[ offset ]

This latter example computes its effective address by adding the constant 
offset within the brackets to the variable’s address. For example, the instruc-
tion mov(Address[3], al); loads the AL register with the byte in memory that is 
3 bytes beyond the Address object (see Figure 3-8).

Always remember that the offset value in these examples must be a 
constant. If Index is an int32 variable, then Variable[Index] is not a legal 
address expression. If you wish to specify an index that varies at runtime, 
then you must use one of the indexed or scaled-indexed addressing modes.

Another important thing to remember is that the offset in Address[offset] 
is a byte address. Despite the fact that this syntax is reminiscent of array 
indexing in a high-level language like C/C++ or Pascal, this does not 
properly index into an array of objects unless Address is an array of bytes.
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Figure 3-8: Using an address expression to access data beyond a 
variable

This text will consider an address expression to be any legal 80x86 address-
ing mode that includes a displacement (i.e., variable name) or an offset. In 
addition to the above forms, the following are also address expressions:

[ Reg32 + offset ]
[ Reg32 + RegNotESP32*scale + offset ]

This book will not consider the following to be address expressions 
because they do not involve a displacement or offset component:

[ Reg32 ]
[ Reg32 + RegNotESP32*scale ]

Address expressions are special because those instructions containing 
an address expression always encode a displacement constant as part of the 
machine instruction. That is, the machine instruction contains some number 
of bits (usually 8 or 32) that hold a numeric constant. That constant is the 
sum of the displacement (i.e., the address or offset of the variable) plus the 
offset. Note that HLA automatically adds these two values together for you 
(or subtracts the offset if you use the - rather than + operator in the address-
ing mode).

Until this point, the offset in all the addressing mode examples has 
always been a single numeric constant. However, HLA also allows a constant 
expression anywhere an offset is legal. A constant expression consists of one or 
more constant terms manipulated by operators such as addition, subtraction, 
multiplication, division, modulo, and a wide variety of others. Most address 
expressions, however, will involve only addition, subtraction, multiplication, 
and sometimes division. Consider the following example:

mov( X[ 2*4+1 ], al );

This instruction will move the byte at address X+9 into the AL register.
The value of an address expression is always computed at compile time, 

never while the program is running. When HLA encounters the instruction 

AL

mov( i[3], al );

$1000 (Address of i)

$1003 (i+3)
$1002
$1001
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above, it calculates 2 * 4 + 1 on the spot and adds this result to the base 
address of X in memory. HLA encodes this single sum (base address of X plus 9) 
as part of the instruction; HLA does not emit extra instructions to compute 
this sum for you at runtime (which is good, because doing so would be less 
efficient). Because HLA computes the value of address expressions at 
compile time, all components of the expression must be constants because 
HLA cannot know the runtime value of a variable while it is compiling the 
program.

Address expressions are useful for accessing the data in memory beyond 
a variable, particularly when you’ve used the byte, word, dword, and so on 
statements in a static or readonly section to tack on additional bytes after a 
data declaration. For example, consider the program in Listing 3-1.

program adrsExpressions;
#include( "stdlib.hhf" )
static
  i: int8; @nostorage;
     byte 0, 1, 2, 3;

begin adrsExpressions;

  stdout.put
  (
    "i[0]=", i[0], nl,
    "i[1]=", i[1], nl,
    "i[2]=", i[2], nl,
    "i[3]=", i[3], nl
  );

end adrsExpressions;

Listing 3-1: Demonstration of address expressions

The program in Listing 3-1 will display the four values 0, 1, 2, and 3 as 
though they were array elements. This is because the value at the address of i 
is 0 (this program declares i using the @nostorage option, so i is the address of 
the next object in the static section, which just happens to be the value 0 
appearing as part of the byte statement). The address expression i[1] tells 
HLA to fetch the byte appearing at i’s address plus 1. This is the value 1, 
because the byte statement in this program emits the value 1 to the static 
segment immediately after the value 0. Likewise for i[2] and i[3], this 
program displays the values 2 and 3.

3.6 Type Coercion

Although HLA is fairly loose when it comes to type checking, HLA does 
ensure that you specify appropriate operand sizes to an instruction. For 
example, consider the following (incorrect) program:

program hasErrors;
static
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     i8:     int8;
     i16:    int16;
     i32:    int32;
begin hasErrors;

     mov( i8, eax );
     mov( i16, al );
     mov( i32, ax );

end hasErrors;

HLA will generate errors for these three mov instructions. This is because 
the operand sizes are incompatible. The first instruction attempts to move a 
byte into EAX, the second instruction attempts to move a word into AL, 
and the third instruction attempts to move a double word into AX. The mov 
instruction, of course, requires both operands to be the same size.

While this is a good feature in HLA,8 there are times when it gets in the 
way. Consider the following code fragments:

static 
     byte_values: byte; @nostorage;
                  byte  0, 1;

     ...

          mov( byte_values, ax );

In this example let’s assume that the programmer really wants to load 
the word starting at the address of byte_values into the AX register because 
she wants to load AL with 0 and AH with 1 using a single instruction (note 
that 0 is held in the L.O. memory byte and 1 is held in the H.O. memory 
byte). HLA will refuse, claiming there is a type mismatch error (because 
byte_values is a byte object and AX is a word object). The programmer 
could break this into two instructions, one to load AL with the byte at address 
byte_values and the other to load AH with the byte at address byte_values[1]. 
Unfortunately, this decomposition makes the program slightly less efficient 
(which was probably the reason for using the single mov instruction in the first 
place). Somehow, it would be nice if we could tell HLA that we know what 
we’re doing and we want to treat the byte_values variable as a word object. 
HLA’s type coercion facilities provide this capability.

Type coercion9 is the process of telling HLA that you want to treat an 
object as an explicit type, regardless of its actual type. To coerce the type of 
a variable, you use the following syntax:

(type newTypeName addressExpression)

8 After all, if the two operand sizes are different this usually indicates an error in the program.
9 This is also called type casting in some languages.
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The newTypeName item is the new type you wish to associate with the 
memory location specified by addressExpression. You may use this coercion 
operator anywhere a memory address is legal. To correct the previous 
example, so HLA doesn’t complain about type mismatches, you would use 
the following statement:

 mov( (type word byte_values), ax );

This instruction tells HLA to load the AX register with the word starting 
at address byte_values in memory. Assuming byte_values still contains its 
initial values, this instruction will load 0 into AL and 1 into AH.

Type coercion is necessary when you specify an anonymous variable as 
the operand to an instruction that directly modifies memory (e.g., neg, shl, 
not, and so on). Consider the following statement:

not( [ebx] );

HLA will generate an error on this instruction because it cannot deter-
mine the size of the memory operand. The instruction does not supply suffi-
cient information to determine whether the program should invert the bits 
in the byte pointed at by EBX, the word pointed at by EBX, or the double 
word pointed at by EBX. You must use type coercion to explicitly specify the 
size of anonymous references with these types of instructions:

not( (type byte [ebx]) );
not( (type dword [ebx]) );

WARNING Do not use the type coercion operator unless you know exactly what you are doing and 
fully understand the effect it has on your program. Beginning assembly language pro-
grammers often use type coercion as a tool to quiet the compiler when it complains about 
type mismatches without solving the underlying problem.

Consider the following statement (where byteVar is an 8-bit variable):

mov( eax, (type dword byteVar) );

Without the type coercion operator, HLA complains about this instruc-
tion because it attempts to store a 32-bit register in an 8-bit memory location. 
A beginning programmer, wanting his program to compile, may take a 
shortcut and use the type coercion operator, as shown in this instruction; 
this certainly quiets the compiler—it will no longer complain about a type 
mismatch—so the beginning programmer is happy. However, the program is 
still incorrect; the only difference is that HLA no longer warns you about 
your error. The type coercion operator does not fix the problem of attempt-
ing to store a 32-bit value into an 8-bit memory location—it simply allows the 
instruction to store a 32-bit value starting at the address specified by the 8-bit 
variable. The program still stores 4 bytes, overwriting the 3 bytes following 
byteVar in memory. This often produces unexpected results, including the 
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phantom modification of variables in your program.10 Another, rarer possi-
bility is for the program to abort with a general protection fault. This can 
occur if the 3 bytes following byteVar are not allocated in real memory or if 
those bytes just happen to fall in a read-only segment in memory. The impor-
tant thing to remember about the type coercion operator is this: If you cannot 
exactly state the effect this operator has, don’t use it.

Also keep in mind that the type coercion operator does not perform any 
translation of the data in memory. It simply tells the compiler to treat the bits 
in memory as a different type. It will not automatically extend an 8-bit value 
to 32 bits, nor will it convert an integer to a floating-point value. It simply 
tells the compiler to treat the bit pattern of the memory operand as a 
different type.

3.7 Register Type Coercion

You can also cast a register to a specific type using the type coercion operator. 
By default, the 8-bit registers are of type byte, the 16-bit registers are of type 
word, and the 32-bit registers are of type dword. With type coercion, you can 
cast a register as a different type as long as the size of the new type agrees with the 
size of the register. This is an important restriction that does not exist when 
applying type coercion to a memory variable.

Most of the time you do not need to coerce a register to a different type. 
As byte, word, and dword objects, registers are already compatible with all 1-, 2-, 
and 4-byte objects. However, there are a few instances where register type 
coercion is handy, if not downright necessary. Two examples include boolean 
expressions in HLA high-level language statements (e.g., if and while) and 
register I/O in the stdout.put and stdin.get (and related) statements.

In boolean expressions, HLA always treats byte, word, and dword objects as 
unsigned values. Therefore, without type coercion, the following if statement 
always evaluates false (because there is no unsigned value less than 0):

if( eax < 0 ) then

     stdout.put( "EAX is negative!", nl );

endif;

You can overcome this limitation by casting EAX as an int32 value:

if( (type int32 eax) < 0 ) then

     stdout.put( "EAX is negative!", nl );

endif;

10 If you have a variable immediately following byteVar in this example, the mov instruction will 
surely overwrite the value of that variable, whether or not you intend for this to happen.
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In a similar vein, the HLA Standard Library stdout.put routine always 
outputs byte, word, and dword values as hexadecimal numbers. Therefore, if 
you attempt to print a register, the stdout.put routine will print it as a hex 
value. If you would like to print the value as some other type, you can use 
register type coercion to achieve this:

stdout.put( "AL printed as a char = '", (type char al), "'", nl );

The same is true for the stdin.get routine. It will always read a hexa-
decimal value for a register unless you coerce its type to something other 
than byte, word, or dword.

3.8 The stack Segment and the push and pop Instructions

This chapter mentions that all variables you declare in the var section wind 
up in the stack memory segment. However, var objects are not the only things 
in the stack memory section; your programs manipulate data in the stack 
segment in many different ways. This section describes the stack and intro-
duces the push and pop instructions that manipulate data in the stack section.

The stack segment in memory is where the 80x86 maintains the stack. 
The stack is a dynamic data structure that grows and shrinks according to 
certain needs of the program. The stack also stores important information 
about the program including local variables, subroutine information, and 
temporary data. 

The 80x86 controls its stack via the ESP (stack pointer) register. When 
your program begins execution, the operating system initializes ESP with the 
address of the last memory location in the stack memory segment. Data is 
written to the stack segment by “pushing” data onto the stack and “popping” 
data off the stack. 

3.8.1 The Basic push Instruction

Consider the syntax for the 80x86 push instruction:

push( reg16 );
push( reg32 );
push( memory16 );
push( memory32 );
pushw( constant );
pushd( constant );

These six forms allow you to push word or dword registers, memory 
locations, and constants. You should specifically note that you cannot push 
byte values onto the stack.

The push instruction does the following:

ESP := ESP - Size_of_Register_or_Memory_Operand (2 or 4)
[ESP] := Operand's_Value
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The pushw and pushd operands are always 2- and 4-byte constants, 
respectively.

Assuming that ESP contains $00FF_FFE8, then the instruction push( eax ); 
will set ESP to $00FF_FFE4 and store the current value of EAX into memory 
location $00FF_FFE4, as Figures 3-9 and 3-10 show.

Figure 3-9: Stack segment before the push( eax ); operation

Figure 3-10: Stack segment after the push( eax ); operation

Note that the push( eax ); instruction does not affect the value of the 
EAX register.

Although the 80x86 supports 16-bit push operations, their primary use 
in is 16-bit environments such as MS-DOS. For maximum performance, the 
stack pointer’s value should always be an even multiple of 4; indeed, your 
program may malfunction under a 32-bit OS if ESP contains a value that is 
not a multiple of 4. The only practical reason for pushing less than 4 bytes 
at a time on the stack is to build up a double word via two successive word 
pushes.

3.8.2 The Basic pop Instruction
To retrieve data you’ve pushed onto the stack, you use the pop instruction. 
The basic pop instruction allows the following forms.

                 pop( reg16 );
                 pop( reg32 );
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                 pop( memory16 );
                 pop( memory32 );

Like the push instruction, the pop instruction supports only 16-bit and 
32-bit operands; you cannot pop an 8-bit value from the stack. As with the 
push instruction, you should avoid popping 16-bit values (unless you do two 
16-bit pops in a row) because 16-bit pops may leave the ESP register contain-
ing a value that is not an even multiple of 4. One major difference between 
push and pop is that you cannot pop a constant value (which makes sense, 
because the operand for push is a source operand, while the operand for pop 
is a destination operand).

Formally, here’s what the pop instruction does:

Operand := [ESP]
ESP := ESP + Size_of_Operand (2 or 4)

As you can see, the pop operation is the converse of the push operation. 
Note that the pop instruction copies the data from memory location [ESP] 
before adjusting the value in ESP. See Figures 3-11 and 3-12 for details on 
this operation.

Figure 3-11: Memory before a pop( eax ); operation

Figure 3-12: Memory after the pop( eax ); instruction

Note that the value popped from the stack is still present in memory. 
Popping a value does not erase the value in memory; it just adjusts the stack 
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pointer so that it points at the next value above the popped value. However, 
you should never attempt to access a value you’ve popped off the stack. The 
next time something is pushed onto the stack, the popped value will be 
obliterated. Because your code isn’t the only thing that uses the stack (for 
example, the operating system uses the stack as do subroutines), you cannot 
rely on data remaining in stack memory once you’ve popped it off the stack.

3.8.3 Preserving Registers with the push and pop Instructions

Perhaps the most common use of the push and pop instructions is to save 
register values during intermediate calculations. A problem with the 80x86 
architecture is that it provides very few general-purpose registers. Because 
registers are the best place to hold temporary values, and registers are also 
needed for the various addressing modes, it is very easy to run out of registers 
when writing code that performs complex calculations. The push and pop 
instructions can come to your rescue when this happens.

Consider the following program outline:

     << Some sequence of instructions that use the eax register >>

     << Some sequence of instructions that need to use eax, for a
          different purpose than the above instructions >>

     << Some sequence of instructions that need the original value in eax >>

The push and pop instructions are perfect for this situation. By inserting a 
push instruction before the middle sequence and a pop instruction after the 
middle sequence above, you can preserve the value in EAX across those 
calculations:

     << Some sequence of instructions that use the eax register >>
     push( eax );
     << Some sequence of instructions that need to use eax, for a
          different purpose than the above instructions >>
     pop( eax );
     << Some sequence of instructions that need the original value in eax >>

The push instruction above copies the data computed in the first sequence 
of instructions onto the stack. Now the middle sequence of instructions can 
use EAX for any purpose it chooses. After the middle sequence of instructions 
finishes, the pop instruction restores the value in EAX so the last sequence of 
instructions can use the original value in EAX.

3.9 The Stack Is a LIFO Data Structure

You can push more than one value onto the stack without first popping 
previous values off the stack. However, the stack is a last-in, first-out (LIFO) 
data structure, so you must be careful how you push and pop multiple values. 
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For example, suppose you want to preserve EAX and EBX across some block 
of instructions; the following code demonstrates the obvious way to handle 
this:

          push( eax );
          push( ebx );
          << Code that uses eax and ebx goes here. >>
          pop( eax );
          pop( ebx );

Unfortunately, this code will not work properly! Figures 3-13 through 3-16 
show the problem. Because this code pushes EAX first and EBX second, the 
stack pointer is left pointing at EBX’s value on the stack. When the pop( eax ); 
instruction comes along, it removes the value that was originally in EBX from 
the stack and places it in EAX! Likewise, the pop( ebx ); instruction pops the 
value that was originally in EAX into the EBX register. The end result is that 
this code manages to swap the values in the registers by popping them in the 
same order that it pushes them.

Figure 3-13: Stack after pushing EAX

Figure 3-14: Stack after pushing EBX
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Figure 3-15: Stack after popping EAX

Figure 3-16: Stack after popping EBX

To rectify this problem, you must note that the stack is a last-in, first-out 
data structure, so the first thing you must pop is the last thing you push onto 
the stack. Therefore, you must always observe the following maxim:

Always pop values in the reverse order that you push them.
The correction to the previous code is:

          push( eax );
          push( ebx );
          << Code that uses eax and ebx goes here. >>
          pop( ebx );
          pop( eax );

Another important maxim to remember is:

Always pop exactly the same number of bytes that you push.
This generally means that the number of pushes and pops must exactly 
agree. If you have too few pops, you will leave data on the stack, which 
may confuse the running program. If you have too many pops, you will 
accidentally remove previously pushed data, often with disastrous results.
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A corollary to the maxim above is, “Be careful when pushing and 
popping data within a loop.” Often it is quite easy to put the pushes in 
a loop and leave the pops outside the loop (or vice versa), creating an 
inconsistent stack. Remember, it is the execution of the push and pop 
instructions that matters, not the number of push and pop instructions 
that appear in your program. At runtime, the number (and order) of 
the push instructions the program executes must match the number (and 
reverse order) of the pop instructions.

3.9.1 Other push and pop Instructions

The 80x86 provides several additional push and pop instructions in addition to 
the basic push/pop instructions. These instructions include the following:

The pusha instruction pushes all the general-purpose 16-bit registers onto 
the stack. This instruction exists primarily for older 16-bit operating systems 
like MS-DOS. In general, you will have very little need for this instruction. 
The pusha instruction pushes the registers onto the stack in the following 
order:

ax
cx
dx
bx
sp
bp
si
di

The pushad instruction pushes all the 32-bit (double-word) registers onto 
the stack. It pushes the registers onto the stack in the following order:

eax
ecx
edx
ebx
esp
ebp
esi
edi

Because the pusha and pushad instructions inherently modify the SP/ESP 
register, you may wonder why Intel bothered to push this register at all. It was 
probably easier in the hardware to go ahead and push SP/ESP rather than 

pusha popa

pushad popad

pushf popf

pushfd popfd
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make a special case out of it. In any case, these instructions do push SP or 
ESP, so don’t worry about it too much—there is nothing you can do about it.

The popa and popad instructions provide the corresponding “pop all” 
operation to the pusha and pushad instructions. This will pop the registers 
pushed by pusha or pushad in the appropriate order (that is, popa and popad 
will properly restore the register values by popping them in the reverse order 
that pusha or pushad pushed them). 

Although the pusha/popa and pushad/popad sequences are short and con-
venient, they are actually slower than the corresponding sequence of push/pop 
instructions, this is especially true when you consider that you rarely need 
to push a majority, much less all, of the registers.11 So if you’re looking for 
maximum speed, you should carefully consider whether to use the pusha(d)/
popa(d) instructions. 

The pushf, pushfd, popf, and popfd instructions push and pop the EFLAGS 
register. These instructions allow you to preserve condition code and other 
flag settings across the execution of some sequence of instructions. Unfortu-
nately, unless you go to a lot of trouble, it is difficult to preserve individual 
flags. When using the pushf(d) and popf(d) instructions, it’s an all-or-nothing 
proposition—you preserve all the flags when you push them; you restore all 
the flags when you pop them.

Like the pushad and popad instructions, you should really use the pushfd 
and popfd instructions to push the full 32-bit version of the EFLAGS register. 
Although the extra 16 bits you push and pop are essentially ignored when 
writing applications, you still want to keep the stack aligned by pushing and 
popping only double words.

3.9.2 Removing Data from the Stack Without Popping It
Once in a while you may discover that you’ve pushed data onto the stack that 
you no longer need. Although you could pop the data into an unused register 
or memory location, there is an easier way to remove unwanted data from the 
stack—simply adjust the value in the ESP register to skip over the unwanted 
data on the stack.

Consider the following dilemma:

          push( eax );
          push( ebx );

          << Some code that winds up computing some values we want to keep
               into eax and ebx >>
          
          if( Calculation_was_performed ) then

               // Whoops, we don't want to pop eax and ebx!
               // What to do here?

          else

11 For example, it is extremely rare for you to need to push and pop the ESP register with the 
pushad/popad instruction sequence.
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               // No calculation, so restore eax, ebx.

               pop( ebx );
               pop( eax );

          endif;

Within the then section of the if statement, this code wants to remove 
the old values of EAX and EBX without otherwise affecting any registers or 
memory locations. How can we do this?

Because the ESP register contains the memory address of the item on the 
top of the stack, we can remove the item from the top of stack by adding the 
size of that item to the ESP register. In the preceding example, we wanted to 
remove two double-word items from the top of stack. We can easily accomplish 
this by adding 8 to the stack pointer (see Figures 3-17 and 3-18 for the details):

          push( eax );
          push( ebx );

          << Some code that winds up computing some values we want to keep
               into eax and ebx >>
          
          if( Calculation_was_performed ) then

              add( 8, ESP ); // Remove unneeded eax/ebx values from the stack.

          else

               // No calculation, so restore eax, ebx.

               pop( ebx );
               pop( eax );

          endif;

Figure 3-17: Removing data from the 
stack, before add( 8, esp );

Figure 3-18: Removing data from the 
stack, after add( 8, esp );
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Effectively, this code pops the data off the stack without moving it 
anywhere. Also note that this code is faster than two dummy pop instructions 
because it can remove any number of bytes from the stack with a single add 
instruction.

WARNING Remember to keep the stack aligned on a double-word boundary. Therefore, you should 
always add a constant that is a multiple of 4 to ESP when removing data from the 
stack.

3.10 Accessing Data You’ve Pushed onto the Stack Without 
Popping It

Once in a while you will push data onto the stack and you will want to get a 
copy of that data’s value, or perhaps you will want to change that data’s value 
without actually popping the data off the stack (that is, you wish to pop the 
data off the stack at a later time). The 80x86 [reg32 + offset] addressing 
mode provides the mechanism for this.

Consider the stack after the execution of the following two instructions 
(see Figure 3-19):

          push( eax );
          push( ebx );

Figure 3-19: Stack after pushing EAX and EBX

If you wanted to access the original EBX value without removing it from 
the stack, you could cheat and pop the value and then immediately push it 
again. Suppose, however, that you wish to access EAX’s old value or some 
other value even farther up the stack. Popping all the intermediate values 
and then pushing them back onto the stack is problematic at best, impossible 
at worst. However, as you will notice from Figure 3-19, each of the values 
pushed on the stack is at some offset from the ESP register in memory. 
Therefore, we can use the [ESP + offset] addressing mode to gain direct 
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access to the value we are interested in. In the example above, you can 
reload EAX with its original value by using the single instruction

          mov( [esp+4], eax );

This code copies the 4 bytes starting at memory address ESP+4 into the 
EAX register. This value just happens to be the previous value of EAX that 
was pushed onto the stack. You can use this same technique to access other 
data values you’ve pushed onto the stack.

WARNING Don’t forget that the offsets of values from ESP into the stack change every time you 
push or pop data. Abusing this feature can create code that is hard to modify; if you use 
this feature throughout your code, it will make it difficult to push and pop other data 
items between the point where you first push data onto the stack and the point where 
you decide to access that data again using the [ESP + offset] memory addressing 
mode.

The previous section pointed out how to remove data from the stack by 
adding a constant to the ESP register. That code example could probably be 
written more safely as this:

          push( eax );
          push( ebx );

          << Some code that winds up computing some values we want to keep
             into eax and ebx >>
          
          if( Calculation_was_performed ) then

             << Overwrite saved values on stack with new eax/ebx values
              (so the pops that follow won't change the values in eax/ebx). >>

               mov( eax, [esp+4] );
               mov( ebx, [esp] );

          endif;
          pop( ebx );
          pop( eax );

In this code sequence, the calculated result was stored over the top of 
the values saved on the stack. Later on, when the program pops the values, 
it loads these calculated values into EAX and EBX.

3.11 Dynamic Memory Allocation and the Heap Segment

Although static and automatic variables are all that simple programs may need, 
more sophisticated programs need the ability to allocate and deallocate 
storage dynamically (at runtime) under program control. In the C language, 
you would use the malloc and free functions for this purpose. C++ provides 
the new and delete operators. Pascal uses new and dispose. Other languages 
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provide comparable facilities. These memory-allocation routines have a 
couple of things in common: They let the programmer request how many 
bytes of storage to allocate, they return a pointer to the newly allocated 
storage, and they provide a facility for returning the storage to the system so 
the system can reuse it in a future allocation call. As you’ve probably guessed, 
HLA also provides a set of routines in the HLA Standard Library that handle 
memory allocation and deallocation.

The HLA Standard Library mem.alloc and mem.free routines handle the 
memory allocation and deallocation chores (respectively). The mem.alloc 
routine uses the following calling sequence:

mem.alloc( Number_of_Bytes_Requested );

The single parameter is a dword value specifying the number of bytes of 
storage you need. This procedure allocates storage in the heap segment in 
memory. The HLA mem.alloc function locates an unused block of memory of 
the size you specify in the heap segment and marks the block as “in use” so 
that future calls to mem.alloc will not allocate this same storage. After marking 
the block as “in use,” the mem.alloc routine returns a pointer to the first byte 
of this storage in the EAX register.

For many objects, you will know the number of bytes that you need in 
order to represent that object in memory. For example, if you wish to allocate 
storage for an uns32 variable, you could use the following call to the mem.alloc 
routine:

mem.alloc( 4 );

Although you can specify a literal constant as this example suggests, it’s 
generally a poor idea to do so when allocating storage for a specific data type. 
Instead, use the HLA built-in compile-time function12 @size to compute the size 
of some data type. The @size function uses the following syntax:

@size( variable_or_type_name )

The @size function returns an unsigned integer constant that is the size 
of its parameter in bytes. So you should rewrite the previous call to mem.alloc 
as follows:

mem.alloc( @size( uns32 ));

This call will properly allocate a sufficient amount of storage for the 
specified object, regardless of its type. While it is unlikely that the number 
of bytes required by an uns32 object will ever change, this is not necessarily 

12 A compile-time function is one that HLA evaluates during the compilation of your program 
rather than at runtime.
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true for other data types; so you should always use @size rather than a literal 
constant in these calls.

Upon return from the mem.alloc routine, the EAX register contains the 
address of the storage you have requested (see Figure 3-20).

Figure 3-20: A call to mem.alloc returns a pointer in 
the EAX register.

To access the storage mem.alloc allocates, you must use a register-indirect 
addressing mode. The following code sequence demonstrates how to assign 
the value 1234 to the uns32 variable mem.alloc creates:

mem.alloc( @size( uns32 ));
mov( 1234, (type uns32 [eax]));

Note the use of the type coercion operator. This is necessary in this 
example because anonymous variables don’t have a type associated with 
them and the constant 1234 could be a word or dword value. The type coercion 
operator eliminates the ambiguity.

The mem.alloc routine may not always succeed. If there isn’t a single contig-
uous block of free memory in the heap segment that is large enough to satisfy 
the request, then the mem.alloc routine will raise an ex.MemoryAllocationFailure 
exception. If you do not provide a try..exception..endtry handler to deal with 
this situation, a memory allocation failure will cause your program to stop. 
Because most programs do not allocate massive amounts of dynamic storage 
using mem.alloc, this exception rarely occurs. However, you should never 
assume that the memory allocation will always occur without error.

When you have finished using a value that mem.alloc allocates on the heap, 
you can release the storage (that is, mark it as “no longer in use”) by calling 
the mem.free procedure. The mem.free routine requires a single parameter that 
must be an address returned by a previous call to mem.alloc (that you have not 

EAX

uns32 storage
allocated by
call to mem.alloc

Heap Segment
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already freed). The following code fragment demonstrates the nature of the 
mem.alloc/mem.free pairing:

          mem.alloc( @size( uns32));

               << Use the storage pointed at by eax. >>
               << Note: This code must not modify eax. >>

          mem.free( eax );

This code demonstrates a very important point: In order to properly free 
the storage that mem.alloc allocates, you must preserve the value that mem.alloc 
returns. There are several ways to do this if you need to use EAX for some 
other purpose; you could save the pointer value on the stack using push and 
pop instructions or you could save EAX’s value in a variable until you need to 
free it.

Storage you release is available for reuse by future calls to the mem.alloc 
routine. The ability to allocate storage when you need it and then free the 
storage for other use when you have finished with it improves the memory 
efficiency of your program. By deallocating storage once you have finished 
with it, your program can reuse that storage for other purposes, allowing 
your program to operate with less memory than it would if you statically 
allocated storage for the individual objects.

Several problems can occur when you use pointers. You should be aware 
of a couple of common errors that beginning programmers make when 
using dynamic storage allocation routines like mem.alloc and mem.free:

Mistake 1: Continuing to refer to storage after you free it. Once you 
return storage to the system via the call to mem.free, you should no longer 
access that storage. Doing so may cause a protection fault or, worse yet, 
corrupt other data in your program without indicating an error.

Mistake 2: Calling mem.free twice to release a single block of storage. 
Doing so may accidentally free some other storage that you did not 
intend to release or, worse yet, it may corrupt the system memory 
management tables.

Chapter 4 discusses some additional problems you will typically 
encounter when dealing with dynamically allocated storage.

The examples thus far in this section have all allocated storage for a 
single unsigned 32-bit object. Obviously you can allocate storage for any 
data type using a call to mem.alloc by simply specifying the size of that object 
as mem.alloc’s parameter. It is also possible to allocate storage for a sequence 
of contiguous objects in memory when calling mem.alloc. For example, the 
following code will allocate storage for a sequence of eight characters:

mem.alloc( @size( char ) * 8 );
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Note the use of the constant expression to compute the number of bytes 
required by an eight-character sequence. Because @size(char) always returns 
a constant value (1 in this case), the compiler can compute the value of the 
expression @size(char) * 8 without generating any extra machine instructions.

Calls to mem.alloc always allocate multiple bytes of storage in contiguous 
memory locations. Hence the former call to mem.alloc produces the sequence 
appearing in Figure 3-21.

Figure 3-21: Allocating a sequence of eight character 
objects using mem.alloc

To access these extra character values you use an offset from the base 
address (contained in EAX upon return from mem.alloc). For example, 
mov( ch, [eax + 2] ); stores the character found in CH into the third byte 
that mem.alloc allocates. You can also use an addressing mode like [eax + ebx] 
to step through each of the allocated objects under program control. For 
example, the following code will set all the characters in a block of 128 bytes 
to the NUL character (#0):

          mem.alloc( 128 );
          for( mov( 0, ebx ); ebx < 128; add( 1, ebx ) ) do

               mov( 0, (type byte [eax+ebx]) );

          endfor;

Chapter 4 discusses composite data structures (including arrays) and 
describes additional ways to deal with blocks of memory.

You should note that a call to mem.alloc actually allocates slightly more 
memory than you request. For one thing, memory allocation requests are 
generally of some minimum size (often a power of 2 between 4 and 16, though 
this is OS dependent). Furthermore, mem.alloc requests also require a few 
bytes of overhead for each request (generally around 16 to 32 bytes) to keep 
track of allocated and free blocks. Therefore, it is not efficient to allocate a 
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EAX + 5
EAX + 4
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EAX + 7
EAX + 6

Heap Segment

Eight char values
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large number of small objects with individual calls to mem.alloc. The overhead 
for each allocation may be greater than the storage you actually use. Typically, 
you’ll use mem.alloc to allocate storage for arrays or large records (structures) 
rather than small objects.

3.12 The inc and dec Instructions

As the example in the previous section indicates—indeed, as several examples 
up to this point have indicated—adding or subtracting 1 from a register or 
memory location is a very common operation. In fact, these operations are so 
common that Intel’s engineers included a pair of instructions to perform these 
specific operations: the inc (increment) and dec (decrement) instructions.

The inc and dec instructions use the following syntax:

inc( mem/reg );
dec( mem/reg );

The single operand can be any legal 8-bit, 16-bit, or 32-bit register or 
memory operand. The inc instruction will add 1 to the specified operand, 
and the dec instruction will subtract 1 from the specified operand.

These two instructions are slightly shorter than the corresponding add or 
sub instructions (that is, their encoding uses fewer bytes). There is also one 
slight difference between these two instructions and the corresponding add 
or sub instructions: They do not affect the carry flag.

As an example of the inc instruction, consider the example from the 
previous section, recoded to use inc rather than add:

          mem.alloc( 128 );
          for( mov( 0, ebx ); ebx < 128; inc( ebx ) ) do

               mov( 0, (type byte [eax+ebx]) );

          endfor;

3.13 Obtaining the Address of a Memory Object

Section 3.1.2.2 discusses how to use the address-of operator, &, to take the 
address of a static variable.13 Unfortunately, you cannot use the address-of 
operator to take the address of an automatic variable (one you declare in the 
var section), you cannot use it to compute the address of an anonymous 
variable, and you cannot use it to take the address of a memory reference 
that uses an indexed or scaled-indexed addressing mode (even if a static 
variable is part of the address expression). You may use the address-of 
operator only to take the address of a simple static object. Often, you will 

13 A static variable is one that you declare in the static, readonly, or storage section of your 
program.
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need to take the address of other memory objects as well; fortunately, the 
80x86 provides the load effective address instruction, lea, to give you this 
capability.

The lea instruction uses the following syntax:

lea( reg32, Memory_operand );

The first operand must be a 32-bit register; the second operand can be 
any legal memory reference using any valid memory addressing mode. This 
instruction will load the address of the specified memory location into the 
register. This instruction does not access or modify the value of the memory 
operand in any way.

Once you load the effective address of a memory location into a 32-bit 
general-purpose register, you can use the register-indirect, indexed, or scaled-
indexed addressing mode to access the data at the specified memory address. 
Consider the following code fragment:

static
     b:byte; @nostorage;
       byte 7, 0, 6, 1, 5, 2, 4, 3;
               .
               .
               .
     lea( ebx, b );
     for( mov( 0, ecx ); ecx < 8; inc( ecx )) do

          stdout.put( "[ebx+ecx] = ", (type byte [ebx+ecx]), nl );

     endfor;

This code steps through each of the 8 bytes following the b label in the 
static section and prints their values. Note the use of the [ebx+ecx] address-
ing mode. The EBX register holds the base address of the list (that is, the 
address of the first item in the list), and ECX contains the byte index into 
the list.

3.14 For More Information

An older, 16-bit version of The Art of Assembly Language Programming can be 
found at http://webster.cs.ucr.edu/. In that text you will find information about 
the 80x86’s 16-bit addressing modes and segmentation. More information 
about the HLA Standard Library mem.alloc and mem.free functions can be 
found in the HLA Standard Library reference manual, also on Webster at 
http://webster.cs.ucr.edu/ or at http://artofasm.com/. Of course, the Intel x86 
documentation (found at http://www.intel.com/) provides complete informa-
tion on 80x86 address modes and machine instruction encoding.
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4
C O N S T A N T S ,  V A R I A B L E S ,  

A N D  D A T A  T Y P E S

Chapter 2 discussed the basic format for 
data in memory. Chapter 3 covered how a 

computer system physically organizes that 
data in memory. This chapter finishes the 

discussion by connecting the concept of data represen-
tation to its actual physical representation. As the title 
implies, this chapter concerns itself with three main topics: constants, vari-
ables, and data structures. This chapter does not assume that you’ve had a 
formal course in data structures, though such experience would be useful.

This chapter discusses how to declare and use constants, scalar variables, 
integers, data types, pointers, arrays, records/structures, unions, and name-
spaces. You must master these subjects before going on to the next chapter. 
Declaring and accessing arrays, in particular, seems to present a multitude 
of problems to beginning assembly language programmers. However, the 
rest of this text depends on your understanding of these data structures and 
their memory representation. Do not try to skim over this material with the 
expectation that you will pick it up as you need it later. You will need it right 
away, and trying to learn this material along with later material will only confuse 
you more.
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4.1 Some Additional Instructions: intmul, bound, into
This chapter introduces arrays and other concepts that will require the 
expansion of your 80x86 instruction set knowledge. In particular, you will 
need to learn how to multiply two values; hence the first instruction we will 
look at is the intmul (integer multiply) instruction. Another common task 
when accessing arrays is to check to see if an array index is within bounds. 
The 80x86 bound instruction provides a convenient way to check a register’s 
value to see if it is within some range. Finally, the into (interrupt on overflow) 
instruction provides a quick check for signed arithmetic overflow. Although 
into isn’t really necessary for array (or other data type) access, its function is 
very similar to bound; hence the presentation of it at this point.

The intmul instruction takes one of the following forms:

// The following compute destreg = destreg * constant

          intmul( constant, destreg16 );
          intmul( constant, destreg32 );

          // The following compute dest = src * constant

          intmul( constant, srcreg16, destreg16 );
          intmul( constant, srcmem16, destreg16 );

          intmul( constant, srcreg32, destreg32 );
          intmul( constant, srcmem32, destreg32 );

          // The following compute dest = src * constant

          intmul( srcreg16, destreg16 );
          intmul( srcmem16, destreg16 );
          intmul( srcreg32, destreg32 );
          intmul( srcmem32, destreg32 );

Note that the syntax of the intmul instruction is different from that of the 
add and sub instructions. In particular, the destination operand must be a register 
(add and sub both allow a memory operand as a destination). Also note that 
intmul allows three operands when the first operand is a constant. Another 
important difference is that the intmul instruction allows only 16-bit and 32-bit 
operands; it does not multiply 8-bit operands.

intmul computes the product of its specified operands and stores the result 
into the destination register. If an overflow occurs (which is always a signed 
overflow, because intmul multiplies only signed integer values), then this 
instruction sets both the carry and overflow flags. intmul leaves the other 
condition code flags undefined (so, for example, you cannot meaningfully 
check the sign flag or the zero flag after executing intmul). 
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The bound instruction checks a 16-bit or 32-bit register to see if it is between 
two values. If the value is outside this range, the program raises an exception 
and aborts. This instruction is particularly useful for checking to see if an 
array index is within a given range. The bound instruction takes one of the 
following forms:

bound( reg16, LBconstant, UBconstant );
bound( reg32, LBconstant, UBconstant );

bound( reg16, Mem16[2] );
bound( reg32, Mem32[2] );

The bound instruction compares its register operand against an unsigned 
lower bound value and an unsigned upper bound value to ensure that the 
register is in the range:

lower_bound <= register <= upper_bound

The form of the bound instruction with three operands compares the 
register against the second and third parameters (the lower bound and upper 
bound, respectively).1 The bound instruction with two operands checks the 
register against one of the following ranges:

Mem16[0] <= register16 <= Mem16[2]
Mem32[0] <= register32 <= Mem32[4]

If the specified register is not within the given range, then the 80x86 
raises an exception. You can trap this exception using the HLA try..endtry 
exception-handling statement. The excepts.hhf header file defines an excep-
tion, ex.BoundInstr, specifically for this purpose. The program in Listing 4-1 
demonstrates how to use the bound instruction to check some user input.

program BoundDemo;
#include( "stdlib.hhf" );

static
    InputValue:int32;
    GoodInput:boolean;  
    
begin BoundDemo;

    // Repeat until the user enters a good value:
    
    repeat
    
        // Assume the user enters a bad value.
        

1 This form isn’t a true 80x86 instruction. HLA converts this form of the bound instruction to 
the two-operand form by creating two readonly memory variables initialized with the specified 
constants.
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        mov( false, GoodInput );
        
        // Catch bad numeric input via the try..endtry statement.
        
        try
        
            stdout.put( "Enter an integer between 1 and 10: " );
            stdin.flushInput();
            stdin.geti32();
            
            mov( eax, InputValue );

            // Use the BOUND instruction to verify that the
            // value is in the range 1..10.
            
            bound( eax, 1, 10 );
            
            // If we get to this point, the value was in the
            // range 1..10, so set the boolean GoodInput
            // flag to true so we can exit the loop.
            
            mov( true, GoodInput );
            
            
            // Handle inputs that are not legal integers.
            
          exception( ex.ConversionError )
          
            stdout.put( "Illegal numeric format, re-enter", nl );
            
            
            // Handle integer inputs that don't fit into an int32.
            
          exception( ex.ValueOutOfRange )
          
            stdout.put( "Value is *way* too big, re-enter", nl );
        
        
            // Handle values outside the range 1..10 (BOUND instruction).
                
          
          exception( ex.BoundInstr )
          
            stdout.put
            ( 
                "Value was ", 
                InputValue,
                ", it must be between 1 and 10, re-enter",
                nl 
            );
          
            
        endtry;
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    until( GoodInput );
    stdout.put( "The value you entered, ", InputValue, " is valid.", nl );
                                    
end BoundDemo;

Listing 4-1: Demonstration of the bound instruction

The into instruction, like bound, also generates an exception under certain 
conditions. Specifically, into generates an exception if the overflow flag is set. 
Normally, you would use into immediately after a signed arithmetic operation 
(e.g., intmul) to see if an overflow occurs. If the overflow flag is not set, the 
system ignores into; however, if the overflow flag is set, then the into instruction 
raises the ex.IntoInstr exception. The program in Listing 4-2 demonstrates 
the use of the into instruction.

program INTOdemo;
#include( "stdlib.hhf" );

static
    LOperand:int8;
    ResultOp:int8;
    
begin INTOdemo;

    // The following try..endtry checks for bad numeric
    // input and handles the integer overflow check:
    
    try

        // Get the first of two operands:
        
        stdout.put( "Enter a small integer value (-128..+127):" );
        stdin.geti8();
        mov( al, LOperand );
        
        // Get the second operand:
        
        stdout.put( "Enter a second small integer value (-128..+127):" );
        stdin.geti8();

        // Produce their sum and check for overflow:
        
        add( LOperand, al );
        into();
        
        // Display the sum:
        
        stdout.put( "The eight-bit sum is ", (type int8 al), nl );
        
        
        // Handle bad input here:
        
      exception( ex.ConversionError )
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        stdout.put( "You entered illegal characters in the number", nl );
        
        
        // Handle values that don't fit in a byte here:
        
      exception( ex.ValueOutOfRange )
      
        stdout.put( "The value must be in the range -128..+127", nl );
        
        
        // Handle integer overflow here:
        

      exception( ex.IntoInstr )
      
        stdout.put
        (
            "The sum of the two values is outside the range -128..+127",
            nl 
        );

      
    endtry;
                                    
end INTOdemo;

Listing 4-2: Demonstration of the into instruction

4.2 HLA Constant and Value Declarations

HLA’s const and val sections let you declare symbolic constants. The const 
section lets you declare identifiers whose value is constant throughout 
compilation and runtime; the val section lets you declare symbolic constants 
whose values can change at compile time but whose values are constant at 
runtime (that is, the same name can have a different value at several points in 
the source code, but the value of a val symbol at a given point in the program 
cannot change while the program is running).

The const section appears in the same area of your program as the static, 
readonly, storage, and var sections. It begins with the const reserved word and 
has a syntax that is nearly identical to the readonly section; that is, the const 
section contains a list of identifiers followed by a type and a constant expression. 
The following example will give you an idea of what the const section looks like:

const
     pi:                   real32 := 3.14159;
     MaxIndex:             uns32  := 15;
     Delimiter:            char   := '/';
     BitMask:              byte   := $F0;
     DebugActive:          boolean := true;
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Once you declare these constants in this manner, you may use the sym-
bolic identifiers anywhere the corresponding literal constant is legal. These 
constants are known as manifest constants. A manifest constant is a symbolic 
representation of a constant that allows you to substitute the literal value for 
the symbol anywhere in the program. Contrast this with readonly variables; a 
readonly variable is certainly a constant value because you cannot change 
such values at runtime. However, there is a memory location associated with 
readonly variables, and the operating system, not the HLA compiler, enforces 
the read-only attribute. Although it will certainly crash your program when it 
runs, it is perfectly legal to write an instruction like mov( eax, ReadOnlyVar );. 
On the other hand, it is no more legal to write mov( eax, MaxIndex ); (using 
the declaration above) than it is to write mov( eax, 15 );. In fact, both of these 
statements are equivalent because the compiler substitutes 15 for MaxIndex 
whenever it encounters this manifest constant.

If there is absolutely no ambiguity about a constant’s type, then you may 
declare a constant by specifying only the name and the constant’s value, 
omitting the type specification. In the example earlier, the pi, Delimiter, 
MaxIndex, and DebugActive constants could use the following declarations:

const
     pi               := 3.14159;     // Default type is real80.
     MaxIndex         := 15;          // Default type is uns32.
     Delimiter        := '/';         // Default type is char.
     DebugActive      := true;        // Default type is boolean.

Symbol constants that have an integer literal constant are always given 
the smallest possible unsigned type if the constant is zero or positive, or the 
smallest possible integer type (int8, int16, and so on) if the value is negative. 

Constant declarations are great for defining “magic” numbers that might 
possibly change during program modification. The program in Listing 4-3 
provides an example of using constants to parameterize “magic” values in the 
program. In this particular case, the program defines manifest constants 
for the amount of memory to allocate for the test, the (mis)alignment, and 
the number of loop and data repetitions. This program demonstrates the 
performance reduction that occurs on misaligned data accesses. Adjust the 
MainRepetitions constant if the program is too fast or too slow.

program ConstDemo;
#include( "stdlib.hhf" );

const
    MemToAllocate   := 4_000_000;
    NumDWords       := MemToAllocate div 4;
    MisalignBy      := 62;
    
    MainRepetitions := 10000;
    DataRepetitions := 999_900;
    
    CacheLineSize   := 16;
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begin ConstDemo;

    //console.cls();
    stdout.put
    ( 
        "Memory Alignment Exercise",nl,
        nl,
        "Using a watch (preferably a stopwatch), time the execution of", nl
        "the following code to determine how many seconds it takes to", nl
        "execute.", nl
        nl
        "Press Enter to begin timing the code:"
    );
    
    
    // Allocate enough dynamic memory to ensure that it does not
    // all fit inside the cache. Note: The machine had better have
    // at least 4 megabytes mem.free or virtual memory will kick in
    // and invalidate the timing.
    
    mem.alloc( MemToAllocate );
    
    // Zero out the memory (this loop really exists just to
    // ensure that all memory is mapped in by the OS).
    
    mov( NumDWords, ecx );
    repeat
    
        dec( ecx );
        mov( 0, (type dword [eax+ecx*4]));
        
    until( !ecx );  // Repeat until ecx = 0.
    

    // Okay, wait for the user to press the Enter key.
        
    stdin.readLn();
    
    // Note: As processors get faster and faster, you may
    // want to increase the size of the following constant.
    // Execution time for this loop should be approximately
    // 10-30 seconds.
    
    mov( MainRepetitions, edx );
    add( MisalignBy, eax );     // Force misalignment of data.
    
    repeat
    
        mov( DataRepetitions, ecx );
        align( CacheLineSize );
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        repeat
        
            sub( 4, ecx );
            mov( [eax+ecx*4], ebx );
            mov( [eax+ecx*4], ebx );
            mov( [eax+ecx*4], ebx );
            mov( [eax+ecx*4], ebx );
            
        until( !ecx );              
        dec( edx );
                
    until( !edx ); // Repeat until eax is zero.
    
    stdout.put( stdio.bell, "Stop timing and record time spent", nl, nl );
         

    // Okay, time the aligned access.
    
    stdout.put
    (
        "Press Enter again to begin timing access to aligned variable:"
    );
    stdin.readLn();
    
    // Note: If you change the constant above, be sure to change
    // this one, too!
    
    mov( MainRepetitions, edx );
    sub( MisalignBy, eax );     // Realign the data.
    repeat
    
        mov( DataRepetitions, ecx );
        align( CacheLineSize );
        repeat
        
            sub( 4, ecx );
            mov( [eax+ecx*4], ebx );
            mov( [eax+ecx*4], ebx );
            mov( [eax+ecx*4], ebx );
            mov( [eax+ecx*4], ebx );
            
        until( !ecx );              
        dec( edx );
                
    until( !edx ); // Repeat until eax is zero.
    
    stdout.put( stdio.bell, "Stop timing and record time spent", nl, nl );
    mem.free( eax );     

    
end ConstDemo;

Listing 4-3: Data alignment program rewritten using const definitions
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4.2.1 Constant Types

Manifest constants can be any of the HLA primitive types plus a few of the 
composite types this chapter discusses. Chapters 1, 2, and 3 discussed most 
of the primitive types; the primitive types include the following:2

boolean constants (true or false)

uns8 constants (0..255)

uns16 constants (0..65,535)

uns32 constants (0..4,294,967,295)

int8 constants (−128..+127)

int16 constants (−32,768..+32,767)

int32 constants (−2,147,483,648..+2,147,483,647)

char constants (any ASCII character with a character code in the 
range 0..255)

byte constants (any 8-bit value including integers, booleans, and 
characters)

word constants (any 16-bit value)

dword constants (any 32-bit value)

real32 constants (floating-point values)

real64 constants (floating-point values)

real80 constants (floating-point values)

In addition to the constant types appearing above, the const section 
supports six additional constant types:

string constants

text constants

Enumerated constant values

Array constants

Record/Union constants

Character set constants

These data types are the subject of this chapter, and the discussion of 
most of them appears a little later. However, the string and text constants 
are sufficiently important to warrant an early discussion of these constant 
types.

2 This is not a complete list. HLA also supports 64-bit and 128-bit data types. We’ll discuss 
those in Chapter 8.
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4.2.2 String and Character Literal Constants

HLA, like most programming languages, draws a distinction between a sequence 
of characters, a string, and a single character. This distinction is present both 
in the type declarations and in the syntax for literal character and string 
constants. Until now, this text has not drawn a fine distinction between 
character and string literal constants; now is the time to do so.

String literal constants consist of a sequence of zero or more characters 
surrounded by ASCII quote characters. The following are examples of legal 
literal string constants:

     "This is a string"          // String with 16 characters.
     ""                          // Zero length string.
     "a"                         // String with a single character.
     "123"                       // String of length 3.

A string of length 1 is not the same thing as a character constant. HLA 
uses two completely different internal representations for character and string 
values. Hence, "a" is not a character; it is a string that just happens to contain 
a single character.

Character literal constants take a couple forms, but the most common 
form consists of a single character surrounded by ASCII apostrophe characters:

     '2'               // Character constant equivalent to ASCII code $32.
     'a'               // Character constant for lowercase 'A'.

As this section notes earlier, "a" and 'a' are not equivalent.
Those who are familiar with C, C++, or Java probably recognize these 

literal constant forms, because they are similar to the character and string 
constants in C/C++/Java. In fact, this text has made a tacit assumption to this 
point that you are somewhat familiar with C/C++ insofar as examples appearing 
up to this point use character and string constants without an explicit definition 
of them.

Another similarity between C/C++ strings and HLA’s is the automatic 
concatenation of adjacent literal string constants within your program. For 
example, HLA concatenates the two string constants

          "First part of string, "    "second part of string"

to form the single-string constant

          "First part of string, second part of string"
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Beyond these few similarities, however, HLA strings and C/C++ strings 
differ. For example, C/C++ strings let you specify special character values 
using the escape character sequence consisting of a backslash character 
followed by one or more special characters; HLA does not use this escape 
character mechanism. HLA does provide, however, several other ways to 
insert special characters into a string or character constant.

Because HLA does not allow escape character sequences in literal string 
and character constants, the first question you might ask is, “How does one 
embed quote characters in string constants and apostrophe characters in 
character constants?” To solve this problem, HLA uses the same technique as 
Pascal and many other languages: You insert two quotes in a string constant to 
represent a single quote, or you place two apostrophes in a character constant 
to represent a single apostrophe character. For example:

          "He wrote a "" Hello World"" program as an example."

The above is equivalent to:

          He wrote a "Hello World" program as an example.

As Chapter 1 pointed out, to create a single apostrophe character constant, 
you place two adjacent apostrophes within a pair of apostrophes:

          ''''

HLA provides a couple of other features that eliminate the need for 
escape characters. In addition to concatenating two adjacent string constants 
to form a longer string constant, HLA will also concatenate any combination 
of adjacent character and string constants to form a single string constant:

          '1'  '2'  '3'                // Equivalent to "123"
          "He wrote a "  '"' "Hello World"  '"' " program as an example."

Note that the two He wrote strings in the previous examples are identical 
in HLA.

HLA provides a second way to specify character constants that handles all 
the other C/C++ escape character sequences: the ASCII code literal character 
constant. This literal character constant form uses the syntax: 

#integer_constant

This form creates a character constant whose value is the ASCII code 
specified by integer_constant. The numeric constant can be a decimal, 
hexadecimal, or binary value. For example:

          #13          #$d          #%1101 // All three are the same 
// character, a carriage return.
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Because you may concatenate character literals with strings, and the 
#constant form is a character literal, the following are all legal strings:

     "Hello World" #13 #10 // #13 #10 is the Windows newline sequence
// (carriage return followed by line feed).

     "Error: Bad Value" #7 // #7 is the bell character.
     "He wrote a " #$22 "Hello World" #$22 " program as an example."

Because $22 is the ASCII code for the quote character, this last example 
is yet a third form of the He wrote string literal.

4.2.3 String and Text Constants in the const Section

String and text constants in the const section use the following declaration 
syntax:

const
     AStringConst:     string := "123";
     ATextConst:       text   := "123";

Other than the data type of these two constants, their declarations are 
identical. However, their behavior in an HLA program is quite different. 

Whenever HLA encounters a symbolic string constant within your program, 
it substitutes the string literal constant in place of the string name. So a 
statement like stdout.put( AStringConst ); prints the string 123 to the display. 
No real surprise here.

Whenever HLA encounters a symbolic text constant within your program, it 
substitutes the text of that string (rather than the string literal constant) for 
the identifier. That is, HLA substitutes the characters between the delimiting 
quotes in place of the symbolic text constant. Therefore, the following statement 
is perfectly legal given the declarations above:

          mov( ATextConst, al );            // Equivalent to mov( 123, al );

Note that substituting AStringConst for ATextConst in this example is illegal:

          mov( AStringConst, al );          // Equivalent to mov( "123", al );

This latter example is illegal because you cannot move a string literal 
constant into the AL register.

Whenever HLA encounters a symbolic text constant in your program, 
it immediately substitutes the value of the text constant’s string for that 
text constant and continues the compilation as though you had written the text 
constant’s value rather than the symbolic identifier in your program. This 
can save some typing and help make your programs a little more readable if 
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you often enter some sequence of text in your program. For example, consider 
the nl (newline) text constant declaration found in the HLA stdio.hhf library 
header file:

const
     nl: text := "#$d #$a";  // Windows version.

const
    nl:  text := " """" #$a";  // Linux, FreeBSD, and Mac OS X version. 

Whenever HLA encounters the symbol nl, it immediately substitutes the 
value of the string "#$d #$a" for the nl identifier. When HLA sees the #$d 
(carriage return) character constant followed by the #$a (line feed) character 
constants, it concatenates the two to form the string containing the Windows 
newline sequence (a carriage return followed by a line feed). Consider the 
following two statements:

          stdout.put( "Hello World", nl );
          stdout.put( "Hello World"  nl );

(Notice that the second statement above does not separate the string 
literal and the nl symbol with a comma.) In the first example, HLA emits 
code that prints the string Hello World and then emits some additional code 
that prints a newline sequence. In the second example, HLA expands the nl 
symbol as follows:

          stdout.put( "Hello World" #$d #$a );

Now HLA sees a string literal constant (Hello World) followed by two 
character constants. It concatenates the three of them together to form a 
single string and then prints this string with a single call. Therefore, leaving 
off the comma between the string literal and the nl symbol produces slightly 
more efficient code. Keep in mind that this works only with string literal 
constants. You cannot concatenate string variables, or a string variable with a 
string literal, by using this technique.

Linux, FreeBSD, and Mac OS X users should note that the Unix end-of-
line sequence is just a single line-feed character. Therefore, the declaration 
for nl is slightly different in those operating systems (to always guarantee that 
nl expands to a string constant rather than a character constant).

In the constant section, if you specify only a constant identifier and a string 
constant (that is, you do not supply a type), HLA defaults to type string. If 
you want to declare a text constant, you must explicitly supply the type.

const
     AStrConst := "String Constant";
     ATextConst: text := "mov( 0, eax );";
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4.2.4 Constant Expressions

Thus far, this chapter has given the impression that a symbolic constant 
definition consists of an identifier, an optional type, and a literal constant. 
Actually, HLA constant declarations can be a lot more sophisticated than this 
because HLA allows the assignment of a constant expression, not just a literal 
constant, to a symbolic constant. The generic constant declaration takes one 
of the following two forms:

          Identifier : typeName := constant_expression ;
          Identifier := constant_expression ;

Constant expressions take the familiar form you’re used to in high-level 
languages like C/C++ and Pascal. They may contain literal constant values, 
previously declared symbolic constants, and various arithmetic operators. 
Table 4-1 lists some of the operations possible in a constant expression.

The constant expression operators follow standard precedence rules; 
you may use the parentheses to override the precedence if necessary. See 
the HLA reference at http://webster.cs.ucr.edu/ or http://artofasm.com/ for the 
exact precedence relationships. In general, if the precedence isn’t obvious, 
use parentheses to exactly state the order of evaluation. HLA actually provides 
a few more operators than these, though the ones above are the ones you will 
most commonly use; the HLA documentation provides a complete list of 
constant expression operators.

Table 4-1: Operations Allowed in Constant Expressions

Arithmetic Operators

- (unary negation) Negates the expression immediately following "-".

* Multiplies the integer or real values around the asterisk.

div Divides the left integer operand by the right integer operand, producing 
an integer (truncated) result.

mod Divides the left integer operand by the right integer operand, producing 
an integer remainder.

/ Divides the left numeric operand by the second numeric operand, 
producing a floating point result.

+ Adds the left and right numeric operands.

- Subtracts the right numeric operand from the left numeric operand.

Comparison Operators

=, == Compares left operand with right operand. Returns true if equal.

<>, != Compares left operand with right operand. Returns true if not equal.

< Returns true if left operand is less than right operand.

<= Returns true if left operand is <= right operand.

> Returns true if left operand is greater than right operand.

>= Returns true if left operand is >= right operand.
(continued)
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If an identifier appears in a constant expression, that identifier must be a 
constant identifier that you have previously defined in your program in a const 
or val section. You may not use variable identifiers in a constant expression; 
their values are not defined at compile time when HLA evaluates the constant 
expression. Also, don’t confuse compile-time and runtime operations:

// Constant expression, computed while HLA is compiling your program:

const
          x          := 5;
          y          := 6;
          Sum        := x + y;

// Runtime calculation, computed while your program is running, long after
// HLA has compiled it:

     mov( x, al );
     add( y, al );

HLA directly interprets the value of a constant expression during compil-
ation. It does not emit any machine instructions to compute x + y in the 
constant expression above. Instead, it directly computes the sum of these 
two constant values. From that point forward in the program, HLA associates 
the value 11 with the constant Sum just as if the program had contained the 
statement Sum := 11; rather than Sum := x + y;. On the other hand, HLA does 

Logical Operators*

& For boolean operands, returns the logical and of the two operands.

| For boolean operands, returns the logical or of the two operands.

^ For boolean operands, returns the logical exclusive-or.

! Returns the logical not of the single operand following "!".

Bitwise Logical Operators

& For integer numeric operands, returns bitwise and of the operands.

| For integer numeric operands, returns bitwise or of the operands.

^ For integer numeric operands, returns bitwise xor of the operands.

! For an integer numeric operand, returns bitwise not of the operand.

String Operators

'+' Returns the concatenation of the left and right string operands.
* Note to C/C++ and Java users: HLA’s constant expressions use complete boolean evaluation rather than 
short-circuit boolean evaluation. Hence, HLA constant expressions do not behave identically to C/C++/
Java expressions.

Table 4-1: Operations Allowed in Constant Expressions (continued)
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not precompute the value 11 in AL for the mov and add instructions above; 
it faithfully emits the object code for these two instructions and the 80x86 
computes their sum when the program is run (sometime after the compilation is 
complete).

In general, constant expressions don’t get very sophisticated in assembly 
language programs. Usually, you’re adding, subtracting, or multiplying two 
integer values. For example, the following const section defines a set of constants 
that have consecutive values:

const
     TapeDAT               :=     0;
     Tape8mm               :=     TapeDAT + 1;
     TapeQIC80             :=     Tape8mm + 1;
     TapeTravan            :=     TapeQIC80 + 1;
     TapeDLT               :=     TapeTravan + 1;

The constants above have the following values: TapeDAT=0, Tape8mm=1, 
TapeQIC80=2, TapeTravan=3, and TapeDLT=4.

4.2.5 Multiple const Sections and Their Order in an HLA Program

Although const sections must appear in the declaration section of an HLA 
program (for example, between the program pgmname; header and the corre-
sponding begin pgmname; statement), they do not have to appear before or 
after any other items in the declaration section. In fact, like the variable 
declaration sections, you can place multiple const sections in a declaration 
section. The only restriction on HLA constant declarations is that you must 
declare any constant symbol before you use it in your program.

Some C/C++ programmers, for example, are more comfortable writing 
their constant declarations as follows (because this is closer to C/C++’s syntax 
for declaring constants):

const          TapeDAT               :=     0;
const          Tape8mm               :=     TapeDAT + 1;
const          TapeQIC80             :=     Tape8mm + 1;
const          TapeTravan            :=     TapeQIC80 + 1;
const          TapeDLT               :=     TapeTravan + 1;

The placement of the const section in a program seems to be a personal 
issue among programmers. Other than the requirement of defining all 
constants before you use them, you may feel free to insert the const declaration 
section anywhere in the declaration section. 
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4.2.6 The HLA val Section

You cannot change the value of a constant you define in the const section. 
While this seems perfectly reasonable (constants after all, are supposed to be, 
well, constant), there are different ways we can define the term constant, and 
const objects follow the rules of only one specific definition. HLA’s val section 
lets you define constant objects that follow slightly different rules. This section 
discusses the val section and the difference between val constants and const 
constants.

The concept of “const-ness” can exist at two different times: while HLA is 
compiling your program and later when your program executes (and HLA 
is no longer running). All reasonable definitions of a constant require that a 
value not change while the program is running. Whether or not the value of 
a “constant” can change during compilation is a separate issue. The difference 
between HLA const objects and HLA val objects is whether the value can 
change during compilation.

Once you define a constant in the const section, the value of that constant is 
immutable from that point forward both at runtime and while HLA is compiling 
your program. Therefore, an instruction like mov( SymbolicCONST, eax ); always 
moves the same value into EAX, regardless of where this instruction appears 
in the HLA main program. Once you define the symbol SymbolicCONST in the 
const section, this symbol has the same value from that point forward.

The HLA val section lets you declare symbolic constants, just like the const 
section. However, HLA val constants can change their value throughout the 
source code in your program. The following HLA declarations are perfectly 
legal:

val       InitialValue     := 0;
const     SomeVal          := InitialValue + 1;        // = 1
const     AnotherVal       := InitialValue + 2;        // = 2

val       InitialValue     := 100;
const     ALargerVal       := InitialValue;            // = 100
const     LargeValTwo      := InitialValue*2;          // = 200

All of the symbols appearing in the const sections use the symbolic value 
InitialValue as part of the definition. Note, however, that InitialValue has 
different values at various points in this code sequence; at the beginning of 
the code sequence InitialValue has the value 0, while later it has the value 100.

Remember, at runtime a val object is not a variable; it is still a manifest 
constant and HLA will substitute the current value of a val identifier for that 
identifier.3 Statements like mov( 25, InitialValue ); are no more legal than 
mov( 25, 0 ); or mov( 25, 100 );.

3 In this context, current means the value last assigned to a val object looking backward in the 
source code.
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4.2.7 Modifying val Objects at Arbitrary Points in Your Programs
If you declare all your val objects in the declaration section, it would seem 
that you would not be able to change the value of a val object between the 
begin and end statements of your program. After all, the val section must 
appear in the declaration section of the program, and the declaration 
section ends before the begin statement. In Chapter 9, you will learn that 
most val object modifications occur between the begin and end statements; 
hence, HLA must provide some way to change the value of a val object 
outside the declaration section. The mechanism to do this is the ? operator. 
Not only does HLA allow you to change the value of a val object outside the 
declaration section, but it also allows you to change the value of a val object 
almost anywhere in the program. Anywhere a space is allowed inside an HLA 
program, you can insert a statement of the form

? ValIdentifier := constant_expression;

This means that you could write a short program like the one appearing 
in Listing 4-4.

program VALdemo;
#include( "stdlib.hhf" )

val
    NotSoConstant := 0;
        
begin VALdemo;

    mov( NotSoConstant, eax );
    stdout.put( "EAX = ", (type uns32 eax ), nl );
    
    ?NotSoConstant := 10;
    mov( NotSoConstant, eax );
    stdout.put( "EAX = ", (type uns32 eax ), nl );
    
    ?NotSoConstant := 20;
    mov( NotSoConstant, eax );
    stdout.put( "EAX = ", (type uns32 eax ), nl );
    
    ?NotSoConstant := 30;
    mov( NotSoConstant, eax );
    stdout.put( "EAX = ", (type uns32 eax ), nl );
    
end VALdemo;

Listing 4-4: Demonstration of val redefinition using the ? operator

4.3 The HLA Type Section

Let’s say that you simply do not like the names that HLA uses for declaring 
byte, word, dword, real, and other variables. Let’s say that you prefer Pascal’s 
naming convention or perhaps C’s naming convention. You want to use terms 
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like integer, float, double, or whatever. If HLA were Pascal, you could redefine 
the names in the type section of the program. With C you could use a #define or 
a typedef statement to accomplish the task. Well, HLA, like Pascal, has its own 
type statement that also lets you create aliases of these names. The following 
example demonstrates how to set up some C/C++/Pascal–compatible names 
in your HLA programs:

type
     integer:             int32;
     float:               real32;
     double:              real64;
     colors:              byte;

Now you can declare your variables with more meaningful statements 
like these:

static
     i:                    integer;
     x:                    float;
     HouseColor:           colors;

If you program in Ada, C/C++, or FORTRAN (or any other language, 
for that matter), you can pick type names you’re more comfortable with. Of 
course, this doesn’t change how the 80x86 or HLA reacts to these variables 
one iota, but it does let you create programs that are easier to read and 
understand because the type names are more indicative of the actual under-
lying types. One warning for C/C++ programmers: don’t get too excited and 
go off and define an int data type. Unfortunately, int is an 80x86 machine 
instruction (interrupt), and therefore this is a reserved word in HLA.

The type section is useful for much more than creating type isomorphism 
(that is, giving a new name to an existing type). The following sections dem-
onstrate many of the possible things you can do in the type section.

4.4 enum and HLA Enumerated Data Types

In a previous section discussing constants and constant expressions, you saw 
the following example:

const          TapeDAT          :=     0;
const          Tape8mm          :=     TapeDAT + 1;
const          TapeQIC80        :=     Tape8mm + 1;
const          TapeTravan       :=     TapeQIC80 + 1;
const          TapeDLT          :=     TapeTravan + 1;

This example demonstrates how to use constant expressions to develop a 
set of constants that contain unique, consecutive values. There are, however, 
a couple of problems with this approach. First, it involves a lot of typing (and 
extra reading when reviewing this program). Second, it’s very easy to make a 
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mistake when creating long lists of unique constants and reuse or skip some 
values. The HLA enum type provides a better way to create a list of constants 
with unique values.

enum is an HLA type declaration that lets you associate a list of names with 
a new type. HLA associates a unique value with each name (that is, it enumerates 
the list). The enum keyword typically appears in the type section, and you use it 
as follows:

type
     enumTypeID:          enum { comma_separated_list_of_names };

The symbol enumTypeID becomes a new type whose values are specified by 
a list of names. As a concrete example, consider the data type TapeDrives and 
a corresponding variable declaration of type TapeDrives:

type
     TapeDrives: enum{ TapeDAT, Tape8mm, TapeQIC80, TapeTravan, TapeDLT};

static
     BackupUnit:        TapeDrives := TapeDAT;

     .
     .
     .

     mov( BackupUnit, al );
     if( al = Tape8mm ) then

          ...

     endif;

     // etc.

By default, HLA reserves 1 byte of storage for enumerated data types. So the 
BackupUnit variable will consume 1 byte of memory, and you would typically use 
an 8-bit register to access it.4 As for the constants, HLA associates consecutive 
uns8 constant values starting at 0 with each of the enumerated identifiers. 
In the TapeDrives example, the tape drive identifiers would have the values 
TapeDAT=0, Tape8mm=1, TapeQIC80=2, TapeTravan=3, and TapeDLT=4. You may use 
these constants exactly as though you had defined them with these values in 
a const section.

4.5 Pointer Data Types

You’ve probably experienced pointers firsthand in the Pascal, C, or Ada 
programming languages, and you’re probably getting worried right now. 
Almost everyone has a bad experience when they first encounter pointers in 

4 HLA provides a mechanism by which you can specify that enumerated data types consume 2 
or 4 bytes of memory. See the HLA documentation for more details.
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a high-level language. Well, fear not! Pointers are actually easier to deal with 
in assembly language than in high-level languages. Besides, most of the problems 
you had with pointers probably had nothing to do with pointers but rather with 
the linked list and tree data structures you were trying to implement with 
them. Pointers, on the other hand, have many uses in assembly language that 
have nothing to do with linked lists, trees, and other scary data structures. 
Indeed, simple data structures like arrays and records often involve the use 
of pointers. So if you have some deep-rooted fear about pointers, forget 
everything you know about them. You’re going to learn how great pointers 
really are.

Probably the best place to start is with the definition of a pointer. Just 
exactly what is a pointer, anyway? Unfortunately, high-level languages like 
Pascal tend to hide the simplicity of pointers behind a wall of abstraction. 
This added complexity (which exists for good reason, by the way) tends to 
frighten programmers because they don’t understand what’s going on.

If you’re afraid of pointers, let’s just ignore them for the time being and 
work with an array. Consider the following array declaration in Pascal:

          M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is pretty easy to understand. 
M is an array with 1,024 integers in it, indexed from M[0] to M[1023]. Each one 
of these array elements can hold an integer value that is independent of all 
the others. In other words, this array gives you 1,024 different integer variables, 
each of which you refer to by number (the array index) rather than by name.

If you encounter a program that has the statement M[0]:=100;, you probably 
won’t have to think at all about what is happening with this statement. It is 
storing the value 100 into the first element of the array M. Now consider the 
following two statements:

          i := 0; (* Assume "i" is an integer variable. *)
          M [i] := 100;

You should agree, without too much hesitation, that these two statements 
perform the same operation as M[0]:=100;. Indeed, you’re probably willing to 
agree that you can use any integer expression in the range 0..1,023 as an index 
into this array. The following statements still perform the same operation as our 
single assignment to index 0:

          i := 5;               (* Assume all variables are integers.*)
          j := 10;
          k := 50;
          m [i*j-k] := 100;
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“Okay, so what’s the point?” you’re probably thinking. “Anything that 
produces an integer in the range 0..1,023 is legal. So what?” Okay, how about 
the following:

          M [1] := 0;
          M [ M [1] ] := 100;

Whoa! Now that takes a few moments to digest. However, if you take it 
slowly, it makes sense and you’ll discover that these two instructions perform 
the exact same operation you’ve been doing all along. The first statement 
stores 0 into array element M[1]. The second statement fetches the value of 
M[1], which is an integer so you can use it as an array index into M, and uses 
that value (0) to control where it stores the value 100.

If you’re willing to accept the above as reasonable, perhaps bizarre, but 
usable nonetheless, then you’ll have no problems with pointers. Because M[1] 
is a pointer! Well, not really, but if you were to change M to “memory” and treat 
this array as all of memory, this is the exact definition of a pointer. A pointer 
is simply a memory location whose value is the address (or index, if you prefer) 
of some other memory location. Pointers are very easy to declare and use in 
an assembly language program. You don’t even have to worry about array 
indices or anything like that.

4.5.1 Using Pointers in Assembly Language

An HLA pointer is a 32-bit value that may contain the address of some other 
variable. If you have a dword variable p that contains $1000_0000, then p 
“points” at memory location $1000_0000. To access the dword that p points at, 
you could use code like the following:

          mov( p, ebx ); // Load ebx with the value of pointer p.
          mov( [ebx], eax ); // Fetch the data that p points at.

By loading the value of p into EBX, this code loads the value $1000_0000 
into EBX (assuming p contains $1000_0000 and, therefore, points at memory 
location $1000_0000). The second instruction above loads the EAX register 
with the dword starting at the location whose offset appears in EBX. Because 
EBX now contains $1000_0000, this will load EAX from locations $1000_0000 
through $1000_0003.

Why not just load EAX directly from location $1000_0000 using an 
instruction like mov( mem, eax ); (assuming mem is at address $1000_0000)? 
Well, there are a lot of reasons. But the primary reason is that this mov instruction 
always loads EAX from location mem. You cannot change the address from 
where it loads EAX. The former instructions, however, always load EAX from 
the location where p is pointing. This is very easy to change under program 
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control. In fact, the simple instruction mov( &mem2, p ); will cause those same 
two instructions above to load EAX from mem2 the next time they execute. 
Consider the following instruction sequence:

          mov( &i, p ); // Assume all variables are STATIC variables.
               .
               .
               .
          if( some_expression ) then

             mov( &j, p ); // Assume the code above skips this instruction
               . // and you get to the next instruction by 
               . // jumping to this point from somewhere else.
               .

          endif;
          mov( p, ebx ); // Assume both of the above code paths wind up
          mov( [ebx], eax ); // down here.

This short example demonstrates two execution paths through the 
program. The first path loads the variable p with the address of the variable i. 
The second path through the code loads p with the address of the variable j. 
Both execution paths converge on the last two mov instructions that load EAX 
with i or j depending upon which execution path was taken. In many respects, 
this is like a parameter to a procedure in a high-level language like Pascal. 
Executing the same instructions accesses different variables depending on 
whose address (i or j) winds up in p.

4.5.2 Declaring Pointers in HLA

Because pointers are 32-bits long, you could simply use the dword type to 
allocate storage for your pointers. However, there is a much better way to do 
this: HLA provides the pointer to phrase specifically for declaring pointer 
variables. Consider the following example:

static
     b:          byte;
     d:          dword;
     pByteVar:   pointer to byte := &b;
     pDWordVar:  pointer to dword := &d;

This example demonstrates that it is possible to initialize as well as declare 
pointer variables in HLA. Note that you may only take addresses of static 
variables (static, readonly, and storage objects) with the address-of operator, 
so you can only initialize pointer variables with the addresses of static objects.

You can also define your own pointer types in the type section of an HLA 
program. For example, if you often use pointers to characters, you’ll probably 
want to use a type declaration like the one in the following example.
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type
     ptrChar:     pointer to char;

static
     cString:     ptrChar;

4.5.3 Pointer Constants and Pointer Constant Expressions

HLA allows two literal pointer constant forms: the address-of operator 
followed by the name of a static variable or the constant NULL. In addition 
to these two literal pointer constants, HLA also supports simple pointer 
constant expressions.

The NULL pointer is the constant 0. Zero is an illegal address that will 
raise an exception if you try to access it under modern operating systems. 
Programs typically initialize pointers with NULL to indicate that a pointer has 
explicitly not been initialized with a valid address. 

In addition to simple address literals and the value 0, HLA allows very 
simple constant expressions wherever a pointer constant is legal. Pointer 
constant expressions take one of the three following forms:

          &StaticVarName [ PureConstantExpression ]
          &StaticVarName + PureConstantExpression
          &StaticVarName - PureConstantExpression

The PureConstantExpression term is a numeric constant expression that 
does not involve any pointer constants. This type of expression produces a 
memory address that is the specified number of bytes before or after (- or +, 
respectively) the StaticVarName variable in memory. Note that the first two 
forms above are semantically equivalent; they both return a pointer constant 
whose address is the sum of the static variable and the constant expression.

Because you can create pointer constant expressions, it should come as 
no surprise to discover that HLA lets you define manifest pointer constants 
in the const section. The program in Listing 4-5 demonstrates how you can 
do this.

program PtrConstDemo;
#include( "stdlib.hhf" );

static
    b:  byte := 0;
        byte    1, 2, 3, 4, 5, 6, 7;
        
const
    pb := &b + 1;
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begin PtrConstDemo;

    mov( pb, ebx );
    mov( [ebx], al );
    stdout.put( "Value at address pb = $", al, nl );
    
end PtrConstDemo;

Listing 4-5: Pointer constant expressions in an HLA program

Upon execution, this program prints the value of the byte just beyond b 
in memory (which contains the value $01).

4.5.4 Pointer Variables and Dynamic Memory Allocation

Pointer variables are the perfect place to store the return result from the HLA 
Standard Library mem.alloc function. The mem.alloc function returns the 
address of the storage it allocates in the EAX register; therefore, you can 
store the address directly into a pointer variable with a single mov instruction 
immediately after a call to mem.alloc:

type
     bytePtr:     pointer to byte;

var
     bPtr: bytePtr;
          .
          .
          .
     mem.alloc( 1024 ); // Allocate a block of 1,024 bytes.
     mov( eax, bPtr ); // Store address of block in bPtr.
          .
          .
          .
     mem.free( bPtr ); // Free the allocated block when done using it.
          .
          .
          .

4.5.5 Common Pointer Problems

Programmers encounter five common problems when using pointers. Some 
of these errors will cause your programs to immediately stop with a diagnostic 
message; other problems are more subtle, yielding incorrect results without 
otherwise reporting an error or simply affecting the performance of your 
program without displaying an error. These five problems are:

Using an uninitialized pointer

Using a pointer that contains an illegal value (e.g., NULL)
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Continuing to use mem.alloc’d storage after that storage has been freed

Failing to mem.free storage once the program is finished using it

Accessing indirect data using the wrong data type

The first problem above is using a pointer variable before you have 
assigned a valid memory address to the pointer. Beginning programmers 
often don’t realize that declaring a pointer variable reserves storage only for 
the pointer itself; it does not reserve storage for the data that the pointer 
references. The short program in Listing 4-6 demonstrates this problem.

// Program to demonstrate use of
// an uninitialized pointer. Note
// that this program should terminate
// with a Memory Access Violation exception.

program UninitPtrDemo;
#include( "stdlib.hhf" );

static

    // Note: By default, variables in the
    // static section are initialized with
    // zero (NULL) hence the following
    // is actually initialized with NULL,
    // but that will still cause our program
    // to fail because we haven't initialized
    // the pointer with a valid memory address.
    
    Uninitialized: pointer to byte;
        
begin UninitPtrDemo;

    mov( Uninitialized, ebx );
    mov( [ebx], al );
    stdout.put( "Value at address Uninitialized: = $", al, nl );
    
end UninitPtrDemo;

Listing 4-6: Uninitialized pointer demonstration

Although variables you declare in the static section are, technically, 
initialized, static initialization still doesn’t initialize the pointer in this program 
with a valid address (it initializes them with 0, which is NULL).

Of course, there is no such thing as a truly uninitialized variable on the 
80x86. What you really have are variables that you’ve explicitly given an initial 
value and variables that just happen to inherit whatever bit pattern was in 
memory when storage for the variable was allocated. Much of the time, these 
garbage bit patterns lying around in memory don’t correspond to a valid 
memory address. Attempting to dereference such a pointer (that is, access the 
data in memory at which it points) typically raises a Memory Access Violation 
exception. 
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Sometimes, however, those random bits in memory just happen to corre-
spond to a valid memory location you can access. In this situation, the CPU 
will access the specified memory location without aborting the program. 
Although to a naive programmer this situation may seem preferable to stopping 
the program, in reality this is far worse because your defective program 
continues to run without alerting you to the problem. If you store data 
through an uninitialized pointer, you may very well overwrite the values of 
other important variables in memory. This defect can produce some very 
difficult-to-locate problems in your program.

The second problem programmers have with pointers is storing invalid 
address values into a pointer. The first problem above is actually a special 
case of this second problem (with garbage bits in memory supplying the invalid 
address rather than you producing it via a miscalculation). The effects are the 
same; if you attempt to dereference a pointer containing an invalid address, 
either you will get a Memory Access Violation exception or you will access an 
unexpected memory location.

The third problem listed above is also known as the dangling pointer 
problem. To understand this problem, consider the following code fragment:

          mem.alloc( 256 ); // Allocate some storage.
          mov( eax, ptr ); // Save address away in a pointer variable.
               .
               . // Code that uses the pointer variable ptr.
               .
          mem.free( ptr ); // Free the storage associated with ptr.
               .
               . // Code that does not change the value in ptr.
               .
          mov( ptr, ebx );
          mov( al, [ebx] );

In this example you will note that the program allocates 256 bytes of 
storage and saves the address of that storage in the ptr variable. Then the 
code uses this block of 256 bytes for a while and frees the storage, returning 
it to the system for other uses. Note that calling mem.free does not change the 
value of ptr in any way; ptr still points at the block of memory allocated by 
mem.alloc earlier. Indeed, mem.free does not change any data in this block, so 
upon return from mem.free, ptr still points at the data stored into the block 
by this code. However, note that the call to mem.free tells the system that the 
program no longer needs this 256-byte block of memory and the system can 
use this region of memory for other purposes. The mem.free function cannot 
enforce the fact that you will never access this data again; you are simply 
promising that you won’t. Of course, the code fragment above breaks this 
promise; as you can see in the last two instructions above, the program 
fetches the value in ptr and accesses the data it points at in memory.
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The biggest problem with dangling pointers is that you can get away with 
using them a good part of the time. As long as the system doesn’t reuse the 
storage you’ve freed, using a dangling pointer produces no ill effects in your 
program. However, with each new call to mem.alloc, the system may decide to 
reuse the memory released by that previous call to mem.free. When this hap-
pens, any attempt to dereference the dangling pointer may produce some 
unintended consequences. The problems range from reading data that has 
been overwritten (by the new, legal use of the data storage), to overwriting 
the new data, to (the worst case) overwriting system heap management pointers 
(doing so will probably cause your program to crash). The solution is clear: 
Never use a pointer value once you free the storage associated with that pointer.

Of all the problems, the fourth (failing to free allocated storage) will 
probably have the least impact on the proper operation of your program. 
The following code fragment demonstrates this problem:

          mem.alloc( 256 );
          mov( eax, ptr );
               . // Code that uses the data where ptr is pointing.
               . // This code does not free up the storage
               . // associated with ptr.
          mem.alloc( 512 );
          mov( eax, ptr );

          // At this point, there is no way to reference the original
          // block of 256 bytes pointed at by ptr.

In this example the program allocates 256 bytes of storage and references 
this storage using the ptr variable. At some later time the program allocates 
another block of bytes and overwrites the value in ptr with the address of this 
new block. Note that the former value in ptr is lost. Because the program no 
longer has this address value, there is no way to call mem.free to return the 
storage for later use. As a result, this memory is no longer available to your 
program. While making 256 bytes of memory inaccessible to your program 
may not seem like a big deal, imagine that this code is in a loop that repeats 
over and over again. With each execution of the loop the program loses another 
256 bytes of memory. After a sufficient number of loop iterations, the program 
will exhaust the memory available on the heap. This problem is often called a 
memory leak because the effect is the same as though the memory bits were 
leaking out of your computer (yielding less and less available storage) during 
program execution.

Memory leaks are far less damaging than dangling pointers. Indeed, 
there are only two problems with memory leaks: the danger of running out 
of heap space (which, ultimately, may cause the program to abort, though 
this is rare) and performance problems due to virtual memory page swapping. 
Nevertheless, you should get in the habit of always freeing all storage once 
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you have finished using it. When your program quits, the operating system 
reclaims all storage, including the data lost via memory leaks. Therefore, 
memory lost via a leak is lost only to your program, not the whole system.

The last problem with pointers is the lack of type-safe access. This can 
occur because HLA cannot and does not enforce pointer type checking. For 
example, consider the program in Listing 4-7.

// Program to demonstrate use of
// lack of type checking in pointer
// accesses.

program BadTypePtrDemo;
#include("stdlib.hhf" );

static
    ptr:    pointer to char;
    cnt:    uns32;
        
begin BadTypePtrDemo;

    // Allocate sufficient characters
    // to hold a line of text input
    // by the user:
    
    mem.alloc( 256 );
    mov( eax, ptr );
    

    // Okay, read the text a character
    // at a time by the user:
    
    stdout.put( "Enter a line of text: " ); 
    stdin.flushInput();
    mov( 0, cnt );
    mov( ptr, ebx );
    repeat
    
        stdin.getc();       // Read a character from the user.
        mov( al, [ebx] );   // Store the character away.
        inc( cnt );         // Bump up count of characters.
        inc( ebx );         // Point at next position in memory.

    until( stdin.eoln());
    
    
    // Okay, we've read a line of text from the user,
    // now display the data:
    
    mov( ptr, ebx );
    for( mov( cnt, ecx ); ecx > 0; dec( ecx )) do
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        mov( [ebx], eax );
        stdout.put( "Current value is $", eax, nl );
        inc( ebx );
        
    endfor;
    mem.free( ptr );
        
    
end BadTypePtrDemo;

Listing 4-7: Type-unsafe pointer access example

This program reads in data from the user as character values and then 
displays the data as double-word hexadecimal values. While a powerful 
feature of assembly language is that it lets you ignore data types at will and 
automatically coerce the data without any effort, this power is a two-edged 
sword. If you make a mistake and access indirect data using the wrong data 
type, HLA and the 80x86 may not catch the mistake and your program may 
produce inaccurate results. Therefore, you need to take care when using 
pointers and indirection in your programs that you use the data consistently 
with respect to data type.

4.6 Composite Data Types

Composite data types, also known as aggregate data types, are those that are 
built up from other (generally scalar) data types. This chapter covers several 
of the more important composite data types—character strings, character sets, 
arrays, records, and unions. A string is a good example of a composite data type; 
it is a data structure built up from a sequence of individual characters and some 
other data. 

4.7 Character Strings

After integer values, character strings are probably the most common data 
type that modern programs use. The 80x86 does support a handful of string 
instructions, but these instructions are really intended for block memory 
operations, not a specific implementation of a character string. Therefore, 
this section will concentrate mainly on the HLA definition of character 
strings and will also discuss the string-handling routines available in the HLA 
Standard Library.

In general, a character string is a sequence of ASCII characters that 
possesses two main attributes: a length and some character data. Different 
languages use different data structures to represent strings. To better under-
stand the reasoning behind the design of HLA strings, it is probably instructive 
to look at two different string representations popularized by various high-
level languages.
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Without question, zero-terminated strings are probably the most common 
string representation in use today because this is the native string format for 
C, C++, C#, Java, and other languages. A zero-terminated string consists of a 
sequence of zero or more ASCII characters ending with a 0 byte. For example, 
in C/C++, the string "abc" requires 4 bytes: the three characters 'a', 'b', and 
'c' followed by a 0. As you’ll soon see, HLA character strings are upward 
compatible with zero-terminated strings, but in the meantime you should 
note that it is very easy to create zero-terminated strings in HLA. The easiest 
place to do this is in the static section using code like the following:

static
     zeroTerminatedString:     char; @nostorage;
                               byte "This is the zero-terminated string", 0;

Remember, when using the @nostorage option, HLA doesn’t reserve any 
space for the variable, so the zeroTerminatedString variable’s address in memory 
corresponds to the first character in the following byte directive. Whenever 
a character string appears in the byte directive as it does here, HLA emits each 
character in the string to successive memory locations. The 0 value at the end 
of the string terminates this string.

HLA supports a zstring data type. However, those objects are double word 
pointers that contain the address of a zstring, not the zero-terminated string 
itself. Here is an example of a zstring declaration (and static initialization):

static
     zeroTerminatedString:     char; @nostorage;
                               byte "This is the zero-terminated string", 0;
     zstrVar:                  zstring := &zeroTerminatedString;

Zero-terminated strings have two principal attributes: They are very simple 
to implement, and the strings can be any length. On the other hand, zero-
terminated strings have a few drawbacks. First, though not usually important, 
zero-terminated strings cannot contain the NUL character (whose ASCII code 
is 0). Generally, this isn’t a problem, but it does create havoc once in a while. 
The second problem with zero-terminated strings is that many operations on 
them are somewhat inefficient. For example, to compute the length of a 
zero-terminated string, you must scan the entire string looking for that 0 byte 
(counting characters up to the 0). The following program fragment demon-
strates how to compute the length of the string above:

          mov( &zeroTerminatedString, ebx );
          mov( 0, eax );
          while( (type byte [ebx+eax]) <> 0 ) do

               inc( eax );

          endwhile;

          // String length is now in eax.
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As you can see from this code, the time it takes to compute the length of 
the string is proportional to the length of the string; as the string gets longer, 
it takes longer to compute its length.

A second string format, length-prefixed strings, overcomes some of the 
problems with zero-terminated strings. Length-prefixed strings are common 
in languages like Pascal; they generally consist of a length byte followed by 
zero or more character values. The first byte specifies the string length, and 
the following bytes (up to the specified length) are the character data. In a 
length-prefixed scheme, the string abc would consist of the 4 bytes $03 (the 
string length) followed by a, b, and c. You can create length-prefixed strings 
in HLA using code like the following:

static
     lengthPrefixedString:char; @nostorage;

byte 3, "abc";

Counting the characters ahead of time and inserting them into the byte 
statement, as was done here, may seem like a major pain. Fortunately, there 
are ways to have HLA automatically compute the string length for you.

Length-prefixed strings solve the two major problems associated with 
zero-terminated strings. It is possible to include the NUL character in length-
prefixed strings, and those operations on zero-terminated strings that are 
relatively inefficient (e.g., string length) are more efficient when using length-
prefixed strings. However, length-prefixed strings have their own drawbacks. 
The principal drawback is that they are limited to a maximum of 255 characters 
in length (assuming a 1-byte length prefix).

HLA uses an expanded scheme for strings that is upward compatible 
with both zero-terminated and length-prefixed strings. HLA strings enjoy the 
advantages of both zero-terminated and length-prefixed strings without the 
disadvantages. In fact, the only drawback to HLA strings over these other 
formats is that HLA strings consume a few additional bytes (the overhead for 
an HLA string is 9 to 12 bytes compared to 1 byte for zero-terminated or 
length-prefixed strings, the overhead being the number of bytes needed 
above and beyond the actual characters in the string).

An HLA string value consists of four components. The first element is a 
double-word value that specifies the maximum number of characters that the 
string can hold. The second element is a double-word value specifying the 
current length of the string. The third component is the sequence of characters 
in the string. The final component is a zero-terminating byte. You could create 
an HLA-compatible string in the static section using code like the following:5

static
          align(4);
          dword 11;
          dword 11;

5 Actually, there are some restrictions on the placement of HLA strings in memory. This text will 
not cover those issues. See the HLA documentation for more details.
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     TheString: char; @nostorage;
          byte "Hello there";
          byte 0;

Note that the address associated with the HLA string is the address of the 
first character, not the maximum or current length values.

“So what is the difference between the current and maximum string 
lengths?” you’re probably wondering. In a literal string they are usually the 
same. However, when you allocate storage for a string variable at runtime, 
you will normally specify the maximum number of characters that can go 
into the string. When you store actual string data into the string, the number 
of characters you store must be less than or equal to this maximum value. 
The HLA Standard Library string routines will raise an exception if you attempt 
to exceed this maximum length (something the C/C++ and Pascal formats 
can’t do). 

The terminating 0 byte at the end of the HLA string lets you treat an 
HLA string as a zero-terminated string if it is more efficient or more convenient 
to do so. For example, most calls to Windows, Mac OS X, FreeBSD, and Linux 
require zero-terminated strings for their string parameters. Placing a 0 at the 
end of an HLA string ensures compatibility with the operating system and 
other library modules that use zero-terminated strings.

4.8 HLA Strings

As the previous section notes, HLA strings consist of four components: a 
maximum length, a current string length, character data, and a zero-terminating 
byte. However, HLA never requires you to create string data by manually 
emitting these components yourself. HLA is smart enough to automatically 
construct this data for you whenever it sees a string literal constant. So if you 
use a string constant like the following, understand that somewhere HLA is 
creating the four-component string in memory for you:

stdout.put( "This gets converted to a four-component string by HLA" );

HLA doesn’t actually work directly with the string data described in the 
previous section. Instead, when HLA sees a string object, it always works with 
a pointer to that object rather than working directly with the object. Without 
question, this is the most important fact to know about HLA strings and is the 
biggest source of problems beginning HLA programmers have with strings in 
HLA: Strings are pointers! A string variable consumes exactly 4 bytes, the same 
as a pointer (because it is a pointer!). Having said all that, let’s look at a simple 
string variable declaration in HLA:

static
          StrVariable:     string;
188 Chapte r  4



AAL2E_03.book  Page 189  Thursday, February 18, 2010  12:49 PM
Because a string variable is a pointer, you must initialize it before you can 
use it. There are three general ways you may initialize a string variable with 
a legal string address: using static initializers, using the str.alloc routine, or 
calling some other HLA Standard Library function that initializes a string or 
returns a pointer to a string.

In one of the static declaration sections that allow initialized variables 
(static and readonly) you can initialize a string variable using the standard 
initialization syntax. For example:

static
     InitializedString: string := "This is my string";

Note that this does not initialize the string variable with the string data. 
Instead, HLA creates the string data structure (see Section 4.7) in a special, 
hidden, memory segment and initializes the InitializedString variable with 
the address of the first character in this string (the T in This). Remember, strings 
are pointers! The HLA compiler places the actual string data in a read-only 
memory segment. Therefore, you cannot modify the characters of this string 
literal at runtime. However, because the string variable (a pointer, remember) 
is in the static section, you can change the string variable so that it points at 
different string data.

Because string variables are pointers, you can load the value of a string 
variable into a 32-bit register. The pointer itself points at the first character 
position of the string. You can find the current string length in the double-
word 4 bytes prior to this address, and you can find the maximum string 
length in the double-word 8 bytes prior to this address. The program in 
Listing 4-8 demonstrates one way to access this data.6

// Program to demonstrate accessing Length and Maxlength fields of a string.

program StrDemo;
#include( "stdlib.hhf" );

static
    theString:string := "String of length 19";
        
begin StrDemo;

    mov( theString, ebx );  // Get pointer to the string.
    
    mov( [ebx-4], eax );    // Get current length.
    mov( [ebx-8], ecx );    // Get maximum length.
    
    stdout.put
    ( 

6 Note that this scheme is not recommended. If you need to extract the length information from 
a string, use the routines provided in the HLA string library for this purpose.
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        "theString = '", theString, "'", nl,
        "length( theString )= ", (type uns32 eax ), nl,
        "maxLength( theString )= ", (type uns32 ecx ), nl
    );
    
end StrDemo;

Listing 4-8: Accessing the length and maximum length fields of a string

When accessing the various fields of a string variable, it is not wise to 
access them using fixed numeric offsets as done in Listing 4-8. In the future, 
the definition of an HLA string may change slightly. In particular, the offsets 
to the maximum length and length fields are subject to change. A safer way to 
access string data is to coerce your string pointer using the str.strRec data 
type. The str.strRec data type is a record data type (see Section 4.25) that 
defines symbolic names for the offsets of the length and maximum length 
fields in the string data type. If the offsets to the length and maximum 
length fields were to change in a future version of HLA, then the definitions 
in str.strRec would also change. So if you use str.strRec, then recompiling 
your program would automatically make any necessary changes to your 
program.

To use the str.strRec data type properly, you must first load the string 
pointer into a 32-bit register; for example, mov( SomeString, ebx );. Once 
the pointer to the string data is in a register, you can coerce that register 
to the str.strRec data type using the HLA construct (type str.strRec [ebx]). 
Finally, to access the length or maximum length fields, you would use either 
(type str.strRec [ebx]).length or (type str.strRec [ebx]).maxlen (respectively). 
Although there is a little more typing involved (versus using simple offsets 
like −4 or −8), these forms are far more descriptive and much safer than 
straight numeric offsets. The program in Listing 4-9 corrects the example in 
Listing 4-8 by using the str.strRec data type.

// Program to demonstrate accessing length and maxlen fields of a string

program LenMaxlenDemo;
#include( "stdlib.hhf" );

static
    theString:string := "String of length 19";
        
begin LenMaxlenDemo;

    mov( theString, ebx );  // Get pointer to the string.
    
    mov( (type str.strRec [ebx]).length, eax );  // Get current length.
    mov( (type str.strRec [ebx]).maxlen, ecx );  // Get maximum length.
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    stdout.put
    ( 
        "theString = ", theString, "'", nl,
        "length( theString )= ", (type uns32 eax ), nl,
        "maxLength( theString )= ", (type uns32 ecx ), nl
    );
    
end LenMaxlenDemo;

Listing 4-9: Correct way to access the length and maxlen fields of a string

A second way to manipulate strings in HLA is to allocate storage on the 
heap to hold string data. Because strings can’t directly use pointers returned 
by mem.alloc (string operations access the 8 bytes prior to the address), you 
shouldn’t use mem.alloc to allocate storage for string data. Fortunately, the 
HLA Standard Library memory module provides a memory allocation routine 
specifically designed to allocate storage for strings: str.alloc. Like mem.alloc, 
str.alloc expects a single double-word parameter. This value specifies the 
maximum number of characters allowed in the string. The str.alloc routine 
will allocate the specified number of bytes of memory, plus between 9 and 13 
additional bytes to hold the extra string information.7

The str.alloc routine will allocate storage for a string, initialize the maxi-
mum length to the value passed as the str.alloc parameter, initialize the 
current length to 0, and store a zero-terminating byte in the first character 
position of the string. After this, str.alloc returns the address of the zero-
terminating byte (that is, the address of the first character element) in the 
EAX register.

Once you’ve allocated storage for a string, you can call various string-
manipulation routines in the HLA Standard Library to manipulate the string. 
The next section discusses a few of the HLA string routines in detail; this 
section introduces a couple of string-related routines for the sake of example. 
The first such routine is the stdin.gets( strvar );. This routine reads a string 
from the user and stores the string data into the string storage pointed at by 
the string parameter (strvar in this case). If the user attempts to enter more 
characters than the maximum the string allows, then stdin.gets raises the 
ex.StringOverflow exception. The program in Listing 4-10 demonstrates the 
use of str.alloc.

// Program to demonstrate str.alloc and stdin.gets

program strallocDemo;
#include( "stdlib.hhf" );

static
    theString:string;
        
begin strallocDemo;

7 str.alloc may allocate more than 9 bytes for the overhead data because the memory allocated 
to an HLA string must always be double-word aligned, and the total length of the data structure 
must be a multiple of 4.
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    str.alloc( 16 );         // Allocate storage for the string and store
    mov( eax, theString );   // the pointer into the string variable.
    
    // Prompt the user and read the string from the user:
    
    stdout.put( "Enter a line of text (16 chars, max): " );
    stdin.flushInput();
    stdin.gets( theString );
    
    // Echo the string back to the user:
    
    stdout.put( "The string you entered was: ", theString, nl );
    
end strallocDemo;

Listing 4-10: Reading a string from the user

If you look closely, you’ll see a slight defect in the program above. It allo-
cates storage for the string by calling str.alloc, but it never frees the storage 
allocated. Even though the program immediately exits after the last use of 
the string variable, and the operating system will deallocate the storage, it’s 
always a good idea to explicitly free up any storage you allocate. Doing so 
keeps you in the habit of freeing allocated storage (so you don’t forget to do 
it when it’s important); also, programs have a way of growing such that an 
innocent defect that doesn’t affect anything in today’s program becomes a 
show-stopping defect in tomorrow’s version.

To free storage you allocate via str.alloc, you must call the str.free routine, 
passing the string pointer as the single parameter. The program in Listing 4-11 is 
a correction of the program Listing 4-10 with this defect corrected.

// Program to demonstrate str.alloc, str.free, and stdin.gets

program strfreeDemo;
#include( "stdlib.hhf" );

static
    theString:string;
        
begin strfreeDemo;

    str.alloc( 16 );         // Allocate storage for the string and store
    mov( eax, theString );   // the pointer into the string variable.
    
    // Prompt the user and read the string from the user:
    
    stdout.put( "Enter a line of text (16 chars, max): " );
    stdin.flushInput();
    stdin.gets( theString );
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    // Echo the string back to the user:
    
    stdout.put( "The string you entered was: ", theString, nl );
    
    // Free up the storage allocated by str.alloc:
    
    str.free( theString );
    
end strfreeDemo;

Listing 4-11: Corrected program that reads a string from the user

When looking at this corrected program, please take note that the 
stdin.gets routine expects you to pass it a string parameter that points at an 
allocated string object. Without question, one of the most common mistakes 
beginning HLA programmers make is to call stdin.gets and pass it a string 
variable that they have not initialized. This may be getting old now, but keep 
in mind that strings are pointers! Like pointers, if you do not initialize a string 
with a valid address, your program will probably crash when you attempt to 
manipulate that string object. The call to str.alloc and the following mov 
instruction is how the programs above initialize the string pointer. If you are 
going to use string variables in your programs, you must ensure that you 
allocate storage for the string data prior to writing data to the string object.

Allocating storage for a string is such a common operation that many 
HLA Standard Library routines will automatically allocate the storage for 
you. Generally, such routines have an a_ prefix as part of their name. For 
example, the stdin.a_gets combines a call to str.alloc and stdin.gets into the 
same routine. This routine, which doesn’t have any parameters, reads a line 
of text from the user, allocates a string object to hold the input data, and then 
returns a pointer to the string in the EAX register. Listing 4-12 presents an 
adaptation of the two programs in Listings 4-10 and 4-11 that uses stdin.a_gets.

// Program to demonstrate str.free and stdin.a_gets

program strfreeDemo2;
#include( "stdlib.hhf" );

static
    theString:string;
        
begin strfreeDemo2;

    
    // Prompt the user and read the string from the user:
    
    stdout.put( "Enter a line of text: " );
    stdin.flushInput();
    stdin.a_gets();
    mov( eax, theString );
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    // Echo the string back to the user:
    
    stdout.put( "The string you entered was: ", theString, nl );
    
    // Free up the storage allocated by stdin.a_gets:
    
    str.free( theString );
    
end strfreeDemo2;

Listing 4-12: Reading a string from the user with stdin.a_gets

Note that, as before, you must still free up the storage stdin.a_gets allocates 
by calling the str.free routine. One big difference between this routine and 
the previous two is the fact that HLA will automatically allocate exactly enough 
space for the string read from the user. In the previous programs, the call to 
str.alloc allocates only 16 bytes. If the user types more than 16 characters, 
then the program raises an exception and quits. If the user types fewer
than 16 characters, then some space at the end of the string is wasted. The 
stdin.a_gets routine, on the other hand, always allocates the minimum necessary 
space for the string read from the user. Because it allocates the storage, there 
is little chance of overflow.8

4.9 Accessing the Characters Within a String

Extracting individual characters from a string is a very common task. It is so 
easy that HLA doesn’t provide any specific procedure or language syntax to 
accomplish this—you simply use machine instructions to accomplish this. 
Once you have a pointer to the string data, a simple indexed addressing mode 
will do the rest of the work for you.

Of course, the most important thing to keep in mind is that strings are 
pointers. Therefore, you cannot apply an indexed addressing mode directly to 
a string variable and expect to extract characters from the string. That is, if s 
is a string variable, then mov( s[ebx], al ); does not fetch the character at 
position EBX in string s and place it in the AL register. Remember, s is just a 
pointer variable; an addressing mode like s[ebx] will simply fetch the byte at 
offset EBX in memory starting at the address of s (see Figure 4-1).

Figure 4-1: Incorrectly indexing off a string variable

8 Actually, there are limits on the maximum number of characters that stdin.a_gets will allocate. 
This is typically between 1,024 bytes and 4,096 bytes. See the HLA Standard Library source 
listings and your operating system documentation for the exact value.
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In Figure 4-1, assuming EBX contains 3, s[ebx] does not access the fourth 
character in the string s; instead it fetches the fourth byte of the pointer to 
the string data. It is very unlikely that this is what you would want. Figure 4-2 
shows the operation that is necessary to fetch a character from the string, 
assuming EBX contains the value of s.

Figure 4-2: Correctly indexing off the value of a string variable

In Figure 4-2 EBX contains the value of string s. The value of s is a pointer to 
the actual string data in memory. Therefore, EBX will point at the first character 
of the string when you load the value of s into EBX. The following code 
demonstrates how to access the fourth character of string s in this fashion:

          mov( s, ebx );          // Get pointer to string data into ebx.
          mov( [ebx+3], al );     // Fetch the fourth character of the string.

If you want to load the character at a variable, rather than fixed, offset 
into the string, then you can use one of the 80x86’s scaled indexed addressing 
modes to fetch the character. For example, if an uns32 variable index contains 
the desired offset into the string, you could use the following code to access the 
character at s[index]:

          mov( s, ebx ); // Get address of string data into ebx.
          mov( index, ecx ); // Get desired offset into string.
          mov( [ebx+ecx], al ); // Get the desired character into al.

There is only one problem with the code above—it does not check to 
ensure that the character at offset index actually exists. If index is greater than 
the current length of the string, then this code will fetch a garbage byte from 
memory. Unless you can a priori determine that index is always less than the 
length of the string, code like this is dangerous to use. A better solution is to 
check the index against the string’s current length before attempting to access 
the character. The following code provides one way to do this:

          mov( s, ebx );
          mov( index, ecx );
          if( ecx < (type str.strRec [ebx]).length ) then
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               mov( [ebx+ecx], al );

          else

               << Code that handles out-of-bounds string index >>

          endif;

In the else portion of this if statement you could take corrective action, 
print an error message, or raise an exception. If you want to explicitly raise 
an exception, you can use the HLA raise statement to accomplish this. The 
syntax for the raise statement is

raise( integer_constant );
raise( reg32 );

The value of the integer_constant or 32-bit register must be an exception 
number. Usually, this is one of the predefined constants in the excepts.hhf 
header file. An appropriate exception to raise when a string index is greater 
than the length of the string is ex.StringIndexError. The following code demon-
strates raising this exception if the string index is out of bounds:

          mov( s, ebx );
          mov( index, ecx );
          if( ecx < (type str.strRec [ebx]).length ) then

               mov( [ebx+ecx], al );

          else

               raise( ex.StringIndexError );

          endif;

4.10 The HLA String Module and Other String-Related Routines

Although HLA provides a powerful definition for string data, the real power 
behind HLA’s string capabilities lies in the HLA Standard Library, not in the 
definition of HLA string data. HLA provides hundreds of string-manipulation 
routines that far exceed the capabilities found in standard high-level languages 
like C/C++, Java, or Pascal; indeed, HLA’s string-handling capabilities rival 
those in string-processing languages like Icon or SNOBOL4. This chapter 
discusses several of the string functions that the HLA Standard Library provides.

Perhaps the most basic string operation you will need is to assign one 
string to another. There are three different ways to assign strings in HLA: 
by reference, by copying a string, and by duplicating a string. Of these, 
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assignment by reference is the fastest and easiest. If you have two strings and 
you wish to assign one string to the other, a simple and fast way to do this is 
to copy the string pointer. The following code fragment demonstrates this:

static
          string1:               string  := "Some String Data";
          string2:               string;
               .
               .
               .
          mov( string1, eax );
          mov( eax, string2 );
               .
               .
               .

String assignment by reference is very efficient because it involves only 
two simple mov instructions regardless of the string length. Assignment by 
reference works great if you never modify the string data after the assignment 
operation. Do keep in mind, though, that both string variables (string1 and 
string2 in the example above) wind up pointing at the same data. So if you make 
a change to the data pointed at by one string variable, you will change the 
string data pointed at by the second string object because both objects point 
at the same data. Listing 4-13 provides a program that demonstrates this 
problem.

// Program to demonstrate the problem with string assignment by reference

program strRefAssignDemo;
#include( "stdlib.hhf" );

static
    string1:    string;
    string2:    string;
        
begin strRefAssignDemo;

    // Get a value into string1.
    
    forever
    
        stdout.put( "Enter a string with at least three characters: " );
        stdin.a_gets();
        mov( eax, string1 );
        
        breakif( (type str.strRec [eax]).length >= 3 );
        
        stdout.put( "Please enter a string with at least three chars:" nl );
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endfor;
    
    stdout.put( "You entered: '", string1, "'" nl );
    
    // Do the string assignment by copying the pointer.
    
    mov( string1, ebx );
    mov( ebx, string2 );
    
    stdout.put( "String1= '", string1, "'" nl );
    stdout.put( “"String2= '", string2, "'" nl );
    
    // Okay, modify the data in string1 by overwriting
    // the first three characters of the string (note that
    // a string pointer always points at the first character
    // position in the string and we know we've got at least
    // three characters here).
    
    mov( 'a', (type char [ebx]) );
    mov( 'b', (type char [ebx+1]) );
    mov( 'c', (type char [ebx+2]) );
    
    // Okay, demonstrate the problem with assignment via
    // pointer copy.
    
    stdout.put
    ( 
        "After assigning 'abc' to the first three characters in string1:" 
        nl
        nl
    );
    stdout.put( "String1= '", string1, "'" nl );
    stdout.put( "String2= '", string2, "'" nl );
    
    str.free( string1 );     // Don't free string2 as well!
    
        
end strRefAssignDemo;

Listing 4-13: Problem with string assignment by copying pointers

Because both string1 and string2 point at the same string data in this 
example, any change you make to one string is reflected in the other. While 
this is sometimes acceptable, most programmers expect assignment to produce 
a different copy of a string; that is, they expect the semantics of string assignment 
to produce two unique copies of the string data.

An important point to remember when using copy by reference (this term 
means copying a pointer) is that you have created an alias of the string data. 
The term alias means that you have two names for the same object in memory 
(for example, in the program above, string1 and string2 are two different 
names for the same string data). When you read a program, it is reasonable 
to expect that different variables refer to different memory objects. Aliases 
violate this rule, thus making your program harder to read and understand 
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because you have to remember that aliases do not refer to different objects in 
memory. Failing to keep this in mind can lead to subtle bugs in your program. 
For instance, in the example above you have to remember that string1 and 
string2 are aliases so as not to free both objects at the end of the program. 
Worse still, you have to remember that string1 and string2 are aliases so that 
you don’t continue to use string2 after freeing string1 because string2 would 
be a dangling reference at that point.

Because using copy by reference makes your programs harder to read 
and increases the possibility that you might introduce subtle defects into 
your programs, you might wonder why someone would use copy by reference 
at all. There are two reasons for this: First, copy by reference is very efficient; 
it involves only the execution of two mov instructions. Second, some algorithms 
actually depend on copy-by-reference semantics. Nevertheless, before using 
this technique you should carefully consider whether copying string pointers 
is the appropriate way to do a string assignment in your program.

The second way to assign one string to another is to copy the string data. 
The HLA Standard Library str.cpy routine provides this capability. A call to 
the str.cpy procedure uses the following call syntax:9

str.cpy( source_string, destination_string );

The source and destination strings must be string variables (pointers) or 
32-bit registers containing the addresses of the string data in memory.

The str.cpy routine first checks the maximum length field of the desti-
nation string to ensure that it is at least as big as the source string’s current 
length. If it is not, then str.cpy raises the ex.StringOverflow exception. If the 
destination string’s maximum length is large enough, then str.cpy copies 
the string length, the characters, and the zero-terminating byte from the 
source string to the destination string. When this process is complete, the 
two strings point at identical data, but they do not point at the same data 
in memory.10 The program in Listing 4-14 is a rework of the example in 
Listing 4-13 using str.cpy rather than copy by reference.

// Program to demonstrate string assignment using str.cpy

program strcpyDemo;
#include( "stdlib.hhf" );

static
    string1:    string;
    string2:    string;
        

9 Warning to C/C++ users: note that the order of the operands is opposite that of the C Standard 
Library strcpy function.
10 Unless, of course, both string pointers contained the same address to begin with, in which case 
str.cpy copies the string data over itself.
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begin strcpyDemo;

    // Allocate storage for string2:
    
    str.alloc( 64 );
    mov( eax, string2 );

    // Get a value into string1.
    
    forever
    
        stdout.put( "Enter a string with at least three characters: " );
        stdin.a_gets();
        mov( eax, string1 );
        
        breakif( (type str.strRec [eax]).length >= 3 );
        
        stdout.put( "Please enter a string with at least three chars:" nl );
        
    endfor;
    
    
    // Do the string assignment via str.cpy.
    
    str.cpy( string1, string2 );
    
    stdout.put( "String1= '", string1, "'" nl );
    stdout.put( "String2= '", string2, "'" nl );
    
    // Okay, modify the data in string1 by overwriting
    // the first three characters of the string (note that
    // a string pointer always points at the first character
    // position in the string and we know we've got at least
    // three characters here).
    
    mov( string1, ebx );
    mov( 'a', (type char [ebx]) );
    mov( 'b', (type char [ebx+1]) );
    mov( 'c', (type char [ebx+2]) );
    
    // Okay, demonstrate that we have two different strings
    // because we used str.cpy to copy the data:
    
    stdout.put
    ( 
        "After assigning 'abc' to the first three characters in string1:" 
        nl
        nl
    );
    stdout.put( "String1= '", string1, "'" nl );
    stdout.put( "String2= '", string2, "'" nl );
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    // Note that we have to free the data associated with both
    // strings because they are not aliases of one another.
    
    str.free( string1 );
    str.free( string2 );
    
        
end strcpyDemo;

Listing 4-14: Copying strings using str.cpy

There are two important things to note about the program in Listing 4-14. 
First, note that this program begins by allocating storage for string2. Remember, 
the str.cpy routine does not allocate storage for the destination string; it assumes 
that the destination string already has storage allocated. Keep in mind that 
str.cpy does not initialize string2; it only copies data to the location where 
string2 is pointing. It is the program’s responsibility to initialize the string by 
allocating sufficient memory before calling str.cpy. The second thing to notice 
here is that the program calls str.free to free up the storage for both string1 
and string2 before the program quits.

Allocating storage for a string variable prior to calling str.cpy is so common 
that the HLA Standard Library provides a routine that allocates and copies 
the string: str.a_cpy. This routine uses the following call syntax:

str.a_cpy( source_string );

Note that there is no destination string. This routine looks at the length 
of the source string, allocates sufficient storage, makes a copy of the string, 
and then returns a pointer to the new string in the EAX register. The program 
in Listing 4-15 demonstrates how to do the same thing as the program in 
Listing 4-14 using the str.a_cpy procedure.

// Program to demonstrate string assignment using str.a_cpy

program stra_cpyDemo;
#include( "stdlib.hhf" );

static
    string1:    string;
    string2:    string;
        
begin stra_cpyDemo;

    // Get a value into string1.
    
    forever
    
        stdout.put( "Enter a string with at least three characters: " );
        stdin.a_gets();
        mov( eax, string1 );
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        breakif( (type str.strRec [eax]).length >= 3 );
        
        stdout.put( "Please enter a string with at least three chars:" nl );
        
    endfor;
    
    
    // Do the string assignment via str.a_cpy.
    
    str.a_cpy( string1 );
    mov( eax, string2 );
    
    stdout.put( "String1= '", string1, "'" nl );
    stdout.put( "String2= '", string2, "'" nl );
    
    // Okay, modify the data in string1 by overwriting
    // the first three characters of the string (note that
    // a string pointer always points at the first character
    // position in the string and we know we've got at least
    // three characters here).
    
    mov( string1, ebx );
    mov( 'a', (type char [ebx]) );
    mov( 'b', (type char [ebx+1]) );
    mov( 'c', (type char [ebx+2]) );
    
    // Okay, demonstrate that we have two different strings
    // because we used str.cpy to copy the data:
    
    stdout.put
    ( 
        "After assigning 'abc' to the first three characters in string1:" 
        nl
        nl
    );
    stdout.put( "String1= '", string1, "'" nl );
    stdout.put( "String2= '", string2, "'" nl );
    
    
    // Note that we have to free the data associated with both
    // strings because they are not aliases of one another.
    
    str.free( string1 );
    str.free( string2 );
    
        
end stra_cpyDemo;

Listing 4-15: Copying strings using str.a_cpy
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WARNING Whenever you use copy by reference or str.a_cpy to assign a string, don’t forget to free 
the storage associated with the string when you have (completely) finished with that 
string’s data. Failure to do so may produce a memory leak if you do not have another 
pointer to the previous string data lying around.

Obtaining the length of a character string is so common that the HLA 
Standard Library provides a str.length routine specifically for this purpose. 
Of course, you can fetch the length by using the str.strRec data type to access 
the length field directly, but constant use of this mechanism can be tiring 
because it involves a lot of typing. The str.length routine provides a more 
compact and convenient way to fetch the length information. You call str.length 
using one of the following two formats:

str.length( Reg32 );
str.length( string_variable );

This routine returns the current string length in the EAX register.
Another pair of useful string routines is the str.cat and str.a_cat 

procedures. They use the following syntax:

str.cat( srcRStr, destLStr );
str.a_cat( srcLStr, srcRStr );

These two routines concatenate two strings (that is, they create a new string 
by joining the two strings together). The str.cat procedure concatenates the 
source string to the end of the destination string. Before the concatenation 
actually takes place, str.cat checks to make sure that the destination string is 
large enough to hold the concatenated result, and it raises the ex.StringOverflow 
exception if the destination string’s maximum length is too small.

The str.a_cat routine, as its name suggests, allocates storage for the 
resulting string before doing the concatenation. This routine will allocate 
sufficient storage to hold the concatenated result, then it will copy the 
srcLStr to the allocated storage, next it will append the string data pointed at 
by srcRStr to the end of this new string, and then it will return a pointer to 
the new string in the EAX register. 

WARNING Note a potential source of confusion. The str.cat procedure concatenates its first oper-
and to the end of the second operand. Therefore, str.cat follows the standard (src, 
dest) operand format present in many HLA statements. The str.a_cat routine, on 
the other hand, has two source operands rather than a source operand and a destination 
operand. The str.a_cat routine concatenates its two operands in an intuitive left-to-right 
fashion. This is the opposite of str.cat. Keep this in mind when using these two routines.

Listing 4-16 demonstrates the use of the str.cat and str.a_cat routines.
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// Program to demonstrate str.cat and str.a_cat

program strcatDemo;
#include( "stdlib.hhf" );

static
    UserName:   string;
    Hello:      string;
    a_Hello:    string;
        
begin strcatDemo;

    // Allocate storage for the concatenated result:
    
    str.alloc( 1024 );
    mov( eax, Hello );
    
    // Get some user input to use in this example:
    
    stdout.put( "Enter your name: " );
    stdin.flushInput();
    stdin.a_gets();
    mov( eax, UserName );
    
    // Use str.cat to combine the two strings:
    
    str.cpy( "Hello ", Hello );
    str.cat( UserName, Hello );
    
    // Use str.a_cat to combine the string strings:
    
    str.a_cat( "Hello ", UserName );
    mov( eax, a_Hello );
    
    stdout.put( "Concatenated string #1 is '", Hello, "'" nl );
    stdout.put( "Concatenated string #2 is '", a_Hello, "'" nl );
    
    str.free( UserName );
    str.free( a_Hello );
    str.free( Hello );   
                  
end strcatDemo;

Listing 4-16: Demonstration of str.cat and str.a_cat routines

The str.insert and str.a_insert routines are similar to the string-
concatenation procedures. However, the str.insert and str.a_insert routines 
let you insert one string anywhere into another string, not just at the end of 
the string. The calling sequences for these two routines are:

                    str.insert( src, dest, index );
                    str.a_insert( src, dest, index );
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These two routines insert the source string (src) into the destination 
string (dest) starting at character position index. The str.insert routine 
inserts the source string directly into the destination string; if the destina-
tion string is not large enough to hold both strings, str.insert raises an 
ex.StringOverflow exception. The str.a_insert routine first allocates storage 
for a new string on the heap, copies the destination string (src) to the new 
string, and then inserts the source string (dest) into this new string at the 
specified offset; str.a_insert returns a pointer to the new string in the EAX 
register.

Indexes into a string are zero based. This means that if you supply the 
value 0 as the index in str.insert or str.a_insert, then these routines will 
insert the source string before the first character of the destination string. 
Likewise, if the index is equal to the length of the string, then these routines 
will simply concatenate the source string to the end of the destination string. 

WARNING If the index is greater than the length of the string, the str.insert and str.a_insert 
procedures will not raise an exception; instead, they will simply append the source 
string to the end of the destination string.

The str.delete and str.a_delete routines let you remove characters from 
a string. They use the following calling sequence:

str.delete( strng, StartIndex, Length );
str.a_delete( strng, StartIndex, Length );

Both routines delete Length characters starting at character position 
StartIndex in string strng. The difference between the two is that str.delete 
deletes the characters directly from strng, whereas str.a_delete first allocates 
storage and copies strng and then deletes the characters from the new string 
(leaving strng untouched). The str.a_delete routine returns a pointer to the 
new string in the EAX register.

The str.delete and str.a_delete routines are very forgiving with respect 
to the values you pass in StartIndex and Length. If StartIndex is greater than 
the current length of the string, these routines do not delete any characters 
from the string. If StartIndex is less than the current length of the string, 
but StartIndex+Length is greater than the length of the string, then these 
routines will delete all characters from StartIndex to the end of the string.

Another very common string operation is the need to copy a portion of a 
string to another string without otherwise affecting the source string. The 
str.substr and str.a_substr routines provide this capability. These routines 
use the following syntax:

str.substr( src, dest, StartIndex, Length );
str.a_substr( src, StartIndex, Length );

The str.substr routine copies Length characters, starting at position 
StartIndex, from the src string to the dest string. The dest string must 
have sufficient storage to hold the new string or str.substr will raise an 
ex.StringOverflow exception. If the StartIndex value is greater than the length 
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of the string, then str.substr will raise an ex.StringIndexError exception. If 
StartIndex+Length is greater than the length of the source string, but StartIndex 
is less than the length of the string, then str.substr will extract only those 
characters from StartIndex to the end of the string.

The str.a_substr procedure behaves in a fashion nearly identical to 
str.substr, except it allocates storage on the heap for the destination string. 
str.a_substr handles exceptions identically to str.substr, except it never 
raises a string overflow exception because this will never occur.11 As you can 
probably guess by now, str.a_substr returns a pointer to the newly allocated 
string in the EAX register.

After you have been working with string data for a little while, the need 
will invariably arise to compare two strings. A first attempt at string comparison, 
using the standard HLA relational operators, will compile but not necessarily 
produce the desired result:

     mov( s1, eax );
     if( eax = s2 ) then

          << Code to execute if the strings are equal >>

     else

          << Code to execute if the strings are not equal >>

     endif;

Remember, strings are pointers. This code compares the two pointers to 
see if they are equal. If they are equal, clearly the two strings are equal (because 
both s1 and s2 point at the exact same string data). However, the fact that the 
two pointers are different doesn’t necessarily mean that the strings are not 
equivalent. Both s1 and s2 could contain different values (that is, they point 
at different addresses in memory), yet the string data at those two addresses 
could be identical. Most programmers expect a string comparison for equality to 
be true if the data for the two strings is the same. Clearly a pointer comparison 
does not provide this type of comparison. To overcome this problem, the 
HLA Standard Library provides a set of string-comparison routines that will 
compare the string data, not just their pointers. These routines use the following 
calling sequences:

str.eq( src1, src2 );
str.ne( src1, src2 );
str.lt( src1, src2 );
str.le( src1, src2 );
str.gt( src1, src2 );
str.ge( src1, src2 );

11 Technically, str.a_substr, like all routines that call mem.alloc to allocate storage, can raise an 
ex.MemoryAllocationFailure exception, but this is very unlikely to occur.
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Each of these routines compares the src1 string to the src2 string and 
returns true (1) or false (0) in the EAX register depending on the comparison. 
For example, str.eq( s1, s2); returns true in EAX if s1 is equal to s2. HLA 
provides a small extension that allows you to use the string-comparison routines 
within an if statement.12 The following code demonstrates the use of some 
of these comparison routines within an if statement:

          stdout.put( "Enter a single word: " );
          stdin.a_gets();
          if( str.eq( eax, "Hello" )) then

               stdout.put( "You entered 'Hello'", nl );

          endif;
          str.free( eax );

Note that the string the user enters in this example must exactly match 
Hello, including the use of an uppercase H at the beginning of the string. 
When processing user input, it is best to ignore alphabetic case in string 
comparisons because different users have different ideas about when they 
should be pressing the SHIFT key on the keyboard. An easy solution is to use 
the HLA case-insensitive string-comparison functions. These routines compare 
two strings, ignoring any differences in alphabetic case. These routines use 
the following calling sequences:

str.ieq( src1, src2 );
str.ine( src1, src2 );
str.ilt( src1, src2 );
str.ile( src1, src2 );
str.igt( src1, src2 );
str.ige( src1, src2 );

Other than they treat uppercase characters the same as their lowercase 
equivalents, these routines behave exactly like the former routines, returning 
true or false in EAX depending on the result of the comparison.

Like most high-level languages, HLA compares strings using lexicographical 
ordering. This means that two strings are equal if and only if their lengths are 
the same and the corresponding characters in the two strings are exactly the 
same. For less-than or greater-than comparisons, lexicographical ordering 
corresponds to the way words appear in a dictionary. That is, a is less than b 
is less than c, and so on. Actually, HLA compares the strings using the ASCII 
numeric codes for the characters, so if you are unsure whether a is less than a 
period, simply consult the ASCII character chart (incidentally, a is greater 
than a period in the ASCII character set, just in case you were wondering).

If two strings have different lengths, lexicographical ordering worries 
about the length only if the two strings exactly match through the length of 
the shorter string. If this is the case, then the longer string is greater than the 

12 This extension is actually a little more general than this section describes. Chapter 7 explains 
it fully.
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shorter string (and, conversely, the shorter string is less than the longer string). 
Note, however, that if the characters in the two strings do not match at all, 
then HLA’s string-comparison routines ignore the length of the string; for 
example, z is always greater than aaaaa, even though it is shorter.

The str.eq routine checks to see if two strings are equal. Sometimes, 
however, you might want to know whether one string contains another string. 
For example, you may want to know if some string contains the substring 
north or south to determine some action to take in a game. The HLA str.index 
routine lets you check to see if one string is contained as a substring of another. 
The str.index routine uses the following calling sequence:

str.index( StrToSearch, SubstrToSearchFor );

This function returns, in EAX, the offset into StrToSearch where 
SubstrToSearchFor appears. This routine returns −1 in EAX if SubstrToSearchFor 
is not present in StrToSearch. Note that str.index will do a case-sensitive search. 
Therefore, the strings must exactly match. There is no case-insensitive variant of 
str.index you can use.13

The HLA strings module contains hundreds of routines besides those 
appearing in this section. Space limitations and prerequisite knowledge 
prevent the presentation of all those functions here; however, this does not 
mean that the remaining string functions are unimportant. You should 
definitely take a look at the HLA Standard Library documentation to learn 
everything you can about the powerful HLA string library routines.

4.11 In-Memory Conversions

The HLA Standard Library’s string module contains dozens of routines for 
converting between strings and other data formats. Although it’s a little 
premature in this text to present a complete description of those functions, it 
would be rather criminal not to discuss at least one of the available functions: 
the str.put routine. This routine encapsulates the capabilities of many of the 
other string-conversion functions, so if you learn how to use this one, you’ll 
have most of the capabilities of those other routines at your disposal. 

You use the str.put routine in a manner very similar to the stdout.put 
routine. The only difference is that the str.put routine “writes” its data to a 
string instead of the standard output device. A call to str.put has the following 
syntax:

str.put( destString, values_to_convert );

Here’s an example of a call to str.put:

str.put( destString, "I =", i:4, " J= ", j, " s=", s );

13 However, HLA does provide routines that will convert all the characters in a string to one case 
or another. So you can make copies of the strings, convert all the characters in both copies to 
lowercase, and then search using these converted strings. This will achieve the same result.
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WARNING Generally, you would not put a newline character sequence at the end of the string as 
you would if you were printing the string to the standard output device.

The destString parameter at the beginning of the str.put parameter list 
must be a string variable, and it must already have storage associated with it. 
If str.put attempts to store more characters than allowed into the destString 
parameter, then this function raises the ex.StringOverflow exception.

Most of the time you won’t know the length of the string that str.put will 
produce. In those instances, you should allocate storage for a very large string, 
one that is much larger than you expect, and use this string object as the first 
parameter of the str.put call. This will prevent an exception from crashing 
your program. Generally, if you expect to produce about one screen line of 
text, then you should probably allocate at least 256 characters for the destination 
string. If you’re creating longer strings, you should probably use a default of 
1,024 characters (or more, if you’re going to produce really large strings).

Here’s an example:

static
     s: string;
          .
          .
          .
     str.alloc( 256 );
     mov( eax, s );
          .
          .
          .
     str.put( s, "R: ", r:16:4, " strval: '", strval:-10, "'" );

You can use the str.put routine to convert any data to a string that you 
can print using stdout.put. You will probably find this routine invaluable for 
common value-to-string conversions.

4.12 Character Sets

Character sets are another composite data type, like strings, built upon the 
character data type. A character set is a mathematical set of characters with 
the most important attribute being membership. That is, a character is either 
a member of a set or it is not a member of a set. The concept of sequence 
(for example, whether one character comes before another, as in a string) 
doesn’t apply to character sets. Also, membership is a binary relation; a 
character is either in the set or it is not in the set; you cannot have multiple 
copies of the same character in a character set. Various operations are possible 
on character sets, including the mathematical set operations of union, intersec-
tion, difference, and membership test. 

HLA implements a restricted form of character sets that allows set members 
to be any of the 128 standard ASCII characters (that is, HLA’s character set 
facilities do not support extended character codes in the range 128..255). 
Despite this restriction, HLA’s character set facilities are very powerful and 
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are handy when writing programs that work with string data. The following 
sections describe the implementation and use of HLA’s character set facilities so 
you may take advantage of character sets in your own programs.

4.13 Character Set Implementation in HLA

There are many different ways to represent character sets in an assembly 
language program. HLA implements character sets using an array of 128 
boolean values. Each boolean value determines whether the corresponding 
character is a member of the character set; that is, a true boolean value indicates 
that the corresponding character is a member of the set, whereas a false value 
indicates that the character is not a member of the set. To conserve memory, 
HLA allocates only a single bit for each character in the set; therefore, HLA 
character sets consume 16 bytes of memory because there are 128 bits in 16 
bytes. This array of 128 bits is organized in memory as shown in Figure 4-3.

Figure 4-3: Bit layout of a character set object

Bit 0 of byte 0 corresponds to ASCII code 0 (the NUL character). If this 
bit is 1, then the character set contains the NUL character; if this bit contains 
false, then the character set does not contain the NUL character. Likewise, 
bit 0 of byte 1 (the ninth bit in the 128-bit array) corresponds to the backspace 
character (ASCII code is 8). Bit 1 of byte 8 corresponds to ASCII code 65, an 
uppercase A. Bit 65 will contain a 1 if A is a current member of the character 
set; it will contain 0 if A is not a member of the set.

While there are other possible ways to implement character sets, with 
this bit-vector implementation it is very easy to implement set operations 
such as union, intersection, difference comparison, and membership tests.

HLA supports character set variables using the cset data type. To declare 
a character set variable, you would use a declaration like the following:

static
     CharSetVar: cset;

This declaration will reserve 16 bytes of storage to hold the 128 bits 
needed to represent a set of ASCII characters.

Although it is possible to manipulate the bits in a character set using 
instructions like and, or, xor, and so on, the 80x86 instruction set includes 
several bit test, set, reset, and complement instructions that are nearly perfect 
for manipulating character sets. The bt (bit test) instruction, for example, 
will copy a single bit in memory to the carry flag. The bt instruction allows 
the following syntactical forms.

7 6 5 4 3 2 1 0

Byte 0

127 126 125 124 123 122 121 121

Byte 15

. . .
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bt( BitNumber, BitsToTest );

bt( reg16, reg16 );
bt( reg32, reg32 );
bt( constant, reg16 );
bt( constant, reg32 );

bt( reg16, mem16 );
bt( reg32, mem32 );     // HLA treats cset objects as dwords within bt.
bt( constant, mem16 );
bt( constant, mem32 );  // HLA treats cset objects as dwords within bt.

The first operand holds a bit number, and the second operand specifies 
a register or memory location whose bit should be copied into the carry flag. 
If the second operand is a register, the first operand must contain a value in 
the range 0..n−1, where n is the number of bits in the second operand. If the 
first operand is a constant and the second operand is a memory location, 
the constant must be in the range 0..255. Here are some examples of these 
instructions:

     bt( 7, ax );          // Copies bit 7 of ax into the carry flag (CF).
     mov( 20, eax );
     bt( eax, ebx );       // Copies bit 20 of ebx into CF.

// Copies bit 0 of the byte at CharSetVar+3 into CF.

     bt( 24, CharSetVar );

     // Copies bit 4 of the byte at DWmem+2 into CF.

     bt( eax, DWmem);

The bt instruction turns out to be quite useful for testing set membership. 
For example, to see if the character A is a member of a character set, you 
could use a code sequence like the following:

          bt( 'A', CharSetVar );
          if( @c ) then

               << Do something if 'A' is a member of the set. >>

          endif;

The bts (bit test and set), btr (bit test and reset), and btc (bit test and 
complement) instructions are also useful for manipulating character set 
variables. Like the bt instruction, these instructions copy the specified bit 
into the carry flag; after copying the specified bit, these instructions will set 
(bts), reset/clear (btr), or complement/invert (btc) the specified bit. There-
fore, you can use the bts instruction to add a character to a character set via 
set union (that is, it adds a character to the set if the character was not already 
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a member of the set; otherwise the set is unaffected). You can use the btr 
instruction to remove a character from a character set via set intersection 
(that is, it removes a character from the set if and only if it was previously in 
the set; otherwise it has no effect on the set). The btc instruction lets you add 
a character to the set if it wasn’t previously in the set; it removes the character 
from the set if it was previously a member (that is, it toggles the membership 
of that character in the set).

4.14 HLA Character Set Constants and Character 
Set Expressions

HLA supports literal character set constants. These cset constants make it 
easy to initialize cset variables at compile time and allow you to easily pass 
character set constants as procedure parameters. An HLA character set constant 
takes the following form:

{ Comma_separated_list_of_characters_and_character_ranges }

The following is an example of a simple character set holding the numeric 
digit characters:

{ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' }

When specifying a character set literal that has several contiguous values, 
HLA lets you concisely specify the values using only the starting and ending 
values of the range thusly:

{ '0'..'9' }

You may combine characters and various ranges within the same character 
set constant. For example, the following character set constant is all the 
alphanumeric characters:

{ '0'..'9', 'a'..'z', 'A'..'Z' }

You can use these cset literal constants as initializers in the const and val 
sections. The following example demonstrates how to create the symbolic 
constant AlphaNumeric using the character set above:

const
     AlphaNumeric: cset := {'0'..'9', 'a'..'z', 'A'..'Z' };

After the above declaration, you can use the identifier AlphaNumeric anywhere 
the character set literal is legal. 
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You can also use character set literals (and, of course, character set symbolic 
constants) as the initializer field for a static or readonly variable. The following 
code fragment demonstrates this:

static
     Alphabetic: cset := { 'a'..'z', 'A'..'Z' };

Anywhere you can use a character set literal constant, a character set 
constant expression is also legal. Table 4-2 shows the operators that HLA 
supports in character set constant expressions.

Note that these operators produce only compile-time results. That is, the 
expressions above are computed by the compiler during compilation; they 
do not emit any machine code. If you want to perform these operations on 
two different sets while your program is running, the HLA Standard Library 
provides routines you can call to achieve the results you desire. HLA also pro-
vides other compile-time character set operators.

4.15 Character Set Support in the HLA Standard Library

The HLA Standard Library provides several character set routines you may 
find useful. The character set support routines fall into four categories: 
standard character set functions, character set tests, character set conversions, 
and character set I/O. This section describes these routines in the HLA 
Standard Library.

To begin with, let’s consider the Standard Library routines that help you 
construct character sets. These routines include cs.empty, cs.cpy, cs.charToCset, 
cs.unionChar, cs.removeChar, cs.rangeChar, cs.strToCset, and cs.unionStr. These 
procedures let you build up character sets at runtime using character and 
string objects.

The cs.empty procedure initializes a character set variable with the empty 
set by setting all the bits in the character set to 0. This procedure call uses the 
following syntax (CSvar is a character set variable):

cs.empty( CSvar );

Table 4-2: HLA Character Set Operators

Operator Description

CSetConst1 + CSetConst2 Computes the union of the two sets. The set union is the set of all 
characters that are in either set.

CSetConst1 * CSetConst2 Computes the intersection of the two sets. The set intersection is 
the set of all characters that appear in both operand sets.

CSetConst1 – CSetConst2 Computes the set difference of the two sets. The set difference is 
the set of characters that appear in the first set but do not appear in 
the second set.

-CSetConst Computes the set complement. The set complement is the set of 
all characters not in the set.
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The cs.cpy procedure copies one character set to another, replacing any 
data previously held by the destination character set. The syntax for cs.cpy is:

cs.cpy( srcCsetValue, destCsetVar );

The cs.cpy source character set can be either a character set constant or 
a character set variable. The destination character set must be a character set 
variable.

The cs.unionChar procedure adds a character to a character set. It uses 
the following calling sequence:

cs.unionChar( CharVar, CSvar );

This call will add the first parameter, a character, to the set via set union. 
Note that you could use the bts instruction to achieve this same result; however, 
the cs.unionChar call is often more convenient. The character value must be 
in the range #0..#127.

The cs.charToCset function creates a singleton set (a set containing a single 
character). The calling format for this function is:

cs.charToCset( CharValue, CSvar );

The first operand, the character value CharValue, can be an 8-bit register, 
a constant, or a character variable that holds a value in the range #0..#127. 
The second operand (CSvar) must be a character set variable. This function 
clears the destination character set to all zeros and then unions the specified 
character into the character set.

The cs.removeChar procedure lets you remove a single character from a 
character set without affecting the other characters in the set. This function 
uses the same syntax as cs.charToCset, and the parameters have the same 
attributes. The calling sequence is:

cs.removeChar( CharValue, CSvar );

Note that if the character was not in the CSVar set to begin with, cs.removeChar 
will not affect the set. This function roughly corresponds to the btr instruction.

The cs.rangeChar constructs a character set containing all the characters 
between two characters you pass as parameters. This function sets all bits 
outside the range of these two characters to 0. The calling sequence is:

cs.rangeChar( LowerBoundChar, UpperBoundChar, CSVar );

The LowerBoundChar and UpperBoundChar parameters can be constants, 
registers, or character variables. The values held in LowerBoundChar and 
UpperBoundChar must be in the range #0..#127. CSVar, the destination 
character set, must be a cset variable.
214 Chapte r  4



AAL2E_03.book  Page 215  Thursday, February 18, 2010  12:49 PM
The cs.strToCset procedure creates a new character set containing the 
union of all the characters in a character string. This procedure begins by 
setting the destination character set to the empty set, and then it unions in 
the characters in the string one by one until it exhausts all characters in the 
string. The calling sequence is:

cs.strToCset( StringValue, CSVar );

Technically, the StringValue parameter can be a string constant as well as 
a string variable; however, it doesn’t make any sense to call cs.strToCset this 
way because cs.cpy is a much more efficient way to initialize a character set 
with a constant set of characters. As usual, the destination character set must 
be a cset variable. Typically, you’d use this function to create a character set 
based on a string input by the user.

The cs.unionStr procedure will add the characters in a string to an existing 
character set. Like cs.strToCset, you’d normally use this function to union 
characters into a set based on a string input by the user. The calling sequence 
for this is:

cs.unionStr( StringValue, CSVar );

Standard set operations include union, intersection, and set difference. 
The HLA Standard Library routines cs.setunion, cs.intersection, and 
cs.difference provide these operations, respectively.14 These routines all use 
the same calling sequence:

cs.setunion( srcCset, destCset );
cs.intersection( srcCset, destCset );
cs.difference( srcCset, destCset );

The first parameter can be a character set constant or a character set 
variable. The second parameter must be a character set variable. These 
procedures compute destCset := destCset op srcCset where op represents set 
union, intersection, or difference, depending on the function call.

The third category of character set routines test character sets in various 
ways. They typically return a boolean value indicating the result of the test. 
The HLA character set routines in this category include cs.IsEmpty, cs.member, 
cs.subset, cs.psubset, cs.superset, cs.psuperset, cs.eq, and cs.ne.

The cs.IsEmpty function tests a character set to see if it is the empty set. 
The function returns true or false in the EAX register. This function uses the 
following calling sequence:

cs.IsEmpty( CSetValue );

14 cs.setunion was used rather than cs.union because union is an HLA reserved word.
Cons tan ts , Var iables,  and Data Types 215



AAL2E_03.book  Page 216  Thursday, February 18, 2010  12:49 PM
The single parameter may be a constant or a character set variable, although 
it doesn’t make much sense to pass a character set constant to this procedure 
(because you would know at compile time whether this set is empty).

The cs.member function tests to see if a character value is a member of a 
set. This function returns true in the EAX register if the character is a member 
of the set. Note that you can use the bt instruction to test this same condition. 
However, the cs.member function is probably a little more convenient to use if 
the character argument is not a constant. The calling sequence for cs.member is:

cs.member( CharValue, CsetValue );

The first parameter is an 8-bit register, character variable, or a constant. 
The second parameter is either a character set constant or a character set 
variable. It would be unusual for both parameters to be constants.

The cs.subset, cs.psubset (proper subset), cs.superset, and cs.psuperset 
(proper superset) functions let you check to see if one character set is a subset or 
superset of another. The calling sequence for these four routines is nearly 
identical; it is one of the following:

cs.subset( CsetValue1, CsetValue2 );
cs.psubset( CsetValue1, CsetValue2 );
cs.superset( CsetValue1, CsetValue2 );
cs.psuperset( CsetValue1, CsetValue2 );

These routines compare the first parameter against the second parameter 
and return true or false in the EAX register depending upon the result. One 
set is a subset of another if all the members of the first character set are present 
in the second character set. It is a proper subset if the second (right) character 
set also contains characters not found in the first (left) character set. Likewise, 
one character set is a superset of another if it contains all the characters in 
the second set (and possibly more). A proper superset contains additional 
characters beyond those found in the second set. The parameters can be 
either character set variables or character set constants; however, it would be 
unusual for both parameters to be character set constants (because you can 
determine this at compile time, there would be no need to call a runtime 
function to compute this).

The cs.eq and cs.ne functions check to see if two sets are equal or not 
equal. These functions return true or false in EAX depending upon the set 
comparison. The calling sequence is identical to the sub/superset functions 
above:

cs.eq( CsetValue1, CsetValue2 );
cs.ne( CsetValue1, CsetValue2 );
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Note that there are no functions that test for less than, less than or equal, 
greater than, or greater than or equal. The subset and proper subset functions 
are the equivalent of less than or equal and less than (respectively); likewise, 
the superset and proper superset functions are equivalent to greater than or 
equal and greater than (respectively).

The cs.extract routine removes an arbitrary character from a character 
set and returns that character in the EAX register.15 The calling sequence is 
the following:

cs.extract( CsetVar );

The single parameter must be a character set variable. Note that this 
function will modify the character set variable by removing some character 
from the character set. This function returns $FFFF_FFFF (−1) in EAX if the 
character set was empty prior to the call.

In addition to the routines found in the cset.hhf (character set) library 
module, the string and standard output modules also provide functions 
that allow or expect character set parameters. For example, if you supply a 
character set value as a parameter to stdout.put, the stdout.put routine will 
print the characters currently in the set. See the HLA Standard Library 
documentation for more details on character set–handling procedures.

4.16 Using Character Sets in Your HLA Programs

Character sets are valuable for many different purposes in your programs. 
For example, one common use of character sets is to validate user input. This 
section will also present a couple of other applications for character sets to 
help you start thinking about how you could use them in your program.

Consider the following short code segment that gets a yes/no–type answer 
from the user:

static
     answer: char;
          .
          .
          .
     repeat
               .
               .
               .
          stdout.put( "Would you like to play again? " );
          stdin.FlushInput();
          stdin.get( answer );

     until( answer = 'n' );

15 This routine returns the character in AL and zeros out the H.O. 3 bytes of EAX.
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A major problem with this code sequence is that it will stop only if the 
user types a lowercase n character. If the user types anything other than n 
(including uppercase N ), the program will treat this as an affirmative answer 
and transfer back to the beginning of the repeat..until loop. A better solution 
would be to validate the user input before the until clause above to ensure 
that the user has only typed n, N, y, or Y. The following code sequence will 
accomplish this:

     repeat
               .
               .
               .
          repeat

               stdout.put( "Would you like to play again? " );
               stdin.FlushInput();
               stdin.get( answer );

          until( cs.member( answer, { 'n', 'N', 'Y', 'y' } );
          if( answer = 'N' ) then

               mov( 'n', answer );

          endif;

     until( answer = 'n' );

4.17 Arrays

Along with strings, arrays are probably the most commonly used composite 
data. Yet most beginning programmers don’t understand how arrays operate 
internally and their associated efficiency trade-offs. It’s surprising how many 
novice (and even advanced!) programmers view arrays from a completely 
different perspective once they learn how to deal with arrays at the machine 
level.

Abstractly, an array is an aggregate data type whose members (elements) 
are all the same type. Selection of a member from the array is by an integer 
index.16 Different indices select unique elements of the array. This text assumes 
that the integer indices are contiguous (though this is by no means required). 
That is, if the number x is a valid index into the array and y is also a valid 
index, with x < y, then all i such that x < i < y are valid indices.

Whenever you apply the indexing operator to an array, the result is the 
specific array element chosen by that index. For example, A[i] chooses the 
ith element from array A. Note that there is no formal requirement that 
element i be anywhere near element i+1 in memory. As long as A[i] always 

16 Or it could be some value whose underlying representation is integer, such as character, 
enumerated, and boolean types.
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refers to the same memory location and A[i+1] always refers to its corresponding 
location (and the two are different), the definition of an array is satisfied.

In this text, we assume that array elements occupy contiguous locations 
in memory. An array with five elements will appear in memory as Figure 4-4 
shows.

Figure 4-4: Array layout in memory

The base address of an array is the address of the first element on the array 
and always appears in the lowest memory location. The second array element 
directly follows the first in memory, the third element follows the second, 
and so on. Note that there is no requirement that the indices start at 0. They 
may start with any number as long as they are contiguous. However, for the 
purposes of discussion, this book will start all indexes at 0. 

To access an element of an array, you need a function that translates an 
array index to the address of the indexed element. For a single-dimensional 
array, this function is very simple. It is:

Element_Address = Base_Address + ((Index - Initial_Index) * Element_Size)

where Initial_Index is the value of the first index in the array (which you can 
ignore if 0) and the value Element_Size is the size, in bytes, of an individual 
array element.

4.18 Declaring Arrays in Your HLA Programs

Before you can access elements of an array, you need to set aside storage for 
that array. Fortunately, array declarations build on the declarations you’ve 
already seen. To allocate n elements in an array, you would use a declaration 
like the following in one of the variable declaration sections:

ArrayName: basetype[n];

ArrayName is the name of the array variable and basetype is the type of an 
element of that array. This sets aside storage for the array. To obtain the base 
address of the array, just use ArrayName.

The [n] suffix tells HLA to duplicate the object n times. Now let’s look at 
some specific examples.

Base Address of A
High Memory
Addresses

Low Memory
Addresses

A[0] A[1] A[2] A[3] A[4]
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static

     CharArray: char[128]; // Character array with elements 0..127.
     ByteArray: byte[10]; // Array of bytes with elements 0..9.
     PtrArray:  dword[4]; // Array of double words with elements 0..3.

These examples all allocate storage for uninitialized arrays. You may also 
specify that the elements of the arrays be initialized using declarations like 
the following in the static and readonly sections:

RealArray: real32[8] := [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ];
IntegerAry: int32[8] := [ 1, 1, 1, 1, 1, 1, 1, 1 ];

These definitions both create arrays with eight elements. The first definition 
initializes each 4-byte real value to 1.0, the second declaration initializes each 
int32 element to 1. Note that the number of constants within the square brackets 
must exactly match the size of the array.

This initialization mechanism is fine if you want each element of the array 
to have the same value. What if you want to initialize each element of the 
array with a (possibly) different value? No sweat, just specify a different set of 
values in the list surrounded by the square brackets in the example above:

RealArray: real32[8] := [ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0 ];
IntegerAry: int32[8] := [ 1, 2, 3, 4, 5, 6, 7, 8 ];

4.19 HLA Array Constants

The last few examples in the previous section demonstrate the use of HLA 
array constants. An HLA array constant is nothing more than a list of values 
surrounded by a pair of brackets. The following are all legal array constants:

[ 1, 2, 3, 4 ]
[ 2.0, 3.14159, 1.0, 0.5 ]
[ 'a', 'b', 'c', 'd' ]
[ "Hello", "world", "of", "assembly" ]

(Note that this last array constant contains four double-word pointers to 
the four HLA strings appearing elsewhere in memory.)

As you saw in the previous section, you can use array constants in the 
static and readonly sections to provide initial values for array variables. The 
number of comma-separated items in an array constant must exactly match 
the number of array elements in the variable declaration. Likewise, the type 
of each of the array constant’s elements must match the array variable’s 
declared base type.

Using array constants to initialize small arrays is very convenient. Of course, 
if your array has several thousand elements, entering them will be tedious. 
Most arrays initialized this way have no more than a couple hundred entries 
and generally far less than 100. It is reasonable to use an array constant to 
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initialize such variables. However, at some point initializing arrays in this 
manner will become far too tedious and error prone. You probably would 
not want to manually initialize an array with 1,000 different elements using 
an array constant. However, if you want to initialize all the elements of an 
array with the same value, HLA does provide a special array constant syntax 
for doing so. Consider the following declaration:

BigArray: uns32[ 1000 ] := 1000 dup [ 1 ];

This declaration creates a 1,000-element integer array initializing each 
element to one. The 1000 dup [ 1 ] expression tells HLA to create an array 
constant by duplicating the single value [ 1 ] one thousand times. You can 
even use the dup operator to duplicate a series of values (rather than a single 
value), as the following example indicates:

SixteenInts: int32[16] := 4 dup [1,2,3,4];

This example initializes SixteenInts with four copies of the sequence 
1,2,3,4, yielding a total of 16 different integers (i.e., 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 
3, 4, 1, 2, 3, 4).

You will see some more possibilities with the dup operator when looking 
at multidimensional arrays in Section 4.22.

4.20 Accessing Elements of a Single-Dimensional Array

To access an element of a zero-based array, you can use the simplified formula

Element_Address = Base_Address + index * Element_Size

For the Base_Address entry you can use the name of the array (because 
HLA associates the address of the first element of an array with the name of 
that array). The Element_Size entry is the number of bytes for each array element. 
If the object is an array of bytes, the Element_Size field is 1 (resulting in a very 
simple computation). If each element of the array is a word (or other 2-byte 
type), then Element_Size is 2, and so on. To access an element of the SixteenInts 
array in the previous section, you’d use the following formula (the size is 4 
because each element is an int32 object):

Element_Address = SixteenInts + index*4

The 80x86 code equivalent to the statement eax := SixteenInts[index] is

               mov( index, ebx );
               shl( 2, ebx );          // Sneaky way to compute 4*ebx
               mov( SixteenInts[ ebx ], eax );
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There are two important things to notice here. First of all, this code uses 
the shl instruction rather than the intmul instruction to compute 4*index. The 
main reason for choosing shl is that it was more efficient. It turns out that shl 
is a lot faster than intmul on many processors.

The second thing to note about this instruction sequence is that it does 
not explicitly compute the sum of the base address plus the index times 4. 
Instead, it relies on the indexed addressing mode to implicitly compute this 
sum. The instruction mov( SixteenInts[ ebx ], eax ); loads EAX from location 
SixteenInts + ebx, which is the base address plus index*4 (because EBX contains 
index*4). Sure, you could have used

               lea( eax, SixteenInts );
               mov( index, ebx );
               shl( 2, ebx ); // Sneaky way to compute 4*ebx
               add( eax, ebx ); // Compute base address plus index*4
               mov( [ebx], eax );

in place of the previous sequence, but why use five instructions where three 
will do the same job? This is a good example of why you should know your 
addressing modes inside and out. Choosing the proper addressing mode can 
reduce the size of your program, thereby speeding it up.

Of course, as long as we’re discussing efficiency improvements, it’s 
worth pointing out that the 80x86 scaled indexed addressing modes let you 
automatically multiply an index by 1, 2, 4, or 8. Because this current example 
multiplies the index by 4, we can simplify the code even more by using the 
scaled indexed addressing mode:

               mov( index, ebx );
               mov( SixteenInts[ ebx*4 ], eax );

Note, however, that if you need to multiply by some constant other than 
1, 2, 4 or 8, then you cannot use the scaled indexed addressing modes. Similarly, 
if you need to multiply by some element size that is not a power of 2, you will 
not be able to use the shl instruction to multiply the index by the element 
size; instead, you will have to use intmul or some other instruction sequence 
to do the multiplication.

The indexed addressing mode on the 80x86 is a natural for accessing 
elements of a single-dimensional array. Indeed, its syntax even suggests an 
array access. The important thing to keep in mind is that you must remember to 
multiply the index by the size of an element. Failure to do so will produce 
incorrect results.

4.21 Sorting an Array of Values

Almost every textbook on this planet gives an example of a sort when 
introducing arrays. Because you’ve probably seen how to do a sort in high-
level languages already, it’s probably instructive to take a quick look at a sort 
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in HLA. The example code in this section will use a variant of the bubble 
sort, which is great for short lists of data and lists that are nearly sorted but 
horrible for just about everything else.17

const
    NumElements := 16;
    
static
    DataToSort: uns32[ NumElements ] :=
                    [
                        1, 2, 16, 14,
                        3, 9, 4,  10,
                        5, 7, 15, 12,
                        8, 6, 11, 13
                    ];
                    
    NoSwap: boolean;            

          .
          .
          .

    // Bubble sort for the DataToSort array:
    
    repeat
    
        mov( true, NoSwap );
        for( mov( 0, ebx ); ebx <= NumElements-2; inc( ebx )) do
    
            mov( DataToSort[ ebx*4], eax );
            if( eax > DataToSort[ ebx*4 + 4] ) then
            
                mov( DataToSort[ ebx*4 + 4 ], ecx );
                mov( ecx, DataToSort[ ebx*4 ] );
                mov( eax, DataToSort[ ebx*4 + 4 ] ); // Note: eax contains
                mov( false, NoSwap );                // DataToSort[ ebx*4 ]
                
            endif;
            
        endfor;
        
    until( NoSwap );

The bubble sort works by comparing adjacent elements in an array. The 
interesting thing to note in this code fragment is how it compares adjacent 
elements. You will note that the if statement compares EAX (which contains 
DataToSort[ebx*4]) against DataToSort[ebx*4 + 4]. Because each element of this 
array is 4 bytes (uns32), the index [ebx*4 + 4] references the next element 
beyond [ebx*4].

17 Fear not, you’ll see some better sorting algorithms in Chapter 5.
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As is typical for a bubble sort, this algorithm terminates if the innermost 
loop completes without swapping any data. If the data is already presorted, 
then the bubble sort is very efficient, making only one pass over the data. 
Unfortunately, if the data is not sorted (worst case, if the data is sorted in 
reverse order), then this algorithm is extremely inefficient. Indeed, although 
it is possible to modify the code above so that, on the average, it runs about 
twice as fast, such optimizations are wasted on such a poor algorithm. However, 
the bubble sort is very easy to implement and understand (which is why 
introductory texts continue to use it in examples). 

4.22 Multidimensional Arrays

The 80x86 hardware can easily handle single-dimensional arrays. Unfortunately, 
there is no magic addressing mode that lets you easily access elements of multidi-
mensional arrays. That’s going to take some work and several instructions.

Before discussing how to declare or access multidimensional arrays, it 
would be a good idea to figure out how to implement them in memory. The 
first problem is to figure out how to store a multidimensional object into a 
one-dimensional memory space.

Consider for a moment a Pascal array of the form A:array[0..3,0..3] of 
char;. This array contains 16 bytes organized as four rows of four characters. 
Somehow you’ve got to draw a correspondence with each of the 16 bytes in 
this array and 16 contiguous bytes in main memory. Figure 4-5 shows one way 
to do this.

Figure 4-5: Mapping a 4×4 array to sequential 
memory locations

The actual mapping is not important as long as two things occur: (1) Each 
element maps to a unique memory location (that is, no two entries in the 
array occupy the same memory locations), and (2) the mapping is consistent. 
That is, a given element in the array always maps to the same memory location. 
So what you really need is a function with two input parameters (row and 
column) that produces an offset into a linear array of 16 memory locations.

0 1 2 3

0

1
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3

Memory
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Now any function that satisfies the above constraints will work fine. Indeed, 
you could randomly choose a mapping as long as it was consistent. However, 
what you really want is a mapping that is efficient to compute at runtime and 
works for any size array (not just 4×4 or even limited to two dimensions). While 
a large number of possible functions fit this bill, there are two functions in 
particular that most programmers and high-level languages use: row-major 
ordering and column-major ordering.  

4.22.1 Row-Major Ordering

Row-major ordering assigns successive elements, moving across the rows and 
then down the columns, to successive memory locations. This mapping is 
demonstrated in Figure 4-6.

Figure 4-6: Row-major array element ordering

Row-major ordering is the method most high-level programming languages 
employ. It is very easy to implement and use in machine language. You start 
with the first row (row 0) and then concatenate the second row to its end. 
You then concatenate the third row to the end of the list, then the fourth 
row, and so on (see Figure 4-7).

Figure 4-7: Another view of row-major ordering for a 4×4 array
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A:array [0..3,0..3] of char;

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9   A[2,1]
8   A[2,0]
7   A[1,3]
6   A[1,2]
5   A[1,1]
4   A[1,0]
3   A[0,3]
2   A[0,2]
1   A[0,1]
0   A[0,0]
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The actual function that converts a list of index values into an offset is a 
slight modification of the formula for computing the address of an element 
of a single-dimensional array. The formula to compute the offset for a two-
dimensional row-major ordered array is:

Element_Address = Base_Address + (colindex* row_size + rowindex) * Element_Size

As usual, Base_Address is the address of the first element of the array 
(A[0][0] in this case), and Element_Size is the size of an individual element of 
the array, in bytes. colindex is the leftmost index, and rowindex is the rightmost 
index into the array. row_size is the number of elements in one row of the 
array (four, in this case, because each row has four elements). Assuming 
Element_Size is 1, this formula computes the following offsets from the base 
address:

     Column          Row Offset
     Index Index into Array
     0               0               0
     0               1               1
     0               2               2
     0               3               3
     1               0               4
     1               1               5
     1               2               6
     1               3               7
     2               0               8
     2               1               9
     2               2               10
     2               3               11
     3               0               12
     3               1               13
     3               2               14
     3               3               15

For a three-dimensional array, the formula to compute the offset into 
memory is the following:

Address = Base + ((depthindex*col_size+colindex) * row_size + rowindex) * Element_Size

col_size is the number of items in a column, and row_size is the number 
of items in a row. In C/C++, if you’ve declared the array as type A[i] [j] [k];, 
then row_size is equal to k and col_size is equal to j.

For a four-dimensional array, declared in C/C++ as type A[i] [j] [k] 
[m];, the formula for computing the address of an array element is:

Address = 
Base + (((LeftIndex*depth_size+depthindex)*col_size+colindex) * row_size + rowindex) * Element_Size
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depth_size is equal to j, col_size is equal to k, and row_size is equal to m. 
LeftIndex represents the value of the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic 
formula that will compute the offset into memory for an array with any number 
of dimensions; however, you’ll rarely use more than four.

Another convenient way to think of row-major arrays is as arrays of arrays. 
Consider the following single-dimensional Pascal array definition:

A: array [0..3] of sometype;

Assume that sometype is the type sometype = array [0..3] of char;.
A is a single-dimensional array. Its individual elements happen to be arrays, 

but you can safely ignore that for the time being. The formula to compute 
the address of an element of a single-dimensional array is:

Element_Address = Base + Index * Element_Size

In this case Element_Size happens to be 4 because each element of A is an 
array of four characters. So what does this formula compute? It computes the 
base address of each row in this 4×4 array of characters (see Figure 4-8).

Figure 4-8: Viewing a 4×4 array as an array of 
arrays

Of course, once you compute the base address of a row, you can reapply 
the single-dimensional formula to get the address of a particular element. 
While this doesn’t affect the computation, it’s probably a little easier to 
deal with several single-dimensional computations rather than a complex 
multidimensional array computation.

Consider a Pascal array defined as A:array [0..3] [0..3] [0..3] [0..3] 
[0..3] of char;. You can view this five-dimensional array as a single-dimensional 
array of arrays. The following HLA code provides such a definition:

type
          OneD: char[4];
          TwoD: OneD[4];

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Each element of A 
is four bytes long.

A[0]

A[1]

A[2]

A[3]

(A[0]) [0]
(A[0]) [1]
(A[0]) [2]
(A[0]) [3]
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          ThreeD: TwoD[4];
          FourD: ThreeD [4];
var
          A : FourD [4];

The size of OneD is 4 bytes. Because TwoD contains four OneD arrays, its size is 
16 bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD is four 
ThreeDs, so it is 256 bytes long. To compute the address of A [b, c, d, e, f], 
you could use the following steps:

1. Compute the address of A [b] as Base + b * size. Here size is 256 bytes. 
Use this result as the new base address in the next computation.

2. Compute the address of A [b, c] by the formula Base + c * size, where 
Base is the value obtained in the previous step and size is 64. Use the 
result as the new base in the next computation.

3. Compute the base address of A [b, c, d] by Base + d * size, with Base 
coming from the previous computation and size is 16. Use the result as 
the new base in the next computation.

4. Compute the address of A [b, c, d, e] with the formula Base + e * size, 
with Base from the previous step with a size of 4. Use this value as the base 
for the next computation.

5. Finally, compute the address of A [b, c, d, e, f] using the formula Base + 
f * size, where Base comes from the previous computation and size is 1 
(obviously you can simply ignore this final multiplication). The result 
you obtain at this point is the address of the desired element.

One of the main reasons you won’t find higher-dimensional arrays in 
assembly language is that assembly language emphasizes the inefficiencies 
associated with such access. It’s easy to enter something like A [b, c, d, e, f] 
into a Pascal program, not realizing what the compiler is doing with the code. 
Assembly language programmers are not so cavalier—they see the mess you 
wind up with when you use higher-dimensional arrays. Indeed, good assembly 
language programmers try to avoid two-dimensional arrays and often resort 
to tricks in order to access data in such an array when its use becomes absolutely 
mandatory. 

4.22.2 Column-Major Ordering

Column-major ordering is the other function high-level languages frequently 
used to compute the address of an array element. FORTRAN and various 
dialects of BASIC (e.g., older versions of Microsoft BASIC) use this method.

In row-major ordering the rightmost index increases the fastest as you 
move through consecutive memory locations. In column-major ordering the 
leftmost index increases the fastest. Pictorially, a column-major ordered array 
is organized as shown in Figure 4-9.
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Figure 4-9: Column-major array element ordering

The formula for computing the address of an array element when using 
column-major ordering is very similar to that for row-major ordering. You 
simply reverse the indexes and sizes in the computation:

For a two-dimension column-major array:
Element_Address = Base_Address + (rowindex * col_size + colindex) *

Element_Size

For a three-dimension column-major array:
Address = Base + ((rowindex * col_size+colindex) * depth_size + depthindex) *

Element_Size

For a four-dimension column-major array:
Address = 
     Base + (((rowindex * col_size + colindex)*depth_size + depthindex) * 
          Left_size + Leftindex) * Element_Size

4.23 Allocating Storage for Multidimensional Arrays

If you have an m × n array, it will have m * n elements and require m * n * 
Element_Size bytes of storage. To allocate storage for an array you must reserve 
this memory. As usual, there are several different ways of accomplishing this 
task. Fortunately, HLA’s array-declaration syntax is very similar to high-level 
language array-declaration syntax, so C/C++, Java, BASIC, and Pascal program-
mers will feel right at home. To declare a multidimensional array in HLA, 
you use a declaration like the following:

          ArrayName: elementType [ comma_separated_list_of_dimension_bounds ];

For example, here is a declaration for a 4×4 array of characters:

GameGrid: char[ 4, 4 ];
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A:array [0..3,0..3] of char;

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]
9   A[1,2]
8   A[0,2]
7   A[3,1]
6   A[2,1]
5   A[1,1]
4   A[0,1]
3   A[3,0]
2   A[2,0]
1   A[1,0]
0   A[0,0]
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Here is another example that shows how to declare a three-dimensional 
array of strings:

NameItems: string[ 2, 3, 3 ];

Remember, string objects are really pointers, so this array declaration 
reserves storage for 18 double-word pointers (2 * 3 * 3 = 18).

As was the case with single-dimensional arrays, you may initialize every 
element of the array to a specific value by following the declaration with the 
assignment operator and an array constant. Array constants ignore dimension 
information; all that matters is that the number of elements in the array constant 
corresponds to the number of elements in the actual array. The following 
example shows the GameGrid declaration with an initializer:

     GameGrid: char[ 4, 4 ] := 
          [ 
               'a', 'b', 'c', 'd',
               'e', 'f', 'g', 'h',
               'i', 'j', 'k', 'l',
               'm', 'n', 'o', 'p'
          ];

Note that HLA ignores the indentation and extra whitespace characters 
(e.g., newlines) appearing in this declaration. It was laid out to enhance 
readability (which is always a good idea). HLA does not interpret the four 
separate lines as representing rows of data in the array. Humans do, which 
is why it’s good to write the data in this manner. All that matters is that there 
are 16 (4 * 4) characters in the array constant. You’ll probably agree that this 
is much easier to read than

     GameGrid: char[ 4,4 ] := 
          [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
            'n', 'o', 'p' ];

Of course, if you have a large array, an array with really large rows, or an 
array with many dimensions, there is little hope for winding up with something 
readable. That’s when comments that carefully explain everything come in 
handy.

As for single-dimensional arrays, you can use the dup operator to initialize 
each element of a large array with the same value. The following example 
initializes a 256×64 array of bytes so that each byte contains the value $FF:

StateValue: byte[ 256, 64 ] := 256*64 dup [$ff];

Note the use of a constant expression to compute the number of array 
elements rather than simply using the constant 16,384 (256 * 64). The use
230 Chapte r  4



AAL2E_03.book  Page 231  Thursday, February 18, 2010  12:49 PM
of the constant expression more clearly suggests that this code is initializing 
each element of a 256×64 element array than does the simple literal constant 
16,384.

Another HLA trick you can use to improve the readability of your programs 
is to use nested array constants. The following is an example of an HLA nested 
array constant:

[ [0, 1, 2], [3, 4], [10, 11, 12, 13] ]

Whenever HLA encounters an array constant nested inside another 
array constant, it simply removes the brackets surrounding the nested array 
constant and treats the whole constant as a single-array constant. For example, 
HLA converts this nested array constant to the following:

[ 0, 1, 2, 3, 4, 10, 11, 12, 13 ]

You can take advantage of this fact to help make your programs a little 
more readable. For multidimensional array constants you can enclose each 
row of the constant in square brackets to denote that the data in each row is 
grouped and separate from the other rows. Consider the following declaration 
for the GameGrid array that is identical (as far as HLA is concerned) to the 
earlier declaration for GameGrid:

     GameGrid: char[ 4, 4 ] := 
          [ 
               [ 'a', 'b', 'c', 'd' ],
               [ 'e', 'f', 'g', 'h' ],
               [ 'i', 'j', 'k', 'l' ],
               [ 'm', 'n', 'o', 'p' ]
          ];

This declaration makes it clearer that the array constant is a 4×4 array 
rather than just a 16-element one-dimensional array whose elements wouldn’t 
fit all on one line of source code. Little aesthetic improvements like this are 
what separate mediocre programmers from good programmers. 

4.24 Accessing Multidimensional Array Elements in 
Assembly Language

Well, you’ve seen the formulas for computing the address of a multidimen-
sional array element. Now it’s time to see how to access elements of those 
arrays using assembly language.

The mov, shl, and intmul instructions make short work of the various 
equations that compute offsets into multidimensional arrays. Let’s consider 
a two-dimensional array first.
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static
     i:          int32;
     j:          int32;
     TwoD: int32[ 4, 8 ];

           .
           .
           .

// To perform the operation TwoD[i,j] := 5; you'd use code like the following.
// Note that the array index computation is (i*8 + j)*4.

          mov( i, ebx );
          shl( 3, ebx ); // Multiply by 8 (shl by 3 is a multiply by 8).
          add( j, ebx );
          mov( 5, TwoD[ ebx*4 ] );

Note that this code does not require the use of a two-register addressing 
mode on the 80x86. Although an addressing mode like TwoD[ebx][esi] looks 
like it should be a natural for accessing two-dimensional arrays, that isn’t the 
purpose of this addressing mode.

Now consider a second example that uses a three-dimensional array:

static
     i:               int32;
     j:               int32;
     k:               int32;
     ThreeD: int32[ 3, 4, 5 ];
          .
          .
          .

// To perform the operation ThreeD[i,j,k] := esi; you'd use the following code
// that computes ((i*4 + j)*5 + k )*4 as the address of ThreeD[i,j,k].

          mov( i, ebx );
          shl( 2, ebx ); // Four elements per column.
          add( j, ebx );
          intmul( 5, ebx ); // Five elements per row.
          add( k, ebx );
          mov( esi, ThreeD[ ebx*4 ] );

Note that this code uses the intmul instruction to multiply the value in 
EBX by 5. Remember, the shl instruction can only multiply a register by a 
power of 2. While there are ways to multiply the value in a register by a constant 
other than a power of 2, the intmul instruction is more convenient.18

18 A full discussion of multiplication by constants other than a power of 2 appears in Chapter 4.
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4.25 Records 

Another major composite data structure is the Pascal record or C/C++/C# 
structure.19 The Pascal terminology is probably better, because it tends to 
avoid confusion with the more general term data structure. Because HLA uses 
the term record, we’ll adopt that term here.

Whereas an array is homogeneous, whose elements are all the same type, 
the elements in a record can have different types. Arrays let you select a 
particular element via an integer index. With records, you must select an 
element (known as a field) by name.

The whole purpose of a record is to let you encapsulate different, though 
logically related, data into a single package. The Pascal record declaration 
for a student is a typical example:

student = 
     record
          Name:     string[64];
          Major:    integer;
          SSN:    string[11];
          Midterm1: integer;
          Midterm2: integer;
          Final:    integer;
          Homework: integer;
          Projects: integer;
     end;

Most Pascal compilers allocate each field in a record to contiguous 
memory locations. This means that Pascal will reserve the first 65 bytes for 
the name,20 the next 2 bytes hold the major code, the next 12 bytes hold the 
Social Security number, and so on.

In HLA, you can also create record types using the record/endrecord 
declaration. You would encode the above record in HLA as follows:

type
     student:     record
          Name:     char[65];
          Major:    int16;
          SSN:      char[12];
          Midterm1: int16;
          Midterm2: int16;
          Final:    int16;
          Homework: int16;
          Projects: int16;
     endrecord;

19 It also goes by some other names in other languages, but most people recognize at least one of 
these names.
20 Strings require an extra byte, in addition to all the characters in the string, to encode the 
length.
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As you can see, the HLA declaration is very similar to the Pascal declaration. 
Note that, to be true to the Pascal declaration, this example uses character 
arrays rather than strings for the Name and SSN (US Social Security number) 
fields. In a real HLA record declaration you’d probably use a string type for 
at least the name (keeping in mind that a string variable is only a 4-byte pointer).

The field names within the record must be unique. That is, the same 
name may not appear two or more times in the same record. However, all 
field names are local to that record. Therefore, you may reuse those field 
names elsewhere in the program or in different records.

The record/endrecord declaration may appear in a variable declaration 
section (e.g., static or var) or in a type declaration section. In the previous 
example the Student declaration appears in the type section, so this does not 
actually allocate any storage for a Student variable. Instead, you have to explicitly 
declare a variable of type Student. The following example demonstrates how 
to do this:

var
     John: Student;

This allocates 81 bytes of storage laid out in memory as shown in Figure 4-10.

Figure 4-10: Student data structure storage in memory

If the label John corresponds to the base address of this record, then the 
Name field is at offset John+0, the Major field is at offset John+65, the SSN field is at 
offset John+67, and so on.

To access an element of a structure, you need to know the offset from 
the beginning of the structure to the desired field. For example, the Major 
field in the variable John is at offset 65 from the base address of John. Therefore, 
you could store the value in AX into this field using the instruction 

mov( ax, (type word John[65]) );

Unfortunately, memorizing all the offsets to fields in a record defeats the 
whole purpose of using them in the first place. After all, if you have to deal 
with these numeric offsets, why not just use an array of bytes instead of a record? 

Fortunately, HLA lets you refer to field names in a record using the same 
mechanism C/C++/C# and Pascal use: the dot operator. To store AX into 
the Major field, you could use mov( ax, John.Major ); instead of the previous 
instruction. This is much more readable and certainly easier to use.

Note that the use of the dot operator does not introduce a new addressing 
mode. The instruction mov( ax, John.Major ); still uses the displacement-only 

John

Name
(65 bytes)

Major
(2 bytes)

SSN
(12 bytes)

Midterm2
(2 bytes)

Homework
(2 bytes)

Midterm1
(2 bytes)

Final
(2 bytes)

Projects
(2 bytes)
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addressing mode. HLA simply adds the base address of John with the offset to 
the Major field (65) to get the actual displacement to encode into the instruction.

Like any type declaration, HLA requires all record type declarations to 
appear in the program before you use them. However, you don’t have to 
define all records in the type section to create record variables. You can use 
the record/endrecord declaration directly in a variable declaration section. 
This is convenient if you have only one instance of a given record object in 
your program. The following example demonstrates this:

storage
     OriginPoint:  record
          x: uns8;
          y: uns8;
          z: uns8;
     endrecord;

4.26 Record Constants

HLA lets you define record constants. In fact, HLA supports both manifest 
(symbolic) record constants and literal record constants. Record constants 
are useful as initializers for static record variables. They are also quite useful 
as compile-time data structures when using the HLA compile-time language 
(see the HLA reference manual for more details on the HLA compile-time 
language). This section discusses how to create record constants.

A literal record constant takes the following form:

               RecordTypeName:[ List_of_comma_separated_constants ]

The RecordTypeName is the name of a record data type you’ve defined in an 
HLA type section prior to using the constant.

The constant list appearing between the brackets is the data for each of 
the fields in the specified record. The first item in the list corresponds to the 
first field of the record, the second item in the list corresponds to the second 
field, and so on. The data types of each of the constants appearing in this list 
must match their respective field types. The following example demonstrates 
how to use a literal record constant to initialize a record variable:

type
     point:     record
          x:int32;
          y:int32;
          z:int32;
     endrecord;

static
     Vector: point := point:[ 1, -2, 3 ];

This declaration initializes Vector.x with 1, Vector.y with −2, and Vector.z 
with 3.
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You can also create manifest record constants by declaring record objects in 
the const or val sections of your program. You access fields of these symbolic 
record constants just as you would access the field of a record variable, using 
the dot operator. Because the object is a constant, you can specify the field of 
a record constant anywhere a constant of that field’s type is legal. You can 
also employ symbolic record constants as variable initializers. The following 
example demonstrates this:

type
     point:     record
          x:int32;
          y:int32;
          z:int32;
     endrecord;

const
     PointInSpace: point := point:[ 1, 2, 3 ];

static
     Vector: point := PointInSpace;
     XCoord: int32 := PointInSpace.x;
          .
          .
          .
     stdout.put( "Y Coordinate is ", PointInSpace.y, nl );
          .
          .
          .

4.27 Arrays of Records

It is a perfectly reasonable operation to create an array of records. To do so, 
you simply create a record type and then use the standard array declaration 
syntax. The following example demonstrates how you could do this:

type
     recElement:
          record
               << Fields for this record >>
          endrecord;
          .
          .
          .
static
     recArray: recElement[4];

To access an element of this array you use the standard array indexing 
techniques. Because recArray is a single-dimensional array, you’d compute
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the address of an element of this array using the formula baseAddress + 
index*@size( recElement ). For example, to access an element of recArray 
you’d use code like the following:

// Access element i of recArray:

     intmul( @size( recElement ), i, ebx );  // ebx := i*@size( recElement )
     mov( recArray.someField[ebx], eax );

Note that the index specification follows the entire variable name; 
remember, this is assembly, not a high-level language (in a high-level language 
you’d probably use recArray[i].someField).

Naturally, you can create multidimensional arrays of records as well. You 
would use the row-major or column-major order functions to compute the 
address of an element within such records. The only thing that really changes 
(from the discussion of arrays) is that the size of each element is the size of 
the record object.

static
     rec2D: recElement[ 4, 6 ];
          .
          .
          .
     // Access element [i,j] of rec2D and load someField into eax:

     intmul( 6, i, ebx );
     add( j, ebx );
     intmul( @size( recElement ), ebx );
     mov( rec2D.someField[ ebx ], eax );

4.28 Arrays/Records as Record Fields

Records may contain other records or arrays as fields. Consider the following 
definition:

type
     Pixel:
          record
               Pt:        point;
               color:     dword;
          endrecord;

The definition above defines a single point with a 32-bit color component. 
When initializing an object of type Pixel, the first initializer corresponds to 
the Pt field, not the x-coordinate field. The following definition is incorrect:

static
     ThisPt: Pixel := Pixel:[ 5, 10 ];   // Syntactically incorrect!
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The value of the first field (5) is not an object of type point. Therefore, 
the assembler generates an error when encountering this statement. HLA will 
allow you to initialize the fields of Pixel using declarations like the following:

static
     ThisPt: Pixel := Pixel:[ point:[ 1, 2, 3 ], 10 ];
     ThatPt: Pixel := Pixel:[ point:[ 0, 0, 0 ], 5 ];

Accessing Pixel fields is very easy. As in a high-level language, you use a 
single period to reference the Pt field and a second period to access the x, y, 
and z fields of point:

          stdout.put( "ThisPt.Pt.x = ", ThisPt.Pt.x, nl );
          stdout.put( "ThisPt.Pt.y = ", ThisPt.Pt.y, nl );
          stdout.put( "ThisPt.Pt.z = ", ThisPt.Pt.z, nl );
           .
           .
           .
     mov( eax, ThisPt.Color );

You can also declare arrays as record fields. The following record creates 
a data type capable of representing an object with eight points (for example, a 
cube):

type
     Object8:
          record
               Pts:       point[8];
               Color:     dword;
          endrecord;

This record allocates storage for eight different points. Accessing an 
element of the Pts array requires that you know the size of an object of type 
point (remember, you must multiply the index into the array by the size of 
one element, 12 in this particular case). Suppose, for example, that you have 
a variable Cube of type Object8. You could access elements of the Pts array as 
follows:

// Cube.Pts[i].x := 0;

          mov( i, ebx );
          intmul( 12, ebx );
          mov( 0, Cube.Pts.x[ebx] );

The one unfortunate aspect of all this is that you must know the size of 
each element of the Pts array. Fortunately, you can rewrite the code above 
using @size as follows:

// Cube.Pts[i].x := 0;

          mov( i, ebx );
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          intmul( @size( point ), ebx );
          mov( 0, Cube.Pts.x[ebx] );

Note in this example that the index specification ([ebx]) follows the 
whole object name even though the array is Pts, not x. Remember, the [ebx] 
specification is an indexed addressing mode, not an array index. Indexes always 
follow the entire name, so you do not attach them to the array component 
as you would in a high-level language like C/C++ or Pascal. This produces 
the correct result because addition is commutative, and the dot operator 
(as well as the index operator) corresponds to addition. In particular, the 
expression Cube.Pts.x[ebx] tells HLA to compute the sum of Cube (the base 
address of the object) plus the offset to the Pts field, plus the offset to the x 
field, plus the value of EBX. Technically, we’re really computing offset(Cube) 
+ offset(Pts) + EBX + offset(x), but we can rearrange this because addition is 
commutative.

You can also define two-dimensional arrays within a record. Accessing 
elements of such arrays is no different than accessing any other two-dimensional 
array other than the fact that you must specify the array’s field name as the 
base address for the array. For example:

type
     RecW2DArray:
          record
               intField: int32;
               aField:   int32[4,5];
                    .
                    .
                    .
          endrecord;

static
     recVar: RecW2DArray;
          .
          .
          .
     // Access element [i,j] of the aField field using row-major ordering:

     mov( i, ebx );
     intmul( 5, ebx );
     add( j, ebx );
     mov( recVar.aField[ ebx*4 ], eax );
          .
          .
          .

The code above uses the standard row-major calculation to index into a 
4×5 array of double words. The only difference between this example and a 
standalone array access is the fact that the base address is recVar.aField.

There are two common ways to nest record definitions. As this section 
notes, you can create a record type in a type section and then use that type 
name as the data type of some field within a record (e.g., the Pt:point field in 
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the Pixel data type above). It is also possible to declare a record directly 
within another record without creating a separate data type for that record; 
the following example demonstrates this:

type
     NestedRecs:
          record
               iField: int32;
               sField: string;
               rField:
                    record
                         i:int32;
                         u:uns32;
                    endrecord;
               cField:char;
          endrecord;

Generally, it’s a better idea to create a separate type rather than embed 
records directly in other records, but nesting them is perfectly legal.

If you have an array of records and one of the fields of that record type is 
an array, you must compute the indexes into the arrays independently of one 
another and then use the sum of these indexes as the ultimate index. The 
following example demonstrates how to do this:

type
     recType:
          record
               arrayField: dword[4,5];
               << Other fields >>
          endrecord;

static
     aryOfRecs: recType[3,3];
          .
          .
          .
     // Access aryOfRecs[i,j].arrayField[k,l]:

     intmul( 5, i, ebx );               // Computes index into aryOfRecs
     add( j, ebx );                     // as (i*5 +j)*@size( recType ).
     intmul( @size( recType ), ebx );

     intmul( 3, k, eax );               // Computes index into aryOfRecs
     add( l, eax );                     // as (k*3 + j) (*4 handled later).

     mov( aryOfRecs.arrayField[ ebx + eax*4 ], eax );

Note the use of the base plus scaled indexed addressing mode to simplify 
this operation.
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4.29 Aligning Fields Within a Record

To achieve maximum performance in your programs, or to ensure that HLA’s 
records properly map to records or structures in some high-level language, you 
will often need to be able to control the alignment of fields within a record. 
For example, you might want to ensure that a double-word field’s offset is an 
even multiple of 4. You use the align directive to do this. The following example 
shows how to align some fields on important boundaries:

type
     PaddedRecord:
          record
               c:  char;
               align(4);
               d:  dword;
               b:  boolean;
               align(2);
               w:  word;
          endrecord;

Whenever HLA encounters the align directive within a record declaration, 
it automatically adjusts the following field’s offset so that it is an even multiple 
of the value the align directive specifies. It accomplishes this by increasing 
the offset of that field, if necessary. In the example above, the fields would 
have the following offsets: c:0, d:4, b:8, w:10. Note that HLA inserts 3 bytes of 
padding between c and d, and it inserts 1 byte of padding between b and w. It 
goes without saying that you should never assume that this padding is present. 
If you want to use those extra bytes, then you must declare fields for them.

Note that specifying alignment within a record declaration does not 
guarantee that the field will be aligned on that boundary in memory; it only 
ensures that the field’s offset is a multiple of the value you specify. If a variable 
of type PaddedRecord starts at an odd address in memory, then the d field will 
also start at an odd address (because any odd address plus 4 is an odd address). 
If you want to ensure that the fields are aligned on appropriate boundaries 
in memory, you must also use the align directive before variable declarations 
of that record type. For example:

static
          .
          .
          .
     align(4);
     PRvar: PaddedRecord;

The value of the align operand should be an even value that is divisible 
by the largest align expression within the record type (4 is the largest value in 
this case, and it’s already divisible by 2).
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If you want to ensure that the record’s size is a multiple of some value, 
then simply stick an align directive as the last item in the record declaration. 
HLA will emit an appropriate number of bytes of padding at the end of the 
record to fill it in to the appropriate size. The following example demonstrates 
how to ensure that the record’s size is a multiple of 4 bytes:

type
     PaddedRec:
          record
               << Some field declarations >>

               align(4);
          endrecord;

HLA provides some additional alignment directives for records that let 
you easily control the alignment of all fields within a record and the starting 
offset of the fields in a record. If you’re interested in more information, 
please consult the HLA reference manual.

4.30 Pointers to Records

During execution, your program may refer to record objects indirectly using 
a pointer. When you use a pointer to access fields of a structure, you must 
load one of the 80x86’s 32-bit registers with the address of the desired record. 
Suppose you have the following variable declarations (assuming the Object8 
structure from an earlier section):

static
     Cube:          Object8;
     CubePtr:       pointer to Object8 := &Cube;

CubePtr contains the address of (that is, it is a pointer to) the Cube object. 
To access the Color field of the Cube object, you could use an instruction like 
mov( Cube.Color, eax );. When accessing a field via a pointer, you first need to 
load the address of the object into a 32-bit register such as EBX. The instruction 
mov( CubePtr, ebx ); will do the trick. After doing so, you can access fields of 
the Cube object using the [ebx+offset] addressing mode. The only problem is, 
“How do you specify which field to access?” Consider briefly the following 
incorrect code:

          mov( CubePtr, ebx );
          mov( [ebx].Color, eax );      // This does not work!

Because field names are local to a structure and it’s possible to reuse 
a field name in two or more structures, how does HLA determine which 
offset Color represents? When accessing structure members directly (e.g., 
mov( Cube.Color, eax );), there is no ambiguity because Cube has a specific 
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type that the assembler can check. [ebx], on the other hand, can point at 
anything. In particular, it can point at any structure that contains a Color field. So 
the assembler cannot, on its own, decide which offset to use for the Color symbol.

HLA resolves this ambiguity by requiring that you explicitly supply a 
type. To do this, you must coerce [ebx] to type Cube. Once you do this, you 
can use the normal dot operator notation to access the Color field:

mov( CubePtr, ebx );
mov( (type Cube [ebx]).Color, eax );

If you have a pointer to a record and one of that record’s fields is an array, 
the easiest way to access elements of that field is by using the base-plus-indexed 
addressing mode. To do so, you just load the pointer’s value into one register 
and compute the index into the array in a second register. Then you combine 
these two registers in the address expression. In the example above, the Pts 
field is an array of eight point objects. To access field x of the ith element of 
the Cube.Pts field, you’d use code like the following:

mov( CubePtr, ebx );
intmul( @size( point ), i, esi );   // Compute index into point array.
mov( (type Object8 [ebx]).Pts.x[ esi*4 ], eax );

If you use a pointer to a particular record type frequently in your program, 
typing a coercion operator like (type Object8 [ebx]) can get old very quickly. 
One way to reduce the typing needed to coerce EBX is to use a text constant. 
Consider the following statement:

const
     O8ptr: text := "(type Object8 [ebx])";

With this statement at the beginning of your program, you can use O8ptr 
in place of the type coercion operator, and HLA will automatically substitute 
the appropriate text. With a text constant like the above, the former example 
becomes a little more readable and writable:

mov( CubePtr, ebx );
intmul( @size( point ), i, esi );   // Compute index into point array.
mov( O8Ptr.Pts.x[ esi*4 ], eax );

4.31 Unions

A record definition assigns different offsets to each field in the record according 
to the size of those fields. This behavior is quite similar to the allocation of 
memory offsets in a var or static section. HLA provides a second type of 
structure declaration, the union, that does not assign different addresses to 
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each object; instead, each field in a union declaration has the same offset—0. 
The following example demonstrates the syntax for a union declaration:

type
     unionType:
          union
               << Fields (syntactically identical to record declarations) >>
          endunion;

You access the fields of a union exactly the same way you access the fields 
of a record: using dot notation and field names. The following is a concrete 
example of a union type declaration and a variable of the union type:

type
     numeric:
          union
               i: int32;
               u: uns32;
               r: real64;
          endunion;
               .
               .
               .
static
     number: numeric;
               .
               .
               .
     mov( 55, number.u );
               .
               .
               .
     mov( -5, number.i );
               .
               .
               .
     stdout.put( "Real value = ", number.r, nl );

The important thing to note about union objects is that all the fields of a 
union have the same offset in the structure. In the example above, the number.u, 
number.i, and number.r fields all have the same offset: 0. Therefore, the fields 
of a union overlap in memory; this is very similar to the way the 80x86 8-, 16-, 
and 32-bit registers overlap one another. Usually, you may access only one 
field of a union at a time; that is, you do not manipulate separate fields of a 
particular union variable concurrently because writing to one field overwrites 
the other fields. In the example above, any modification of number.u would 
also change number.i and number.r.

Programmers typically use unions for two different reasons: to conserve 
memory or to create aliases. Memory conservation is the intended use of this 
data structure facility. To see how this works, let’s compare the numeric union 
above with a corresponding record type.
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type
     numericRec:
          record
               i: int32;
               u: uns32;
               r: real64;
          endrecord;

If you declare a variable, say n, of type numericRec, you access the fields as 
n.i, n.u, and n.r exactly as though you had declared the variable to be type 
numeric. The difference between the two is that numericRec variables allocate 
separate storage for each field of the record, whereas numeric (union) objects 
allocate the same storage for all fields. Therefore, @size(numericRec) is 16 
because the record contains two double-word fields and a quad word (real64) 
field. @size(numeric), however, is 8. This is because all the fields of a union occupy 
the same memory locations, and the size of a union object is the size of the 
largest field of that object (see Figure 4-11).

Figure 4-11: Layout of a union versus a record variable

In addition to conserving memory, programmers often use unions to 
create aliases in their code. As you may recall, an alias is a different name for 
the same memory object. Aliases are often a source of confusion in a program, 
so you should use them sparingly; sometimes, however, using an alias can be 
quite convenient. For example, in some section of your program you might 
need to constantly use type coercion to refer to an object using a different 
type. Although you can use an HLA text constant to simplify this process, 
another way to do this is to use a union variable with the fields representing 
the different types you want to use for the object. As an example, consider the 
following code:

type
     CharOrUns:
          union
               c:char;
               u:uns32;
          endrecord;

static
     v:CharOrUns;

i u r
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With a declaration like the above, you can manipulate an uns32 object by 
accessing v.u. If, at some point, you need to treat the L.O. byte of this uns32 
variable as a character, you can do so by simply accessing the v.c variable, for 
example,

     mov( eax, v.u );
     stdout.put( "v, as a character, is '", v.c, "'" nl );

You can use unions exactly the same way you use records in an HLA 
program. In particular, union declarations may appear as fields in records, 
record declarations may appear as fields in unions, array declarations may 
appear within unions, you can create arrays of unions, and so on.

4.32 Anonymous Unions

Within a record declaration you can place a union declaration without specifying a 
fieldname for the union object. The following example demonstrates the syntax 
for this:

type
     HasAnonUnion:
          record
               r:real64;
               union
                    u:uns32;
                    i:int32;
               endunion;
               s:string;
          endrecord;

static
     v: HasAnonUnion;

Whenever an anonymous union appears within a record you can access 
the fields of the union as though they were direct fields of the record. In the 
example above, for example, you would access v’s u and i fields using the 
syntax v.u and v.i, respectively. The u and i fields have the same offset in the 
record (8, because they follow a real64 object). The fields of v have the following 
offsets from v’s base address:

     v.r           0
     v.u           8
     v.i           8
     v.s          12

@size(v) is 16 because the u and i fields consume only 4 bytes.
HLA also allows anonymous records within unions. Please see the HLA 

documentation for more details, though the syntax and usage are identical 
to anonymous unions within records. 
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4.33 Variant Types

One big use of unions in programs is to create variant types. A variant variable 
can change its type dynamically while the program is running. A variant 
object can be an integer at one point in the program, switch to a string at a 
different part of the program, and then change to a real value at a later time. 
Many very-high-level language (VHLL) systems use a dynamic type system 
(that is, variant objects) to reduce the overall complexity of the program; 
indeed, proponents of many VHLLs insist that the use of a dynamic typing 
system is one of the reasons you can write complex programs with so few lines 
of code using those languages. Of course, if you can create variant objects in a 
VHLL, you can certainly do it in assembly language. In this section we’ll look at 
how we can use the union structure to create variant types.

At any one given instant during program execution, a variant object has 
a specific type, but under program control the variable can switch to a different 
type. Therefore, when the program processes a variant object, it must use an 
if statement or switch statement (or something similar) to execute different 
instructions based on the object’s current type. Very-high-level languages do 
this transparently. In assembly language you will have to provide the code to 
test the type yourself. To achieve this, the variant type needs some additional 
information beyond the object’s value. Specifically, the variant object needs a 
field that specifies the current type of the object. This field (often known as the 
tag field) is an enumerated type or integer that specifies the object’s type at any 
given instant. The following code demonstrates how to create a variant type:

type
     VariantType:
          record
               tag:uns32;  // 0-uns32, 1-int32, 2-real64
               union
                    u:uns32;
                    i:int32;
                    r:real64;
               endunion;
          endrecord;

static
     v:VariantType;

The program would test the v.tag field to determine the current type of 
the v object. Based on this test, the program would manipulate the v.i, v.u, 
or v.r field.

Of course, when operating on variant objects, the program’s code must 
constantly be testing the tag field and executing a separate sequence of 
instructions for uns32, int32, or real64 values. If you use the variant fields 
often, it makes a lot of sense to write procedures to handle these operations 
for you (e.g., vadd, vsub, vmul, and vdiv). 
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4.34 Namespaces

One really nice feature of records and unions is that the field names are local 
to a given record or union declaration. That is, you can reuse field names in 
different records or unions. This is an important feature of HLA because it 
helps avoid namespace pollution. Namespace pollution occurs when you use 
up all the “good” names within your program and you have to start creating 
nondescriptive names for objects because you’ve already used the most 
appropriate name for something else. We use the term namespace to describe 
how HLA associates names with a particular object. The field names of a 
record have a namespace that is limited to objects of that record type. HLA 
provides a generalization of this namespace mechanism that lets you create 
arbitrary namespaces. These namespace objects let you shield the names of 
constants, types, variables, and other objects so their names do not interfere 
with other declarations in your program.

An HLA namespace section encapsulates a set of generic declarations in 
much the same way that a record encapsulates a set of variable declarations. A 
namespace declaration takes the following form:

namespace name;

     << declarations >>

end name;

The name identifier provides the name for the namespace. The identifier 
after the end clause must exactly match the identifier after namespace. Note 
that a namespace declaration section is a section unto itself. It does not have to 
appear in a type or var section. A namespace may appear anywhere one of the 
HLA declaration sections is legal. A program may contain any number of 
namespace declarations; in fact, the namespace identifiers don’t even have to 
be unique, as you will soon see.

The declarations that appear between the namespace and end clauses are 
all the standard HLA declaration sections except that you cannot nest namespace 
declarations. You may, however, put const, val, type, static, readonly, and 
storage sections within a namespace.21 The following code provides an example 
of a typical namespace declaration in an HLA program:

namespace myNames;

     type
          integer: int32;

     static
          i:integer;
          j:uns32;

21 Procedure declarations, the subject of Chapter 5, are also legal within a namespace 
declaration section.
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     const
          pi:real64 := 3.14159;

end myNames;

To access the fields of a namespace you use the same dot notation that 
records and unions use. For example, to access the fields of myNames outside of 
the namespace, you’d use the following identifiers:

myNames.integer A type declaration equivalent to int32
myNames.i An integer variable (int32)
myNames.j An uns32 variable
myNames.pi A real64 constant

This example also demonstrates an important point about namespace 
declarations: Within a namespace you may reference other identifiers in 
that same namespace declaration without using the dot notation. For example, 
the i field above uses type integer from the myNames namespace without the 
mynames. prefix.

What is not obvious from the example above is that namespace declarations 
create a clean symbol table whenever you open up a namespace. The only 
external symbols that HLA recognizes in a namespace declaration are the 
predefined type identifiers (e.g., int32, uns32, and char). HLA does not recognize 
any symbols you’ve declared outside the namespace while it is processing 
your namespace declaration. This creates a problem if you want to use symbols 
from outside the namespace when declaring other symbols inside the name-
space. For example, suppose the type integer had been defined outside 
myNames as follows:

type
     integer: int32;

namespace myNames;

     static
          i:integer;
          j:uns32;

     const
          pi:real64 := 3.14159;

end myNames;

If you were to attempt to compile this code, HLA would complain that 
the symbol integer is undefined. Clearly integer is defined in this program, 
but HLA hides all external symbols when creating a namespace so that you 
can reuse (and redefine) those symbols within the namespace. Of course, 
this doesn’t help much if you actually want to use a name that you’ve defined 
outside myNames within that namespace. HLA provides a solution to this 
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problem: the @global: operator. If, within a namespace declaration section, you 
prefix a name with @global:, then HLA will use the global definition of that 
name rather than the local definition (if a local definition even exists). To 
correct the problem in the previous example, you’d use the following code:

type
     integer: int32;

namespace myNames;

     static
          i:@global:integer;
          j:uns32;

     const
          pi:real64 := 3.14159;

end myNames;

With the @global: prefix, the i variable will be type int32 even if a different 
declaration of integer appears within the myNames namespace.

You cannot nest namespace declarations. Logically, there doesn’t seem to 
be any need for this, hence its omission from the HLA language.

You can have multiple namespace declarations in the same program that 
use the same namespace identifier. For example:

namespace ns;

     << Declaration group #1 >>

end ns;
     .
     .
     .
namespace ns;

     << Declaration group #2 >>

end ns;

When HLA encounters a second namespace declaration for a given identifier, 
it simply appends the declarations in the second group to the end of the 
symbol list it created for the first group. Therefore, after processing the two 
namespace declarations, the ns namespace would contain the set of all symbols 
you’ve declared in both namespace blocks.
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Perhaps the most common use of namespaces is in library modules. If 
you create a set of library routines to use in various projects or distribute to 
others, you have to be careful about the names you choose for your functions 
and other objects. If you use common names like get and put, the users of 
your module will complain when your names collide with theirs. An easy 
solution is to put all your code in a namespace block. Then the only name you 
have to worry about is the namespace identifier itself. This is the only name 
that will collide with other users’ identifiers. This can happen, but it’s much 
less likely to happen than if you don’t use a namespace and your library module 
introduces dozens, if not hundreds, of new names into the global namespace.22 
The HLA Standard Library provides many good examples of namespaces in 
use. The HLA Standard Library defines several namespaces like stdout, stdin, 
str, cs, and chars. You refer to functions in these namespaces using names 
like stdout.put, stdin.get, cs.intersection, str.eq, and chars.toUpper. The use 
of namespaces in the HLA Standard Library prevents conflicts with similar 
names in your own programs.

4.35 Dynamic Arrays in Assembly Language

One problem with arrays as this chapter describes them is that their size is 
static. That is, the number of elements in all of the examples was chosen 
when writing the program; it was not selected while the program runs (that 
is, dynamically). Alas, sometimes you simply don’t know how big an array 
needs to be when you’re writing the program; you can only determine the 
size of the array while the program is running. This section describes how to 
allocate storage for arrays dynamically so you can set their size at runtime.

Allocating storage for a single-dimensional array, and accessing elements 
of that array, is a nearly trivial task at runtime. All you need to do is call the 
HLA Standard Library mem.alloc routine, specifying the size of the array in 
bytes. mem.alloc will return a pointer to the base address of the new array in 
the EAX register. Typically, you would save this address in a pointer variable 
and use that value as the base address of the array in all future array accesses.

To access an element of a single-dimensional dynamic array, you would 
generally load the base address into a register and compute the index in a 
second register. Then you could use the base-indexed addressing mode to 
access elements of that array. This is not a whole lot more work than accessing 
elements of a statically allocated array. The following code fragment demon-
strates how to allocate and access elements of a single-dimensional dynamic 
array.

22 The global namespace is the global section of your program.
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static
     ArySize:                    uns32;
     BaseAdrs: pointer to uns32;
          .
          .
          .
     stdout.put( "How many elements do you want in your array? " );
     stdin.getu32();
     mov( eax, ArySize ); // Save away the upper bounds on this array.
     shl( 2, eax ); // Multiply eax by 4 to compute the number of bytes.
     mem.alloc( eax ); // Allocate storage for the array.
     mov( eax, BaseAdrs ); // Save away the base address of the new array.
          .
          .
          .

     // Zero out each element of the array:

     mov( BaseAdrs, ebx );
     mov( 0, eax );
     for( mov(0, esi); esi < ArySize; inc( esi )) do

          mov( eax, [ebx + esi*4 ]);

     endfor;

Dynamically allocating storage for a multidimensional array is fairly 
straightforward. The number of elements in a multidimensional array is the 
product of all the dimension values; for example, a 4×5 array has 20 elements. So 
if you get the bounds for each dimension from the user, all you need to do is 
compute the product of all of these bound values and multiply the result by 
the size of a single element. This computes the total number of bytes in the 
array, the value that mem.alloc expects.

Accessing elements of multidimensional arrays is a little more problem-
atic. The problem is that you need to keep the dimension information (that 
is, the bounds on each dimension) around because these values are needed 
when computing the row-major (or column-major) index into the array.23 
The conventional solution is to store these bounds into a static array (gener-
ally you know the arity, or number of dimensions, at compile time, so it is 
possible to statically allocate storage for this array of dimension bounds). 
This array of dynamic array bounds is known as a dope vector. The following 
code fragment shows how to allocate storage for a two-dimensional dynamic 
array using a simple dope vector.

23 Technically, you don’t need the value of the leftmost dimension bound to compute an index 
into the array; however, if you want to check the index bounds using the bound instruction (or 
some other technique), you will need this value around at runtime as well.
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var
    ArrayPtr:   pointer to uns32;
    ArrayDims:  uns32[2]; // The dope vector
          .
          .
          .
    // Get the array bounds from the user:
    
    stdout.put( "Enter the bounds for dimension #1: " );
    stdin.get( ArrayDims[0] );
    
    stdout.put( "Enter the bounds for dimension #2: " );
    stdin.get( ArrayDims[1*4] );
    
    // Allocate storage for the array:
    
    mov( ArrayDims[0], eax );
    intmul( ArrayDims[1*4], eax );
    shl( 2, eax ); // Multiply by 4 because each element is 4 bytes.
    mem.alloc( eax ); // Allocate storage for the array and
    mov( eax, ArrayPtr ); // save away the pointer to the array.
    
    
    // Initialize the array:
    
    mov( 0, edx );
    mov( ArrayPtr, edi );
    for( mov( 0, ebx ); ebx < ArrayDims[0]; inc( ebx )) do
    
        for( mov( 0, ecx ); ecx < ArrayDims[1*4]; inc( ecx )) do
        
            // Compute the index into the array
            // as esi := ( ebx * ArrayDims[1*4] + ecx ) * 4
            // (Note that the final multiplication by 4 is
            //  handled by the scaled indexed addressing mode below.)
            
            mov( ebx, esi );
            intmul( ArrayDims[1*4], esi );
            add( ecx, esi );
            
            // Initialize the current array element with edx.
            
            mov( edx, [edi+esi*4] );
            inc( edx );
            
        endfor;
        
    endfor;
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4.36 For More Information

In the electronic edition of this book, which you’ll find at http://webster.cs.ucr.edu/ 
or http://www.artofasm.com/, you will find additional information about data 
types. The HLA Standard Library documentation describes the HLA arrays 
package that provides support for dynamically allocated (and statically 
allocated) arrays, indexing into arrays, and many other array options. You 
should consult the HLA stdlib documentation for more details about this 
array package. For additional information about data structure representation 
in memory, you should consider reading my book Write Great Code, Volume 1 
(No Starch Press, 2004). For an in-depth discussion of data types, you should 
consult a textbook on data structures and algorithms.
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5
P R O C E D U R E S  A N D  U N I T S

In a procedural programming language, 
the basic unit of code is the procedure. A 

procedure is a set of instructions that compute 
some value or take some action (such as printing 

or reading a character value). This chapter discusses 
how HLA implements procedures. It begins by discussing HLA’s high-level 
syntax for procedure declarations and invocations, but it also describes the 
low-level implementation of procedures at the machine level. At this point, 
you should be getting comfortable with assembly language programming, so 
it’s time to start presenting “pure” assembly language rather than continuing 
to rely on HLA’s high-level syntax as a crutch.

5.1 Procedures

Most procedural programming languages implement procedures using the 
call/return mechanism. That is, some code calls a procedure, the procedure 
does its thing, and then the procedure returns to the caller. The call and 
return instructions provide the 80x86’s procedure invocation mechanism. The 
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calling code calls a procedure with the call instruction and the procedure 
returns to the caller with the ret instruction. For example, the following 
80x86 instruction calls the HLA Standard Library stdout.newln routine:1

call stdout.newln;

The stdout.newln procedure prints a newline sequence to the console 
device and returns control to the instruction immediately following the call 
stdout.newln; instruction. 

Alas, the HLA Standard Library does not supply all the routines you will 
ever need. Most of the time you’ll have to write your own procedures. To 
do this, you will use HLA’s procedure-declaration facilities. A basic HLA 
procedure declaration takes the following form:

     procedure ProcName;
          << Local declarations >>
     begin ProcName;
          << Procedure statements >>
     end ProcName;

Procedure declarations appear in the declaration section of your program. 
That is, anywhere you can put a static, const, type, or other declaration section, 
you may place a procedure declaration. In the syntax example above, ProcName 
represents the name of the procedure you wish to define. This can be any 
valid (and unique) HLA identifier. Whatever identifier follows the procedure 
reserved word must also follow the begin and end reserved words in the pro-
cedure. As you’ve probably noticed, a procedure declaration looks a whole lot 
like an HLA program. In fact, the only difference (so far) is the use of the 
procedure reserved word rather than the program reserved word.

Here is a concrete example of an HLA procedure declaration. This 
procedure stores zeros into the 256 double words that EBX points at upon 
entry into the procedure:

procedure zeroBytes;
begin zeroBytes;

     mov( 0, eax );
     mov( 256, ecx );
     repeat
          mov( eax, [ebx] );
          add( 4, ebx );
          dec( ecx );

     until( @z );  // That is, until ecx=0.

end zeroBytes;

1 Normally you would call newln using the high-level newln(); syntax, but the call instruction 
works as well.
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You can use the 80x86 call instruction to call this procedure. When, 
during program execution, the code falls into the end zeroBytes; statement, 
the procedure returns to whoever called it and begins executing the first 
instruction beyond the call instruction. The program in Listing 5-1 provides 
an example of a call to the zeroBytes routine.

program zeroBytesDemo;
#include( "stdlib.hhf" )

    
    procedure zeroBytes;
    begin zeroBytes;
    
        mov( 0, eax );
        mov( 256, ecx );
        repeat
        
            mov( eax, [ebx] );  // Zero out current dword.
            add( 4, ebx );      // Point ebx at next dword.
            dec( ecx );         // Count off 256 dwords.
            
        until( ecx = 0 );       // Repeat for 256 dwords.
        
    end zeroBytes;
    
static
    dwArray: dword[256];        
        
begin zeroBytesDemo;

    lea( ebx, dwArray );
    call zeroBytes;
                    
end zeroBytesDemo;

Listing 5-1: Example of a simple procedure

As you may have noticed when calling HLA Standard Library procedures, 
you don’t have to use the call instruction to call HLA procedures. There is 
nothing special about the HLA Standard Library procedures versus your own 
procedures. Although the formal 80x86 mechanism for calling procedures is 
to use the call instruction, HLA provides a high-level extension that lets you 
call a procedure by simply specifying the procedure’s name followed by an 
empty set of parentheses.2 For example, either of the following statements 
will call the HLA Standard Library stdout.newln procedure:

call stdout.newln;
stdout.newln();

2 This assumes that the procedure does not have any parameters.
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Likewise, either of the following statements will call the zeroBytes procedure 
in Listing 5-1:

call zeroBytes;
zeroBytes();

The choice of calling mechanism is strictly up to you. Most people, 
however, find the high-level syntax easier to read.

5.2 Saving the State of the Machine

Take a look at the program in Listing 5-2. This section of code attempts to 
print 20 lines of 40 spaces and an asterisk. Unfortunately, there is a subtle 
bug that creates an infinite loop. The main program uses the repeat..until 
loop to call PrintSpaces 20 times. PrintSpaces uses ECX to count off the 40 spaces 
it prints. PrintSpaces returns with ECX containing 0. The main program then 
prints an asterisk and a newline, decrements ECX, and then repeats because 
ECX isn’t 0 (it will always contain $FFFF_FFFF at this point). 

The problem here is that the PrintSpaces subroutine doesn’t preserve the 
ECX register. Preserving a register means you save it upon entry into the 
subroutine and restore it before leaving. Had the PrintSpaces subroutine 
preserved the contents of the ECX register, the program in Listing 5-2 would 
have functioned properly. 

program nonWorkingProgram;
#include( "stdlib.hhf" );

    
    procedure PrintSpaces;
    begin PrintSpaces;
    
        mov( 40, ecx );
        repeat
        

mov( ' ', al );
stdout.putc( al );  // Print 1 of 40 spaces.

            dec( ecx ); // Count off 40 spaces.
            
        until( ecx = 0 );
        
    end PrintSpaces;
    
begin nonWorkingProgram;

    mov( 20, ecx );
    repeat
    
        PrintSpaces();
        stdout.put( '*', nl );
        dec( ecx );
        
258 Chapte r  5



AAL2E_03.book  Page 259  Thursday, February 18, 2010  12:49 PM
    until( ecx = 0 );
                    
end nonWorkingProgram;

Listing 5-2: Program with an unintended infinite loop

You can use the 80x86’s push and pop instructions to preserve register values 
while you need to use them for something else. Consider the following code 
for PrintSpaces:

    procedure PrintSpaces; 
    begin PrintSpaces;
    
        push( eax );
        push( ecx );
        mov( 40, ecx );
        repeat
        

mov( ' ', al );
stdout.putc( al );  // Print 1 of 40 spaces.

            dec( ecx ); // Count off 40 spaces.
            
        until( ecx = 0 );
        pop( ecx );
        pop( eax );
        
    end PrintSpaces;

Note that PrintSpaces saves and restores EAX and ECX (because this 
procedure modifies these registers). Also, note that this code pops the registers 
off the stack in the reverse order that it pushed them. The last-in, first-out 
operation of the stack imposes this ordering. 

Either the caller (the code containing the call instruction) or the callee 
(the subroutine) can take responsibility for preserving the registers. In the 
example above, the callee preserved the registers. The example in Listing 5-3 
shows what this code might look like if the caller preserves the registers:

program callerPreservation;
#include( "stdlib.hhf" );

    
    procedure PrintSpaces;
    begin PrintSpaces;
    
        mov( 40, ecx );
        repeat

mov( ' ', al );
stdout.putc( al );  // Print 1 of 40 spaces.

            dec( ecx ); // Count off 40 spaces.
            
        until( ecx = 0 );
        
    end PrintSpaces;
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begin callerPreservation;

    mov( 20, ecx );
    repeat
    
        push( eax );
        push( ecx );
        PrintSpaces();
        pop( ecx );
        pop( eax );
        stdout.put( '*', nl );
        dec( ecx );
        
    until( ecx = 0 );
                    
end callerPreservation;

Listing 5-3: Demonstration of caller register preservation

There are two advantages to callee preservation: space and maintainability. 
If the callee (the procedure) preserves all affected registers, then there is 
only one copy of the push and pop instructions, those the procedure contains. 
If the caller saves the values in the registers, the program needs a set of push 
and pop instructions around every call. Not only does this make your programs 
longer, it also makes them harder to maintain. Remembering which registers 
to push and pop on each procedure call is not easily done. 

On the other hand, a subroutine may unnecessarily preserve some registers 
if it preserves all the registers it modifies. In the examples above, the code 
needn’t save EAX. Although PrintSpaces changes AL, this won’t affect the 
program’s operation. If the caller is preserving the registers, it doesn’t have 
to save registers it doesn’t care about (see the program in Listing 5-4).

program callerPreservation2;
#include( "stdlib.hhf" );

    
    procedure PrintSpaces;
    begin PrintSpaces;
    
        mov( 40, ecx );
        repeat
        

mov( ' ', al );
stdout.putc( al );  // Print 1 of 40 spaces.
dec( ecx ); // Count off 40 spaces.

            
        until( ecx = 0 );
        
    end PrintSpaces;
    
begin callerPreservation2;
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    mov( 10, ecx );
    repeat
    
        push( ecx );
        PrintSpaces();
        pop( ecx );
        stdout.put( '*', nl );
        dec( ecx );
        
    until( ecx = 0 );
                    

    mov( 5, ebx );
    while( ebx > 0 ) do
    
        PrintSpaces();
        
        stdout.put( ebx, nl );
        dec( ebx );
        
    endwhile;
                    

    mov( 110, ecx );
    for( mov( 0, eax );  eax < 7; inc( eax )) do
    
        PrintSpaces();
        
        stdout.put( eax, " ", ecx, nl );
        dec( ecx );
        
    endfor;
                    
end callerPreservation2;

Listing 5-4: Demonstrating that caller preservation need not save all registers

This example in Listing 5-4 provides three different cases. The first loop 
(repeat..until) preserves only the ECX register. Modifying the AL register 
won’t affect the operation of this loop. Immediately after the first loop, this 
code calls PrintSpaces again in the while loop. However, this code doesn’t save 
EAX or ECX because it doesn’t care if PrintSpaces changes them.

One big problem with having the caller preserve registers is that your 
program may change over time. You may modify the calling code or the 
procedure to use additional registers. Such changes, of course, may change 
the set of registers that you must preserve. Worse still, if the modification is 
in the subroutine itself, you will need to locate every call to the routine and 
verify that the subroutine does not change any registers the calling code uses.

Preserving registers isn’t all there is to preserving the environment. You 
can also push and pop variables and other values that a subroutine might 
change. Because the 80x86 allows you to push and pop memory locations, 
you can easily preserve these values as well. 
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5.3 Prematurely Returning from a Procedure

The HLA exit and exitif statements let you return from a procedure without 
having to fall into the corresponding end statement in the procedure. These 
statements behave a whole lot like the break and breakif statements for loops, 
except that they transfer control to the bottom of the procedure rather than 
out of the current loop. These statements are quite useful in many cases.

The syntax for these two statements is the following:

exit procedurename;
exitif( boolean_expression ) procedurename;

The procedurename operand is the name of the procedure you wish to exit. 
If you specify the name of your main program, the exit and exitif statements 
will terminate program execution (even if you’re currently inside a procedure 
rather than the body of the main program).

The exit statement immediately transfers control out of the specified 
procedure or program. The conditional exitif statement first tests the boolean 
expression and exits if the result is true. It is semantically equivalent to the 
following:

          if( boolean_expression ) then

               exit procedurename;

          endif;

Although the exit and exitif statements are invaluable in many cases, 
you should avoid using them without careful consideration. If a simple if 
statement will let you skip the rest of the code in your procedure, then by all 
means use the if statement. Procedures that contain a lot of exit and exitif 
statements will be harder to read, understand, and maintain than procedures 
without these statements (after all, the exit and exitif statements are really 
nothing more than goto statements, and you’ve probably heard already about 
the problems with gotos). exit and exitif are convenient when you have to 
return from a procedure inside a sequence of nested control structures, 
and slapping an if..endif around the remaining code in the procedure is 
impractical.

5.4 Local Variables

HLA procedures, like procedures and functions in most high-level languages, let 
you declare local variables. Local variables are generally accessible only within 
the procedure; they are not accessible by the code that calls the procedure. 
Local variable declarations are identical to variable declarations in your main 
program except, of course, you declare the variables in the procedure’s dec-
laration section rather than the main program’s declaration section. Actually, 
you may declare anything in the procedure’s declaration section that is legal 
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in the main program’s declaration section, including constants, types, and 
even other procedures.3 In this section, however, we’ll concentrate on local 
variables.

Local variables have two important attributes that differentiate them 
from the variables in your main program (that is, global variables): lexical scope 
and lifetime. Lexical scope, or just scope, determines where an identifier is usable 
in your program. Lifetime determines when a variable has memory associated 
with it and is capable of storing data. Because these two concepts differentiate 
local and global variables, it is wise to spend some time discussing them.

Perhaps the best place to start when discussing the scope and lifetimes of 
local variables is with the scope and lifetimes of global variables—those variables 
you declare in your main program. Until now, the only rule you’ve had to 
follow concerning the declaration of your variables has been “you must declare 
all variables that you use in your programs.” The position of the HLA declaration 
section with respect to the program statements automatically enforces the 
other major rule, which is “you must declare all variables before their first 
use.” With the introduction of procedures, it is now possible to violate this 
rule because (1) procedures may access global variables, and (2) procedure 
declarations may appear anywhere in a declaration section, even before some 
variable declarations. The program in Listing 5-5 demonstrates this source 
code organization.

program demoGlobalScope;
#include( "stdlib.hhf" );

static
    AccessibleInProc: char;
    
    
    procedure aProc;
    begin aProc;
    
        mov( 'a', AccessibleInProc );
        
    end aProc;
    
    
static
    InaccessibleInProc: char;
    
            
begin demoGlobalScope;

    mov( 'b', InaccessibleInProc );
    aProc();
    stdout.put

3 Strictly speaking, this is not true. You may not declare external objects within a procedure. 
External objects are the subject of Section 5.24.
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    ( 
        "AccessibleInProc   = '", AccessibleInProc,   "'" nl
        "InaccessibleInProc = '", InaccessibleInProc, "'" nl
    );

 
                    
end demoGlobalScope;

Listing 5-5: Demonstration of global scope

This example demonstrates that a procedure can access global variables 
in the main program as long as you declare those global variables before 
the procedure. In this example, the aProc procedure cannot access the 
InaccessibleInProc variable because its declaration appears after the pro-
cedure declaration. However, aProc may reference AccessibleInProc because 
its declaration appears before the aProc procedure.

A procedure can access any static, storage, or readonly object exactly the 
same way the main program accesses such variables—by referencing the 
name. Although a procedure may access global var objects, a different syntax 
is necessary, and you need to learn a little more before you will understand 
the purpose of the additional syntax (for more details, please consult the 
HLA reference manual).

Accessing global objects is convenient and easy. Unfortunately, as you’ve 
probably learned when studying high-level language programming, accessing 
global objects makes your programs harder to read, understand, and maintain. 
Like most introductory programming texts, this book discourages the use 
of global variables within procedures. Accessing global variables within a 
procedure is sometimes the best solution to a given problem. However, such 
(legitimate) access typically occurs only in advanced programs involving 
multiple threads of execution or in other complex systems. Because it is 
unlikely you would be writing such code at this point, it is equally unlikely 
that you will absolutely need to access global variables in your procedures, so 
you should carefully consider your options before doing so.4

Declaring local variables in your procedures is very easy; you use the 
same declaration sections as the main program: static, readonly, storage, and 
var. The same rules and syntax for the declaration sections and the access of 
variables you declare in these sections apply in your procedure. The example 
code in Listing 5-6 demonstrates the declaration of a local variable.

program demoLocalVars;
#include( "stdlib.hhf" );

    // Simple procedure that displays 0..9 using
    // a local variable as a loop control variable.
    

4 Note that this argument against accessing global variables does not apply to other global 
symbols. It is perfectly reasonable to access global constants, types, procedures, and other 
objects in your programs.
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    procedure CntTo10;
    var
        i: int32;
        
    begin CntTo10;
    
        for( mov( 0, i ); i < 10; inc( i )) do
        
            stdout.put( "i=" , i, nl );
            
        endfor;
        
    end CntTo10;
    
    
begin demoLocalVars;

    CntTo10();  
                    
end demoLocalVars;

Listing 5-6: Example of a local variable in a procedure

Local variables in a procedure are accessible only within that procedure.5 
Therefore, the variable i in procedure CntTo10 in Listing 5-6 is not accessible 
in the main program.

For local variables, HLA relaxes the rule that identifiers must be unique in 
a program. In an HLA program, all identifiers must be unique within a given 
scope. Therefore, all global names must be unique with respect to one another. 
Similarly, all local variables within a given procedure must have unique names 
but only with respect to other local symbols in that same procedure. In particular, a local 
name may be the same as a global name. When this occurs, HLA creates two 
separate variables. Within the scope of the procedure, any reference to the 
common name accesses the local variable; outside that procedure, any 
reference to the common name references the global identifier. Although 
the quality of the resultant code is questionable, it is perfectly legal to have 
a global identifier named MyVar with the same local name in two or more 
different procedures. The procedures each have their own local variant of 
the object, which is independent of MyVar in the main program. Listing 5-7 
provides an example of an HLA program that demonstrates this feature.

program demoLocalVars2;
#include( "stdlib.hhf" );

static
    i:  uns32 := 10;
    j:  uns32 := 20;
        
        

5 Strictly speaking, this is not true. However, accessing nonlocal var objects is beyond the scope 
of this text. See the HLA documentation for more details.
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    // The following procedure declares i and j
    // as local variables, so it does not have access
    // to the global variables by the same name.
    
    procedure First;
    var
        i:int32;
        j:uns32;
        
    begin First;
    
        mov( 10, j );
        for( mov( 0, i ); i < 10; inc( i )) do
        
            stdout.put( "i=", i," j=", j, nl );
            dec( j );
            
        endfor;
        
    end First;
    
    // This procedure declares only an i variable.
    // It cannot access the value of the global i
    // variable but it can access the value of the
    // global j object because it does not provide
    // a local variant of j.
    
    procedure Second;
    var
        i:uns32;
        
    begin Second;
    
        mov( 10, j );
        for( mov( 0, i ); i < 10; inc( i )) do
        
            stdout.put( "i=", i," j=", j, nl );
            dec( j );
            
        endfor;
        
    end Second;
    
    
begin demoLocalVars2;

    First();
    Second();
    
    // Because the calls to First and Second have not
    // modified variable i, the following statement
    // should print "i=10". However, because the Second
    // procedure manipulated global variable j, this
    // code will print "j=0" rather than "j=20".
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    stdout.put(  "i=", i, " j=", j, nl );
                    
end demoLocalVars2;

Listing 5-7: Local variables need not have globally unique names.

There are good and bad points to be made about reusing global names 
within a procedure. On the one hand, there is the potential for confusion. If 
you use a name like ProfitsThisYear as a global symbol and you reuse that name 
within a procedure, someone reading the procedure might think that the 
procedure refers to the global symbol rather than the local symbol. On the 
other hand, simple names like i, j, and k are nearly meaningless (almost 
everyone expects the program to use them as loop-control variables or for 
other local uses), so reusing these names as local objects is probably a good 
idea. From a software engineering perspective, it is probably a good idea to 
keep all variables names that have a very specific meaning (like ProfitsThisYear) 
unique throughout your program. General names that have a nebulous 
meaning (like index and counter and names like i, j, or k) will probably be 
okay to reuse as global variables.

There is one last point to make about the scope of identifiers in an HLA 
program: variables in separate procedures are separate, even if they have the 
same name. The First and Second procedures in Listing 5-7, for example, share 
the same name (i) for a local variable. However, the i in First is a completely 
different variable from the i in Second.

The second major attribute that differentiates local variables from global 
variables is lifetime. The lifetime of a variable spans from the point when the 
program first allocates storage for a variable to the point when the program 
deallocates the storage for that variable. Note that lifetime is a dynamic 
attribute (controlled at runtime), whereas scope is a static attribute (controlled 
at compile time). In particular, a variable can actually have several lifetimes if 
the program repeatedly allocates and then deallocates the storage for that 
variable.

Global variables always have a single lifetime that spans from the moment 
when the main program first begins execution to the point when the main 
program terminates. Likewise, all static objects have a single lifetime that 
spans the execution of the program (remember, static objects are those you 
declare in the static, readonly, or storage sections). This is true even within 
procedures. So there is no difference between the lifetime of a local static 
object and the lifetime of a global static object. Variables you declare in the 
var section, however, are a different matter. HLA’s var objects use automatic 
storage allocation. Automatic storage allocation means that the procedure 
automatically allocates storage for a local variable upon entry into a procedure. 
Similarly, the program deallocates storage for automatic objects when the 
procedure returns to its caller. Therefore, the lifetime of an automatic object 
is from the point of the execution of the first statement in a procedure to the 
point when it returns to its caller.

Perhaps the most important thing to note about automatic variables is 
that you cannot expect them to maintain their values between calls to the 
procedure. Once the procedure returns to its caller, the storage for the 
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automatic variable is lost and, therefore, the value is lost as well. Thus, you 
must always assume that a local var object is uninitialized upon entry into a procedure, 
even if you know you’ve called the procedure before and the previous 
procedure invocation initialized that variable. Whatever value the last call 
stored into the variable was lost when the procedure returned to its caller. 
If you need to maintain the value of a variable between calls to a procedure, 
you should use one of the static variable declaration types.

Given that automatic variables cannot maintain their values across pro-
cedure calls, you might wonder why you would want to use them at all. How-
ever, there are several benefits to automatic variables that static variables do 
not have. The biggest disadvantage to static variables is that they consume 
memory even when the (only) procedure that references them is not running. 
Automatic variables, on the other hand, consume storage only while their 
associated procedure is executing. Upon return, the procedure returns any 
automatic storage it allocated back to the system for reuse by other proce-
dures. You’ll see some additional advantages to automatic variables later in 
this chapter.

5.5 Other Local and Global Symbol Types

As the previous section notes, HLA procedures let you declare constants, 
values, types, and almost everything else legal in the main program’s declara-
tion section. The same rules for scope apply to these identifiers. Therefore, 
you can reuse constant names, procedure names, type names, and the like in 
local declarations.

Referencing global constants, values, and types does not present the 
same software engineering problems that occur when you reference global 
variables. The problem with referencing global variables is that a procedure 
can change the value of a global variable in a nonobvious way. This makes 
programs more difficult to read, understand, and maintain because you 
can’t often tell that a procedure is modifying memory by looking only at the 
call to that procedure. Constants, values, types, and other nonvariable objects 
don’t suffer from this problem because you cannot change them at runtime. 
Therefore, the pressure to avoid global objects at nearly all costs doesn’t apply to 
nonvariable objects.

Having said that it’s okay to access global constants, types, and so on, it’s 
also worth pointing out that you should declare these objects locally within 
a procedure if the only place your program references such objects is within 
that procedure. Doing so will make your programs a little easier to read 
because the person reading your code won’t have to search all over the place 
for the symbol’s definition.

5.6 Parameters

Although many procedures are totally self-contained, most procedures 
require some input data and return some data to the caller. Parameters are 
values that you pass to and from a procedure. In straight assembly language, 
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passing parameters can be a real chore. Fortunately, HLA provides a high-
level-language-like syntax for procedure declarations and for procedure calls 
involving parameters. This section presents HLA’s high-level parameter syntax. 
Later sections in this chapter deal with the low-level mechanisms for passing 
parameters in pure assembly code.

The first thing to consider when discussing parameters is how we pass them 
to a procedure. If you are familiar with Pascal or C/C++, you’ve probably 
seen two ways to pass parameters: pass by value and pass by reference. HLA 
certainly supports these two parameter-passing mechanisms. However, HLA 
also supports pass by value/result, pass by result, pass by name, and pass by 
lazy evaluation. Of course, HLA is assembly language, so it is possible to pass 
parameters in HLA using any scheme you can dream up (at least, any scheme 
that is possible at all on the CPU). However, HLA provides special high-
level syntax for pass by value, reference, value/result, result, name, and lazy 
evaluation.

Because pass by value/result, result, name, and lazy evaluation are 
somewhat advanced, this book will not deal with those parameter-passing 
mechanisms. If you’re interested in learning more about these parameter-
passing schemes, see the HLA reference manual or check out the electronic 
versions of this text at http://webster.cs.ucr.edu/ or http://www.artofasm.com/.

Another concern you will face when dealing with parameters is where you 
pass them. There are many different places to pass parameters; in this section 
we’ll pass procedure parameters on the stack. You don’t really need to concern 
yourself with the details because HLA abstracts them away for you; however, 
do keep in mind that procedure calls and procedure parameters make use of 
the stack. Therefore, whatever you push on the stack immediately before a 
procedure call is not going to be on the top of the stack upon entry into the 
procedure.

5.6.1 Pass by Value

A parameter passed by value is just that—the caller passes a value to the pro-
cedure. Pass-by-value parameters are input-only parameters. That is, you can 
pass them to a procedure, but the procedure cannot return values through 
them. Given the HLA procedure call

CallProc(I);

if you pass I by value, then CallProc does not change the value of I, regardless 
of what happens to the parameter inside CallProc. 

Because you must pass a copy of the data to the procedure, you should 
use this method only for passing small objects like bytes, words, and double 
words. Passing large arrays and records by value is very inefficient (because 
you must create and pass a copy of the object to the procedure).

HLA, like Pascal and C/C++, passes parameters by value unless you specify 
otherwise. The following is what a typical function looks like with a single 
pass-by-value parameter.
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    procedure PrintNSpaces( N:uns32 );
    begin PrintNSpaces;
    
        push( ecx );
        mov( N, ecx );
        repeat
        
            stdout.put( ' ' );  // Print 1 of N spaces.
            dec( ecx );         // Count off N spaces.
            
        until( ecx = 0 );
        pop( ecx );

    end PrintNSpaces;

The parameter N in PrintNSpaces is known as a formal parameter. Anywhere 
the name N appears in the body of the procedure, the program references the 
value passed through N by the caller.

The calling sequence for PrintNSpaces can be any of the following:

PrintNSpaces( constant );
PrintNSpaces( reg32 );
PrintNSpaces( uns32_variable );

Here are some concrete examples of calls to PrintNSpaces:

PrintNSpaces( 40 );
PrintNSpaces( eax );
PrintNSpaces( SpacesToPrint );

The parameter in the calls to PrintNSpaces is known as an actual parameter. 
In the examples above, 40, eax, and SpacesToPrint are the actual parameters.

Note that pass-by-value parameters behave exactly like local variables you 
declare in the var section with the single exception that the procedure’s 
caller initializes these local variables before it passes control to the procedure.

HLA uses positional parameter notation just as most high-level languages 
do. Therefore, if you need to pass more than one parameter, HLA will 
associate the actual parameters with the formal parameters by their position 
in the parameter list. The following PrintNChars procedure demonstrates a 
simple procedure that has two parameters:

    procedure PrintNChars( N:uns32; c:char );
    begin PrintNChars;
    
        push( ecx );
        mov( N, ecx );
        repeat
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            stdout.put( c );    // Print 1 of N characters.
            dec( ecx );         // Count off N characters.
            
        until( ecx = 0 );
        pop( ecx );

    end PrintNChars;

The following is an invocation of the PrintNChars procedure that will 
print 20 asterisk characters:

PrintNChars( 20, '*' );

Note that HLA uses semicolons to separate the formal parameters in the 
procedure declaration, and it uses commas to separate the actual parameters 
in the procedure invocation (Pascal programmers should be comfortable 
with this notation). Also note that each HLA formal parameter declaration 
takes the following form:

parameter_identifier : type_identifier

In particular, note that the parameter type has to be an identifier. None 
of the following are legal parameter declarations because the data type is not 
a single identifier:

PtrVar: pointer to uns32
ArrayVar: uns32[10]
recordVar: record i:int32; u:uns32; endrecord
DynArray: array.dArray( uns32, 2 )

However, don’t get the impression that you cannot pass pointer, array, 
record, or dynamic array variables as parameters. The trick is to declare a 
data type for each of these types in the type section. Then you can use a 
single identifier as the type in the parameter declaration. The following code 
fragment demonstrates how to do this with the four data types above:

type
     uPtr:        pointer to uns32;
     uArray10:    uns32[10];
     recType:     record i:int32; u:uns32; endrecord
     dType:       array.dArray( uns32, 2 );

     procedure FancyParms
     ( 
          PtrVar:   uPtr; 
          ArrayVar: uArray10; 
          recordVar:recType; 
          DynArray: dType 
     );
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     begin FancyParms;
          .
          .
          .
     end FancyParms;

By default, HLA assumes that you intend to pass a parameter by value. 
HLA also lets you explicitly state that a parameter is a value parameter by 
prefacing the formal parameter declaration with the val keyword. The 
following is a version of the PrintNSpaces procedure that explicitly states 
that N is a pass-by-value parameter:

    procedure PrintNSpaces( val N:uns32 );
    begin PrintNSpaces;
    
        push( ecx );
        mov( N, ecx );
        repeat
        
            stdout.put( ' ' );  // Print 1 of N spaces.
            dec( ecx );         // Count off N spaces.
            
        until( ecx = 0 );
        pop( ecx );

    end PrintNSpaces;

Explicitly stating that a parameter is a pass-by-value parameter is a good 
idea if you have multiple parameters in the same procedure declaration that 
use different passing mechanisms.

When you pass a parameter by value and call the procedure using the 
HLA high-level language syntax, HLA will automatically generate code that 
will make a copy of the actual parameter’s value and copy this data into the 
local storage for that parameter (that is, the formal parameter). For small 
objects, pass by value is probably the most efficient way to pass a parameter. 
For large objects, however, HLA must generate code that copies each and 
every byte of the actual parameter into the formal parameter. For large 
arrays and records, this can be a very expensive operation.6 Unless you have 
specific semantic concerns that require you to pass a large array or record by 
value, you should use pass by reference or some other parameter-passing 
mechanism for arrays and records.

When passing parameters to a procedure, HLA checks the type of each 
actual parameter and compares this type to the corresponding formal param-
eter. If the types do not agree, HLA then checks to see if either the actual or 
the formal parameter is a byte, word, or double-word object and the other 
parameter is 1, 2, or 4 bytes in length (respectively). If the actual parameter 
does not satisfy either of these conditions, HLA reports a parameter-type 

6 Note to C/C++ programmers: HLA does not automatically pass arrays by reference. If you 
specify an array type as a formal parameter, HLA will emit code that makes a copy of each and 
every byte of that array when you call the associated procedure.
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mismatch error. If, for some reason, you need to pass a parameter to a proce-
dure using a different type than the procedure calls for, you can always use 
the HLA type-coercion operator to override the type of the actual parameter.

5.6.2 Pass by Reference

To pass a parameter by reference, you must pass the address of a variable 
rather than its value. In other words, you must pass a pointer to the data. The 
procedure must dereference this pointer to access the data. Passing param-
eters by reference is useful when you must modify the actual parameter or 
when you pass large data structures between procedures. 

To declare a pass-by-reference parameter, you must preface the formal 
parameter declaration with the var keyword. The following code fragment 
demonstrates this:

     procedure UsePassByReference( var PBRvar: int32 );
     begin UsePassByReference;
          .
          .
          .
     end UsePassByReference;

Calling a procedure with a pass-by-reference parameter uses the same 
syntax as pass by value except that the parameter has to be a memory location; 
it cannot be a constant or a register. Furthermore, the type of the memory 
location must exactly match the type of the formal parameter. The following 
are legal calls to the procedure above (assuming i32 is an int32 variable):

UsePassByReference( i32 );
UsePassByReference( (type int32 [ebx] ) );

The following are all illegal UsePassbyReference invocations (assuming 
charVar is of type char):

UsePassByReference( 40 );           // Constants are illegal.
UsePassByReference( EAX );          // Bare registers are illegal.
UsePassByReference( charVar );      // Actual parameter type must match
                                    // the formal parameter type.

Unlike the high-level languages Pascal and C++, HLA does not completely 
hide the fact that you are passing a pointer rather than a value. In a procedure 
invocation, HLA will automatically compute the address of a variable and 
pass that address to the procedure. Within the procedure itself, however, you 
cannot treat the variable like a value parameter (as you could in most high-
level languages). Instead, you treat the parameter as a double-word variable 
containing a pointer to the specified data. You must explicitly dereference 
this pointer when accessing the parameter’s value. The example appearing 
in Listing 5-8 provides a simple demonstration of this.
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program PassByRefDemo;
#include( "stdlib.hhf" );

var 
    i:  int32;
    j:  int32;
    
    procedure pbr( var a:int32; var b:int32 );
    const
        aa: text := "(type int32 [ebx])";
        bb: text := "(type int32 [ebx])";
        
    begin pbr;
    
        push( eax );
        push( ebx );        // Need to use ebx to dereference a and b.
        
        // a = -1;
        
        mov( a, ebx );      // Get ptr to the "a" variable.
        mov( -1, aa );      // Store -1 into the "a" parameter.
        
        // b = -2;
        
        mov( b, ebx );      // Get ptr to the "b" variable.
        mov( -2, bb );      // Store -2 into the "b" parameter.
        
        // Print the sum of a+b.
        // Note that ebx currently contains a pointer to "b".
        
        mov( bb, eax );
        mov( a, ebx );      // Get ptr to "a" variable.
        add( aa, eax );
        stdout.put( "a+b=", (type int32 eax), nl );
 
    end pbr;
    
begin PassByRefDemo;

    // Give i and j some initial values so
    // we can see that pass by reference will
    // overwrite these values.
    
    mov( 50, i );
    mov( 25, j );
    
    // Call pbr passing i and j by reference
    
    pbr( i, j );
    
    // Display the results returned by pbr.
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    stdout.put
    ( 
        "i=  ", i, nl, 
        "j=  ", j, nl 
    );

end PassByRefDemo;

Listing 5-8: Accessing pass-by-reference parameters

Passing parameters by reference can produce some peculiar results in 
some rare circumstances. Consider the pbr procedure in Listing 5-8. Were you 
to modify the call in the main program to be pbr(i,i) rather than pbr(i,j);, 
the program would produce the following nonintuitive output:

a+b=-4
i=  -2;
j=  25;

The reason this code displays a+b=-4 rather than the expected a+b=-3 is 
because the pbr(i,i); call passes the same actual parameter for a and b. As a 
result, the a and b reference parameters both contain a pointer to the same 
memory location—that of the variable i. In this case, a and b are aliases of 
one another. Therefore, when the code stores −2 at the location pointed at 
by b, it overwrites the −1 stored earlier at the location pointed at by a. When 
the program fetches the value pointed at by a and b to compute their sum, 
both a and b point at the same value, which is −2. Summing −2 + −2 produces 
the −4 result that the program displays. This nonintuitive behavior is possible 
anytime you encounter aliases in a program. Passing the same variable as two 
different reference parameters probably isn’t very common. But you could 
also create an alias if a procedure references a global variable and you pass 
that same global variable by reference to the procedure (this is a good example 
of yet one more reason why you should avoid referencing global variables in 
a procedure).

Pass by reference is usually less efficient than pass by value. You must 
dereference all pass-by-reference parameters on each access; this is slower 
than simply using a value because it typically requires at least two instructions. 
However, when passing a large data structure, pass by reference is faster 
because you do not have to copy the large data structure before calling the 
procedure. Of course, you’d probably need to access elements of that large 
data structure (for example, an array) using a pointer, so very little efficiency 
is lost when you pass large arrays by reference.

5.7 Functions and Function Results

Functions are procedures that return some result to the caller. In assembly 
language, there are very few syntactical differences between a procedure and 
a function, which is why HLA doesn’t provide a specific declaration for a 
function. Nevertheless, although there is very little syntactical difference 
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between assembly procedures and functions, there are some semantic differ-
ences. That is, although you can declare them the same way in HLA, you use 
them differently.

Procedures are a sequence of machine instructions that fulfill some task. 
The end result of the execution of a procedure is the accomplishment of 
that activity. Functions, on the other hand, execute a sequence of machine 
instructions specifically to compute some value to return to the caller. Of 
course, a function can perform some activity as well and procedures can 
undoubtedly compute some values, but the main difference is that the purpose 
of a function is to return some computed result; procedures don’t have this 
requirement.

A good example of a procedure is the stdout.puti32 procedure. This 
procedure requires a single int32 parameter. The purpose of this procedure 
is to print the decimal conversion of this integer value to the standard output 
device. Note that stdout.puti32 doesn’t return any kind of value that is usable 
by the calling program.

A good example of a function is the cs.member function. This function 
expects two parameters: The first is a character value and the second is a 
character set value. This function returns true (1) in EAX if the character is 
a member of the specified character set. It returns false if the character param-
eter is not a member of the character set.

Logically, the fact that cs.member returns a usable value to the calling 
code (in EAX) while stdout.puti32 does not is a good example of the main 
difference between a function and a procedure. So, in general, a procedure 
becomes a function by virtue of the fact that you explicitly decide to return 
a value somewhere upon procedure return. No special syntax is needed to 
declare and use a function. You still write the code as a procedure.

5.7.1 Returning Function Results

The 80x86’s registers are the most common place to return function 
results. The cs.member routine in the HLA Standard Library is a good example 
of a function that returns a value in one of the CPU’s registers. It returns 
true (1) or false (0) in the EAX register. By convention, programmers try to 
return 8-, 16-, and 32-bit (nonreal) results in the AL, AX, and EAX registers, 
respectively.7 This is where most high-level languages return these types of 
results.

Of course, there is nothing particularly sacred about the AL/AX/EAX 
register. You could return function results in any register if it is more conve-
nient to do so. However, if you don’t have a good reason for not using AL/
AX/EAX, then you should follow the convention. Doing so will help others 
understand your code better because they will generally assume that your 
functions return small results in the AL/AX/EAX register set.

If you need to return a function result that is larger than 32 bits, you 
obviously must return it somewhere other than in EAX (which can hold only 
32-bit values). For values slightly larger than 32 bits (e.g., 64 bits or maybe even 

7 In Chapter 6 you’ll see where most programmers return real results.
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as many as 128 bits), you can split the result into pieces and return those parts 
in two or more registers. It is common to see programs returning 64-bit 
values in the EDX:EAX register pair (for example, the HLA Standard Library 
stdin.geti64 function returns a 64-bit integer in the EDX:EAX register pair).

If you need to return a large object as a function result, say an array of 
1,000 elements, you obviously are not going to be able to return the function 
result in the registers. There are two common ways to deal with large function 
return results: Either pass the return value as a reference parameter or allocate 
storage on the heap (using mem.alloc) for the object and return a pointer to 
it in a 32-bit register. Of course, if you return a pointer to storage you’ve 
allocated on the heap, the calling program must free this storage when it has 
finished with it.

5.7.2 Instruction Composition in HLA

Several HLA Standard Library functions allow you to call them as operands 
of other instructions. For example, consider the following code fragment:

if( cs.member( al, {'a'..'z'}) ) then
     .
     .
     .
endif;

As your high-level language experience (and HLA experience) should 
suggest, this code calls the cs.member function to check to see if the character 
in AL is a lowercase alphabetic character. If the cs.member function returns 
true, then this code fragment executes the then section of the if statement; 
however, if cs.member returns false, this code fragment skips the if..then body. 
There is nothing spectacular here except for the fact that HLA doesn’t sup-
port function calls as boolean expressions in the if statement (look back at 
Chapter 1 to see the complete set of allowable expressions). How then, does 
this program compile and run, producing the intuitive results?

The next section describes how you can tell HLA that you want to use a 
function call in a boolean expression. However, to understand how this works, 
you need to first learn about instruction composition in HLA.

Instruction composition lets you use one instruction as the operand of 
another. For example, consider the mov instruction. It has two operands: a 
source operand and a destination operand. Instruction composition lets you 
substitute a valid 80x86 machine instruction for either (or both) operands. 
The following is a simple example:

            mov( mov( 0, eax ), ebx );

Of course, the immediate question is, “What does this mean?” To under-
stand what is going on, you must first realize that most instructions “return” a 
value to the compiler while they are being compiled. For most instructions, 
the value they “return” is their destination operand. Therefore, mov( 0, eax ); 
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returns the string eax to the compiler during compilation because EAX is 
the destination operand. Most of the time, specifically when an instruction 
appears on a line by itself, the compiler ignores the returned string result. 
However, HLA uses this string result whenever you supply an instruction 
in place of some operand; specifically, HLA uses that string as the operand in 
place of the instruction. Therefore, the mov instruction above is equivalent to 
the following two-instruction sequence:

     mov( 0, eax );     // HLA compiles interior instructions first.
     mov( eax, ebx );   // HLA substituted "eax" for "mov( 0, eax )"

When processing composed instructions (that is, instruction sequences 
that have other instructions as operands), HLA always works in a “left-to-right 
then depth-first (inside-out)” manner. To make sense of this, consider the 
following instructions:

     add( sub( mov( i, eax ), mov( j, ebx )), mov( k, ecx ));

To interpret what is happening here, begin with the source operand. It 
consists of the following:

     sub( mov( i, eax ), mov( j, ebx ))

The source operand for this instruction is mov( i, eax ) and this instruc-
tion does not have any composition, so HLA emits this instruction and returns 
its destination operand (eax) for use as the source to the sub instruction. This 
effectively gives us the following:

     sub( eax, mov( j, ebx ))

Now HLA compiles the instruction that appears as the destination oper-
and (mov( j, ebx )) and returns its destination operand (ebx) to substitute for 
this mov in the sub instruction. This yields the following:

     sub( eax, ebx )

This is a complete instruction, without composition, that HLA can 
compile. So it compiles this instruction and returns its destination operand 
(ebx) as the string result to substitute for the sub in the original add instruction. 
So the original add instruction now becomes

     add( ebx, mov( k, ecx ));

HLA next compiles the mov instruction appearing in the destination 
operand. It returns its destination operand as a string that HLA substitutes 
for the mov, finally yielding the simple instruction

     add( ebx, ecx );
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The compilation of the original add instruction, therefore, yields the 
following instruction sequence:

     mov( i, eax );
     mov( j, ebx );
     sub( eax, ebx );
     mov( k, ecx );
     add( ebx, ecx );

Whew! It’s rather difficult to look at the original instruction and easily 
see that this sequence is the result. As you can see in this example, overzealous 
use of instruction composition can produce nearly unreadable programs. You should 
be very careful about using instruction composition in your programs. With 
only a few exceptions, writing a composed instruction sequence makes your 
program harder to read.

Note that the excessive use of instruction composition may make errors 
in your program difficult to decipher. Consider the following HLA statement:

          add( mov( eax, i ), mov( ebx, j ) );

This instruction composition yields the following 80x86 instruction 
sequence:

          mov( eax, i );
          mov( ebx, j );
          add( i, j );

Of course, the compiler will complain that you’re attempting to add one 
memory location to another. However, the instruction composition effectively 
masks this fact and makes it difficult to comprehend the cause of the error 
message. Moral of the story: Avoid using instruction composition unless it 
really makes your program easier to read. The few examples in this section 
demonstrate how not to use instruction composition.

There are two main areas where using instruction composition can help 
make your programs more readable. The first is in HLA’s high-level language 
control structures. The other is in procedure parameters. Although instruction 
composition is useful in these two cases (and probably a few others as well), 
this doesn’t give you a license to use extremely convoluted instructions like 
the add instruction in the previous example. Instead, most of the time you will 
use a single instruction or a function call in place of a single operand in a high-
level language boolean expression or in a procedure/function parameter.

While we’re on the subject, exactly what does a procedure call return as 
the string that HLA substitutes for the call in an instruction composition? 
For that matter, what do statements like if..endif return? How about instruc-
tions that don’t have a destination operand? Well, function return results are 
the subject of the next section, so you’ll read about that in a few moments. As for 
all the other statements and instructions, you should check out the HLA refer-
ence manual. It lists each instruction and its returns value. The returns value is 
the string that HLA will substitute for the instruction when it appears as the 
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operand to another instruction. Note that many HLA statements and instruc-
tions return the empty string as their returns value (by default, so do proce-
dure calls). If an instruction returns the empty string as its composition 
value, then HLA will report an error if you attempt to use it as the operand of 
another instruction. For example, the if..then..endif statement returns the 
empty string as its returns value, so you may not bury an if..then..endif 
inside another instruction.

5.7.3 The HLA @returns Option in Procedures

HLA procedure declarations allow a special option that specifies the string to 
use when a procedure invocation appears as the operand of another instruc-
tion: the @returns option. The syntax for a procedure declaration with the 
@returns option is as follows:

 procedure ProcName ( optional_parameters );  @returns( string_constant );
      << Local declarations >>
 begin ProcName;
      << Procedure statements >>
 end ProcName;

If the @returns option is not present, HLA assigns the empty string to the 
@returns value for the procedure. This effectively makes it illegal to use that 
procedure invocation as the operand to another instruction.

The @returns option requires a single-string expression surrounded by 
parentheses. HLA will substitute this string constant for the procedure call if 
it ever appears as the operand of another instruction. Typically this string 
constant is a register name; however, any text that would be legal as an 
instruction operand is okay here. For example, you could specify memory 
addresses or constants. For purposes of clarity, you should always specify the 
location of a function’s return value in the @returns parameter.

As an example, consider the following boolean function that returns true 
or false in the EAX register if the single-character parameter is an alphabetic 
character:8

procedure IsAlphabeticChar( c:char ); @returns( "EAX" );
begin IsAlphabeticChar;

     // Note that cs.member returns true/false in eax.

     cs.member( c, {'a'..'z', 'A'..'Z'} );

end IsAlphabeticChar;

8 Before you run off and actually use this function in your own programs, note that the HLA 
Standard Library provides the char.isAlpha function that provides this test. See the HLA 
documentation for more details.
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Once you tack the @returns option on the end of this procedure decla-
ration, you can legally use a call to IsAlphabeticChar as an operand to other 
HLA statements and instructions:

     mov( IsAlphabeticChar( al ), ebx );
          .
          .
          .
     if( IsAlphabeticChar( ch ) ) then
          .
          .
          .
     endif;

The last example above demonstrates that, via the @returns option, you 
can embed calls to your own functions in the boolean expression field of 
various HLA statements. Note that the code above is equivalent to:

     IsAlphabeticChar( ch );
     if( eax ) then
          .
          .
          .
     endif;

Not all HLA high-level language statements expand composed instructions 
before the statement. For example, consider the following while statement:

     while( IsAlphabeticChar( ch ) ) do
          .
          .
          .
     endwhile;

This code does not expand to the following:

     IsAlphabeticChar( ch );
     while( eax ) do
          .
          .
          .
     endwhile;

Instead, the call to IsAlphabeticChar expands inside the while’s boolean 
expression so that the program calls this function on each iteration of 
the loop.
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You should exercise caution when entering the @returns parameter. HLA 
does not check the syntax of the string parameter when it is compiling the 
procedure declaration (other than to verify that it is a string constant). 
Instead, HLA checks the syntax when it replaces the function call with the 
@returns string. So if you had specified eaz instead of eax as the @returns 
parameter for IsAlphabeticChar in the previous examples, HLA would not 
have reported an error until you actually used IsAlphabeticChar as an operand. 
Then of course, HLA would complain about the illegal operand, and it’s not 
at all clear what the problem is by looking at the IsAlphabeticChar invoca-
tion. So take special care not to introduce typographical errors into the 
@returns string; figuring out such errors later can be very difficult.

5.8 Recursion

Recursion occurs when a procedure calls itself. The following, for example, is 
a recursive procedure:

procedure Recursive;
begin Recursive;

     Recursive();

end Recursive;

Of course, the CPU will never return from this procedure. Upon entry 
into Recursive, this procedure will immediately call itself again, and control 
will never pass to the end of the procedure. In this particular case, runaway 
recursion results in an infinite loop.9

Like a looping structure, recursion requires a termination condition in 
order to stop infinite recursion. Recursive could be rewritten with a termina-
tion condition as follows:

procedure Recursive;
begin Recursive;

     dec( eax );
     if( @nz ) then

         Recursive();

     endif;

end Recursive;

9 Well, not really infinite. The stack will overflow and Windows, Mac OS X, FreeBSD, or Linux 
will raise an exception at that point.
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This modification to the routine causes Recursive to call itself the number 
of times appearing in the EAX register. On each call, Recursive decrements 
the EAX register by 1 and then calls itself again. Eventually, Recursive decre-
ments EAX to 0 and returns from each call until it returns to the original 
caller. 

So far, however, there hasn’t been a real need for recursion. After all, 
you could efficiently code this procedure as follows:

procedure Recursive;
begin Recursive;

     repeat
          dec( eax );
     until( @z );

end Recursive;

Both examples would repeat the body of the procedure the number of 
times passed in the EAX register.10 As it turns out, there are only a few recur-
sive algorithms that you cannot implement in an iterative fashion. However, 
many recursively implemented algorithms are more efficient than their itera-
tive counterparts, and most of the time the recursive form of the algorithm is 
much easier to understand. 

The quicksort algorithm is probably the most famous algorithm that 
usually appears in recursive form. An HLA implementation of this algorithm 
appears in Listing 5-9.

program QSDemo;
#include( "stdlib.hhf" );

type
    ArrayType:  uns32[ 10 ];
    
static
    theArray:   ArrayType := [1,10,2,9,3,8,4,7,5,6];
    

    procedure quicksort( var a:ArrayType; Low:int32; High:int32 );
    const
        i:      text := "(type int32 edi)";
        j:      text := "(type int32 esi)";
        Middle: text := "(type uns32 edx)";
        ary:    text := "[ebx]";
        
    begin quicksort;

10 The latter version will do it considerably faster because it doesn’t have the overhead of the 
call/ret instructions.
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        push( eax );
        push( ebx );
        push( ecx );
        push( edx );
        push( esi );
        push( edi );

        mov( a, ebx );      // Load BASE address of "a" into ebx.

        mov( Low, edi);     // i := Low;
        mov( High, esi );   // j := High;
        
        // Compute a pivotal element by selecting the
        // physical middle element of the array.
        
        mov( i, eax );
        add( j, eax );
        shr( 1, eax );
        mov( ary[eax*4], Middle );  // Put middle value in edx.

        // Repeat until the edi and esi indexes cross one
        // another (edi works from the start towards the end
        // of the array, esi works from the end towards the
        // start of the array).

        repeat
        
            // Scan from the start of the array forward
            // looking for the first element greater or equal
            // to the middle element).
            
            while( Middle > ary[i*4] ) do
            
                inc( i );
                
            endwhile;
            
            // Scan from the end of the array backwards looking
            // for the first element that is less than or equal
            // to the middle element.
            
            while( Middle < ary[j*4] ) do
            
                dec( j );
                
            endwhile;
            
            // If we've stopped before the two pointers have
            // passed over one another, then we've got two
            // elements that are out of order with respect
            // to the middle element, so swap these two elements.
                        
            if( i <= j ) then
            
284 Chapte r  5



AAL2E_03.book  Page 285  Thursday, February 18, 2010  12:49 PM
                mov( ary[i*4], eax );
                mov( ary[j*4], ecx );
                mov( eax, ary[j*4] );
                mov( ecx, ary[i*4] );
                inc( i );
                dec( j );
                
            endif;
            
        until( i > j );
        
        // We have just placed all elements in the array in
        // their correct positions with respect to the middle
        // element of the array. So all elements at indexes
        // greater than the middle element are also numerically
        // greater than this element. Likewise, elements at
        // indexes less than the middle (pivotal) element are
        // now less than that element. Unfortunately, the
        // two halves of the array on either side of the pivotal
        // element are not yet sorted. Call quicksort recursively
        // to sort these two halves if they have more than one
        // element in them (if they have zero or one elements, then
        // they are already sorted).
        
        if( Low < j ) then
        
            quicksort( a, Low, j );
            
        endif;
        if( i < High ) then
        
quicksort( a, i, High );
            
        endif;
        
        pop( edi );
        pop( esi );
        pop( edx );
        pop( ecx );
        pop( ebx );
        pop( eax );

    end quicksort;
    
begin QSDemo;

    stdout.put( "Data before sorting: " nl );
    for( mov( 0, ebx ); ebx < 10; inc( ebx )) do
    
        stdout.put( theArray[ebx*4]:5 );
        
    endfor;
    stdout.newln();
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    quicksort( theArray, 0, 9 );
    
    stdout.put( "Data after sorting: " nl );
    for( mov( 0, ebx ); ebx < 10; inc( ebx )) do
    
        stdout.put( theArray[ebx*4]:5 );
        
    endfor;
    stdout.newln();
    
end QSDemo; 

Listing 5-9: Recursive quicksort program

Note that this quicksort procedure uses registers for all nonparameter 
local variables. Also note how quicksort uses text constant definitions to 
provide more readable names for the registers. This technique can often 
make an algorithm easier to read; however, one must take care when using 
this trick not to forget that those registers are being used.

5.9 Forward Procedures

As a general rule, HLA requires that you declare all symbols before their first 
use in a program.11 Therefore, you must define all procedures before their 
first call. There are two reasons this isn’t always practical: mutual recursion 
(two procedures call each other) and source code organization (you prefer 
to place a procedure in your code after the point where you’ve first called it). 
Fortunately, HLA lets you use a forward procedure definition to declare a proce-
dure prototype. Forward declarations let you define a procedure before you 
actually supply the code for that procedure.

A forward procedure declaration is a familiar procedure declaration that 
uses the reserved word forward in place of the procedure’s declaration section 
and body. The following is a forward declaration for the quicksort procedure 
appearing in the last section:

procedure quicksort( var a:ArrayType; Low:int32; High:int32 ); forward;

A forward declaration in an HLA program is a promise to the compiler 
that the actual procedure declaration will appear, exactly as stated in the for-
ward declaration, at a later point in the source code.12 The forward declara-
tion must have the same parameters, they must be passed the same way, and 
they must all have the same types as the formal parameters in the procedure.

Routines that are mutually recursive (that is, procedure A calls procedure B 
and procedure B calls procedure A) require at least one forward declaration, 
because you may declare only one of procedure A or B before the other. In 
practice, however, mutual recursion (direct or indirect) doesn’t occur very 
frequently, so you’ll rarely forward declarations for this purpose.

11 There are a few minor exceptions to this rule, but it is certainly true for procedure calls.
12 Actually, exactly is too strong a word. You will see some exceptions in a moment.
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In the absence of mutual recursion, it is always possible to organize your 
source code so that each procedure declaration appears before its first invoca-
tion. What’s possible and what’s desired are two different things, however. You 
might want to group a related set of procedures at the beginning of your 
source code and a different set of procedures toward the end of your source 
code. This logical grouping, by function rather than by invocation, may make 
your programs much easier to read and understand. However, this organiza-
tion may also yield code that attempts to call a procedure before its declaration. 
No sweat; just use a forward procedure definition to resolve the problem.

One major difference between the forward definition and the actual pro-
cedure declaration has to do with the procedure options. Some options, like 
@returns, may appear only in the forward declaration (if a forward declaration 
is present). Other options may appear only in the actual procedure declara-
tion (we haven’t covered any of the other procedure options, so don’t worry 
about them just yet). If your procedure requires an @returns option, the 
@returns option must appear before the forward reserved word. For example:

procedure IsItReady( valueToTest: dword ); @returns( "eax" ); forward;

The @returns option must not also appear in the actual procedure 
declaration later in your source file.

5.10 HLA v2.0 Procedure Declarations

HLA v2.0 and later support an alternate procedure declaration syntax that is 
similar to constant, type, and variable declarations. Though this book tends 
to prefer the original procedure declaration syntax (which HLA v2.0 and 
later still support), you will see examples of the new syntax in code that exists 
out in the real world; therefore, this section provides a brief discussion of the 
new procedure declaration syntax.

The new HLA v2.0 procedure declaration syntax uses the proc keyword to 
begin a procedure declaration section (similar to var or static beginning a 
variable declaration section). Within a proc section, procedure declarations 
take one of these forms:

procname:procedure( parameters ); 
begin procname;
    << body >>
end procname;
procname:procedure( parameters ) {options}; 
begin procname;
    << body >>
end procname;
procname:procedure( parameters ); external; 
procname:procedure( parameters ) { options }; external;
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Please see the HLA v2.0 (or later) reference manual for more details 
concerning this alternate procedure declaration syntax. Just be aware of its 
existence in case you come across it while reading example HLA code you've 
gotten from some other source.

5.11 Low-Level Procedures and the call Instruction

The 80x86 call instruction does two things. First, it pushes the address of the 
instruction immediately following the call onto the stack; then it transfers 
control to the address of the specified procedure. The value that call pushes 
onto the stack is known as the return address. When the procedure wants to 
return to the caller and continue execution with the first statement following 
the call instruction, the procedure simply pops the return address off the 
stack and jumps (indirectly) to that address. Most procedures return to their 
caller by executing a ret (return) instruction. The ret instruction pops a 
return address off the stack and transfers control indirectly to the address it 
pops off the stack.

By default, the HLA compiler automatically places a ret instruction 
(along with a few other instructions) at the end of each HLA procedure you 
write. This is why you haven’t had to explicitly use the ret instruction up to 
this point. To disable the default code generation in an HLA procedure, 
specify the following options when declaring your procedures:

procedure ProcName; @noframe; @nodisplay;
begin ProcName;
     .
     .
     .
end ProcName;

The @noframe and @nodisplay clauses are examples of procedure options. 
HLA procedures support several such options, including @returns, @noframe, 
@nodisplay, and @noalignstack. You’ll see the purpose of @noalignstack and a 
couple of other procedure options in Section 5.14. These procedure options 
may appear in any order following the procedure name (and parameters, if 
any). Note that @noframe and @nodisplay (as well as @noalignstack) may appear 
only in an actual procedure declaration. You cannot specify these options in 
a forward declaration.

The @noframe option tells HLA that you don’t want the compiler to 
automatically generate entry and exit code for the procedure. This tells HLA 
not to automatically generate the ret instruction (along with several other 
instructions). 
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The @nodisplay option tells HLA that it should not allocate storage in 
procedure’s local variable area for a display. The display is a mechanism 
you use to access nonlocal var objects in a procedure. Therefore, a display 
is necessary only if you nest procedures in your programs. This book will not 
consider the display or nested procedures; for more details on the display 
and nested procedures see the appropriate chapter in the electronic edition 
appearing at http://www.artofasm.com/ or http://webster.cs.ucr.edu/, or check 
out the HLA reference manual. Until then, you can safely specify the 
@nodisplay option on all your procedures. Indeed, for all of the procedures 
appearing in this chapter up to this point, specifying the @nodisplay option 
makes a lot of sense because none of those procedures actually use the display. 
Procedures that have the @nodisplay option are a tiny bit faster and a tiny bit 
shorter than those procedures that do not specify this option.

The following is an example of the minimal procedure:

procedure minimal; @nodisplay; @noframe; @noalignstack;
begin minimal;

     ret();

end minimal;

If you call this procedure with the call instruction, minimal will simply 
pop the return address off the stack and return back to the caller. You should 
note that a ret instruction is absolutely necessary when you specify the @noframe 
procedure option.13 If you fail to put the ret instruction in the procedure, 
the program will not return to the caller upon encountering the end minimal; 
statement. Instead, the program will fall through to whatever code happens 
to follow the procedure in memory. The example program in Listing 5-10 
demonstrates this problem.

program missingRET;
#include( "stdlib.hhf" );

    // This first procedure has the @noframe
    // option but does not have a ret instruction.
    
    procedure firstProc; @noframe; @nodisplay;
    begin firstProc;
    
        stdout.put( "Inside firstProc" nl );
        
    end firstProc;
    
    

13 Strictly speaking, this isn’t true. But some mechanism that pops the return address off the 
stack and jumps to the return address is necessary in the procedure’s body.
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    // Because the procedure above does not have a
    // ret instruction, it will "fall through" to
    // the following instruction. Note that there
    // is no call to this procedure anywhere in
    // this program.
    
    procedure secondProc; @noframe; @nodisplay;
    begin secondProc;
    
        stdout.put( "Inside secondProc" nl );
        ret();
        
end secondProc;
    
    
begin missingRET;

    // Call the procedure that doesn't have
    // a ret instruction.
    
    call firstProc;
    
end missingRET;

Listing 5-10: Effect of a missing ret instruction in a procedure

Although this behavior might be desirable in certain rare circumstances, 
it usually represents a defect in most programs. Therefore, if you specify the 
@noframe option, always remember to explicitly return from the procedure 
using the ret instruction.

5.12 Procedures and the Stack

Because procedures use the stack to hold the return address, you must exer-
cise caution when pushing and popping data within a procedure. Consider 
the following simple (and defective) procedure:

procedure MessedUp; @noframe; @nodisplay;
begin MessedUp;

     push( eax );
     ret();

end MessedUp;

At the point the program encounters the ret instruction, the 80x86 stack 
takes the form shown in Figure 5-1.
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Figure 5-1: Stack contents before ret in 
MessedUp procedure

The ret instruction isn’t aware that the value on the top of stack is not a 
valid address. It simply pops whatever value is on the top of the stack and 
jumps to that location. In this example, the top of stack contains the saved 
EAX value. Because it is very unlikely that EAX contains the proper return 
address (indeed, there is about a one in four billion chance it is correct), 
this program will probably crash or exhibit some other undefined behavior. 
Therefore, you must take care when pushing data onto the stack within a pro-
cedure that you properly pop that data prior to returning from the procedure.

NOTE If you do not specify the @noframe option when writing a procedure, HLA automatically 
generates code at the beginning of the procedure that pushes some data onto the stack. 
Therefore, unless you understand exactly what is going on and you’ve taken care of this 
data HLA pushes on the stack, you should never execute the bare ret instruction inside 
a procedure that does not have the @noframe option. Doing so will attempt to return to 
the location specified by this data (which is not a return address) rather than properly 
returning to the caller. In procedures that do not have the @noframe option, use the exit 
or exitif statement to return from the procedure.

Popping extra data off the stack prior to executing the ret statement 
can also create havoc in your programs. Consider the following defective 
procedure:

procedure messedUpToo; @noframe; @nodisplay;
begin messedUpToo;

     pop( eax );
     ret();

end messedUpToo;
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Upon reaching the ret instruction in this procedure, the 80x86 stack looks 
something like that shown in Figure 5-2.

Figure 5-2: Stack contents before ret in messedUpToo

Once again, the ret instruction blindly pops whatever data happens to be 
on the top of the stack and attempts to return to that address. Unlike the 
previous example, where it was very unlikely that the top of stack contained a 
valid return address (because it contained the value in EAX), there is a small 
possibility that the top of stack in this example actually does contain a return 
address. However, this will not be the proper return address for the messedUpToo 
procedure; instead, it will be the return address for the procedure that called 
messedUpToo. To understand the effect of this code, consider the program in 
Listing 5-11.

program extraPop;
#include( "stdlib.hhf" );

    
    // Note that the following procedure pops
    // excess data off the stack (in this case,
    // it pops messedUpToo's return address).
    
    procedure messedUpToo; @noframe; @nodisplay;
    begin messedUpToo;
    
        stdout.put( "Entered messedUpToo" nl );
        pop( eax );
        ret();
                
    end messedUpToo;
    
    
    
    procedure callsMU2; @noframe; @nodisplay;
    begin callsMU2;
    
        stdout.put( "calling messedUpToo" nl );
        messedUpToo();
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        // Because messedUpToo pops extra data
        // off the stack, the following code
        // never executes (because the data popped
        // off the stack is the return address that
        // points at the following code).
        
        stdout.put( "Returned from messedUpToo" nl );
        ret();
        
    end callsMU2;
    
    
begin extraPop;

    stdout.put( "Calling callsMU2" nl );
    callsMU2();
    stdout.put( "Returned from callsMU2" nl );
    
end extraPop;

Listing 5-11: Effect of popping too much data off the stack

Because a valid return address is sitting on the top of the stack, you might 
think that this program will actually work (properly). However, note that 
when returning from the messedUpToo procedure, this code returns directly to 
the main program rather than to the proper return address in the callsMU2 
procedure. Therefore, all code in the callsMU2 procedure that follows the call 
to messedUpToo does not execute. When reading the source code, it may be 
very difficult to figure out why those statements are not executing because 
they immediately follow the call to the messedUpToo procedure. It isn’t clear, 
unless you look very closely, that the program is popping an extra return 
address off the stack and therefore doesn’t return to callsMU2 but rather 
returns directly to whoever calls callsMU2. Of course, in this example it’s fairly 
easy to see what is going on (because this example is a demonstration of this 
problem). In real programs, however, determining that a procedure has 
accidentally popped too much data off the stack can be much more difficult. 
Therefore, you should always be careful about pushing and popping data in 
a procedure. You should always verify that there is a one-to-one relationship 
between the pushes in your procedures and the corresponding pops.

5.13 Activation Records

Whenever you call a procedure, there is certain information the program 
associates with that procedure call. The return address is a good example 
of some information the program maintains for a specific procedure call. 
Parameters and automatic local variables (that is, those you declare in the var 
section) are additional examples of information the program maintains for 
each procedure call. Activation record is the term we’ll use to describe the 
information the program associates with a specific call to a procedure.14

14 Stack frame is another term many people use to describe the activation record.
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Activation record is an appropriate name for this data structure. The 
program creates an activation record when calling (activating) a procedure 
and the data in the structure is organized in a manner identical to records. 
Perhaps the only thing unusual about an activation record (when comparing 
it to a standard record) is that the base address of the record is in the middle 
of the data structure, so you must access fields of the record at positive and 
negative offsets.

Construction of an activation record begins in the code that calls a 
procedure. The caller pushes the parameter data (if any) onto the stack. 
Then the execution of the call instruction pushes the return address onto the 
stack. At this point, construction of the activation record continues within the 
procedure itself. The procedure pushes registers and other important state 
information and then makes room in the activation record for local variables. 
The procedure must also update the EBP register so that it points at the base 
address of the activation record.

To see what a typical activation record looks like, consider the following 
HLA procedure declaration:

procedure ARDemo( i:uns32; j:int32; k:dword ); @nodisplay;
var
     a:int32;
     r:real32;
     c:char;
     b:boolean;
     w:word;
begin ARDemo;
     .
     .
     .
end ARDemo;

Whenever an HLA program calls this ARDemo procedure, it begins by 
pushing the data for the parameters onto the stack. The calling code will 
push the parameters onto the stack in the order they appear in the parameter 
list, from left to right. Therefore, the calling code first pushes the value 
for the i parameter, then it pushes the value for the j parameter, and it 
finally pushes the data for the k parameter. After pushing the parameters, 
the program calls the ARDemo procedure. Immediately upon entry into the 
ARDemo procedure, the stack contains these four items arranged as shown in 
Figure 5-3.

The first few instructions in ARDemo (note that it does not have the @noframe 
option) will push the current value of EBP onto the stack and then copy the 
value of ESP into EBP. Next, the code drops the stack pointer down in memory 
to make room for the local variables. This produces the stack organization 
shown in Figure 5-4.
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Figure 5-3: Stack organization immediately 
upon entry into ARDemo

Figure 5-4: Activation record for ARDemo

To access objects in the activation record you must use offsets from the 
EBP register to the desired object. The two items of immediate interest to 
you are the parameters and the local variables. You can access the parameters 
at positive offsets from the EBP register; you can access the local variables at 
negative offsets from the EBP register, as Figure 5-5 shows.

Intel specifically reserves the EBP (Extended Base Pointer) register for 
use as a pointer to the base of the activation record. This is why you should 
never use the EBP register for general calculations. If you arbitrarily change 
the value in the EBP register, you will lose access to the current procedure’s 
parameters and local variables.
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Figure 5-5: Offsets of objects in the ARDemo 
activation record

5.14 The Standard Entry Sequence

The caller of a procedure is responsible for pushing the parameters onto the 
stack. Of course, the call instruction pushes the return address onto the stack. It 
is the procedure’s responsibility to construct the rest of the activation record. 
You can accomplish this by using the following “standard entry sequence” code:

 push( ebp );         // Save a copy of the old ebp value.
 mov( esp, ebp );     // Get pointer to base of activation record into ebp.
 sub( NumVars, esp ); // Allocate storage for local variables.

If the procedure doesn’t have any local variables, the third instruction 
above, sub( NumVars, esp );, isn’t necessary. NumVars represents the number of 
bytes of local variables needed by the procedure. This is a constant that should 
be a multiple of 4 (so the ESP register remains aligned on a double-word 
boundary). If the number of bytes of local variables in the procedure is not a 
multiple of 4, you should round the value up to the next higher multiple of 4 
before subtracting this constant from ESP. Doing so will slightly increase the 
amount of storage the procedure uses for local variables but will not otherwise 
affect the operation of the procedure.

WARNING If the NumVars constant is not a multiple of 4, subtracting this value from ESP (which, 
presumably, contains a double-word-aligned pointer) will virtually guarantee that all 
future stack accesses are misaligned because the program almost always pushes and 
pops double-word values. This will have a very negative performance impact on the 
program. Worse still, many OS API calls will fail if the stack is not double-word aligned 
upon entry into the operating system. Therefore, you must always ensure that your local 
variable allocation value is a multiple of 4.
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Because of the problems with a misaligned stack, by default HLA will also 
emit a fourth instruction as part of the standard entry sequence. The HLA 
compiler actually emits the following standard entry sequence for the ARDemo 
procedure defined earlier:

          push( ebp );
          mov( esp, ebp );
          sub( 12, esp );          // Make room for ARDemo's local variables.
          and( $FFFF_FFFC, esp );  // Force dword stack alignment.

The and instruction at the end of this sequence forces the stack to be 
aligned on a 4-byte boundary (it reduces the value in the stack pointer by 1, 2, or 
3 if the value in ESP is not a multiple of 4). Although the ARDemo entry code 
correctly subtracts 12 from ESP for the local variables (12 is both a multiple 
of 4 and the number of bytes of local variables), this leaves ESP double-word 
aligned only if it was double-word aligned immediately upon entry into the 
procedure. Had the caller messed with the stack and left ESP containing a 
value that was not a multiple of 4, subtracting 12 from ESP would leave ESP 
containing an unaligned value. The and instruction in the sequence above, 
however, guarantees that ESP is dword aligned regardless of ESP’s value upon 
entry into the procedure. The few bytes and CPU cycles needed to execute 
this instruction would pay off handsomely if ESP was not double-word aligned.

Although it is always safe to execute the and instruction in the standard 
entry sequence, it might not be necessary. If you always ensure that ESP 
contains a double-word-aligned value, the and instruction in the standard 
entry sequence above is unnecessary. Therefore, if you’ve specified the 
@noframe procedure option, you don’t have to include that instruction as 
part of the entry sequence.

If you haven’t specified the @noframe option (that is, you’re letting HLA 
emit the instructions to construct the standard entry sequence for you), you 
can still tell HLA not to emit the extra and instruction if you’re sure the stack 
will be double-word aligned whenever someone calls the procedure. To do 
this, use the @noalignstack procedure option. For example:

procedure NASDemo( i:uns32; j:int32; k:dword ); @noalignstack;
var
     LocalVar:int32;
begin NASDemo;
     .
     .
     .
end NASDemo;

HLA emits the following entry sequence for the procedure above:

          push( ebp );
          mov( esp, ebp );
          sub( 4, esp );
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5.15 The Standard Exit Sequence

Before a procedure returns to its caller, it needs to clean up the activation 
record. Although it is possible to share the cleanup duties between the pro-
cedure and the procedure’s caller, Intel has included some features in the 
instruction set that allows the procedure to efficiently handle all the cleanup 
chores itself. Standard HLA procedures and procedure calls, therefore, 
assume that it is the procedure’s responsibility to clean up the activation 
record (including the parameters) when the procedure returns to its caller.

If a procedure does not have any parameters, the exit sequence is very 
simple. It requires only three instructions:

mov( ebp, esp );    // Deallocate locals and clean up stack.
pop( ebp );         // Restore pointer to caller's activation record.
ret();              // Return to the caller.

If the procedure has some parameters, then a slight modification to the 
standard exit sequence is necessary in order to remove the parameter data 
from the stack. Procedures with parameters use the following standard exit 
sequence:

mov( ebp, esp );    // Deallocate locals and clean up stack.
pop( ebp );         // Restore pointer to caller's activation record.
ret( ParmBytes );   // Return to the caller and pop the parameters.

The ParmBytes operand of the ret instruction is a constant that specifies 
the number of bytes of parameter data to remove from the stack after the 
return instruction pops the return address. For example, the ARDemo example 
code in the previous sections has three double-word parameters. Therefore, 
the standard exit sequence would take the following form:

mov( ebp, esp );
pop( ebp );
ret( 12 );

If you’ve declared your parameters using HLA syntax (that is, a parameter 
list follows the procedure declaration), then HLA automatically creates a local 
constant in the procedure, _parms_, that is equal to the number of bytes of 
parameters in that procedure. Therefore, rather than counting the number 
of parameter bytes yourself, you can use the following standard exit sequence 
for any procedure that has parameters:

mov( ebp, esp );
pop( ebp );
ret( _parms_ );

Note that if you do not specify a byte constant operand to the ret 
instruction, the 80x86 will not pop the parameters off the stack upon return. 
Those parameters will still be sitting on the stack when you execute the first 
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instruction following the call to the procedure. Similarly, if you specify a 
value that is too small, some of the parameters will be left on the stack upon 
return from the procedure. If the ret operand you specify is too large, the ret 
instruction will actually pop some of the caller’s data off the stack, usually 
with disastrous consequences.

If you wish to return early from a procedure that doesn’t have the @noframe 
option, and you don’t particularly want to use the exit or exitif statement, 
you must execute the standard exit sequence to return to the caller. A simple 
ret instruction is insufficient because local variables and the old EBP value 
are probably sitting on the top of the stack.

5.16 Low-Level Implementation of Automatic (Local) 
Variables

Your program accesses local variables in a procedure using negative offsets 
from the activation record base address (EBP). Consider the following HLA 
procedure (which admittedly doesn’t do much other than demonstrate the 
use of local variables):

procedure LocalVars; @nodisplay;
var
     a:int32;
     b:int32;
begin LocalVars;

     mov( 0, a );
     mov( a, eax );
     mov( eax, b );

end LocalVars;

The activation record for LocalVars appears in Figure 5-6.

Figure 5-6: Activation record for the LocalVars 
procedure
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The HLA compiler emits code that is roughly equivalent to the following 
for the body of this procedure:15

          mov( 0, (type dword [ebp-4]));
          mov( [ebp-4], eax );
          mov( eax, [ebp-8] );

You could actually type these statements into the procedure yourself and 
they would work. Of course, using memory references like [ebp-4] and [ebp-8] 
rather than a or b makes your programs very difficult to read and understand. 
Therefore, you should always declare and use HLA symbolic names rather 
than offsets from EBP.

The standard entry sequence for this LocalVars procedure will be:16

          push( ebp );
          mov( esp, ebp );
          sub( 8, esp );

This code subtracts 8 from the stack pointer because there are 8 bytes of 
local variables (two double-word objects) in this procedure. Unfortunately, 
as the number of local variables increases, especially if those variables have 
different types, computing the number of bytes of local variables becomes 
rather tedious. Fortunately, for those who wish to write the standard entry 
sequence themselves, HLA automatically computes this value for you and 
creates a constant, _vars_, that specifies the number of bytes of local variables.17 
Therefore, if you intend to write the standard entry sequence yourself, you 
should use the _vars_ constant in the sub instruction when allocating storage 
for the local variables:

          push( ebp );
          mov( esp, ebp );
          sub( _vars_, esp );

Now that you’ve seen how assembly language allocates and deallocates 
storage for local variables, it’s easy to understand why automatic (var) variables 
do not maintain their values between two calls to the same procedure. Because 
the memory associated with these automatic variables is on the stack, when a 
procedure returns to its caller the caller can push other data onto the stack, 
obliterating the values previously held on the stack. Furthermore, intervening 
calls to other procedures (with their own local variables) may wipe out the 
values on the stack. Also, upon reentry into a procedure, the procedure’s 
local variables may correspond to different physical memory locations; hence 
the values of the local variables would not be in their proper locations.

15 This ignores the code associated with the standard entry and exit sequences.
16 This code assumes that ESP is dword aligned upon entry so the and( $FFFF_FFFC, esp ); 
instruction is unnecessary.
17 HLA even rounds this constant up to the next even multiple of 4 so you don’t have to worry 
about stack alignment.
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One big advantage to automatic storage is that it efficiently shares a fixed 
pool of memory among several procedures. For example, if you call three 
procedures in a row, like so:

          ProcA();
          ProcB();
          ProcC();

the first procedure (ProcA in the code above) allocates its local variables 
on the stack. Upon return, ProcA deallocates that stack storage. Upon entry 
into ProcB, the program allocates storage for ProcB’s local variables using the 
same memory locations just freed by ProcA. Likewise, when ProcB returns and the 
program calls ProcC, ProcC uses the same stack space for its local variables that 
ProcB recently freed up. This memory reuse makes efficient use of the system 
resources and is probably the greatest advantage to using automatic (var) 
variables.

5.17 Low-Level Parameter Implementation

Earlier, when discussing HLA’s high-level parameter passing mechanism, 
there were several questions concerning parameters. Some important ques-
tions are:

Where is the data coming from?

What mechanism do you use to pass and return data?

How much data are you passing? 

In this section we will take another look at the two most common 
parameter-passing mechanisms: pass by value and pass by reference. We will 
discuss three popular places to pass parameters by reference or by value: in 
the registers, on the stack, and in the code stream. The amount of parameter 
data has a direct bearing on where and how to pass it. The following sections 
take up these issues. 

5.17.1 Passing Parameters in Registers   

Having touched on how to pass parameters to a procedure in Section 5.6, the 
next thing to discuss is where to pass parameters. Where you pass parameters 
depends on the size and number of those parameters. If you are passing a 
small number of bytes to a procedure, then the registers are an excellent 
place to pass parameters to a procedure. If you are passing a single parame-
ter to a procedure, you should use the following registers for the accompa-
nying data types.
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Data Size          Pass in this Register
Byte: al 
Word: ax 
Double Word: eax
Quad Word: edx:eax

This is not a hard-and-fast rule. If you find it more convenient to pass 
16-bit values in the SI or BX register, then do so. However, most programmers 
use the registers above to pass parameters. 

If you are passing several parameters to a procedure in the 80x86’s 
registers, you should probably use up the registers in the following order: 

First Last
eax, edx, ecx, esi, edi, ebx 

In general, you should avoid using the EBP register. If you need more 
than six double words, perhaps you should pass your values elsewhere. This 
choice of priorities is not completely arbitrary. Many high-level languages will 
attempt to pass parameters in the EAX, EDX, and ECX registers (generally in 
that order). Furthermore, the Intel ABI (application binary interface) allows 
high-level language procedures to use EAX, EDX, and ECX without preserving 
their values. Hence, these three registers are a great place to pass parameters 
because a lot of code assumes their values are modified across procedure calls.

As an example, consider the following strfill( s,c ); procedure that copies 
the character c (passed by value in AL) to each character position in s (passed 
by reference in EDI) up to a zero-terminating byte:

// strfill- Overwrites the data in a string with a character.
//
// EDI- Pointer to zero-terminated string (e.g., an HLA string)
// AL- Character to store into the string

procedure strfill; @nodisplay;
begin strfill;

     push( edi );  // Preserve this because it will be modified.
     while( (type char [edi] ) <> #0 ) do

          mov( al, [edi] );
          inc( edi );

     endwhile;
     pop( edi );

end strfill;

To call the strfill procedure you would load the address of the string 
data into EDI and the character value into AL prior to the call. The following 
code fragment demonstrates a typical call to strfill.
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mov( s, edi );  // Get ptr to string data into edi (assumes s:string).
mov( ' ', al );
strfill();

Don’t forget that HLA string variables are pointers. This example assumes 
that s is an HLA string variable and therefore contains a pointer to a zero-
terminated string. Thus, the mov( s, edi ); instruction loads the address of 
the zero-terminated string into the EDI register (hence this code passes the 
address of the string data to strfill, that is, it passes the string by reference).

One way to pass parameters in the registers is to simply load them with 
the appropriate values prior to a call and then reference those registers 
within the procedure. This is the traditional mechanism for passing parameters 
in registers in an assembly language program. HLA, being somewhat more 
high-level than traditional assembly language, provides a formal parameter 
declaration syntax that lets you tell HLA you’re passing certain parameters 
in the general-purpose registers. This declaration syntax is the following:

parmName: parmType in reg

Where parmName is the parameter’s name, parmType is the type of the object, 
and reg is one of the 80x86’s general-purpose 8-, 16-, or 32-bit registers. The 
size of the parameter’s type must be equal to the size of the register or HLA 
will report an error. Here is a concrete example:

procedure HasRegParms( count: uns32 in ecx; charVal:char in al );

One nice feature to this syntax is that you can call a procedure that has 
register parameters exactly like any other procedure in HLA using the high-
level syntax. For example:

HasRegParms( ecx, bl );

If you specify the same register as an actual parameter that you’ve declared 
for the formal parameter, HLA does not emit any extra code; it assumes that 
the parameter’s value is already in the appropriate register. For example, 
in the call above, the first actual parameter is the value in ECX; because the 
procedure’s declaration specifies that first parameter is in ECX, HLA will not 
emit any code. On the other hand, the second actual parameter is in BL, but 
the procedure will expect this parameter value in AL. Therefore, HLA will 
emit a mov( bl, al ); instruction prior to calling the procedure so that the 
value is in the proper register upon entry to the procedure.

You can also pass parameters by reference in a register. Consider the 
following declaration:

procedure HasRefRegParm( var myPtr:uns32 in edi );
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A call to this procedure always requires some memory operand as the 
actual parameter. HLA will emit the code to load the address of that memory 
object into the parameter’s register (EDI in this case). Note that when passing 
reference parameters, the register must be a 32-bit general-purpose register 
because addresses are 32 bits long. Here’s an example of a call to HasRefRegParm:

          HasRefRegParm( x );

HLA will emit either a mov( &x, edi); or lea( edi, x); instruction to load 
the address of x into the EDI registers prior to the call instruction.18

If you pass an anonymous memory object (for example, [edi] or [ecx]) 
as a parameter to HasRefRegParm, HLA will not emit any code if the memory 
reference uses the same register that you declare for the parameter (i.e., 
[edi]). It will use a simple mov instruction to copy the actual address into EDI 
if you specify an indirect addressing mode using a register other than EDI 
(e.g., [ecx]). It will use a lea instruction to compute the effective address of 
the anonymous memory operand if you use a more complex addressing 
mode like [edi+ecx*4+2].

Within the procedure’s code, HLA creates text equates for those register 
parameters that map their names to the appropriate register. In the HasRegParms 
example, any time you reference the count parameter, HLA substitutes ecx for 
count. Likewise, HLA substitutes al for charVal throughout the procedure’s 
body. Because these names are aliases for the registers, you should take care 
to always remember that you cannot use ECX and AL independently of these 
parameters. It would be a good idea to place a comment next to each use of 
these parameters to remind the reader that count is equivalent to ECX and 
charVal is equivalent to AL.

5.17.2 Passing Parameters in the Code Stream  

Another place where you can pass parameters is in the code stream immedi-
ately after the call instruction. Consider the following print routine that prints 
a literal string constant to the standard output device:

          call print;
          byte "This parameter is in the code stream.",0;

Normally, a subroutine returns control to the first instruction immedi-
ately following the call instruction. Were that to happen here, the 80x86 
would attempt to interpret the ASCII codes for “This . . . .” as an instruction. 
This would produce undesirable results. Fortunately, you can skip over this 
string when returning from the subroutine. 

So how do you gain access to these parameters? Easy. The return address 
on the stack points at them. Consider the implementation of print appearing 
in Listing 5-12.

18 The choice of instructions is dictated by whether x is a static variable (mov for static objects, lea 
for other objects).
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program printDemo;
#include( "stdlib.hhf" );

    // print-
    //
    //  This procedure writes the literal string
    //  immediately following the call to the
    //  standard output device. The literal string
    //  must be a sequence of characters ending with
    //  a zero byte (i.e., a C string, not an HLA 
    //  string).
    
    procedure print; @noframe; @nodisplay;
    const

        // RtnAdrs is the offset of this procedure's
        // return address in the activation record.
        
        RtnAdrs:text := "(type dword [ebp+4])";
        
    begin print;
    
        // Build the activation record (note the
        // @noframe option above).
        
        push( ebp );
        mov( esp, ebp );
        
        // Preserve the registers this function uses.
        
        push( eax );
        push( ebx );
        
        // Copy the return address into the ebx
        // register. Because the return address points
        // at the start of the string to print, this
        // instruction loads ebx with the address of
        // the string to print.
        
        mov( RtnAdrs, ebx );
        
        // Until we encounter a zero byte, print the
        // characters in the string.
        
        forever
        
            mov( [ebx], al );   // Get the next character.
            breakif( !al );     // Quit if it's zero.
            stdout.putc( al );  // Print it.
            inc( ebx );         // Move on to the next char.
            
        endfor;
        
Procedures and Uni t s 305



AAL2E_03.book  Page 306  Thursday, February 18, 2010  12:49 PM
        // Skip past the zero byte and store the resulting
        // address over the top of the return address so
        // we'll return to the location that is one byte
        // beyond the zero-terminating byte of the string.
        
        inc( ebx );
        mov( ebx, RtnAdrs );
        
        // Restore eax and ebx.
        
        pop( ebx );
        pop( eax );
        
        // Clean up the activation record and return.
        
        pop( ebp );
        ret();
        
    end print;
    
    
begin printDemo;

    // Simple test of the print procedure
    
    call print;
    byte "Hello World!", 13, 10, 0 ;
                    
end printDemo;

Listing 5-12: Print procedure implementation (using code stream parameters)

Besides showing how to pass parameters in the code stream, the print 
routine also exhibits another concept: variable-length parameters. The string 
following the call can be any practical length. The zero terminating byte 
marks the end of the parameter list. There are two easy ways to handle 
variable-length parameters: Either use some special terminating value (like 0) 
or pass a special length value that tells the subroutine how many parameters 
you are passing. Both methods have their advantages and disadvantages. Using 
a special value to terminate a parameter list requires that you choose a value 
that never appears in the list. For example, print uses 0 as the terminating 
value, so it cannot print the NUL character (whose ASCII code is 0). Sometimes 
this isn’t a limitation. Specifying a special-length parameter is another 
mechanism you can use to pass a variable-length parameter list. While this 
doesn’t require any special codes or limit the range of possible values that can 
be passed to a subroutine, setting up the length parameter and maintaining 
the resulting code can be a real nightmare.19 

Despite the convenience afforded by passing parameters in the code 
stream, there are some disadvantages to passing parameters there. First, if 
you fail to provide the exact number of parameters the procedure requires, 

19 This is especially true if the parameter list changes frequently.
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the subroutine will get confused. Consider the print example. It prints a 
string of characters up to a zero-terminating byte and then returns control to 
the first instruction following the zero-terminating byte. If you leave off the 
zero-terminating byte, the print routine happily prints the following opcode 
bytes as ASCII characters until it finds a zero byte. Because zero bytes often 
appear in the middle of an instruction, the print routine might return control 
into the middle of some other instruction. This will probably crash the 
machine. Inserting an extra 0, which occurs more often than you might 
think, is another problem programmers have with the print routine. In such 
a case, the print routine would return upon encountering the first zero byte 
and attempt to execute the following ASCII characters as machine code. Once 
again, this usually crashes the machine. These are the some of the reasons 
why the HLA stdout.put code does not pass its parameters in the code stream. 
Problems notwithstanding, however, the code stream is an efficient place to 
pass parameters whose values do not change.

5.17.3 Passing Parameters on the Stack  

Most high-level languages use the stack to pass parameters because this 
method is fairly efficient. By default, HLA also passes parameters on the 
stack. Although passing parameters on the stack is slightly less efficient than 
passing those parameters in registers, the register set is very limited and you 
can pass only a few value or reference parameters through registers. The 
stack, on the other hand, allows you to pass a large amount of parameter data 
without any difficulty. This is the principal reason that most programs pass 
their parameters on the stack.

HLA typically passes parameters you specify using the high-level proce-
dure call syntax on the stack. For example, suppose you define strfill from 
earlier as follows:

procedure strfill( s:string; chr:char );

Calls of the form strfill( s, ' ' ); will pass the value of s (which is an 
address) and a space character on the 80x86 stack. When you specify a call to 
strfill in this manner, HLA automatically pushes the parameters for you, so 
you don’t have to push them onto the stack yourself. Of course, if you choose 
to do so, HLA will let you manually push the parameters onto the stack prior to 
the call.

To manually pass parameters on the stack, push them immediately 
before calling the subroutine. The subroutine then reads this data from the 
stack memory and operates on it appropriately. Consider the following HLA 
procedure call:

CallProc(i,j,k);
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HLA pushes parameters onto the stack in the order that they appear in 
the parameter list.20 Therefore, the 80x86 code that HLA emits for this sub-
routine call (assuming you’re passing the parameters by value) is:

          push( i );
          push( j );
          push( k );
          call CallProc;

Upon entry into CallProc, the 80x86’s stack looks like that shown in 
Figure 5-7.

Figure 5-7: Stack layout upon entry into 
CallProc

You could gain access to the parameters passed on the stack by removing 
the data from the stack, as the following code fragment demonstrates:

// Note: To extract parameters off the stack by popping, it is very important
// to specify both the @nodisplay and @noframe procedure options.

static
     RtnAdrs: dword;
     p1Parm: dword;
     p2Parm: dword;
     p3Parm: dword;

procedure CallProc( p1:dword; p2:dword; p3:dword ); @nodisplay; @noframe;
begin CallProc;

     pop( RtnAdrs );
     pop( p3Parm );
     pop( p2Parm );
     pop( p1Parm );
     push( RtnAdrs );
          .
          .
          .
     ret();

end CallProc;

20 This assumes, of course, that you don’t instruct HLA otherwise. It is possible to tell HLA to 
reverse the order of the parameters on the stack. See the electronic edition for more details.

Return Address

i’s Current Value

j’s Current Value

k’s Current Value

ESP

Previous Stack Contents
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As you can see from this code, it first pops the return address off the 
stack and into the RtnAdrs variable; then it pops (in reverse order) the values 
of the p1, p2, and p3 parameters; finally, it pushes the return address back 
onto the stack (so the ret instruction will operate properly). Within the 
CallProc procedure, you may access the p1Parm, p2Parm, and p3Parm variables to 
use the p1, p2, and p3 parameter values.

There is, however, a better way to access procedure parameters. If your 
procedure includes the standard entry and exit sequences, then you may 
directly access the parameter values in the activation record by indexing off 
the EBP register. Consider the layout of the activation record for CallProc 
that uses the following declaration:

procedure CallProc( p1:dword; p2:dword; p3:dword ); @nodisplay; @noframe;
begin CallProc;

     push( ebp );     // This is the standard entry sequence.
     mov( esp, ebp ); // Get base address of A.R. into ebp.
          .
          .
          .

Take a look at the stack immediately after the execution of mov( esp, ebp ); 
in CallProc. Assuming you’ve pushed three double-word parameters onto the 
stack, it should look something like that shown in Figure 5-8.

Figure 5-8: Activation record for CallProc 
after standard entry sequence execution

Now you can access the parameters by indexing off the EBP register:

          mov( [ebp+16], eax );   // Accesses the first parameter.
          mov( [ebp+12], ebx );   // Accesses the second parameter.
          mov( [ebp+8], ecx );    // Accesses the third parameter.

Of course, as with local variables, you’d never really access the parameters 
in this way. You can use the formal parameter names (p1, p2, and p3), and HLA 
will substitute a suitable [ebp+displacement] memory address. Even though you 
shouldn’t actually access parameters using address expressions like [ebp+12], 
it’s important to understand their relationship to the parameters in your 
procedures.

Return Address

i’s Current Value

j’s Current Value

k’s Current Value

ESP/EBP

Previous Stack Contents

Old EBP Value

EBP+20

EBP+16

EBP+12

EBP+8

EBP+4
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Other items that often appear in the activation record are register values 
that your procedure preserves. The most rational place to preserve registers 
in a procedure is in the code immediately following the standard entry 
sequence. In a standard HLA procedure (one where you do not specify the 
@noframe option), this simply means that the code that preserves the registers 
should appear first in the procedure’s body. Likewise, the code to restore 
those register values should appear immediately before the end clause for the 
procedure.21

5.17.3.1 Accessing Value Parameters on the Stack

Accessing parameters passed by value is no different from accessing a local 
var object. As long as you’ve declared the parameter in a formal parameter 
list and the procedure executes the standard entry sequence upon entry into 
the program, all you need do is specify the parameter’s name to reference the 
value of that parameter. Listing 5-13 provides an example program whose 
procedure accesses a parameter the main program passes to it by value.

program AccessingValueParameters;
#include( "stdlib.hhf" )

    procedure ValueParm( theParameter: uns32 ); @nodisplay;
    begin ValueParm;

        mov( theParameter, eax );
        add( 2, eax );
        stdout.put
        ( 
            "theParameter + 2 = ", 
            (type uns32 eax), 
            nl 
        );

    end ValueParm;

begin AccessingValueParameters;

    ValueParm( 10 );
    ValueParm( 135 );

end AccessingValueParameters;

Listing 5-13: Demonstration of value parameters

21 Note that if you use the exit statement to exit a procedure, you must duplicate the code to 
pop the register values and place this code immediately before the exit clause. This is a good 
example of a maintenance nightmare and is also a good reason why you should have only one exit 
point in your program.
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Although you could access the value of theParameter using the anonymous 
address [EBP+8] within your code, there is absolutely no good reason for 
doing so. If you declare the parameter list using the HLA high-level language 
syntax, you can access the value parameter by specifying its name within the 
procedure.

5.17.3.2 Passing Value Parameters on the Stack

As Listing 5-13 demonstrates, passing a value parameter to a procedure is 
very easy. Just specify the value in the actual parameter list as you would for 
a high-level language call. Actually, the situation is a little more complicated 
than this. Passing value parameters is easy if you’re passing constant, register, 
or variable values. It gets a little more complex if you need to pass the result 
of some expression. This section deals with the different ways you can pass a 
parameter by value to a procedure.

Of course, you do not have to use the HLA high-level syntax to pass value 
parameters to a procedure. You can push these values on the stack yourself. 
Because many times it is more convenient or more efficient to manually pass 
the parameters, describing how to do this is a good place to start.

As noted earlier in this chapter, when passing parameters on the stack 
you push the objects in the order they appear in the formal parameter list 
(from left to right). When passing parameters by value, you should push the 
values of the actual parameters onto the stack. The program in Listing 5-14 
demonstrates how to do this.

program ManuallyPassingValueParameters;
#include( "stdlib.hhf" )

    procedure ThreeValueParms( p1:uns32; p2:uns32; p3:uns32 ); @nodisplay;
    begin ThreeValueParms;

        mov( p1, eax );
        add( p2, eax );
        add( p3, eax );
        stdout.put
        ( 
            "p1 + p2 + p3 = ", 
            (type uns32 eax), 
            nl 
        );

    end ThreeValueParms;
    
    
static
    SecondParmValue:uns32 := 25;
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begin ManuallyPassingValueParameters;

    pushd( 10 );                // Value associated with p1
    pushd( SecondParmValue);    // Value associated with p2
    pushd( 15 );                // Value associated with p3
    call ThreeValueParms;

end ManuallyPassingValueParameters;

Listing 5-14: Manually passing parameters on the stack 

Note that if you manually push the parameters onto the stack as this 
example does, you must use the call instruction to call the procedure. If you 
attempt to use a procedure invocation of the form ThreeValueParms();, then 
HLA will complain about a mismatched parameter list. HLA won’t realize 
that you’ve manually pushed the parameters (as far as HLA is concerned, 
those pushes appear to preserve some other data).

Generally, there is little reason to manually push a parameter onto the 
stack if the actual parameter is a constant, a register value, or a variable. 
HLA’s high-level syntax handles most such parameters for you. There are 
several instances, however, where HLA’s high-level syntax won’t work. The 
first such example is passing the result of an arithmetic expression as a value 
parameter. Because runtime arithmetic expressions don’t exist in HLA, you 
will have to manually compute the result of the expression and pass that 
value yourself. There are two possible ways to do this: calculate the result of 
the expression and manually push that result onto the stack, or compute the 
result of the expression into a register and pass the register as a parameter 
to the procedure. The program in Listing 5-15 demonstrates these two 
mechanisms.

program PassingExpressions;
#include( "stdlib.hhf" )

    procedure ExprParm( exprValue:uns32 ); @nodisplay;
    begin ExprParm;

        stdout.put( "exprValue = ", exprValue, nl );
        
    end ExprParm;
    
    
static
    Operand1: uns32 := 5;
    Operand2: uns32 := 20;
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begin PassingExpressions;

    // ExprParm( Operand1 + Operand2 );
    //
    //  Method one: Compute the sum and manually
    //  push the sum onto the stack.
    
    mov( Operand1, eax );
    add( Operand2, eax );
    push( eax );
    call ExprParm;
    
    //  Method two: Compute the sum in a register and
    //  pass the register using the HLA high-level 
    //  language syntax.
    
    mov( Operand1, eax );
    add( Operand2, eax );
    ExprParm( eax );
    
end PassingExpressions;

Listing 5-15: Passing the result of some arithmetic expression as a parameter

The examples up to this point in this section have made an important 
assumption: that the parameter you are passing is a double-word value. The 
calling sequence changes somewhat if you’re passing parameters that are not 
4-byte objects. Because HLA can generate relatively inefficient code when 
passing objects that are not 4 bytes long, manually passing such objects is a 
good idea if you want to have the fastest possible code.

HLA requires that all value parameters be a multiple of 4 bytes long.22 If 
you pass an object that is less than 4 bytes long, HLA requires that you pad 
the parameter data with extra bytes so that you always pass an object that is at 
least 4 bytes in length. For parameters that are larger than 4 bytes, you must 
ensure that you pass a multiple of 4 bytes as the parameter value, adding 
extra bytes at the high-order end of the object to pad it, as necessary.

Consider the following procedure prototype:

procedure OneByteParm( b:byte );

The activation record for this procedure appears in Figure 5-9.

22 This applies only if you use the HLA high-level-language syntax to declare and access parameters 
in your procedures. Of course, if you manually push the parameters yourself and you access the 
parameters inside the procedure using an addressing mode like [ebp+8], then you can pass any size 
object you choose. Of course, keep in mind that most operating systems expect the stack to be 
dword aligned, so parameters you push should be a multiple of 4 bytes long.
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Figure 5-9: OneByteParm activation record

As you can see, there are 4 bytes on the stack associated with the b 
parameter, but only 1 of the 4 bytes contains valid data (the L.O. byte). The 
remaining 3 bytes are just padding, and the procedure should ignore these 
bytes. In particular, you should never assume that these extra bytes contain 
0s or some other consistent value. Depending on the type of parameter you 
pass, HLA’s automatic code generation may or may not push 0 bytes as the 
extra data on the stack.

When passing a byte parameter to a procedure, HLA will automatically 
emit code that pushes 4 bytes onto the stack. Because HLA’s parameter-
passing mechanism guarantees not to disturb any register or other values, 
HLA sometimes generates more code than is actually needed to pass a byte 
parameter. For example, if you decide to pass the AL register as the byte 
parameter, HLA will emit code that pushes the EAX register onto the stack. 
This single push instruction is a very efficient way to pass AL as a 4-byte 
parameter object. On the other hand, if you decide to pass the AH register as 
the byte parameter, pushing EAX won’t work because this would leave the 
value in AH at offset EBP+9 in the activation record shown in Figure 5-9. 
Unfortunately, the procedure expects this value at offset EBP+8, so simply 
pushing EAX won’t do the job. If you pass AH, BH, CH, or DH as a byte 
parameter, HLA emits code like the following:

sub( 4, esp );    // Make room for the parameter on the stack.
mov( ah, [esp] ); // Store ah into the L.O. byte of the parameter.

As you can clearly see, passing one of the H registers as a byte parameter 
is less efficient than passing one of the L registers. So you should attempt to 
use the L registers whenever possible if passing an 8-bit register as a parameter.23 
Note, by the way, that there is very little you can do about the efficiency issue, 
even if you manually pass the parameters.

23 Or better yet, pass the parameter directly in the register if you are writing the procedure 
yourself.
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If the byte parameter you decide to pass is a variable rather than a 
register, HLA generates decidedly worse code. For example, suppose you 
call OneByteParm as follows:

OneByteParm( uns8Var );

For this call, HLA will emit code similar to the following to push this 
single-byte parameter:

push( eax );
push( eax );
mov( uns8Var, al );
mov( al, [esp+4] );
pop( eax );

As you can plainly see, this is a lot of code to pass a single byte onto the 
stack! HLA emits this much code because (1) it guarantees not to disturb 
any registers, and (2) it doesn’t know whether uns8Var is the last variable in 
allocated memory. You can generate much better code if you don’t have to 
enforce either of these two constraints.

If you have a spare 32-bit register lying around (especially one of EAX, 
EBX, ECX, or EDX), then you can pass a byte parameter onto the stack using 
only two instructions. Move (or move with zero/sign extension) the byte 
value into the register and then push the register onto the stack. For the 
current call to OneByteParm, the calling sequence would look like the following 
if EAX is available:

mov( uns8Var, al );
push( eax );
call OneByteParm;

If only ESI or EDI is available, you could use code like this:

movzx( uns8Var, esi );
push( esi );
call OneByteParm;

Another trick you can use to pass the parameter with only a single push 
instruction is to coerce the byte variable to a double-word object. For example:

push( (type dword uns8Var));
call OneByteParm;

This last example is very efficient. Note that it pushes the first 3 bytes of 
whatever value happens to follow uns8Var in memory as the padding bytes. 
HLA doesn’t use this technique because there is a (very tiny) chance that 
using this scheme will cause the program to fail. If it turns out that the uns8Var 
object is the last byte of a given page in memory and the next page of memory 
is unreadable, the push instruction will cause a memory access exception. To 
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be on the safe side, the HLA compiler does not use this scheme. However, if 
you always ensure that the actual parameter you pass in this fashion is not the 
last variable you declare in a static section, then you can get away with code 
that uses this technique. Because it is nearly impossible for the byte object to 
appear at the last accessible address on the stack, it is probably safe to use this 
technique with var objects.

When passing word parameters on the stack, you must also ensure that you 
include padding bytes so that each parameter consumes a multiple of 4 bytes. 
You can use the same techniques we use to pass bytes, except, of course, 
there are two valid bytes of data to pass instead of one. For example, you 
could use either of the following two schemes to pass a word object w to a 
OneWordParm procedure:

mov( w, ax );
push( eax );
call OneWordParm;

push( (type dword w) );
call OneWordParm;

When passing large objects by value on the stack (e.g., records and arrays), 
you do not have to ensure that each element or field of the object consumes 
a multiple of 4 bytes; all you need to do is ensure that the entire data structure 
consumes a multiple of 4 bytes on the stack. For example, if you have an 
array of ten 3-byte elements, the entire array will need 2 bytes of padding 
(10 * 3 is 30 bytes, which is not divisible by 4, but 10 * 3 + 2 is 32, which is 
divisible by 4). HLA does a fairly good job of passing large data objects by 
value to a procedure. For larger objects, you should use the HLA high-level 
language procedure invocation syntax unless you have some special require-
ments. Of course, if you want efficient operation, you should try to avoid 
passing large data structures by value.

By default, HLA guarantees that it won’t disturb the values of any registers 
when it emits code to pass parameters to a procedure. Sometimes this guarantee 
isn’t necessary. For example, if you are returning a function result in EAX 
and you are not passing a parameter to a procedure in EAX, there really is 
no reason to preserve EAX upon entry into the procedure. Rather than 
generating some crazy code like the following to pass a byte parameter,

          push( eax );
          push( eax );
          mov( uns8Var, al );
          mov( al, [esp+4] );
          pop( eax );

HLA could generate much better code if it knows that it can use EAX (or 
some other register) as follows.
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          mov( uns8Var, al );
          push( eax );

You can use the @use procedure option to tell HLA that it can modify a 
register’s value if doing so would improve the code it generates when passing 
parameters. The syntax for this option is:

@use reg32;

The reg32 operand can be EAX, EBX, ECX, EDX, ESI, or EDI. You’ll 
obtain the best results if this register is one of EAX, EBX, ECX, or EDX. You 
should note that you cannot specify EBP or ESP here (because the procedure 
already uses those registers).

The @use procedure option tells HLA that it’s okay to modify the value of 
the register you specify as an operand. Therefore, if HLA can generate better 
code by not preserving that register’s value, it will do so. For example, when 
the @use eax; option is provided for the OneByteParm procedure given earlier, 
HLA will only emit the two instructions immediately above rather than the 
five-instruction sequence that preserves EAX.

You must exercise care when specifying the @use procedure option. In 
particular, you should not be passing any parameters in the same register you 
specify in the @use option (because HLA may inadvertently scramble the 
parameter’s value if you do this). Likewise, you must ensure that it’s really 
okay for the procedure to change the register’s value. As noted above, the 
best choice for an @use register is EAX when the procedure is returning a 
function result in EAX (because, clearly, the caller will not expect the proce-
dure to preserve EAX).

If your procedure has a forward or external declaration (see Section 5.24), 
the @use option must appear only in the forward or external definition, not 
in the actual procedure declaration. If no such procedure prototype appears, 
then you must attach the @use option to the procedure declaration.

Here’s an example:

procedure OneByteParm( b:byte ); @nodisplay; @use EAX;
begin OneByteParm;

     << Do something with b. >>

end OneByteParm;
     .
     .
     .
static
     byteVar:byte;
          .
          .
          .
     OneByteParm( byteVar );
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This call to OneByteParm emits the following instructions:

mov( uns8Var, al );
push( eax );
call OneByteParm;

5.17.3.3 Accessing Reference Parameters on the Stack

Because HLA passes the address for reference parameters, accessing the 
reference parameters within a procedure is slightly more difficult than 
accessing value parameters because you have to dereference the pointers to 
the reference parameters. Unfortunately, HLA’s high-level syntax for pro-
cedure declarations and invocations does not (and cannot) abstract this 
detail away for you. You will have to manually dereference these pointers 
yourself. This section reviews how you do this.

In Listing 5-16 the RefParm procedure has a single pass-by-reference 
parameter. A pass-by-reference parameter is always a pointer to an object of 
the type specified by the parameter’s declaration. Therefore, theParameter is 
actually an object of type pointer to uns32 rather than an uns32 value. In order 
to access the value associated with theParameter, this code has to load that 
double-word address into a 32-bit register and access the data indirectly. The 
mov( theParameter, eax ); instruction in Listing 5-16 fetches this pointer into 
the EAX register, and then procedure RefParm uses the [eax] addressing mode 
to access the actual value of theParameter.

program AccessingReferenceParameters;
#include( "stdlib.hhf" )

    procedure RefParm( var theParameter: uns32 ); @nodisplay;
    begin RefParm;

        // Add 2 directly to the parameter passed by
        // reference to this procedure.
        
        mov( theParameter, eax );
        add( 2, (type uns32 [eax]) );
        
        // Fetch the value of the reference parameter 
        // and print its value.
        
        mov( [eax], eax );
        stdout.put
        ( 
            "theParameter now equals ", 
            (type uns32 eax), 
            nl 
        );

    end RefParm;
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static
    p1: uns32 := 10;
    p2: uns32 := 15;

begin AccessingReferenceParameters;

    RefParm( p1 );
    RefParm( p2 );
    
    stdout.put( "On return, p1=", p1, " and p2=", p2, nl );

end AccessingReferenceParameters;

Listing 5-16: Accessing a reference parameter

Because this procedure accesses the data of the actual parameter, adding 2 
to this data affects the values of the variables passed to the RefParm procedure 
from the main program. Of course, this should come as no surprise because 
these are the standard semantics for pass-by-reference parameters.

As you can see, accessing (small) pass-by-reference parameters is a little 
less efficient than accessing value parameters because you need an extra 
instruction to load the address into a 32-bit pointer register (not to mention 
you have to reserve a 32-bit register for this purpose). If you access reference 
parameters frequently, these extra instructions can really begin to add up, 
reducing the efficiency of your program. Furthermore, it’s easy to forget to 
dereference a reference parameter and use the address of the value in your 
calculations (this is especially true when passing double-word parameters, 
like the uns32 parameter in the example above, to your procedures). Therefore, 
unless you really need to affect the value of the actual parameter, you should 
use pass by value to pass small objects to a procedure.

Passing large objects, like arrays and records, is where using reference 
parameters becomes efficient. When passing these objects by value, the calling 
code has to make a copy of the actual parameter; if the actual parameter is a 
large object, the copy process can be very inefficient. Because computing the 
address of a large object is just as efficient as computing the address of a 
small scalar object, there is no efficiency loss when passing large objects by 
reference. Within the procedure, you must still dereference the pointer to 
access the object, but the efficiency loss due to indirection is minimal when 
you contrast this with the cost of copying that large object. The program in 
Listing 5-17 demonstrates how to use pass by reference to initialize an array 
of records.

program accessingRefArrayParameters;
#include( "stdlib.hhf" )

const
    NumElements := 64;
    
type
    Pt: record
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            x:uns8;
            y:uns8;
            
        endrecord;
        
    Pts: Pt[NumElements];
        
        
    procedure RefArrayParm( var ptArray: Pts ); @nodisplay;
    begin RefArrayParm;

        push( eax );
        push( ecx );
        push( edx );
        
        mov( ptArray, edx );    // Get address of parameter into edx.
        
        for( mov( 0, ecx ); ecx < NumElements; inc( ecx )) do
        
            // For each element of the array, set the x field
            // to (ecx div 8) and set the y field to (ecx mod 8).
            
            mov( cl, al );
            shr( 3, al ); // ecx div 8.
            mov( al, (type Pt [edx+ecx*2]).x );
            
            mov( cl, al );
            and( %111, al ); // ecx mod 8.
            mov( al, (type Pt [edx+ecx*2]).y );
            
        endfor;
        pop( edx );
        pop( ecx );
        pop( eax );     
            
    end RefArrayParm;

static
    MyPts: Pts;
    
begin accessingRefArrayParameters;

    // Initialize the elements of the array.
    
    RefArrayParm( MyPts );
    
    
    // Display the elements of the array.
    
    for( mov( 0, ebx ); ebx < NumElements; inc( ebx )) do
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        stdout.put
        ( 
            "RefArrayParm[", 
            (type uns32 ebx):2, 
            "].x=",
            MyPts.x[ ebx*2 ],
            
            "   RefArrayParm[", 
            (type uns32 ebx):2, 
            "].y=",
            MyPts.y[ ebx*2 ],
            nl
        );
            
    endfor;
        
end accessingRefArrayParameters;

Listing 5-17: Passing an array of records by referencing

As you can see from this example, passing large objects by reference is 
relatively efficient. Other than tying up the EDX register throughout the 
RefArrayParm procedure, plus a single instruction to load EDX with the address 
of the reference parameter, the RefArrayParm procedure doesn’t require many 
more instructions than the same procedure where you would pass the parame-
ter by value. 

5.17.3.4 Passing Reference Parameters on the Stack

HLA’s high-level syntax often makes passing reference parameters a breeze. 
All you need to do is specify the name of the actual parameter you wish to 
pass in the procedure’s parameter list. HLA will automatically emit some code 
that will compute the address of the specified actual parameter and push this 
address onto the stack. However, like the code HLA emits for value parame-
ters, the code HLA generates to pass the address of the actual parameter on 
the stack may not be the most efficient possible. Therefore, if you want to 
write fast code, you may want to manually write the code to pass reference 
parameters to a procedure. This section discusses how to do exactly that.

Whenever you pass a static object as a reference parameter, HLA gener-
ates very efficient code to pass the address of that parameter to the procedure. 
As an example, consider the following code fragment:

     procedure HasRefParm( var d:dword ); 
          .
          .
          .
     static
          FourBytes:dword;
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     var
          v: dword[2];
          .
          .
          .
     HasRefParm( FourBytes );
          .
          .
          .

For the call to the HasRefParm procedure, HLA emits the following 
instruction sequence:

pushd( &FourBytes );
call HasRefParm;

You really aren’t going to be able to do substantially better than this if 
you are passing your reference parameters on the stack. So if you’re passing 
static objects as reference parameters, HLA generates fairly good code, and 
you should stick with the high-level syntax for the procedure call.

Unfortunately, when passing automatic (var) objects or indexed variables 
as reference parameters, HLA needs to compute the address of the object at 
runtime. This may require the use of the lea instruction. Unfortunately, the 
lea instruction requires a 32-bit register, and HLA promises not to disturb 
the values in any registers when it automatically generates code for you.24 
Therefore, HLA needs to preserve the value in whatever register it uses when 
it computes an address via lea to pass a parameter by reference. The following 
example shows you the code that HLA actually emits:

// Call to the HasRefParm procedure:

          HasRefParm( v[ebx*4] );

// HLA actually emits the following code for the above call:

          push( eax );
          push( eax );
          lea( eax, v[ebx*4] );
          mov( eax, [esp+4] );
          pop( eax );
          call HasRefParm;

As you can see, this is quite a bit of code, especially if you have a 32-bit 
register available and you don’t need to preserve that register’s value. The 
following is a better code sequence given the availability of EAX.

24 This isn’t entirely true. You’ll see the exception in Chapter 12. Also, using the @use procedure 
option tells HLA that it’s okay to modify the value in one of the registers.
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          lea( eax, v[ebx*4] );
          push( eax );
          call HasRefParm;

Remember, when passing an actual parameter by reference, you must 
compute the address of that object and push the address onto the stack. For 
simple static objects you can use the address-of operator (&) to easily compute 
the address of the object and push it onto the stack; however, for indexed 
and automatic objects, you will probably need to use the lea instruction to 
compute the address of the object. Here are some examples that demonstrate 
this using the HasRefParm procedure from the previous examples:

static
     i:    int32;
     Ary:  int32[16];
     iptr: pointer to int32 := &i;

var
     v:    int32;
     AV:   int32[10];
     vptr: pointer to int32;
      .
      .
      .
     lea( eax, v );
     mov( eax, vptr );
      .
      .
      .
// HasRefParm( i );

     push( &i );               // Simple static object, so just use &.
     call HasRefParm;

// HasRefParm( Ary[ebx] );     // Pass element of Ary by reference.

     lea( eax, Ary[ ebx*4 ]);  // Must use lea for indexed addresses.
     push( eax );
     call HasRefParm;

// HasRefParm( *iptr );  -- Pass object pointed at by iptr

     push( iptr );             // Pass address (iptr's value) on stack.
     call HasRefParm;

// HasRefParm( v );

     lea( eax, v );            // Must use lea to compute the address
     push( eax );              // of automatic vars passed on stack.
     call HasRefParm;
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// HasRefParm( AV[ esi ] );  -- Pass element of AV by reference.

     lea( eax, AV[ esi*4] );   // Must use lea to compute address of the
     push( eax );              // desired element.
     call HasRefParm;

// HasRefParm( *vptr );  -- Pass address held by vptr...

     push( vptr );             // Just pass vptr's value as the specified
     call HasRefParm;          // address.

If you have an extra register to spare, you can tell HLA to use that register 
when computing the address-of reference parameters (without emitting the 
code to preserve that register’s value). The @use option will tell HLA that it’s 
okay to use the specified register without preserving its value. As noted in the 
section on value parameters, the syntax for this procedure option is:

@use reg32;

where reg32 may be any of EAX, EBX, ECX, EDX, ESI, or EDI. Because refer-
ence parameters always pass a 32-bit value, all of these registers are equivalent 
as far as HLA is concerned (unlike value parameters that may prefer the 
EAX, EBX, ECX, or EDX register). Your best choice would be EAX if the 
procedure is not passing a parameter in the EAX register and the procedure 
is returning a function result in EAX; otherwise, any currently unused register 
will work fine.

With the @use eax; option, HLA emits the shorter code given in the 
previous examples. It does not emit all the extra instructions needed to 
preserve EAX’s value. This makes your code much more efficient, especially 
when passing several parameters by reference or when calling procedures 
with reference parameters several times.

5.17.3.5 Passing Formal Parameters as Actual Parameters

The examples in the previous two sections show how to pass static and auto-
matic variables as parameters to a procedure, either by value or by reference. 
There is one situation that these examples don’t handle properly: the case 
when you are passing a formal parameter in one procedure as an actual 
parameter to another procedure. The following simple example demon-
strates the different cases that can occur for pass-by-value and pass-by-reference 
parameters:

     procedure p1( val v:dword;  var r:dword );
     begin p1;
           .
           .
           .
     end p1;
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     procedure p2( val v2:dword; var r2:dword );
     begin p2;

          p1( v2, r2 );    // (1) First call to p1
          p1( r2, v2 );    // (2) Second call to p1

     end p2;

In the statement labeled (1) above, procedure p2 calls procedure p1 and 
passes its two formal parameters as parameters to p1. Note that this code passes 
the first parameter of both procedures by value, and it passes the second 
parameter of both procedures by reference. Therefore, in statement (1), the 
program passes the v2 parameter into p2 by value and passes it on to p1 by 
value; likewise, the program passes r2 in by reference and it passes the value 
onto p1 by reference. 

Because p2’s caller passes v2 in by value and p2 passes this parameter to p1 
by value, all the code needs to do is make a copy of v2’s value and pass this on 
to p1. The code to do this is nothing more than a single push instruction. For 
example:

     push( v2 );
     << Code to handle r2 >>
     call p1;

As you can see, this code is identical to passing an automatic variable by 
value. Indeed, it turns out that the code you need to write to pass a value 
parameter to another procedure is identical to the code you would write to 
pass a local automatic variable to that other procedure.

Passing r2 in statement (1) above requires a little more thought. You do 
not take the address of r2 using the lea instruction as you would a value 
parameter or an automatic variable. When passing r2 on through to p1, the 
author of this code probably expects the r formal parameter to contain the 
address of the variable whose address p2’s caller passed into p2. In plain 
English, this means that p2 must pass the address of r2’s actual parameter on 
through to p1. Because the r2 parameter is a double-word value containing 
the address of the corresponding actual parameter, this means that the code 
must pass the double-word value of r2 on to p1. The complete code for 
statement (1) above looks like the following:

     push( v2 );   // Pass the value passed in through v2 to p1.
     push( r2 );   // Pass the address passed in through r2 to p1.
     call p1;

The important thing to note in this example is that passing a formal refer-
ence parameter (r2) as an actual reference parameter (r) does not involve 
taking the address of the formal parameter (r2). p2’s caller has already done 
this; p2 simply passes this address on through to p1.
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In the second call to p1 in the example above (2), the code swaps the 
actual parameters so that the call to p1 passes r2 by value and v2 by reference. 
Specifically, p1 expects p2 to pass it the value of the double-word object associ-
ated with r2; likewise, it expects p2 to pass it the address of the value associated 
with v2.

To pass the value of the object associated with r2, your code must deref-
erence the pointer associated with r2 and directly pass the value. Here is the 
code HLA automatically generates to pass r2 as the first parameter to p1 in 
statement (2):

     sub( 4, esp ); // Make room on stack for parameter.
     push( eax ); // Preserve eax's value.
     mov( r2, eax ); // Get address-of object passed in to p2.
     mov( [eax], eax ); // Dereference to get the value of this object.
     mov( eax, [esp+4]); // Put value-of parameter into its location on stack.
     pop( eax ); // Restore original eax value.

As usual, HLA generates a little more code than may be necessary because 
it won’t destroy the value in the EAX register (you may use the @use procedure 
option to tell HLA that it’s okay to use EAX’s value, thereby reducing the 
code it generates). You can write more efficient code if a register is available 
to use in this sequence. If EAX is unused, you could trim this down to the 
following:

     mov( r2, eax );    // Get the pointer to the actual object.
     pushd( [eax] );    // Push the value of the object onto the stack.

Because you can treat value parameters exactly like local (automatic) 
variables, you use the same code to pass v2 by reference to p1 as you would 
to pass a local variable in p2 to p1. Specifically, you use the lea instruction to 
compute the address of the value in the v2. The code HLA automatically 
emits for statement (2) above preserves all registers and takes the following 
form (same as passing an automatic variable by reference):

     push( eax ); // Make room for the parameter.
     push( eax ); // Preserve eax's value.
     lea( eax, v2 ); // Compute address of v2's value.
     mov( eax, [esp+4]); // Store away address as parameter value.
     pop( eax ); // Restore eax's value.

Of course, if you have a register available, you can improve on this code. 
Here’s the complete code that corresponds to statement (2) above:

     mov( r2, eax ); // Get the pointer to the actual object.
     pushd( [eax] ); // Push the value of the object onto the stack.
     lea( eax, v2 ); // Push the address of v2 onto the stack.
     push( eax );
     call p1;
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5.17.3.6 HLA Hybrid Parameter-Passing Facilities

Like control structures, HLA provides a high-level language syntax for proce-
dure calls that is convenient to use and easy to read. However, this high-level 
language syntax is sometimes inefficient and may not provide the capabilities 
you need (for example, you cannot specify an arithmetic expression as a value 
parameter as you can in high-level languages). HLA lets you overcome these 
limitations by writing low-level (“pure”) assembly language code. Unfortu-
nately, low-level code is harder to read and maintain than procedure calls 
that use high-level syntax. Furthermore, it’s quite possible that HLA gener-
ates perfectly fine code for certain parameters, while only one or two param-
eters present a problem. Fortunately, HLA provides a hybrid syntax for 
procedure calls that allows you to use both high-level and low-level syntax as 
appropriate for a given actual parameter. This lets you use high-level syntax 
where appropriate and then drop down into pure assembly language to pass 
those special parameters that HLA’s high-level language syntax cannot han-
dle efficiently (if at all).

Within an actual parameter list (using the high-level language syntax), 
if HLA encounters #{ followed by a sequence of statements and a closing }#, 
HLA will substitute the instructions between the braces in place of the code 
it would normally generate for that parameter. For example, consider the 
following code fragment:

procedure HybridCall( i:uns32; j:uns32 );
begin HybridCall;
     .
     .
     .
end HybridCall;
      .
      .
      .

     // Equivalent to HybridCall( 5, i+j );

     HybridCall
     (
          5, 
          #{ 
               mov( i, eax ); 
               add( j, eax ); 
               push( eax ); 
          }# 
     );

The call to HybridCall immediately above is equivalent to the following 
“pure” assembly language code.
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     pushd( 5 );
     mov( i, eax );
     add( j, eax );
     push( eax );
     call HybridCall;

As a second example, consider the example from the previous section:

     procedure p2( val v2:dword; var r2:dword );
     begin p2;

          p1( v2, r2 );    // (1) First call to p1
          p1( r2, v2 );    // (2) Second call to p1

     end p2;

HLA generates exceedingly mediocre code for the second call to p1 in 
this example. If efficiency is important in the context of this procedure call, 
and you have a free register available, you might want to rewrite this code as 
follows:25

     procedure p2( val v2:dword; var r2:dword );
     begin p2;

          p1( v2, r2 );    // (1) First call to p1
          p1               // (2) Second call to p1
          (                //     This code assumes eax is free.
               #{
                    mov( r2, eax );
                    pushd( [eax] );
               }#,

               #{
                    lea( eax, v2 );
                    push( eax );
               }#
          );

     end p2;

Note that specifying the @use reg; option tells HLA that the register is 
always available for use wherever you call a procedure. If there is one case 
where the procedure’s invocation must preserve the specified register, then 
you cannot use the @use option to generate better code. However, you may 
use the hybrid parameter-passing mechanism on a case-by-base basis to 
improve the performance of those particular calls.

25 Of course, you could also use the @use eax; procedure option to achieve the same effect in this 
example.
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5.17.3.7 Mixing Register and Stack-Based Parameters

You can mix register parameters and standard (stack-based) parameters in 
the same high-level procedure declaration. For example:

procedure HasBothRegAndStack( var dest:dword in edi; count:un32 );

When constructing the activation record, HLA ignores the parameters 
you pass in registers and processes only those parameters you pass on the 
stack. Therefore, a call to the HasBothRegAndStack procedure will push only a 
single parameter onto the stack (count). It will pass the dest parameter in the 
EDI register. When this procedure returns to its caller, it will remove only 4 bytes 
of parameter data from the stack.

Note that when you pass a parameter in a register, you should avoid 
specifying that same register in the @use procedure option. In the example 
above, HLA might not generate any code whatsoever at all for the dest 
parameter (because the value is already in EDI). Had you specified @use edi; 
and HLA decided it was okay to disturb EDI’s value, this would destroy the 
parameter value in EDI; that won’t actually happen in this particular example 
(because HLA never uses a register to pass a double-word value parameter 
like count), but keep this issue in mind.

5.18 Procedure Pointers

The 80x86 call instruction allows three basic forms: direct calls (via a procedure 
name), indirect calls through a 32-bit general-purpose register, and indirect 
calls through a double-word pointer variable. The call instruction supports 
the following (low-level) syntax:

call Procname; // Direct call to procedure Procname (or Stmt label).
call( Reg32 ); // Indirect call to procedure whose address appears

// in the Reg32 general-purpose 32-bit register.
call( dwordVar ); // Indirect call to the procedure whose address 

// appears in the dwordVar double word variable.

The first form we’ve been using throughout this chapter, so there is little 
need to discuss it here. The second form, the register indirect call, calls the 
procedure whose address is held in the specified 32-bit register. The address 
of a procedure is the byte address of the first instruction to execute within 
that procedure. Remember, on a Von Neumann architecture machine (like 
the 80x86), the system stores machine instructions in memory along with 
other data. The CPU fetches the instruction opcode values from memory 
prior to executing them. When you execute the register indirect call instruc-
tion, the 80x86 first pushes the return address onto the stack and then begins 
fetching the next opcode byte (instruction) from the address specified by the 
register’s value.

The third form of the call instruction above fetches the address of some 
procedure’s first instruction from a double-word variable in memory. 
Although this instruction suggests that the call uses the displacement-only 
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addressing mode, you should realize that any legal memory addressing mode 
is legal here; for example, call( procPtrTable[ebx*4] ); is perfectly legitimate; 
this statement fetches the double word from the array of double words 
(procPtrTable) and calls the procedure whose address is the value contained 
within that double word.

HLA treats procedure names like static objects. Therefore, you can 
compute the address of a procedure by using the address-of (&) operator 
along with the procedure’s name or by using the lea instruction. For example, 
&Procname is the address of the very first instruction of the Procname procedure. 
So all three of the following code sequences wind up calling the Procname 
procedure:

     call Procname;
      .
      .
      .
     mov( &Procname, eax );
     call( eax );
      .
      .
      .
     lea( eax, Procname );
     call( eax );

Because the address of a procedure fits in a 32-bit object, you can store 
such an address into a double-word variable; in fact, you can initialize a double-
word variable with the address of a procedure using code like the following:

     procedure p;
     begin p;
     end p;
      .
      .
      .
static
     ptrToP: dword := &p;
      .
      .
      .
     call( ptrToP );  // Calls the p procedure if ptrToP has not changed.

Because the use of procedure pointers occurs frequently in assembly 
language programs, HLA provides a special syntax for declaring procedure 
pointer variables and for calling procedures indirectly through such pointer 
variables. To declare a procedure pointer in an HLA program, you can use a 
variable declaration like the following:

static
     procPtr: procedure;
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Note that this syntax uses the keyword procedure as a data type. It follows 
the variable name and a colon in one of the variable declaration sections 
(static, readonly, storage, or var). This sets aside exactly 4 bytes of storage for 
the procPtr variable. To call the procedure whose address is held by procPtr, 
you can use either of the following two forms:

     call( procPtr );    // Low-level syntax
     procPtr();          // High-level language syntax

Note that the high-level syntax for an indirect procedure call is identical 
to the high-level syntax for a direct procedure call. HLA can figure out 
whether to use a direct call or an indirect call by the type of the identifier. 
If you’ve specified a variable name, HLA assumes it needs to use an indirect 
call; if you specify a procedure name, HLA uses a direct call.

Like all pointer objects, you should not attempt to indirectly call a 
procedure through a pointer variable unless you’ve initialized that variable 
with an appropriate address. There are two ways to initialize a procedure 
pointer variable: static and readonly objects allow an initializer, or you can 
compute the address of a routine (as a 32-bit value) and store that 32-bit 
address directly into the procedure pointer at runtime. The following code 
fragment demonstrates both ways you can initialize a procedure pointer:

static
ProcPointer: procedure := &p;    // Initialize ProcPointer with 

// the address of p.
      .
      .
      .

ProcPointer();            // First invocation calls p.

     mov( &q, ProcPointer );   // Reload ProcPointer with the address of q.
      .
      .
      .

ProcPointer();            // This invocation calls the q procedure.

Procedure pointer variable declarations also allow the declaration of 
parameters. To declare a procedure pointer with parameters, you must use 
a declaration like the following:

static
     p:procedure( i:int32; c:char );

This declaration states that p is a 32-bit pointer that contains the address 
of a procedure requiring two parameters. If desired, you could also initialize 
this variable p with the address of some procedure by using a static initializer. 
For example:

static
     p:procedure( i:int32; c:char ) := &SomeProcedure;
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Note that SomeProcedure must be a procedure whose parameter list exactly 
matches p’s parameter list (i.e., two value parameters, the first is an int32 
parameter and the second is a char parameter). To indirectly call this proce-
dure, you could use either of the following sequences:

     push( Value_for_i );
     push( Value_for_c );
     call( p );

or

     p( Value_for_i, Value_for_c );

The high-level language syntax has the same features and restrictions as 
the high-level syntax for a direct procedure call. The only difference is the 
actual call instruction HLA emits at the end of the calling sequence.

Although all the examples in this section use static variable declarations, 
don’t get the idea that you can declare simple procedure pointers only in the 
static or other variable declaration sections. You can also declare procedure 
pointer types in the type section, and you can declare procedure pointers as 
fields of a record or a union. Assuming you create a type name for a procedure 
pointer in the type section, you can even create arrays of procedure pointers. 
The following code fragments demonstrate some of the possibilities:

type
     pptr:     procedure;
     prec:     record
                    p:pptr;
                    << Other fields >>
               endrecord;
static
     p1:pptr;
     p2:pptr[2]
     p3:prec;
      .
      .
      .
     p1();
     p2[ebx*4]();
     p3.p();

One very important thing to keep in mind when using procedure pointers 
is that HLA does not (and cannot) enforce strict type checking on the pointer 
values you assign to a procedure pointer variable. In particular, if the param-
eter lists do not agree between the declarations of the pointer variable and 
the procedure whose address you assign to the pointer variable, the program 
will probably crash when you attempt to call the mismatched procedure indi-
rectly through the pointer using the high-level syntax. Like the low-level “pure” 
procedure calls, it is your responsibility to ensure that the proper number 
and types of parameters are on the stack prior to the call.
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5.19 Procedural Parameters

One place where procedure pointers are quite invaluable is in parameter 
lists. Selecting one of several procedures to call by passing the address of 
some procedure is a common operation. Therefore, HLA lets you declare 
procedure pointers as parameters. 

There is nothing special about a procedure parameter declaration. It 
looks exactly like a procedure variable declaration except it appears within 
a parameter list rather than within a variable declaration section. The following 
are some typical procedure prototypes that demonstrate how to declare such 
parameters:

     procedure p1( procparm: procedure ); forward;
     procedure p2( procparm: procedure( i:int32 ) ); forward;
     procedure p3( val procparm: procedure ); forward;

The last example above is identical to the first. It does point out, though, 
that you generally pass procedural parameters by value. This may seem 
counterintuitive because procedure pointers are addresses and you will need 
to pass an address as the actual parameter; however, a pass-by-reference 
procedure parameter means something else entirely. Consider the following 
(legal!) declaration:

procedure p4( var procPtr:procedure ); forward;

This declaration tells HLA that you are passing a procedure variable  by 
reference to p4. The address HLA expects must be the address of a procedure 
pointer variable, not a procedure.

When passing a procedure pointer by value, you may specify either a 
procedure variable (whose value HLA passes to the actual procedure) or 
a procedure pointer constant. A procedure pointer constant consists of the 
address-of operator (&) immediately followed by a procedure name. Passing 
procedure constants is probably the most convenient way to pass procedural 
parameters. For example, the following calls to the Plot routine might plot 
out the function passed as a parameter from −2 to +2. 

     Plot( &sineFunc );
     Plot( &cosFunc  );
     Plot( &tanFunc  );

Note that you cannot pass a procedure as a parameter by simply specifying 
the procedure’s name. That is, Plot( sineFunc ); will not work. Simply 
specifying the procedure name doesn’t work because HLA will attempt to 
directly call the procedure whose name you specify (remember, a procedure 
name inside a parameter list invokes instruction composition). If you did not 
specify a parameter list—or at least an empty pair of parentheses—after the 
parameter/procedure’s name, HLA would generate a syntax error message. 
Moral of the story: Don’t forget to preface procedure parameter constant 
names with the address-of operator (&).
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5.20 Untyped Reference Parameters

Sometimes you will want to write a procedure to which you pass a generic 
memory object by reference without regard to the type of that memory 
object. A classic example is a procedure that zeros out some data structure. 
Such a procedure might have the following prototype:

     procedure ZeroMem( var mem:byte; count:uns32 );

This procedure would zero out count bytes starting at the address the first 
parameter specifies. The problem with this procedure prototype is that HLA 
will complain if you attempt to pass anything other than a byte object as the 
first parameter. Of course, you can overcome this problem using type coercion 
like the following, but if you call this procedure several times with a lot of 
different data types, then the following coercion operator is rather tedious 
to use:

ZeroMem( (type byte MyDataObject), @size( MyDataObject ));

Of course, you can always use hybrid parameter passing or manually 
push the parameters yourself, but these solutions are even more tedious than 
using the type coercion operation. Fortunately, HLA provides a convenient 
solution: untyped reference parameters.

Untyped reference parameters are exactly that—pass-by-reference para-
meters for which HLA doesn’t bother to compare the type of the actual 
parameter against the type of the formal parameter. With an untyped refer-
ence parameter, the call to ZeroMem above would take the following form:

ZeroMem( MyDataObject, @size( MyDataObject ));

MyDataObject could be any type, and multiple calls to ZeroMem could pass 
different typed objects without any objections from HLA.

To declare an untyped reference parameter, you specify the parameter 
using the normal syntax except that you use the reserved word var in place of 
the parameter’s type. This var keyword tells HLA that any variable object is 
legal for that parameter. Note that you must pass untyped reference parame-
ters by reference, so the var keyword must precede the parameter’s declara-
tion as well. Here’s the correct declaration for the ZeroMem procedure using 
an untyped reference parameter:

procedure ZeroMem( var mem:var; count:uns32 );

With this declaration, HLA will compute the address of whatever memory 
object you pass as an actual parameter to ZeroMem and pass this on the stack.
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5.21 Managing Large Programs

Most assembly language source files are not standalone programs. In general, 
you will call various standard library or other routines that are not defined in 
your main program. For example, you’ve probably noticed by now that the 
80x86 doesn’t provide any machine instructions like read, write, or put for 
doing I/O operations. Of course, you can write your own procedures to 
accomplish this. Unfortunately, writing such routines is a complex task, 
and beginning assembly language programmers are not ready for such tasks. 
That’s where the HLA Standard Library comes in. This is a package of proce-
dures you can call to perform simple I/O operations like stdout.put.

The HLA Standard Library contains hundreds of thousands of lines of 
source code. Imagine how difficult programming would be if you had to 
merge these hundreds of thousands of lines of code into your simple pro-
grams! Imagine how slow compiling your programs would be if you had to 
compile those hundreds of thousands of lines with each program you write. 
Fortunately, you don’t have to do this.

For small programs, working with a single source file is fine. For large 
programs, this gets very cumbersome (consider the example above of having 
to include the entire HLA Standard Library into each of your programs). 
Furthermore, once you’ve debugged and tested a large section of your code, 
continuing to assemble that same code when you make a small change to 
some other part of your program is a waste of time. The HLA Standard 
Library, for example, takes several minutes to assemble, even on a fast 
machine. Imagine having to wait 20 or 30 minutes on a fast PC to assemble 
a program to which you’ve made a one-line change!

As for high-level languages, the solution is separate compilation. First, you 
break up your large source files into manageable chunks. Then you compile 
the separate files into object code modules. Finally, you link the object 
modules together to form a complete program. If you need to make a small 
change to one of the modules, you only need to reassemble that one module; 
you do not need to reassemble the entire program.

The HLA Standard Library works in precisely this way. The Standard 
Library is already compiled and ready to use. You simply call routines in the 
Standard Library and link your code with the Standard Library using a linker 
program. This saves considerable time when developing a program that uses 
the Standard Library code. Of course, you can easily create your own object 
modules and link them together with your code. You could even add new 
routines to the Standard Library so they will be available for use in future 
programs you write.

“Programming in the large” is the term software engineers have coined 
to describe the processes, methodologies, and tools for handling the devel-
opment of large software projects. While everyone has their own idea of what 
“large” is, separate compilation is one of the more popular techniques that 
support “programming in the large.” The following sections describe the 
tools HLA provides for separate compilation and how to effectively employ 
these tools in your programs.
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5.22 The #include Directive
The #include directive, when encountered in a source file, switches program 
input from the current file to the file specified in the parameter list of the 
#include directive. This allows you to construct text files containing common 
constants, types, source code, and other HLA items and include such files 
into the assembly of several separate programs. The syntax for the #include 
directive is:

          #include( "Filename" )

Filename must be a valid filename. HLA merges the specified file into the 
compilation at the point of the #include directive. Note that you can nest 
#include statements inside files you include. That is, a file being included 
into another file during assembly may itself include a third file. In fact, the 
stdlib.hhf header file you see in most example programs is really nothing 
more than a bunch of #include statements (see Listing 5-18 for the original 
stdlib.hhf source code; note that this file is considerably different today, but 
the concept is still the same).

#include( "hla.hhf" )
#include( "x86.hhf" )
#include( "misctypes.hhf" )
#include( "hll.hhf" )

#include( "excepts.hhf" )
#include( "memory.hhf" )

#include( "args.hhf" )
#include( "conv.hhf" )
#include( "strings.hhf" )
#include( "cset.hhf" )
#include( "patterns.hhf" )
#include( "tables.hhf" )
#include( "arrays.hhf" )
#include( "chars.hhf" )

#include( "math.hhf" )
#include( "rand.hhf" )

#include( "stdio.hhf" )
#include( "stdin.hhf" )
#include( "stdout.hhf" )

Listing 5-18: The original stdlib.hhf header file

By including stdlib.hhf in your source code, you automatically include all 
the HLA library modules. It’s often more efficient (in terms of compile time 
and size of code generated) to provide only those #include statements for the 
modules you actually need in your program. However, including stdlib.hhf is 
extremely convenient and takes up less space in this text, which is why most 
programs appearing in this text use stdlib.hhf.
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Note that the #include directive does not need to end with a semicolon. 
If you put a semicolon after the #include, that semicolon becomes part of the 
source file and is the first character following the included source during 
compilation. HLA generally allows spare semicolons in various parts of the 
program, so you will sometimes see an #include statement ending with a 
semicolon. In general, though, you should not get in the habit of putting 
semicolons after #include statements because there is the slight possibility this 
could create a syntax error in certain circumstances.

Using the #include directive by itself does not provide separate compila-
tion. You could use the #include directive to break up a large source file into 
separate modules and join these modules together when you compile your 
file. The following example would include the printf.hla and putc.hla files 
during the compilation of your program:

     #include( "printf.hla" )
     #include( "putc.hla" )

Now your program will benefit from the modularity gained by this 
approach. Alas, you will not save any development time. The #include directive 
inserts the source file at the point of the #include during compilation, exactly 
as though you had typed that code yourself. HLA still has to compile the 
code, and that takes time. Were you to include all the files for the Standard 
Library routines in this manner, your compilations would take forever.

In general, you should not use the #include directive to include source 
code as shown above.26 Instead, you should use the #include directive to insert 
a common set of constants, types, external procedure declarations, and other 
such items into a program. Typically an assembly language include file does 
not contain any machine code (outside of a macro; see Chapter 9 for details). 
The purpose of using #include files in this manner will become clearer after 
you see how the external declarations work.

5.23 Ignoring Duplicate #include Operations

As you begin to develop sophisticated modules and libraries, you eventually 
discover a big problem: Some header files will need to include other header 
files (e.g., the stdlib.hhf header file includes all the other Standard Library 
header files). Well, this isn’t actually a big problem, but a problem will occur 
when one header file includes another, and that second header file includes 
another, and that third header file includes another, and . . . that last header 
file includes the first header file. Now this is a big problem.

There are two problems with a header file indirectly including itself. 
First, this creates an infinite loop in the compiler. The compiler will happily 
go on about its business including all these files over and over again until it 
runs out of memory or some other error occurs. Clearly this is not a good 
thing. The second problem that occurs (usually before the first problem) is 
that the second time HLA includes a header file, it starts complaining bitterly 

26 There is nothing wrong with this, other than the fact that it does not take advantage of separate 
compilation.
Procedures and Uni t s 337



AAL2E_03.book  Page 338  Thursday, February 18, 2010  12:49 PM
about duplicate symbol definitions. After all, the first time it reads the header 
file it processes all the declarations in that file; the second time around it 
views all those symbols as duplicate symbols.

HLA provides a special include directive that eliminates this problem: 
#includeonce. You use this directive exactly like you use the #include directive. 
For example:

#includeonce( "myHeaderFile.hhf" )

If myHeaderFile.hhf directly or indirectly includes itself (with a #includeonce 
directive), then HLA will ignore the new request to include the file. Note, 
however, that if you use the #include directive, rather than #includeonce, HLA 
will include the file a second time. This was done in case you really do need 
to include a header file twice.

The bottom line is this: You should always use the #includeonce directive 
to include header files you’ve created. In fact, you should get in the habit of 
always using #includeonce, even for header files created by others (the HLA 
Standard Library already has provisions to prevent recursive includes, so 
you don’t have to worry about using #includeonce with the Standard Library 
header files).

There is another technique you can use to prevent recursive includes—
using conditional compilation. Chapter 9, the chapter on macros and the HLA 
Compile-Time Language, discusses this option.

5.24 Units and the external Directive 

Technically, the #include directive provides you with all the facilities you need 
to create modular programs. You can create several modules, each contain-
ing some specific routine, and include those modules, as necessary, in your 
assembly language programs using #include. However, HLA provides a better 
way: external and public symbols. 

One major problem with the #include mechanism is that once you’ve 
debugged a routine, including it into a compilation still wastes time because 
HLA must recompile bug-free code every time you assemble the main program. 
A much better solution would be to preassemble the debugged modules and 
link the object code modules together. This is what the external directive 
allows you to do. 

To use the external facilities, you must create at least two source files. 
One file contains a set of variables and procedures used by the second. 
The second file uses those variables and procedures without knowing how 
they’re implemented. The only problem is that if you create two separate 
HLA programs, the linker will get confused when you try to combine them. 
This is because both HLA programs have their own main program. Which 
main program does the OS run when it loads the program into memory? 
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To resolve this problem, HLA uses a different type of compilation module, 
the unit, to compile programs without a main program. The syntax for an 
HLA unit is actually simpler than that for an HLA program; it takes the 
following form:

unit unitname;

     << declarations >>

end unitname;

With one exception (the var section), anything that can go in the decla-
ration section of an HLA program can go into the declaration section of an 
HLA unit. Notice that a unit does not have a begin clause and there are no 
program statements in the unit;27 a unit contains only declarations.

In addition to the fact that a unit does not contain a main program section, 
there is one other difference between units and programs. Units cannot have 
a var section. This is because the var section declares automatic variables that 
are local to the main program’s source code. Because there is no “main 
program” associated with a unit, var sections are illegal.28

To demonstrate, consider the two modules in Listings 5-19 and 5-20.

unit Number1;

static
    Var1:   uns32;
    Var2:   uns32;
    
    procedure Add1and2;
    begin Add1and2;

        push( eax );
        mov( Var2, eax );
        add( eax, Var1 );
        
    end Add1and2;

end Number1;

Listing 5-19: Example of a simple HLA unit

program main;
#include( "stdlib.hhf" );

begin main;

27 Of course, units may contain procedures and those procedures may have statements, but the 
unit itself does not have any executable instructions associated with it.
28 Procedures in the unit may have their own var sections, but the procedure’s declaration 
section is separate from the unit’s declaration section.
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    mov( 2, Var2 );
    mov( 3, Var1 );
    Add1and2();
    stdout.put( "Var1=", Var1, nl );

end main;

Listing 5-20: Main program that references external objects

The main program references Var1, Var2, and Add1and2, yet these symbols 
are external to this program (they appear in unit Number1). If you attempt to 
compile the main program as it stands, HLA will complain that these three 
symbols are undefined.

Therefore, you must declare them external with the external option. An 
external procedure declaration looks just like a forward declaration except 
you use the reserved word external rather than forward. To declare external 
static variables, simply follow those variables’ declarations with the reserved 
word external. The program in Listing 5-21 is a modification to the program 
in Listing 5-20 that includes the external declarations.

program main;
#include( "stdlib.hhf" );

    procedure Add1and2; external;
    
static
    Var1: uns32; external;
    Var2: uns32; external;

begin main;

    mov( 2, Var2 );
    mov( 3, Var1 );
    Add1and2();
    stdout.put( "Var1=", Var1, nl );

end main;

Listing 5-21: Modified main program with external declarations

If you attempt to compile this second version of main using the typical 
HLA compilation command HLA main2.hla, you will be somewhat disappointed. 
This program will actually compile without error. However, when HLA 
attempts to link this code it will report that the symbols Var1, Var2, and Add1and2 
are undefined. This happens because you haven’t compiled and linked in 
the associated unit with this main program. Before you try that and discover 
that it still doesn’t work, you should know that all symbols in a unit, by default, 
are private to that unit. This means that those symbols are inaccessible in 
code outside that unit unless you explicitly declare those symbols as public 
symbols. To declare symbols as public, you simply put external declarations 
for those symbols in the unit before the actual symbol declarations. If an 
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external declaration appears in the same source file as the actual declaration 
of a symbol, HLA assumes that the name is needed externally and makes that 
symbol a public (rather than private) symbol. The unit in Listing 5-22 is a 
correction to the Number1 unit that properly declares the external objects.

unit Number1;

static
    Var1:   uns32; external;
    Var2:   uns32; external;
    
    procedure Add1and2; external;
        
static
    Var1:   uns32;
    Var2:   uns32;
    
    
    procedure Add1and2;
    begin Add1and2;
    
        push( eax );
        mov( Var2, eax );
        add( eax, Var1 );
        
    end Add1and2;

end Number1;

Listing 5-22: Correct Number1 unit with external declarations

It may seem redundant declaring these symbols twice as occurs in 
Listings 5-21 and 5-22, but you’ll soon see that you don’t normally write the 
code this way.

If you attempt to compile the main program or the Number1 unit using the 
typical HLA statement, that is,

HLA main2.hla
HLA unit2.hla

you’ll quickly discover that the linker still returns errors. It returns an error 
on the compilation of main2.hla because you still haven’t told HLA to link in 
the object code associated with unit2.hla. Likewise, the linker complains if 
you attempt to compile unit2.hla by itself because it can’t find a main program. 
The simple solution is to compile both of these modules together with the 
following single command:

HLA main2.hla unit2.hla

This command will properly compile both modules and link together 
their object code.
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Unfortunately, the command above defeats one of the major benefits 
of separate compilation. When you issue this command it will compile both 
main2 and unit2 prior to linking them together. Remember, a major reason 
for separate compilation is to reduce compilation time on large projects. 
While the above command is convenient, it doesn’t achieve this goal.

To separately compile the two modules you must run HLA separately on 
them. Of course, you saw earlier that attempting to compile these modules 
separately produced linker errors. To get around this problem, you need to 
compile the modules without linking them. The -c (compile-only) HLA 
command-line option achieves this. To compile the two source files without 
running the linker, you would use the following commands:

HLA -c main2.hla
HLA -c unit2.hla

This produces two object code files, main2.obj and unit2.obj, that you 
can link together to produce a single executable. You could run the linker 
program directly, but an easier way is to use the HLA compiler to link the 
object modules together for you:

HLA main2.obj unit2.obj

Under Windows, this command produces an executable file named 
main2.exe;29 under Linux, Mac OS X, and FreeBSD this command produces 
a file named main2. You could also type the following command to compile 
the main program and link it with a previously compiled unit2 object module:

HLA main2.hla unit2.obj

In general, HLA looks at the suffixes of the filenames following the HLA 
commands. If the filename doesn’t have a suffix, HLA assumes it to be .HLA. 
If the filename has a suffix, then HLA will do the following with the file:

If the suffix is .HLA, HLA will compile the file with the HLA compiler.

If the suffix is .ASM, HLA will assemble the file with MASM (or some 
other default assembler such as FASM, NASM, or TASM under Windows) 
or Gas (Linux/Mac OS X/FreeBSD).

If the suffix is .OBJ or .LIB (Windows), or .o or .a (Linux/Mac OS X/
FreeBSD), then HLA will link that module with the rest of the compilation.

29 If you want to explicitly specify the name of the output file, HLA provides a command-line 
option to achieve this. You can get a menu of all legal command-line options by entering the 
command HLA -?.
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5.24.1 Behavior of the external Directive

Whenever you declare a symbol using the external directive, keep in mind 
several limitations of external objects:

Only one external declaration of an object may appear in a given source 
file. That is, you cannot define the same symbol twice as an external object.

Only procedure, static, readonly, and storage variable objects can be 
external. var, type, const, and parameter objects cannot be external.

external objects must appear at the global declaration level. You cannot 
declare external objects within a procedure or other nested structure.30

external objects publish their name globally. Therefore, you must care-
fully choose the names of your external objects so they do not conflict 
with other symbols.

This last point is especially important to keep in mind. HLA links your 
modules using a linker. At each step in this process, your choice of external 
names could create problems for you.

Consider the following HLA external/public declaration:

static
          extObj:          uns32; external;
          extObj:          uns32;
          localObject:     uns32;

When you compile a program containing these declarations, HLA 
automatically generates a “munged” name for the localObject variable that 
probably won’t ever have any conflicts with system-global external symbols.31 
Whenever you declare an external symbol, however, HLA uses the object’s 
name as the default external name. This can create some problems if you 
inadvertently use some global name as your variable name.

To get around the problem of conflicting external names, HLA supports 
an additional syntax for the external option that lets you explicitly specify the 
external name. The following example demonstrates this extended syntax:

static
     c: char; external( "var_c" );
     c: char;

If you follow the external keyword with a string constant enclosed by 
parentheses, HLA will continue to use the declared name (c in this example) 
as the identifier within your HLA source code. Externally (i.e., in the assembly 

30 There are a few exceptions, but you cannot declare external procedures or variables except at 
the global level.
31 Typically, HLA creates a name like 001A_localObject out of localObject. This is a legal MASM 
identifier, but it is not likely it will conflict with any other global symbols when HLA compiles 
the program with MASM.
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code) HLA will substitute the name var_c whenever you reference c. This 
feature helps you avoid problems with the misuse of assembler reserved 
words, or other global symbols, in your HLA programs.

You should also note that this feature of the external option lets you 
create aliases. For example, you may want to refer to an object by the name 
StudentCount in one module while referring to the object as PersonCount 
in another module (you might do this because you have a general library 
module that deals with counting people and you want to use the object in a 
program that deals only with students). Using a declaration like the following 
lets you do this:

static
     StudentCount: uns32; external( "PersonCount" );

Of course, you’ve already seen some of the problems you might encounter 
when you start creating aliases. So you should use this capability sparingly in 
your programs. Perhaps a more reasonable use of this feature is to simplify 
certain OS APIs. For example, the Win32 API uses some really long names 
for certain procedure calls. You can use the external directive to provide a 
more meaningful name than the standard one the operating system specifies.

5.24.2 Header Files in HLA

HLA’s technique of using the same external declaration to define public as 
well as external symbols may seem somewhat counterintuitive. Why not use a 
public reserved word for public symbols and the external keyword for external 
definitions? Well, as counterintuitive as HLA’s external declarations may 
seem, they are founded on decades of solid experience with the C/C++ 
programming language that uses a similar approach to public and external 
symbols.32 Combined with a header file, HLA’s external declarations make 
large-program maintenance a breeze.

An important benefit of the external directive (versus separate public and 
external directives) is that it lets you minimize duplication of effort in your 
source files. Suppose, for example, you want to create a module with a bunch 
of support routines and variables for use in several different programs (e.g., 
the HLA Standard Library). In addition to sharing some routines and some 
variables, suppose you want to share constants, types, and other items as well. 

The #include file mechanism provides a perfect way to handle this. You 
simply create a #include file containing the constants, macros, and external 
definitions and include this file in the module that implements your routines 
and in the modules that use those routines (see Figure 5-10).

32 Actually, C/C++ is a little different. All global symbols in a module are assumed to be public 
unless explicitly declared private. HLA’s approach (forcing the declaration of public items via 
external) is a little safer.
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Figure 5-10: Using header files in HLA programs

A typical header file contains only const, val, type, static, readonly, storage, 
and procedure prototypes (plus a few others we haven’t look at yet, like 
macros). Objects in the static, readonly, and storage sections, as well as all 
procedure declarations, are always external objects. In particular, you should 
not put any var objects in a header file, nor should you put any nonexternal 
variables or procedure bodies in a header file. If you do, HLA will make 
duplicate copies of these objects in the different source files that include the 
header file. Not only will this make your programs larger, but it will cause 
them to fail under certain circumstances. For example, you generally put a 
variable in a header file so you can share the value of that variable among 
several different modules. However, if you fail to declare that symbol as 
external in the header file and just put a standard variable declaration there, 
each module that includes the source file will get its own separate variable—
the modules will not share a common variable.

If you create a standard header file, containing const, val, and type decla-
rations and external objects, you should always be sure to include that file in 
the declaration section of all modules that need the definitions in the header 
file. Generally, HLA programs include all their header files in the first few 
statements after the program or unit header. 

This text adopts the HLA Standard Library convention of using an .hhf 
suffix for HLA header files (hhf stands for HLA header file).

5.25 Namespace Pollution

One problem with creating libraries with a lot of different modules is namespace 
pollution. A typical library module will have a #include file associated with it 
that provides external definitions for all the routines, constants, variables, 
and other symbols provided in the library. Whenever you want to use some 
routines or other objects from the library, you would typically #include the 
library’s header file in your project. As your libraries get larger and you add 
declarations in the header file, it becomes likely that the names you’ve chosen 
for your library’s identifiers will conflict with names you want to use in your 
current project. This is known as namespace pollution: library header files 
pollute the namespace with names you typically don’t need in order to gain 
easy access to the few routines in the library you actually use. Most of the time 
those names don’t harm anything—unless you want to use those names for 
your own purposes.

Implementation Module

#include("Header.hhf")

Using Module

#include("Header.hhf")

Header.hhf
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HLA requires that you declare all external symbols at the global (program/
unit) level. You cannot, therefore, include a header file with external declara-
tions within a procedure. Thus, there will be no naming conflicts between 
external library symbols and symbols you declare locally within a procedure; 
the conflicts will occur only between the external symbols and your global 
symbols. While this is a good argument for avoiding global symbols as much 
as possible in your program, the fact remains that most symbols in an assembly 
language program will have global scope. So another solution is necessary.

HLA’s solution is to put most of the library names in a namespace decla-
ration section. A namespace declaration encapsulates all declarations and 
exposes only a single name (the namespace identifier) at the global level. You 
access the names within the namespace by using the familiar dot notation 
(see the discussion of namespaces in Section 4.34). This reduces the effect 
of namespace pollution from many dozens or hundreds of names down to a 
single name. 

Of course, one disadvantage of using a namespace declaration is that you 
have to type a longer name in order to reference a particular identifier in 
that namespace (that is, you have to type the namespace identifier, a period, 
and then the specific identifier you wish to use). For a few identifiers you use 
frequently, you might elect to leave those identifiers outside of any namespace 
declaration. For example, the HLA Standard Library does not define the 
symbol nl within a namespace. However, you want to minimize such declara-
tions in your libraries to avoid conflicts with names in your own programs. 
Often, you can choose a namespace identifier to complement your routine 
names. For example, the HLA Standard Library’s string copy routine was 
named after the equivalent C Standard Library function, strcpy. HLA’s version 
is str.cpy. The actual function name is cpy; it happens to be a member of the 
str namespace, hence the full name str.cpy, which is very similar to the compa-
rable C function. The HLA Standard Library contains several examples of 
this convention. The arg.c and arg.v functions are another pair of such iden-
tifiers (corresponding to the C identifiers argc and argv).

Using a namespace in a header file is no different than using a namespace in 
a program or unit, though you do not normally put actual procedure bodies in a 
namespace. Here’s an example of a typical header file containing a namespace 
declaration:

// myHeader.hhf -
//
// Routines supported in the myLibrary.lib file

namespace myLib;

     procedure func1; external;
     procedure func2; external;
     procedure func3; external;

end myLib;
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Typically, you would compile each of the functions (func1..func3) as 
separate units (so each has its own object file and linking in one function 
doesn’t link them all). Here’s a sample unit declaration for one of these 
functions:

unit func1Unit;
#includeonce( "myHeader.hhf" )

procedure myLib.func1;
begin func1;

     << Code for func1 >>

end func1;

end func1Unit;

You should notice two important things about this unit. First, you do not 
put the actual func1 procedure code within a namespace declaration block. By 
using the identifier myLib.func1 as the procedure’s name, HLA automatically 
realizes that this procedure declaration belongs in a namespace. The second 
thing to note is that you do not preface func1 with myLib. after the begin and 
end clauses in the procedure. HLA automatically associates the begin and end 
identifiers with the procedure declaration, so it knows that these identifiers 
are part of the myLib namespace and it doesn’t make you type the whole 
name again.

Important note: When you declare external names within a namespace, 
as was done in func1Unit previously, HLA uses only the function name (func1 
in this example) as the external name. This creates a namespace pollution 
problem in the external namespace. For example, if you have two different 
namespaces, myLib and yourLib, and they both define a func1 procedure, the 
linker will complain about a duplicate definition for func1 if you attempt to 
use functions from both these library modules. There is an easy workaround 
to this problem: Use the extended form of the external directive to explicitly 
supply an external name for all external identifiers appearing in a namespace 
declaration. For example, you could solve this problem with the following 
simple modification to the myHeader.hhf  file above:

// myHeader.hhf -
//
// Routines supported in the myLibrary.lib file

namespace myLib;

     procedure func1; external( "myLib_func1" );
     procedure func2; external( "myLib_func2" );
     procedure func3; external( "myLib_func3" );

end myLib;
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This example demonstrates an excellent convention you should adopt: 
When exporting names from a namespace, always supply an explicit external 
name and construct that name by concatenating the namespace identifier with 
an underscore and the object’s internal name.

The use of namespace declarations does not completely eliminate the 
problems of namespace pollution (after all, the namespace identifier is still a 
global object, as anyone who has included stdlib.hhf and attempted to define 
a cs variable can attest), but namespace declarations come pretty close to 
eliminating this problem. Therefore, you should use namespace everywhere 
practical when creating your own libraries.

5.26 For More Information

The electronic edition of this book found at http://www.artofasm.com/ or http://
webster.cs.ucr.edu/ contains a whole “volume” on advanced and intermediate 
procedures. The information in this chapter was taken from the introductory 
and intermediate chapters in the electronic edition. While the information 
appearing in this chapter covers 99 percent of the material assembly pro-
grammers typically use, there is additional information on procedures and 
parameters that you may find interesting. In particular, the electronic edition 
covers additional parameter-passing mechanisms (pass by value/result, pass 
by result, pass by name, and pass by lazy evaluation) and goes into greater 
detail about the places you can pass parameters. The electronic version of 
this text also covers iterators, thunks, and other advanced procedure types. 
You should also check out the HLA documentation for more details on HLA’s 
procedure facilities. Finally, a good compiler construction textbook will cover 
additional details about runtime support for procedures.

This chapter discussed only 32-bit near procedures (appropriate for 
operating systems like Windows, Mac OS X, FreeBSD, and Linux). For infor-
mation about procedures in 16-bit code (including near and far procedures), 
check out the 16-bit edition of this book, also found at http://webster.cs
.ucr.edu/ or http://www.artofasm.com/.

HLA supports the ability to nest procedures; that is, you can declare a 
procedure in the declaration section of some other procedure and use displays 
and static links to access automatic variables in the enclosing procedures. HLA 
also supports advanced parameter-pointer facilities. This text does not discuss 
these features because they’re somewhat advanced and very few assembly 
language programmers take advantage of these facilities in their programs. 
However, these features are very handy in certain situations. Once you’re 
comfortable with procedures and assembly language programming in general, 
you should read about HLA’s facilities for nested procedures in the HLA 
documentation and in the chapters on intermediate and advanced procedures 
in the electronic version of this book found at http://webster.cs.ucr.edu/ or 
http://www.artofasm.com/.
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Finally, the examples given for the code that HLA generates when passing 
parameters using the high-level syntax are incomplete. Over time, HLA has 
improved the quality of the code it generates when passing parameters on 
the stack. If you would like to see the type of code HLA generates for a 
particular parameter call sequence, you should supply the -sourcemode, -h, 
and -s command-line parameters to HLA and view the corresponding 
assembly language file that HLA emits (which will be a pseudo-HLA source 
file showing you the low-level code that HLA produces).
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6
A R I T H M E T I C

This chapter discusses arithmetic computa-
tion in assembly language. By the end of this 

chapter you should be able to translate arith-
metic expressions and assignment statements from 

high-level languages like Pascal and C/C++ into 80x86 
assembly language.

6.1 80x86 Integer Arithmetic Instructions

Before describing how to encode arithmetic expressions in assembly language, it 
would be a good idea to first discuss the remaining arithmetic instructions 
in the 80x86 instruction set. Previous chapters have covered most of the 
arithmetic and logical instructions, so this section covers the few remaining 
instructions you’ll need.
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6.1.1 The mul and imul Instructions

The multiplication instructions provide you with another taste of irregularity 
in the 80x86’s instruction set. Instructions like add, sub, and many others in 
the 80x86 instruction set support two operands, just like the mov instruction. 
Unfortunately, there weren’t enough bits in the 80x86’s opcode byte to sup-
port all instructions, so the 80x86 treats the mul (unsigned multiply) and imul 
(signed integer multiply) instructions as single-operand instructions, just like 
the inc, dec, and neg instructions.

Of course, multiplication is a two-operand function. To work around this 
fact, the 80x86 always assumes the accumulator (AL, AX, or EAX) is the des-
tination operand. This irregularity makes using multiplication on the 80x86 a 
little more difficult than other instructions because one operand has to be in 
the accumulator. Intel adopted this unorthogonal approach because it felt 
that programmers would use multiplication far less often than instructions 
like add and sub.

Another problem with the mul and imul instructions is that you cannot 
multiply the accumulator by a constant using these instructions. Intel quickly 
discovered the need to support multiplication by a constant and added the 
intmul instruction to overcome this problem. Nevertheless, you must be aware 
that the basic mul and imul instructions do not support the full range of oper-
ands as intmul.

There are two forms of the multiply instruction: unsigned multiplication 
(mul) and signed multiplication (imul). Unlike addition and subtraction, you 
need separate instructions for signed and unsigned operations.

The multiply instructions take the following forms:

Unsigned multiplication:

mul( reg8 );        // returns "ax"
mul( reg16 );       // returns "dx:ax"
mul( reg32 );       // returns "edx:eax"

mul( mem8 );        // returns "ax"
mul( mem16 );       // returns "dx:ax"
mul( mem32 );       // returns "edx:eax"

Signed (integer) multiplication:

imul( reg8 );       // returns "ax"
imul( reg16 );      // returns "dx:ax"
imul( reg32 );      // returns "edx:eax"

imul( mem8 );       // returns "ax"
imul( mem16 );      // returns "dx:ax"
imul( mem32 );      // returns "edx:eax"

The returns values above are the strings these instructions return for use 
with instruction composition in HLA. (i)mul, available on all 80x86 proces-
sors, multiplies 8-, 16-, or 32-bit operands.
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When multiplying two n-bit values, the result may require as many as 2 * n 
bits. Therefore, if the operand is an 8-bit quantity, the result could require 
16 bits. Likewise, a 16-bit operand produces a 32-bit result and a 32-bit oper-
and requires 64 bits to hold the result.

The (i)mul instruction, with an 8-bit operand, multiplies AL by the operand 
and leaves the 16-bit product in AX. So

mul( operand8 );

or 

imul( operand8 );

computes

ax := al * operand8

* represents an unsigned multiplication for mul and a signed multiplica-
tion for imul.

If you specify a 16-bit operand, then mul and imul compute

dx:ax := ax * operand16

* has the same meanings as above, and dx:ax means that DX contains the 
H.O. word of the 32-bit result and AX contains the L.O. word of the 32-bit 
result. If you’re wondering why Intel didn’t put the 32-bit result in EAX, just 
note that Intel introduced the mul and imul instructions in the earliest 80x86 
processors, before the advent of 32-bit registers in the 80386 CPU.

If you specify a 32-bit operand, then mul and imul compute the following:

edx:eax := eax * operand32

* has the same meanings as above, and edx:eax means that EDX contains 
the H.O. double word of the 64-bit result and EAX contains the L.O. double 
word of the 64-bit result.

If an 8×8-, 16×16-, or 32×32-bit product requires more than 8, 16, or 32 bits 
(respectively), the mul and imul instructions set the carry and overflow flags. 
mul and imul scramble the sign and zero flags.

NOTE Especially note that the sign and zero flags do not contain meaningful values after the 
execution of these two instructions.

To help reduce some of the syntax irregularities with the use of the mul 
and imul instructions, HLA provides an extended syntax that allows the follow-
ing two-operand forms:

Unsigned multiplication:

mul( reg8, al );
mul( reg16, ax );
mul( reg32, eax );
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mul( mem8, al );
mul( mem16, ax );
mul( mem32, eax );

mul( constant8, al );
mul( constant16, ax );
mul( constant32, eax );

Signed (integer) multiplication:

imul( reg8, al );
imul( reg16, ax );
imul( reg32, eax );

imul( mem8, al );
imul( mem16, ax );
imul( mem32, eax );

imul( constant8, al );
imul( constant16, ax );
imul( constant32, eax );

The two-operand forms let you specify the (L.O.) destination register as 
the second operand. By specifying the destination register you can make your 
programs easier to read. Note that just because HLA allows two operands 
here, you can’t specify an arbitrary register. The destination operand must 
always be AL, AX, or EAX, depending on the source operand.

HLA provides a form that lets you specify a constant. The 80x86 doesn’t 
actually support a mul or imul instruction that has a constant operand. HLA 
will take the constant you specify and create a variable in a read-only segment 
in memory and initialize that variable with this value. Then HLA converts the 
instruction to the (i)mul( memory ); instruction. Note that when you specify 
a constant as the source operand, the instruction requires two operands 
(because HLA uses the second operand to determine whether the multiplica-
tion is 8, 16, or 32 bits).

You’ll use the mul and imul instructions quite a lot when you learn about 
extended-precision arithmetic in Chapter 8. Unless you’re doing multipreci-
sion work, however, you’ll probably just want to use the intmul instruction in 
place of the mul or imul because it is more general. However, intmul is not a 
complete replacement for these two instructions. Besides the number of 
operands, there are several differences between the intmul and the mul/imul 
instructions. The following rules apply specifically to the intmul instruction:

There isn’t an 8×8-bit intmul instruction available.

The intmul instruction does not produce a 2×n -bit result. That is, a 
16×16-bit multiply produces a 16-bit result. Likewise, a 32×32-bit multiply 
produces a 32-bit result. These instructions set the carry and overflow 
flags if the result does not fit into the destination register.
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6.1.2 The div and idiv Instructions

The 80x86 divide instructions perform a 64/32-bit division, a 32/16-bit divi-
sion, or a 16/8-bit division. These instructions take the following forms:

div( reg8 ); // returns "al"
div( reg16 ); // returns "ax"
div( reg32 ); // returns "eax"

div( reg8, ax ); // returns "al"
div( reg16, dx:ax ); // returns "ax"
div( reg32, edx:eax ); // returns "eax"

div( mem8 ); // returns "al"
div( mem16 ); // returns "ax"
div( mem32 ); // returns "eax"

div( mem8, ax ); // returns "al"
div( mem16, dx:ax ); // returns "ax"
div( mem32, edx:eax ); // returns "eax"

div( constant8, ax );         // returns "al"
div( constant16, dx:ax );     // returns "ax"
div( constant32, edx:eax );   // returns "eax"

idiv( reg8 );                 // returns "al"
idiv( reg16 );                // returns "ax"
idiv( reg32 );                // returns "eax"

idiv( reg8, ax );             // returns "al"
idiv( reg16, dx:ax );         // returns "ax"
idiv( reg32, edx:eax );       // returns "eax"

idiv( mem8 );                 // returns "al"
idiv( mem16 );                // returns "ax"
idiv( mem32 );                // returns "eax"

idiv( mem8, ax );             // returns "al"
idiv( mem16, dx:ax );         // returns "ax"
idiv( mem32, edx:eax );       // returns "eax"

idiv( constant8, ax );        // returns "al"
idiv( constant16, dx:ax );    // returns "ax"
idiv( constant32, edx:eax );  // returns "eax"

The div instruction is an unsigned division operation. If the operand is an 
8-bit operand, div divides the AX register by the operand leaving the quotient 
in AL and the remainder (modulo) in AH. If the operand is a 16-bit quantity, 
then the div instruction divides the 32-bit quantity in dx:ax by the operand, 
leaving the quotient in AX and the remainder in DX. With 32-bit operands 
div divides the 64-bit value in edx:eax by the operand, leaving the quotient in 
EAX and the remainder in EDX.
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Like mul and imul, HLA provides special syntax to allow the use of constant 
operands even though the low-level machine instructions don’t actually support 
them. See the previous list of div instructions for these extensions.

The idiv instruction computes a signed quotient and remainder. The 
syntax for the idiv instruction is identical to div (except for the use of the idiv 
mnemonic), though creating signed operands for idiv may require a different 
sequence of instructions prior to executing idiv than for div.

You cannot, on the 80x86, simply divide one unsigned 8-bit value by 
another. If the denominator is an 8-bit value, the numerator must be a 16-bit 
value. If you need to divide one unsigned 8-bit value by another, you must 
zero extend the numerator to 16 bits. You can accomplish this by loading the 
numerator into the AL register and then moving 0 into the AH register. Then 
you can divide AX by the denominator operand to produce the correct result. 
Failing to zero extend AL before executing div may cause the 80x86 to produce incorrect 
results! When you need to divide two 16-bit unsigned values, you must zero 
extend the AX register (which contains the numerator) into the DX register. 
To do this, just load 0 into the DX register. If you need to divide one 32-bit 
value by another, you must zero extend the EAX register into EDX (by load-
ing a 0 into EDX) before the division.

When dealing with signed integer values, you will need to sign extend AL 
into AX, AX into DX, or EAX into EDX before executing idiv. To do so, use 
the cbw, cwd, cdq, or movsx instruction. If the H.O. byte, word, or double word 
does not already contain significant bits, then you must sign extend the value 
in the accumulator (AL/AX/EAX) before doing the idiv operation. Failure 
to do so may produce incorrect results. 

There is one other issue with the 80x86’s divide instructions: You can get 
a fatal error when using this instruction. First, of course, you can attempt to 
divide a value by 0. Another problem is that the quotient may be too large 
to fit into the EAX, AX, or AL register. For example, the 16/8-bit division 
$8000/2 produces the quotient $4000 with a remainder of 0. $4000 will not fit 
into 8 bits. If this happens, or you attempt to divide by 0, the 80x86 will gen-
erate an ex.DivisionError exception or integer overflow error (ex.IntoInstr). 
This usually means your program will display the appropriate dialog and 
abort. If this happens to you, chances are you didn’t sign or zero extend your 
numerator before executing the division operation. Because this error may 
cause your program to crash, you should be very careful about the values you 
select when using division. Of course, you can use the try..endtry block with 
ex.DivisionError and ex.IntoInstr to trap this problem in your program.

The 80x86 leaves the carry, overflow, sign, and zero flags undefined after 
a division operation. Therefore, you cannot test for problems after a division 
operation by checking the flag bits.

The 80x86 does not provide a separate instruction to compute the 
remainder of one number divided by another. The div and idiv instructions 
automatically compute the remainder at the same time they compute the 
quotient. HLA, however, provides mnemonics (instructions) for the mod and 
imod instructions. These special HLA instructions compile into the exact same 
code as their div and idiv counterparts. The only difference is the returns 
value for the instruction (because these instructions return the remainder in 
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a different location than the quotient). The mod and imod instructions that HLA 
supports are as follows:

mod( reg8 );                  // returns "ah"
mod( reg16 );                 // returns "dx"
mod( reg32 );                 // returns "edx"

mod( reg8, ax );              // returns "ah"
mod( reg16, dx:ax );          // returns "dx"
mod( reg32, edx:eax );        // returns "edx"

mod( mem8 );                  // returns "ah"
mod( mem16 );                 // returns "dx"
mod( mem32 );                 // returns "edx"

mod( mem8, ax );              // returns "ah"
mod( mem16, dx:ax );          // returns "dx"
mod( mem32, edx:eax );        // returns "edx"

mod( constant8, ax );         // returns "ah"
mod( constant16, dx:ax );     // returns "dx"
mod( constant32, edx:eax );   // returns "edx"

imod( reg8 );                 // returns "ah"
imod( reg16 );                // returns "dx"
imod( reg32 );                // returns "edx"

imod( reg8, ax );             // returns "ah"
imod( reg16, dx:ax );         // returns "dx"
imod( reg32, edx:eax );       // returns "edx"

imod( mem8 );                 // returns "ah"
imod( mem16 );                // returns "dx"
imod( mem32 );                // returns "edx"

imod( mem8, ax );             // returns "ah"
imod( mem16, dx:ax );         // returns "dx"
imod( mem32, edx:eax );       // returns "edx"

imod( constant8, ax );        // returns "ah"
imod( constant16, dx:ax );    // returns "dx"
imod( constant32, edx:eax );  // returns "edx"

6.1.3 The cmp Instruction

The cmp (compare) instruction is identical to the sub instruction with one 
crucial semantic difference—it does not retain the difference it computes; it 
just sets the condition code bits in the flags register. The syntax for the cmp 
instruction is similar to that of sub (though the operands are reversed so it 
reads better); the generic form is:

          cmp( LeftOperand, RightOperand );
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This instruction computes LeftOperand - RightOperand (note the reversal 
from sub). The specific forms are:

          cmp( reg, reg );       // Registers must be the same size.
          cmp( reg, mem );       // Sizes must match.
          cmp( reg, constant );
          cmp( mem, constant );

The cmp instruction updates the 80x86’s flags according to the result of 
the subtraction operation (LeftOperand - RightOperand). The 80x86 sets the 
flags in an appropriate fashion so that we can read this instruction as “com-
pare LeftOperand to RightOperand.” You can test the result of the comparison 
by checking the appropriate flags in the flags register using the conditional 
set instructions (see Section 6.1.4) or the conditional jump instructions (see 
Chapter 7).

Probably the first place to start when exploring the cmp instruction is to 
look at exactly how the cmp instruction affects the flags. Consider the follow-
ing cmp instruction:

          cmp( ax, bx );

This instruction performs the computation AX − BX and sets the flags 
depending upon the result of the computation. The flags are set as follows 
(also see Table 6-1):

Z The zero flag is set if and only if AX = BX. This is the only time AX − BX 
produces a zero result. Hence, you can use the zero flag to test for equality 
or inequality.

S The sign flag is set to 1 if the result is negative. At first glance, you 
might think that this flag would be set if AX is less than BX, but this isn’t 
always the case. If AX = $7FFF and BX = −1 ($FFFF), then subtracting AX 
from BX produces $8000, which is negative (and so the sign flag will be 
set). So, for signed comparisons anyway, the sign flag doesn’t contain the 
proper status. For unsigned operands, consider AX = $FFFF and BX = 1. 
AX is greater than BX but their difference is $FFFE, which is still nega-
tive. As it turns out, the sign flag and the overflow flag, taken together, 
can be used for comparing two signed values.

O The overflow flag is set after a cmp operation if the difference of 
AX and BX produced an overflow or underflow. As mentioned above, 
the sign flag and the overflow flag are both used when performing 
signed comparisons.

C The carry flag is set after a cmp operation if subtracting BX from AX 
requires a borrow. This occurs only when AX is less than BX where AX 
and BX are both unsigned values.
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Given that the cmp instruction sets the flags in this fashion, you can test the 
comparison of the two operands with the following flags:

          cmp( Left, Right );

For signed comparisons, the S (sign) and O (overflow) flags, taken 
together, have the following meaning:

If [(S = 0) and (O = 1)] or [(S = 1) and (O = 0)] then Left < Right for a 
signed comparison.

If [(S = 0) and (O = 0)] or [(S = 1) and (O = 1)] then Left >= Right for a 
signed comparison.

Note that (S xor O) is 1 if the left operand is less than the right operand. 
Conversely, (S xor O) is 0 if the left operand is greater or equal to the right 
operand.

To understand why these flags are set in this manner, consider the follow-
ing examples:

     Left          minus     Right           S    O
     ------                  ------          -    -

     $FFFF (-1)      -       $FFFE (-2)      0    0
     $8000           -       $0001           0    1
     $FFFE (-2)      -       $FFFF (-1)      1    0
     $7FFF (32767)   -       $FFFF (-1)      1    1

Remember, the cmp operation is really a subtraction; therefore, the first 
example above computes (−1) − (−2), which is (+1). The result is positive and 
an overflow did not occur, so both the S and O flags are 0. Because (S xor O) 
is 0, Left is greater than or equal to Right.

In the second example, the cmp instruction would compute (−32,768) − (+1), 
which is (−32,769). Because a 16-bit signed integer cannot represent this value, 
the value wraps around to $7FFF (+32,767) and sets the overflow flag. The result 
is positive (at least as a 16-bit value), so the CPU clears the sign flag. (S xor O) is 
1 here, so Left is less than Right.

In the third example above, cmp computes (−2) − (−1), which produces
(−1). No overflow occurred, so the O flag is 0, the result is negative, so the sign 
flag is 1. Because (S xor O) is 1, Left is less than Right.

Table 6-1: Condition Code Settings After cmp

Unsigned Operands Signed Operands

Z: Equality/inequality Z: Equality/inequality

C: Left < Right (C = 1)
Left  >= Right (C = 0)

C: No meaning 

S: No meaning S: See discussion in this section

O: No meaning O: See discussion in this section
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In the fourth (and final) example, cmp computes (+32,767) − (−1). This 
produces (+32,768), setting the overflow flag. Furthermore, the value wraps 
around to $8000 (−32,768), so the sign flag is set as well. Because (S xor O) is 0, 
Left is greater than or equal to Right.

You may test the flags after a cmp instruction using HLA high-level control 
statements and the boolean flag expressions (e.g., @c, @nc, @z, @nz, @o, @no, @s, 
@ns, and so on). Table 6-2 lists the boolean expressions HLA supports that let 
you check various conditions after a compare instruction.

Table 6-2: HLA Condition Code Boolean Expressions

HLA Syntax Condition Comment

@c Carry set Carry flag is set if the first operand is less than the second 
operand (unsigned). Same condition as @b and @nae.

@nc Carry clear (no carry) Carry flag is clear if the first operand is greater than or equal 
to the second (using an unsigned comparison). Same condition 
as @nb and @ae.

@z Zero flag set Zero flag is set if the first operand equals the second operand. 
Same condition as @e.

@nz Zero flag clear (no zero) Zero flag is clear if the first operand is not equal to the second. 
Same condition as @ne.

@o Overflow flag set This flag is set if there was a signed arithmetic overflow as a 
result of the comparison operation.

@no Overflow flag clear (no overflow) The overflow flag is clear if there was no signed arithmetic 
overflow during the compare operation.

@s Sign flag set The sign flag is set if the result of the compare (subtraction) 
produces a negative result.

@ns Sign flag clear (no sign) The sign flag is clear if the compare operation produces a 
nonnegative (zero or positive) result.

@a Above (unsigned greater than) The @a condition checks the carry and zero flags to see if 
@c = 0 and @z = 0. This condition exists if the first (unsigned) 
operand is greater than the second (unsigned) operand. 
This is the same condition as @nbe.

@na Not above The @na condition checks to see if the carry flag is set (@c) or 
the zero flag is set (@z). This is equivalent to an unsigned “not 
greater than” condition. Note that this condition is the same 
as @be.

@ae Above or equal (unsigned greater 
than or equal)

The @ae condition is true if the first operand is greater than or 
equal to the second using an unsigned comparison. This is 
equivalent to the @nb and @nc conditions.

@nae Not above or equal The @nae condition is true if the first operand is not greater than 
or equal to the second using an unsigned comparison. This is 
equivalent to the @b and @c conditions.

@b Below (unsigned less than) The @b condition is true if the first operand is less than the 
second using an unsigned comparison. This is equivalent to 
the @nae and @c conditions.

@nb Not below This condition is true if the first operand is not less than the 
second using an unsigned comparison. This condition is 
equivalent to the @nc and @ae conditions.
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You may use the boolean conditions appearing in Table 6-2 within an 
if statement, while statement, or any other HLA high-level control state-
ment that allows boolean expressions. Immediately after the execution of a 
cmp instruction, you would typically use one of these conditions in an if 
statement. For example:

          cmp( eax, ebx );
          if( @e ) then

<< Do something if eax = ebx. >>

          endif;

@be Below or equal (unsigned less 
than or equal)

The @be condition is true when the first operand is less than or 
equal to the second using an unsigned comparison. This 
condition is equivalent to @na.

@nbe Not below or equal The @be condition is true when the first operand is not less than 
or equal to the second using an unsigned comparison. This 
condition is equivalent to @a.

@g Greater (signed greater than) The @g condition is true if the first operand is greater than the 
second using a signed comparison. This is equivalent to the 
@nle condition.

@ng Not greater The @ng condition is true if the first operand is not greater than 
the second using a signed comparison. This is equivalent to the 
@le condition.

@ge Greater or equal (signed 
greater than or equal)

The @ge condition is true if the first operand is greater than 
or equal to the second using a signed comparison. This is 
equivalent to the @nl condition.

@nge Not greater or equal The @nge condition is true if the first operand is not greater 
than or equal to the second using a signed comparison. This 
is equivalent to the @l condition.

@l Less than (signed less than) The @l condition is true if the first operand is less than the 
second using a signed comparison. This is equivalent to the 
@nge condition.

@nl Not less than The @ng condition is true if the first operand is not less than the 
second using a signed comparison. This is equivalent to the 
@ge condition.

@le Less than or equal (signed) The @le condition is true if the first operand is less than or 
equal to the second using a signed comparison. This is 
equivalent to the @ng condition.

@nle Not less than or equal The @nle condition is true if the first operand is not less than 
or equal to the second using a signed comparison. This is 
equivalent to the @g condition.

@e Equal (signed or unsigned) This condition is true if the first operand equals the second. The 
@e condition is equivalent to the @z condition.

@ne Not equal (signed or unsigned) @ne is true if the first operand does not equal the second. This 
condition is equivalent to @nz.

Table 6-2: HLA Condition Code Boolean Expressions (continued)

HLA Syntax Condition Comment
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Note that the example above is equivalent to the following:

          if( eax = ebx ) then

<< Do something if eax = ebx. >>

          endif;

6.1.4 The setcc Instructions

The set on condition (or setcc) instructions set a single-byte operand (register or 
memory) to 0 or 1 depending on the values in the flags register. The general 
formats for the setcc instructions are:

setcc( reg8 );
setcc( mem8 );

setcc represents a mnemonic appearing in Tables 6-3, 6-4, and 6-5. These 
instructions store a 0 into the corresponding operand if the condition is false, 
and they store a 1 into the 8-bit operand if the condition is true.

The setcc instructions above simply test the flags without any other mean-
ing attached to the operation. You could, for example, use setc to check the 
carry flag after a shift, rotate, bit test, or arithmetic operation. You might 
notice the setp, setpe, and setnp instructions above. They check the parity flag. 
These instructions appear here for completeness, but this text will not spend 
too much time discussing the parity flag (its use is somewhat obsolete).

Table 6-3: setcc Instructions That Test Flags

Instruction Description Condition Comments

setc Set if carry Carry = 1 Same as setb, setnae

setnc Set if no carry Carry = 0 Same as setnb, setae

setz Set if zero Zero = 1 Same as sete

setnz Set if not zero Zero = 0 Same as setne

sets Set if sign Sign = 1

setns Set if no sign Sign = 0

seto Set if overflow Overflow = 1

setno Set if no overflow Overflow = 0

setp Set if parity Parity = 1 Same as setpe

setpe Set if parity even Parity = 1 Same as setp

setnp Set if no parity Parity = 0 Same as setpo

setpo Set if parity odd Parity = 0 Same as setnp
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The cmp instruction works synergistically with the setcc instructions. Imme-
diately after a cmp operation the processor flags provide information concerning 
the relative values of those operands. They allow you to see if one operand is 
less than, equal to, or greater than the other.

Two additional groups of setcc instructions are very useful after a cmp 
operation. The first group deals with the result of an unsigned comparison; 
the second group deals with the result of a signed comparison.

Table 6-5 lists the corresponding signed comparisons.

Note the correspondence between the setcc instructions and the HLA 
flag conditions that may appear in boolean instructions.

Table 6-4: setcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

seta Set if above (>) Carry = 0, Zero = 0 Same as setnbe

setnbe Set if not below or equal (not <=) Carry = 0, Zero = 0 Same as seta

setae Set if above or equal (>=) Carry = 0 Same as setnc, setnb

setnb Set if not below (not <) Carry = 0 Same as setnc, setae

setb Set if below (<) Carry = 1 Same as setc, setna

setnae Set if not above or equal (not >=) Carry = 1 Same as setc, setb

setbe Set if below or equal (<=) Carry = 1 or Zero = 1 Same as setna

setna Set if not above (not >) Carry = 1 or Zero = 1 Same as setbe

sete Set if equal (=) Zero = 1 Same as setz

setne Set if not equal (¦) Zero = 0 Same as setnz

Table 6-5: setcc Instructions for Signed Comparisons

Instruction Description Condition Comments

setg Set if greater (>) Sign = Overflow and Zero = 0 Same as setnle

setnle Set if not less than or equal (not <=) Sign = Overflow or Zero = 0 Same as setg

setge Set if greater than or equal (>=) Sign = Overflow Same as setnl

setnl Set if not less than (not <) Sign = Overflow Same as setge

setl Set if less than (<) Sign ¦ Overflow Same as setnge

setnge Set if not greater or equal (not >=) Sign ¦ Overflow Same as setl

setl Set if less than or equal (<=) Sign ¦ Overflow or Zero = 1 Same as setng

setng Set if not greater than (not >) Sign ¦ Overflow or Zero = 1 Same as setle

sete Set if equal (=) Zero = 1 Same as setz

setne Set if not equal (¦) Zero = 0 Same as setnz
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The setcc instructions are particularly valuable because they can convert 
the result of a comparison to a boolean value (false/true or 0/1). This is espe-
cially important when translating statements from a high-level language like 
Pascal or C/C++ into assembly language. The following example shows how 
to use these instructions in this manner:

// bool := a <= b

          mov( a, eax );
          cmp( eax, b );
          setle( bool ); // bool is a boolean or byte variable.

Because the setcc instructions always produce 0 or 1, you can use the 
results with the and and or instructions to compute complex boolean values:

// bool := ((a <= b) and (d = e))

          mov( a, eax );
          cmp( eax, b );
          setle( bl );
          mov( d, eax );
          cmp( eax, e );
          sete( bh );
          and( bl, bh );
          mov( bh, bool );

6.1.5 The test Instruction

The 80x86 test instruction is to the and instruction what the cmp instruction is 
to sub. That is, the test instruction computes the logical and of its two operands 
and sets the condition code flags based on the result; it does not, however, 
store the result of the logical and back into the destination operand. The syntax 
for the test instruction is similar to and:

test( operand1, operand2 );

The test instruction sets the zero flag if the result of the logical and oper-
ation is 0. It sets the sign flag if the H.O. bit of the result contains a 1. The test 
instruction always clears the carry and overflow flags.

The primary use of the test instruction is to check to see if an individual 
bit contains a 0 or a 1. Consider the instruction test( 1, al);. This instruction 
logically ands AL with the value 1; if bit 1 of AL contains 0, the result will be 0 
(setting the zero flag) because all the other bits in the constant 1 are 0. Con-
versely, if bit 1 of AL contains 1, then the result is not 0, so test clears the zero 
flag. Therefore, you can test the zero flag after this test instruction to see if bit 
0 contains a 0 or a 1 (e.g., using a setz or setnz instruction).
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The test instruction can also check to see if all the bits in a specified set of 
bits contain 0. The instruction test( $F, al); sets the zero flag if and only if 
the L.O. 4 bits of AL all contain 0.

One very important use of the test instruction is to check whether a regis-
ter contains 0. The instruction test( reg, reg ); where both operands are the 
same register will logically and that register with itself. If the register contains 0, 
then the result is 0 and the CPU will set the zero flag. However, if the register 
contains a nonzero value, logically anding that value with itself produces that 
same nonzero value, so the CPU clears the zero flag. Therefore, you can check 
the zero flag immediately after the execution of this instruction (e.g., using the 
setz or setnz instructions or the @z and @nz boolean conditions) to see if the 
register contains 0. Here are some examples:

          test( eax, eax );
          setz( bl );          // bl is set to 1 if eax contains 0.
               .
               .
               .
          test( bx, bx );
          if( @nz ) then

               << Do something if bx <> 0. >>

          endif;

6.2 Arithmetic Expressions

Probably the biggest shock to beginners facing assembly language for the very 
first time is the lack of familiar arithmetic expressions. Arithmetic expressions, 
in most high-level languages, look similar to their algebraic equivalents. For 
example:

          x := y * z;

In assembly language, you’ll need several statements to accomplish this 
same task:

          mov( y, eax );
          intmul( z, eax );
          mov( eax, x );

Obviously the HLL version is much easier to type, read, and understand. 
This point, more than any other, is responsible for scaring people away from 
assembly language. Although there is a lot of typing involved, converting an 
arithmetic expression into assembly language isn’t difficult at all. By attacking 
the problem in steps, the same way you would solve the problem by hand, you 
can easily break down any arithmetic expression into an equivalent sequence 
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of assembly language statements. By learning how to convert such expressions 
to assembly language in three steps, you’ll discover there is little difficulty to 
this task.

6.2.1 Simple Assignments

The easiest expressions to convert to assembly language are simple assign-
ments. Simple assignments copy a single value into a variable and take one of 
two forms:

          variable := constant 

or

          var1 := var2

Converting the first form to assembly language is simple—just use the 
assembly language statement:

          mov( constant, variable );

This mov instruction copies the constant into the variable.
The second assignment above is slightly more complicated because the 

80x86 doesn’t provide a memory-to-memory mov instruction. Therefore, to 
copy one memory variable into another, you must move the data through a 
register. By convention (and for slight efficiency reasons), most programmers 
tend to favor AL/AX/EAX for this purpose. For example:

          var1 := var2; 

becomes

          mov( var2, eax );
          mov( eax, var1 );

This is assuming, of course, that var1 and var2 are 32-bit variables. Use AL 
if they are 8-bit variables; use AX if they are 16-bit variables.

Of course, if you’re already using AL, AX, or EAX for something else, one 
of the other registers will suffice. Regardless, you will generally use a register 
to transfer one memory location to another.

6.2.2 Simple Expressions

The next level of complexity is a simple expression. A simple expression takes 
the following form:

var1 := term1 op term2;
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var1 is a variable, term1 and term2 are variables or constants, and op is some 
arithmetic operator (addition, subtraction, multiplication, and so on). Most 
expressions take this form. It should come as no surprise, then, that the 80x86 
architecture was optimized for just this type of expression.

A typical conversion for this type of expression takes the following form:

          mov( term1, eax );
          op( term2, eax );
          mov( eax, var1 )

op is the mnemonic that corresponds to the specified operation (e.g., + is add, 
- is sub, etc.).

Note that the simple expression var1 := const1 op const2; is easily handled 
with a compile-time expression and a single mov instruction. For example, to 
compute var1 := 5+3;, just use the single instruction mov( 5+3, var1 );.

There are a few inconsistencies you need to be aware of. When dealing 
with the (i)mul, (i)div, and (i)mod instructions on the 80x86, you must use the 
AL/AX/EAX and DX/EDX registers. You cannot use arbitrary registers as 
you can with other operations. Also, don’t forget the sign extension instruc-
tions if you’re performing a division operation and you’re dividing one 16/32-bit 
number by another. Finally, don’t forget that some instructions may cause 
overflow. You may want to check for an overflow (or underflow) condition 
after an arithmetic operation.

Here are some examples of common simple expressions:

x := y + z;

          mov( y, eax );
          add( z, eax );
          mov( eax, x );

x := y - z;

          mov( y, eax );
          sub( z, eax );
          mov( eax, x );

x := y * z; {unsigned}

          mov( y, eax );
          mul( z, eax );     // Don't forget this wipes out edx.
          mov( eax, x );

x := y * z; {signed}

          mov( y, eax );
          intmul( z, eax );  // Does not affect edx!
          mov( eax, x );
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x := y div z; {unsigned div}

          mov( y, eax );
          mov( 0, edx );       // Zero extend eax into edx.
          div( z, edx:eax );
          mov( eax, x );

x := y idiv z; {signed div}

          mov( y, eax );
          cdq();               // Sign extend eax into edx.
          idiv( z, edx:eax );
          mov( eax, z );

x := y mod z; {unsigned remainder}

          mov( y, eax );
          mov( 0, edx );       // Zero extend eax into edx.
          mod( z, edx:eax );
          mov( edx, x );       // Note that remainder is in edx.

x := y imod z; {signed remainder}

          mov( y, eax );
          cdq();               // Sign extend eax into edx.
          imod( z, edx:eax );
          mov( edx, x );       // Remainder is in edx.

Certain unary operations also qualify as simple expressions, producing 
additional inconsistencies in the general rule. A good example of a unary 
operation is negation. In a high-level language, negation takes one of two 
possible forms:

          var := -var  

or

var1 := -var2

Note that var := -constant is really a simple assignment, not a simple 
expression. You can specify a negative constant as an operand to the mov 
instruction:

          mov( -14, var );

To handle var1 = -var1;, use this single assembly language statement:

          // var1 = -var1;

          neg( var1 );

If two different variables are involved, then use the following.
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          // var1 = -var2;

          mov( var2, eax );
          neg( eax );
          mov( eax, var1 );

6.2.3 Complex Expressions

A complex expression is any arithmetic expression involving more than two 
terms and one operator. Such expressions are commonly found in programs 
written in a high-level language. Complex expressions may include parentheses 
to override operator precedence, function calls, array accesses, and so on. 
While the conversion of many complex expressions to assembly language is 
fairly straightforward, other conversions require some effort. This section out-
lines the rules you use to convert such expressions.

A complex expression that is easy to convert to assembly language is one 
that involves three terms and two operators. For example:

          w := w - y - z;

Clearly the straightforward assembly language conversion of this state-
ment will require two sub instructions. However, even with an expression as 
simple as this one, the conversion is not trivial. There are actually two ways to 
convert this from the statement above into assembly language:

          mov( w, eax );
          sub( y, eax );
          sub( z, eax );
          mov( eax, w );

and

          mov( y, eax );
          sub( z, eax );
          sub( eax, w );

The second conversion, because it is shorter, looks better. However, it 
produces an incorrect result (assuming Pascal-like semantics for the original 
statement). Associativity is the problem. The second sequence above computes 
w := w - (y - z), which is not the same as w := (w - y) - z. How we place the 
parentheses around the subexpressions can affect the result. Note that if you 
are interested in a shorter form, you can use the following sequence:

          mov( y, eax );
          add( z, eax );
          sub( eax, w );

This computes w := w - (y + z). This is equivalent to w := (w - y) - z.
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Precedence is another issue. Consider this Pascal expression:

x := w * y + z;

Once again there are two ways we can evaluate this expression:

x := (w * y) + z;

or

x := w * (y + z);

By now, you’re probably thinking that this text is crazy. Everyone knows 
the correct way to evaluate these expressions is by the second form. However, 
you’re wrong to think that way. The APL programming language, for example, 
evaluates expressions solely from right to left and does not give one operator 
precedence over another. Which way is “correct” depends entirely on how 
you define precedence in your arithmetic system.

Most high-level languages use a fixed set of precedence rules to describe 
the order of evaluation in an expression involving two or more different oper-
ators. Such programming languages usually compute multiplication and 
division before addition and subtraction. Those that support exponentiation 
(for example, FORTRAN and BASIC) usually compute that before multipli-
cation and division. These rules are intuitive because almost everyone learns 
them before high school. Consider the expression

x op1 y op2 z

If op1 takes precedence over op2, then this evaluates to (x op1 y) op2 z; 
otherwise, if op2 takes precedence over op1, then this evaluates to x op1 (y op2 z). 
Depending upon the operators and operands involved, these two computa-
tions could produce different results. When converting an expression of this 
form into assembly language, you must be sure to compute the subexpression 
with the highest precedence first. The following example demonstrates this 
technique:

// w := x + y * z;

          mov( x, ebx );
          mov( y, eax );      // Must compute y * z first because "*"
          intmul( z, eax );   // has higher precedence than "+".
          add( ebx, eax );
          mov( eax, w );

If two operators appearing within an expression have the same prece-
dence, then you determine the order of evaluation using associativity rules. 
Most operators are left associative, meaning that they evaluate from left to 
right. Addition, subtraction, multiplication, and division are all left associative. 
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A right-associative operator evaluates from right to left. The exponentiation 
operator in FORTRAN and BASIC is a good example of a right-associative 
operator:

          2^2^3 is equal to 2^(2^3) not (2^2)^3

The precedence and associativity rules determine the order of evaluation. 
Indirectly, these rules tell you where to place parentheses in an expression to 
determine the order of evaluation. Of course, you can always use parentheses 
to override the default precedence and associativity. However, the ultimate 
point is that your assembly code must complete certain operations before 
others to correctly compute the value of a given expression. The following 
examples demonstrate this principle:

// w := x - y - z

          mov( x, eax ); // All the same operator, so we need
          sub( y, eax ); // to evaluate from left to right
          sub( z, eax ); // because they all have the same
          mov( eax, w ); // precedence and are left associative.

// w := x + y * z

          mov( y, eax );      // Must compute y * z first because
          intmul( z, eax );   // multiplication has a higher
          add( x, eax );      // precedence than addition.
          mov( eax, w );

// w := x / y - z

          mov( x, eax );      // Here we need to compute division
          cdq();              // first because it has the highest
          idiv( y, edx:eax ); // precedence.
          sub( z, eax );
          mov( eax, w );

// w := x * y * z

          mov( y, eax );      // Addition and multiplication are
          intmul( z, eax );   // commutative; therefore the order
          intmul( x, eax );   // of evaluation does not matter.
          mov( eax, w );

There is one exception to the associativity rule. If an expression involves 
multiplication and division, it is generally better to perform the multiplica-
tion first. For example, given an expression of the form

          w := x / y * z // Note: This is (x * z) / y, not x / (y * z).
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it is usually better to compute x * z and then divide the result by y rather than 
divide x by y and multiply the quotient by z. There are two reasons why this 
approach is better. First, remember that the imul instruction always produces 
a 64-bit result (assuming 32-bit operands). By doing the multiplication first, 
you automatically sign extend the product into the EDX register so you do not 
have to sign extend EAX prior to the division. A second reason for doing the 
multiplication first is to increase the accuracy of the computation. Remember, 
(integer) division often produces an inexact result. For example, if you com-
pute 5/2 you will get the value 2, not 2.5. Computing (5 / 2) * 3 produces 6. 
However, if you compute (5 * 3) / 2 you get the value 7, which is a little closer 
to the real quotient (7.5). Therefore, if you encounter an expression of the 
form

          w := x / y * z;

you can usually convert it to the following assembly code:

          mov( x, eax );
          imul( z, eax );          // Note the use of imul, not intmul!
          idiv( y, edx:eax );
          mov( eax, w );

Of course, if the algorithm you’re encoding depends on the truncation 
effect of the division operation, you cannot use this trick to improve the 
algorithm. Moral of the story: Always make sure you fully understand any 
expression you are converting to assembly language. Obviously, if the semantics 
dictate that you must perform the division first, then do so.

Consider the following Pascal statement:

          w := x - y * x;

This is similar to a previous example except it uses subtraction rather 
than addition. Because subtraction is not commutative, you cannot compute 
y * x and then subtract x from this result. This tends to complicate the con-
version a tiny amount. Rather than use a straightforward multiplication-and-
addition sequence, you’ll have to load x into a register, multiply y and x 
leaving their product in a different register, and then subtract this product 
from x. For example:

          mov( x, ebx );
          mov( y, eax );
          intmul( x, eax );
          sub( eax, ebx );
          mov( ebx, w );
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This is a trivial example that demonstrates the need for temporary variables 
in an expression. This code uses the EBX register to temporarily hold a copy 
of x until it computes the product of y and x. As your expressions increase in 
complexity, the need for temporaries grows. Consider the following Pascal 
statement:

          w := (a + b) * (y + z);

Following the normal rules of algebraic evaluation, you compute the sub-
expressions inside the parentheses (that is, the two subexpressions with the 
highest precedence) first and set their values aside. When you’ve computed 
the values for both subexpressions, you can compute their sum. One way to 
deal with a complex expression like this one is to reduce it to a sequence of 
simple expressions whose results wind up in temporary variables. For example, 
you can convert the single expression above into the following sequence:

          temp1 := a + b;
          temp2 := y + z;
          w := temp1 * temp2;

Because converting simple expressions to assembly language is quite easy, 
it’s now a snap to compute the former complex expression in assembly. The 
code is:

          mov( a, eax );
          add( b, eax );
          mov( eax, temp1 );
          mov( y, eax );
          add( z, eax );
          mov( eax, temp2 );
          mov( temp1, eax );
          intmul( temp2, eax );
          mov( eax, w );

Of course, this code is grossly inefficient, and it requires that you declare 
a couple of temporary variables in your data segment. However, it is very easy 
to optimize this code by keeping temporary variables, as much as possible, in 
80x86 registers. By using 80x86 registers to hold the temporary results, this 
code becomes:

          mov( a, eax );
          add( b, eax );
          mov( y, ebx );
          add( z, ebx );
          intmul( ebx, eax );
          mov( eax, w );
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Here’s yet another example:

          x := (y + z) * (a - b) / 10;

This can be converted to a set of four simple expressions:

          temp1 := (y + z)
          temp2 := (a - b)
          temp1 := temp1 * temp2
          X := temp1 / 10

You can convert these four simple expressions into the following assembly 
language statements:

          mov( y, eax ); // Compute eax = y + z
          add( z, eax );
          mov( a, ebx ); // Compute ebx = a - b
          sub( b, ebx );
          imul( ebx, eax ); // This also sign extends eax into edx.
          idiv( 10, edx:eax );
          mov( eax, x );

The most important thing to keep in mind is that you should attempt to 
keep temporary values in registers. Remember, accessing an 80x86 register is 
much more efficient than accessing a memory location. Use memory loca-
tions to hold temporaries only if you’ve run out of registers.

Ultimately, converting a complex expression to assembly language is little 
different than solving the expression by hand. Instead of actually computing 
the result at each stage of the computation, you simply write the assembly 
code that computes the result. Because you were probably taught to compute 
only one operation at a time, this means that manual computation works on 
“simple expressions” that exist in a complex expression. Of course, convert-
ing those simple expressions to assembly is fairly simple. Therefore, anyone 
who can solve a complex expression by hand can convert it to assembly lan-
guage following the rules for simple expressions.

6.2.4 Commutative Operators

If op represents some operator, that operator is commutative if the following 
relationship is always true:

          (A op B) = (B op A)

As you saw in the previous section, commutative operators are nice 
because the order of their operands is immaterial, and this lets you rearrange 
a computation, often making that computation easier or more efficient. 
Often, rearranging a computation allows you to use fewer temporary variables. 
Whenever you encounter a commutative operator in an expression, you should 
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always check to see if there is a better sequence you can use to improve the size 
or speed of your code. Tables 6-6 and 6-7, respectively, list the commutative and 
noncommutative operators you typically find in high-level languages.  

6.3 Logical (Boolean) Expressions

Consider the following expression from a Pascal program:

     b := ((x = y) and (a <= c)) or ((z - a) <> 5);

b is a boolean variable and the remaining variables are all integers.
How do we represent boolean variables in assembly language? Although 

it takes only a single bit to represent a boolean value, most assembly language 
programmers allocate a whole byte or word for this purpose (thus, HLA also 
allocates a whole byte for a boolean variable). With a byte, there are 256 pos-
sible values we can use to represent the two values true and false. So which 
two values (or which two sets of values) do we use to represent these bool-
ean values? Because of the machine’s architecture, it’s much easier to test for 
conditions like zero or not zero and positive or negative rather than to test for 
one of two particular boolean values. Most programmers (and, indeed, 
some programming languages like C) choose 0 to represent false and any-
thing else to represent true. Some people prefer to represent true and false 
with 1 and 0 (respectively) and not allow any other values. Others select all 

Table 6-6: Some Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

and && or & Logical or bitwise and

or || or | Logical or bitwise or

xor ^ (Logical or) bitwise exclusive-or

= == Equality

<> != Inequality

Table 6-7: Some Common Noncommutative Binary Operators

Pascal C/C++ Description

- - Subtraction

/ or div / Division

mod % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal
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1 bits ($FFFF_FFFF, $FFFF, or $FF) for true and 0 for false. You could also use 
a positive value for true and a negative value for false. All these mechanisms 
have their advantages and drawbacks.

Using only 0 and 1 to represent false and true offers two very big advan-
tages: (1) The setcc instructions produce these results, so this scheme is 
compatible with those instructions; (2) the 80x86 logical instructions (and, or, 
xor, and, to a lesser extent, not) operate on these values exactly as you would 
expect. That is, if you have two boolean variables A and B, then the following 
instructions perform the basic logical operations on these two variables:

// c = a AND b;

     mov( a, al );
     and( b, al );
     mov( al, c );

// c = a OR b;

     mov( a, al );
     or( b, al );
     mov( al, c );

// c = a XOR b;

     mov( a, al );
     xor( b, al );
     mov( al, c );

// b = NOT a;

     mov( a, al );     // Note that the NOT instruction does not
     not( al ); // properly compute al = NOT al by itself.
     and( 1, al );     // I.e., (NOT 0) does not equal one. The AND
     mov( al, b );     // instruction corrects this problem.

     mov( a, al );     // Another way to do b = NOT a;
     xor( 1, al );     // Inverts bit 0.
     mov( al, b );

Note, as pointed out above, that the not instruction will not properly 
compute logical negation. The bitwise not of 0 is $FF and the bitwise not of 1 
is $FE. Neither result is 0 or 1. However, by anding the result with 1 you get the 
proper result. Note that you can implement the not operation more efficiently 
using the xor( 1, ax ); instruction because it affects only the L.O. bit.

As it turns out, using 0 for false and anything else for true has a lot of 
subtle advantages. Specifically, the test for true or false is often implicit in the 
execution of any logical instruction. However, this mechanism suffers from a 
very big disadvantage: You cannot use the 80x86 and, or, xor, and not instruc-
tions to implement the boolean operations of the same name. Consider the 
two values $55 and $AA. They’re both nonzero so they both represent the 
value true. However, if you logically and $55 and $AA together using the 80x86 
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and instruction, the result is 0. True and true should produce true, not false. 
Although you can account for situations like this, it usually requires a few 
extra instructions and is somewhat less efficient when computing boolean 
operations.

A system that uses nonzero values to represent true and 0 to represent 
false is an arithmetic logical system. A system that uses the two distinct values like 
0 and 1 to represent false and true is called a boolean logical system, or simply a 
boolean system. You can use either system, as convenient. Consider again 
the boolean expression

     b := ((x = y) and (a <= d)) or ((z - a) <> 5);

The simple expressions resulting from this expression might be:

          mov( x, eax );
          cmp( y, eax );
          sete( al );       // al := x = y;

          mov( a, ebx );
          cmp( ebx, d );
          setle( bl );     // bl := a <= d;
          and( al, bl );   // bl := (x = y) and (a <= d);

          mov( z, eax );
          sub( a, eax );
          cmp( eax, 5 );
          setne( al );
          or( bl, al );     // al := ((x = y) and (a <= d)) or ((z - a) <> 5);
          mov( al, b );

When working with boolean expressions don’t forget that you might be 
able to optimize your code by simplifying those boolean expressions. You can 
use algebraic transformations to help reduce the complexity of an expression. 
In the chapter on control structures, you’ll also see how to use control flow 
to calculate a boolean result. This is generally quite a bit more efficient than 
using complete boolean evaluation as the examples in this section teach.

6.4 Machine and Arithmetic Idioms

An idiom is an idiosyncrasy. Several arithmetic operations and 80x86 instruc-
tions have idiosyncrasies that you can take advantage of when writing assembly 
language code. Some people refer to the use of machine and arithmetic idioms 
as “tricky programming” that you should always avoid in well-written programs. 
While it is wise to avoid tricks just for the sake of tricks, many machine and 
arithmetic idioms are well known and commonly found in assembly language 
programs. Some of them are little more than tricks, but a good number of 
them are simply “tricks of the trade.” This text cannot even begin to present 
all of the idioms in common use today; they are too numerous and the list is 
constantly changing. Nevertheless, there are some very important idioms that 
you will see all the time, so it makes sense to discuss those.
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6.4.1 Multiplying without mul, imul, or intmul

When multiplying by a constant, you can sometimes write faster code by using 
shifts, additions, and subtractions in place of multiplication instructions.

Remember, a shl instruction computes the same result as multiplying the 
specified operand by 2. Shifting to the left two bit positions multiplies the 
operand by 4. Shifting to the left three bit positions multiplies the operand 
by 8. In general, shifting an operand to the left n bits multiplies it by 2n. You 
can multiply any value by some constant using a series of shifts and additions 
or shifts and subtractions. For example, to multiply the AX register by 10, you 
need only multiply it by 8 and then add in two times the original value. That 
is, 10 * ax = 8 * ax + 2 * ax. The code to accomplish this is:

          shl( 1, ax );          // Multiply ax by two.
          mov( ax, bx);          // Save 2*ax for later.
          shl( 2, ax );          // Multiply ax by eight (*4 really, 

// but ax contains *2).
          add( bx, ax );         // Add in ax*2 to ax*8 to get ax*10.

Many x86 processors can multiply the AX register (or just about any reg-
ister, for that matter) by various constant values much faster by using shl than 
by using the mul instruction. This may seem hard to believe because it takes 
only one instruction to compute this product:

          intmul( 10, ax );

However, if you look at the instruction timings, the shift and add example 
above requires fewer clock cycles on many processors in the 80x86 family than 
the mul instruction. Of course, the code is somewhat larger (by a few bytes), 
but the performance improvement is usually worth it.

You can also use subtraction with shifts to perform a multiplication oper-
ation. Consider the following multiplication by 7:

          mov( eax, ebx );             // Save eax * 1
          shl( 3, eax );               // eax = eax * 8
          sub( ebx, eax );             // eax * 8 - eax * 1 is eax * 7

A common error beginning assembly language programmers make is 
subtracting or adding 1 or 2 rather than eax * 1 or eax * 2. The following does 
not compute eax * 7:

          shl( 3, eax );
          sub( 1, eax );

It computes (8 * eax) - 1, something entirely different (unless, of course, 
EAX = 1). Beware of this pitfall when using shifts, additions, and subtractions 
to perform multiplication operations.
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You can also use the lea instruction to compute certain products. The 
trick is to use the scaled index addressing modes. The following examples 
demonstrate some simple cases:

          lea( eax, [ecx][ecx] );       // eax := ecx * 2
          lea( eax, [eax][eax*2] );     // eax := eax * 3
          lea( eax, [eax*4] );          // eax := eax * 4
          lea( eax, [ebx][ebx*4] );     // eax := ebx * 5
          lea( eax, [eax*8] );          // eax := eax * 8
          lea( eax, [edx][edx*8] );     // eax := edx * 9

6.4.2 Division Without div or idiv

Just as the shl instruction is useful for simulating a multiplication by a power 
of 2, the shr and sar instructions can simulate a division by a power of 2. 
Unfortunately, you cannot easily use shifts, additions, and subtractions to per-
form a division by an arbitrary constant. Therefore, keep in mind that this 
trick is useful only when dividing by powers of 2. Also, don’t forget that the sar 
instruction rounds towards negative infinity rather than toward 0; this is not 
the way the idiv instruction operates (it rounds toward 0).

Another way to perform division is to use the multiply instructions. You 
can divide by some value by multiplying by its reciprocal. Because the multiply 
instruction is faster than the divide instruction, multiplying by a reciprocal is 
usually faster than division.

Now you’re probably wondering, “How does one multiply by a reciprocal 
when the values we’re dealing with are all integers?” The answer, of course, is 
that we must cheat to do this. If you want to multiply by 1/10, there is no way 
you can load the value 1/10 into an 80x86 integer register prior to perform-
ing the multiplication. However, we could multiply 1/10 by 10, perform the 
multiplication, and then divide the result by 10 to get the final result. Of 
course, this wouldn’t buy you anything; in fact, it would make things worse 
because you’re now doing a multiplication by 10 as well as a division by 10. 
However, suppose you multiply 1/10 by 65,536 (6,553), perform the multi-
plication, and then divide by 65,536. This would still perform the correct 
operation, and, as it turns out, if you set up the problem correctly, you can get 
the division operation for free. Consider the following code that divides AX 
by 10:

          mov( 6554, dx );          // 6,554 = round( 65,536/10 )
          mul( dx, ax );

This code leaves AX/10 in the DX register.
To understand how this works, consider what happens when you multiply 

AX by 65,536 ($1_0000). This simply moves AX into DX and sets AX to 0 (a 
multiply by $1_0000 is equivalent to a shift left by 16 bits). Multiplying by 6,554 
(65,536 divided by 10) puts AX divided by 10 into the DX register. Because 
mul is faster than div, this technique runs a little faster than using a division.
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Multiplying by a reciprocal works well when you need to divide by a con-
stant. You could even use it to divide by a variable, but the overhead to compute 
the reciprocal pays off only if you perform the division many, many times 
(by the same value).

6.4.3 Implementing Modulo-N Counters with and

If you want to implement a counter variable that counts up to 2n − 1 and then 
resets to 0, simply use the following code:

          inc( CounterVar );
          and( nBits, CounterVar );

where nBits is a binary value containing n bits containing ones right justified 
in the number. For example, to create a counter that cycles between 0 and 15 
(24 − 1), you could use the following:

          inc( CounterVar );
          and( %00001111, CounterVar );

6.5 Floating-Point Arithmetic

When the 8086 CPU first appeared in the late 1970s, semiconductor technology 
was not to the point where Intel could put floating-point instructions directly 
on the 8086 CPU. Therefore, Intel devised a scheme whereby it could use a 
second chip to perform the floating-point calculations—the floating-point 
unit (or FPU).1 By the release of the Intel Pentium chip, semiconductor tech-
nology had advanced to the point that the FPU was fully integrated onto the 
80x86 CPU. Therefore, almost all modern 80x86 CPU devices fully support 
floating-point arithmetic directly on the CPU.

6.5.1 FPU Registers

The 80x86 FPUs add 13 registers to the 80x86: eight floating-point data reg-
isters, a control register, a status register, a tag register, an instruction pointer, 
and a data pointer. The data registers are similar to the 80x86’s general-purpose 
register set insofar as all floating-point calculations take place in these registers. 
The control register contains bits that let you decide how the FPU handles 
certain degenerate cases like rounding of inaccurate computations; it also 
contains bits that control precision and so on. The status register is similar to 
the 80x86’s flags register; it contains the condition code bits and several other 
floating-point flags that describe the state of the FPU. The tag register con-
tains several groups of bits that determine the state of the value in each of the 
eight floating-point data registers. The instruction and data pointer registers 

1 Intel has also referred to this device as the Numeric Data Processor (NDP), Numeric Processor 
Extension (NPX), and math coprocessor.
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contain certain state information about the last floating-point instruction 
executed. We will not consider the last three registers here; see the Intel doc-
umentation for more details.

6.5.1.1 FPU Data Registers

The FPUs provide eight 80-bit data registers organized as a stack. This is a sig-
nificant departure from the organization of the general-purpose registers on 
the 80x86 CPU. HLA refers to these registers as ST0, ST1, . . . ST7.

The biggest difference between the FPU register set and the 80x86 register 
set is the stack organization. On the 80x86 CPU, the AX register is always the 
AX register, no matter what happens. On the FPU, however, the register set is 
an eight-element stack of 80-bit floating-point values (see Figure 6-1).

Figure 6-1: FPU floating-point register stack

ST0 refers to the item on the top of the stack, ST1 refers to the next item 
on the stack, and so on. Many floating-point instructions push and pop items 
on the stack; therefore, ST1 will refer to the previous contents of ST0 after 
you push something onto the stack. It will take some thought and practice to 
get used to the fact that the register numbers change, but this is an easy prob-
lem to overcome.

6.5.1.2 The FPU Control Register

When Intel designed the 80x87 (and, essentially, the IEEE floating-point 
standard), there were no standards in floating-point hardware. Different 
(mainframe and mini) computer manufacturers all had different and incom-
patible floating-point formats. Unfortunately, several applications had been 
written taking into account the idiosyncrasies of these different floating-point 
formats. Intel wanted to design an FPU that could work with the majority of 
the software out there (keep in mind that the IBM-PC was three to four years 
away when Intel began designing the 8087, so Intel couldn’t rely on that 
“mountain” of software available for the PC to make its chip popular). Unfor-
tunately, many of the features found in these older floating-point formats 
were mutually incompatible. For example, in some floating-point systems 
rounding would occur when there was insufficient precision; in others, trun-
cation would occur. Some applications would work with one floating-point 
system but not with the other. Intel wanted as many applications as possible to 

ST0
ST1
ST2
ST3
ST4
ST5
ST6
ST7

79 63 0
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work with as few changes as possible on its 80x87 FPUs, so it added a special 
register, the FPU control register, that lets the user choose one of several possi-
ble operating modes for the FPU.

The 80x87 control register contains 16 bits organized as shown in Figure 6-2.

Figure 6-2: FPU control register

Bits 10 and 11 of the FPU control register provide rounding control 
according to the values appearing in Table 6-8.

The 00 setting is the default. The FPU rounds up values above one-half 
of the least significant bit. It rounds down values below one-half of the least 
significant bit. If the value below the least significant bit is exactly one-half 
of the least significant bit, then the FPU rounds the value toward the value 
whose least significant bit is 0. For long strings of computations, this provides 
a reasonable, automatic way to maintain maximum precision.

The round-up and round-down options are present for those computa-
tions where it is important to keep track of the accuracy during a computation. 
By setting the rounding control to round down and performing the operation, 

Table 6-8: Rounding Control

Bits 10 & 11 Function

00 To nearest or even

01 Round down

10 Round up

11 Truncate

Rounding 
Control

Precision
Control Exception Masks

11 10 9 8 5 0

Round:
00 - To nearest or even
01 - Down
10 - Up
11 - Truncate result

00 - 24 bits
01 - Reserved
10 - 53 bits
11 - 64 bits

Reserved Precision
Underflow
Overflow
Zero Divide
Denormalized
Invalid Operation
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then repeating the operation with the rounding control set to round up, you 
can determine the minimum and maximum ranges between which the true 
result will fall.

The truncate option forces all computations to truncate any excess bits 
during the computation. You will rarely use this option if accuracy is impor-
tant to you. However, if you are porting older software to the FPU, you might 
use this option to help when porting the software. One place where this option 
is extremely useful is when converting a floating-point value to an integer. 
Because most software expects floating-point-to-integer conversions to truncate 
the result, you will need to use the truncation/rounding mode to achieve this.

Bits 8 and 9 of the control register specify the precision during computa-
tion. This capability is provided to allow compatibility with older software as 
required by the IEEE 754 standard. The precision control bits use the values 
in Table 6-9.

Some CPUs may operate faster with floating-point values whose precision 
is 53 bits (i.e., 64-bit floating-point format) rather than 64 bits (i.e., 80-bit 
floating-point format). Please see the documentation for your specific pro-
cessor for details. Generally, the CPU defaults these bits to %11 to select the 
64-bit mantissa precision.

Bits 0..5 are the exception masks. These are similar to the interrupt enable 
bit in the 80x86’s flags register. If these bits contain a 1, the corresponding 
condition is ignored by the FPU. However, if any bit contains 0, and the cor-
responding condition occurs, then the FPU immediately generates an interrupt 
so the program can handle the degenerate condition (typically, this would 
wind up raising an HLA exception; see the excepts.hhf header file for the 
exception values).

Bit 0 corresponds to an invalid operation error. This generally occurs as 
the result of a programming error. Situations that raise the invalid operation 
exception (ex.fInvalidOperation) include pushing more than eight items onto 
the stack or attempting to pop an item off an empty stack, taking the square 
root of a negative number, or loading a nonempty register.

Bit 1 masks the denormalized interrupt that occurs whenever you try to 
manipulate denormalized values. Denormalized exceptions occur when you 
load arbitrary extended-precision values into the FPU or work with very small 
numbers just beyond the range of the FPU’s capabilities. Normally, you would 
probably not enable this exception. If you enable this exception and the FPU 
generates this interrupt, the HLA runtime system raises the ex.fDenormal 
exception.

Table 6-9: Mantissa Precision Control Bits

Bits 8 & 9 Precision Control

00 24 bits

01 Reserved

10 53 bits

11 64 bits
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Bit 2 masks the zero divide exception. If this bit contains 0, the FPU will 
generate an interrupt if you attempt to divide a nonzero value by 0. If you do 
not enable the zero division exception, the FPU will produce NaN (not a number) 
whenever you perform a zero division. It’s probably a good idea to enable this 
exception by programming a 0 into this bit. Note that if your program generates 
this interrupt, the HLA runtime system will raise the ex.fDivByZero exception.

Bit 3 masks the overflow exception. The FPU will raise the overflow excep-
tion if a calculation overflows or if you attempt to store a value that is too large 
to fit into the destination operand (for example, storing a large extended-
precision value into a single-precision variable). If you enable this exception 
and the FPU generates this interrupt, the HLA runtime system raises the 
ex.fOverflow exception.

Bit 4, if set, masks the underflow exception. Underflow occurs when the 
result is too small to fit in the destination operand. Like overflow, this exception 
can occur whenever you store a small extended-precision value into a smaller 
variable (single or double precision) or when the result of a computation is 
too small for extended precision. If you enable this exception and the FPU 
generates this interrupt, the HLA runtime system raises the ex.fUnderflow 
exception.

Bit 5 controls whether the precision exception can occur. A precision 
exception occurs whenever the FPU produces an imprecise result, generally 
the result of an internal rounding operation. Although many operations will 
produce an exact result, many more will not. For example, dividing 1 by 10 
will produce an inexact result. Therefore, this bit is usually 1 because inexact 
results are very common. If you enable this exception and the FPU generates 
this interrupt, the HLA runtime system raises the ex.InexactResult exception.

Bits 6..7 and 12..15 in the control register are currently undefined and 
reserved for future use (bits 7 and 12 were valid on older FPUs but are no 
longer used).

The FPU provides two instructions, fldcw (load control word) and fstcw 
(store control word), that let you load and store the contents of the control 
register. The single operand to these instructions must be a 16-bit memory 
location. The fldcw instruction loads the control register from the specified 
memory location. fstcw stores the control register into the specified memory 
location. The syntax for these instructions is:

fldcw( mem16 );
fstcw( mem16 );

Here’s some example code that sets the rounding control to “truncate 
result” and sets the rounding precision to 24 bits:

static
     fcw16: word;
          .
          .
          .
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          fstcw( fcw16 );
          mov( fcw16, ax );
          and( $f0ff, ax );      // Clears bits 8-11.
          or( $0c00, ax );       // Rounding control=%11, Precision = %00.
          mov( ax, fcw16 );
          fldcw( fcw16 );

6.5.1.3 The FPU Status Register

The FPU status register provides the status of the FPU at the instant you read 
it. The fstsw instruction stores the16-bit floating-point status register into a 
word variable. The status register is a 16-bit register; its layout appears in 
Figure 6-3.

Figure 6-3: The FPU status register

Bits 0 through 5 are the exception flags. These bits appear in the same 
order as the exception masks in the control register. If the corresponding 
condition exists, then the bit is set. These bits are independent of the excep-
tion masks in the control register. The FPU sets and clears these bits regardless 
of the corresponding mask setting.

Bit 6 indicates a stack fault. A stack fault occurs whenever there is a stack 
overflow or underflow. When this bit is set, the C1 condition code bit deter-
mines whether there was a stack overflow (C1 = 1) or stack underflow (C1 = 0) 
condition.

Bit 7 of the status register is set if any error condition bit is set. It is the log-
ical or of bits 0 through 5. A program can test this bit to quickly determine if 
an error condition exists.

Bits 8, 9, 10, and 14 are the coprocessor condition code bits. Various 
instructions set the condition code bits, as shown in Tables 6-10 and 6-11, 
respectively. 

Exception Flags

11 10 9 8 5 0

Precision
Underflow
Overflow
Zero Divide
Denormalized
Invalid Operation

7 6 4 3 2 113 1215 14

Stack Fault
Exception Flag

Busy C3 C2 C1 C0Top of Stack 
Pointer

Condition Codes
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Table 6-10: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition Code Bits Condition

C3 C2 C1 C0

fcom
fcomp
fcompp
ficom
ficomp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
ST or source undefined

ftst 0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST is positive
ST is negative
ST is 0 (+ or −)
ST is uncomparable

fxam 0
0
0
0
1
1
1
1
0
0
0
0
1

0
0
1
1
0
0
1
1
0
0
1
1
X

0
1
0
1
0
1
0
1
0
1
0
1
X

0
0
0
0
0
0
0
1
1
1
1
1

+ Unnormalized
− Unnormalized
+ Normalized
− Normalized
+ 0
− 0
+ Denormalized
− Denormalized
+ NaN
− NaN
+ Infinity
− Infinity
Empty register

fucom
fucomp
fucompp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
Unordered

Table 6-11: Condition Code Interpretations (X = “Don’t care”)

Instruction Condition Code Bits Condition

C3 C2 C1 C0

fcom
fcomp
fcompp
ficom
ficomp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
ST or source undefined

ftst 0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST is positive
ST is negative
ST is 0 (+ or −)
ST is uncomparable
386 Chapte r  6



AAL2E_03.book  Page 387  Thursday, February 18, 2010  12:49 PM
Bits 11–13 of the FPU status register provide the register number of the 
top of stack. During computations, the FPU adds (modulo-8) the logical register 
numbers supplied by the programmer to these three bits to determine the 
physical register number at runtime.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is 
busy. This bit is a historical artifact from the days when the FPU was a separate 
chip; most programs will have little reason to access this bit.

6.5.2 FPU Data Types

The FPU supports seven different data types: three integer types, a packed 
decimal type, and three floating-point types. The integer type supports 64-bit 
integers, although it is often faster to do the 64-bit arithmetic using the inte-
ger unit of the CPU (see Chapter 8). Certainly it is faster to do 16-bit and 32-
bit integer arithmetic using the standard integer registers. The packed deci-
mal type provides a 17-digit signed decimal (BCD) integer. The primary 
purpose of the BCD format is to convert between strings and floating-point 
values. The remaining three data types are the 32-bit, 64-bit, and 80-bit float-
ing-point data types. The 80x87 data types appear in Figures 6-4, 6-5, and 6-6.

C3 C2 C1 C0

fxam 0
0
0
0
1
1
1
1
0
0
0
0
1

0
0
1
1
0
0
1
1
0
0
1
1
X

0
1
0
1
0
1
0
1
0
1
0
1
X

1
0
0
0
0
0
0
0
1
1
1
1
1

+ Unnormalized
− Unnormalized
+ Normalized
− Normalized
+ 0
− 0
+ Denormalized
− Denormalized
+ NaN
− NaN
+ Infinity
− Infinity
Empty register

fucom
fucomp
fucompp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
Unordered

Table 6-11: Condition Code Interpretations (X = “Don’t care”) (continued)

Instruction Condition Code Bits Condition
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Figure 6-4: FPU floating-point formats

Figure 6-5: FPU integer formats

Figure 6-6: FPU packed decimal format

The FPU generally stores values in a normalized format. When a floating-
point number is normalized, the H.O. bit of the mantissa is always 1. In the 
32- and 64-bit floating-point formats, the FPU does not actually store this bit; 
the FPU always assumes that it is 1. Therefore, 32- and 64-bit floating-point 
numbers are always normalized. In the extended-precision 80-bit floating-
point format, the FPU does not assume that the H.O. bit of the mantissa is 1; 
the H.O. bit of the mantissa appears as part of the string of bits.

Normalized values provide the greatest precision for a given number of 
bits. However, there are a large number of nonnormalized values that we 
cannot represent with the 80-bit format. These values are very close to 0 and 
represent the set of values whose mantissa H.O. bit is not 0. The FPUs support 
a special 80-bit form known as denormalized values. Denormalized values allow 
the FPU to encode very small values it cannot encode using normalized val-
ues, but denormalized values offer fewer bits of precision than normalized 

31 23 1615 8 7 0

32-Bit Single-Precision Floating-Point Format

64-Bit Single-Precision Floating-Point Format

8 7 05263
... ...

80-Bit Single-Precision Floating-Point Format

8 7 06479
... ...

31 1615 8 7 0

32-Bit Two’s Complement Integer

64-Bit Two’s Complement Integer

8 7 063
... ...

16-Bit Two’s Complement Integer

15 8 7 0

80-Bit Packed Decimal Integer (BCD)

79 8 4 0
...

72 68 63 59

Sign Unused D17 D16 D15 D14 D2 D1 D0
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values. Therefore, using denormalized values in a computation may intro-
duce some slight inaccuracy into a computation. Of course, this is always 
better than underflowing the denormalized value to 0 (which could make the 
computation even less accurate), but you must keep in mind that if you work 
with very small values you may lose some accuracy in your computations. Note 
that the FPU status register contains a bit you can use to detect when the FPU 
uses a denormalized value in a computation.

6.5.3 The FPU Instruction Set

The FPU adds many instructions to the 80x86 instruction set. We can classify 
these instructions as data movement instructions, conversions, arithmetic 
instructions, comparisons, constant instructions, transcendental instructions, 
and miscellaneous instructions. The following sections describe each of the 
instructions in these categories.

6.5.4 FPU Data Movement Instructions

The data movement instructions transfer data between the internal FPU 
registers and memory. The instructions in this category are fld, fst, fstp, and 
fxch. The fld instruction always pushes its operand onto the floating-point 
stack. The fstp instruction always pops the top of stack after storing the top of 
stack (TOS). The remaining instructions do not affect the number of items 
on the stack.

6.5.4.1 The fld Instruction

The fld instruction loads a 32-bit, 64-bit, or 80-bit floating-point value onto 
the stack. This instruction converts 32- and 64-bit operands to an 80-bit 
extended-precision value before pushing the value onto the floating-point 
stack.

The fld instruction first decrements the TOS pointer (bits 11–13 of the 
status register) and then stores the 80-bit value in the physical register speci-
fied by the new TOS pointer. If the source operand of the FLD instruction is 
a floating-point data register, sti, then the actual register the FPU uses for the 
load operation is the register number before decrementing the TOS pointer. 
Therefore, fld( st0 ); duplicates the value on the top of the stack.

The fld instruction sets the stack fault bit if stack overflow occurs. It sets 
the denormalized exception bit if you load an 80-bit denormalized value. It 
sets the invalid operation bit if you attempt to load an empty floating-point 
register onto the top of stack (or perform some other invalid operation).

Here are some examples:

          fld( st1 );
          fld( real32_variable );
          fld( real64_variable );
          fld( real80_variable );
          fld( (type real64 [ebx]) );
          fld( real_constant );
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Note that there is no way to directly load a 32-bit integer register onto the 
floating-point stack, even if that register contains a real32 value. To accom-
plish this, you must first store the integer register into a memory location; 
then you can push that memory location onto the FPU stack using the fld 
instruction. For example:

mov( eax, tempReal32 ); // Save real32 value in eax to memory.
fld( tempReal32 ); // Push that real value onto the FPU stack.

Note that loading a constant via fld is actually an HLA extension. The 
FPU doesn’t support this instruction type. HLA creates a real80 object in the 
constants segment and uses the address of this memory object as the true 
operand for fld.

6.5.4.2 The fst and fstp Instructions

The fst and fstp instructions copy the value on the top of the floating-point 
stack to another floating-point register or to a 32-, 64-, or 80-bit memory vari-
able. When copying data to a 32- or 64-bit memory variable, the FPU rounds 
the 80-bit extended-precision value on the top of stack to the smaller format 
as specified by the rounding control bits in the FPU control register.

The fstp instruction pops the value off the top of the stack when moving 
it to the destination location. It does this by incrementing the TOS pointer in 
the status register after accessing the data in ST0. If the destination operand 
is a floating-point register, the FPU stores the value at the specified register 
number before popping the data off the top of the stack.

Executing an fstp( st0 ); instruction effectively pops the data off the top 
of stack with no data transfer. Here are some examples:

          fst( real32_variable );
          fst( real64_variable );
          fst( realArray[ ebx*8 ] );
          fst( st2 );
          fstp( st1 );

The last example above effectively pops ST1 while leaving ST0 on the top 
of stack.

The fst and fstp instructions will set the stack exception bit if a stack 
underflow occurs (attempting to store a value from an empty register stack). 
They will set the precision bit if there is a loss of precision during the store 
operation (this will occur, for example, when storing an 80-bit extended-
precision value into a 32- or 64-bit memory variable and some bits are lost 
during conversion). They will set the underflow exception bit when storing 
an 80-bit value into a 32- or 64-bit memory variable, but the value is too small 
to fit into the destination operand. Likewise, these instructions will set the 
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overflow exception bit if the value on the top of stack is too big to fit into a 32- 
or 64-bit memory variable. The fst and fstp instructions set the denormalized 
flag when you try to store a denormalized value into an 80-bit register or vari-
able.2 They set the invalid operation flag if an invalid operation (such as 
storing into an empty register) occurs. Finally, these instructions set the C1 
condition bit if rounding occurs during the store operation (this occurs only 
when storing into a 32- or 64-bit memory variable and you have to round the 
mantissa to fit into the destination).

NOTE Because of an idiosyncrasy in the FPU instruction set related to the encoding of the 
instructions, you cannot use the fst instruction to store data into a real80 memory 
variable. You may, however, store 80-bit data using the fstp instruction.

6.5.4.3 The fxch Instruction

The fxch instruction exchanges the value on the top of stack with one of the 
other FPU registers. This instruction takes two forms: one with a single FPU 
register as an operand and the second without any operands. The first form 
exchanges the top of stack with the specified register. The second form of 
fxch swaps the top of stack with ST1.

Many FPU instructions, for example, fsqrt, operate only on the top of the 
register stack. If you want to perform such an operation on a value that is not 
on the top of stack, you can use the fxch instruction to swap that register with 
TOS, perform the desired operation, and then use the fxch to swap the TOS 
with the original register. The following example takes the square root of ST2:

          fxch( st2 );
          fsqrt();
          fxch( st2 );

The fxch instruction sets the stack exception bit if the stack is empty. It 
sets the invalid operation bit if you specify an empty register as the operand. 
This instruction always clears the C1 condition code bit.

6.5.5 Conversions

The FPU performs all arithmetic operations on 80-bit real quantities. In a 
sense, the fld and fst/fstp instructions are conversion instructions because 
they automatically convert between the internal 80-bit real format and the 32- 
and 64-bit memory formats. Nonetheless, we’ll simply classify them as data 
movement operations, rather than conversions, because they are moving real 
values to and from memory. The FPU provides six other instructions that con-
vert to or from integer or binary-coded decimal (BCD) format when moving 
data. These instructions are fild, fist, fistp, fisttp, fbld, and fbstp.

2 Storing a denormalized value into a 32- or 64-bit memory variable will always set the underflow 
exception bit.
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6.5.5.1 The fild Instruction

The fild (integer load) instruction converts a 16-, 32-, or 64-bit two’s comple-
ment integer to the 80-bit extended-precision format and pushes the result 
onto the stack. This instruction always expects a single operand. This operand 
must be the address of a word, double-word, or quad-word integer variable. 
You cannot specify one of the 80x86’s 16- or 32-bit general-purpose registers. 
If you want to push the value of an 80x86 general-purpose register onto the 
FPU stack, you must first store it into a memory variable and then use fild to 
push that memory variable.

The fild instruction sets the stack exception bit and C1 (accordingly) if 
stack overflow occurs while pushing the converted value. Look at these 
examples:

          fild( word_variable );
          fild( dword_val[ ecx*4 ] );
          fild( qword_variable );
          fild( (type int64 [ebx]) );

6.5.5.2 The fist, fistp, and fisttp Instructions

The fist, fistp, and fisttp instructions convert the 80-bit extended-precision 
variable on the top of stack to a 16-, 32-, or 64-bit integer and store the result 
away into the memory variable specified by the single operand. The fist and 
fistp instructions convert the value on TOS to an integer according to the 
rounding setting in the FPU control register (bits 10 and 11). The fisttp 
instruction always does the conversion using the truncation mode. As for the 
fild instruction, the fist, fistp, and fisttp instructions will not let you specify 
one of the 80x86’s general-purpose 16- or 32-bit registers as the destination 
operand.

The fist instruction converts the value on the top of stack to an integer 
and then stores the result; it does not otherwise affect the floating-point register 
stack. The fistp and fisttp instructions pop the value off the floating-point 
register stack after storing the converted value.

These instructions set the stack exception bit if the floating-point register 
stack is empty (this will also clear C1). They set the precision (imprecise 
operation) and C1 bits if rounding occurs (that is, if there is any fractional 
component to the value in ST0). These instructions set the underflow excep-
tion bit if the result is too small (that is, less than 1 but greater than 0 or less 
than 0 but greater than −1). Here are some examples:

          fist( word_var[ ebx*2 ] );
          fist( qword_var );
          fisttp( dword_var );
          fistp( dword_var );

Don’t forget that the fist and fistp instructions use the rounding control 
settings to determine how they will convert the floating-point data to an inte-
ger during the store operation. Be default, the rounding control is usually set 
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to “round” mode; yet most programmers expect fist/fistp to truncate the 
decimal portion during conversion. If you want fist/fistp to truncate floating-
point values when converting them to an integer, you will need to set the 
rounding control bits appropriately in the floating-point control register (or 
use the fisttp instruction to truncate the result regardless of the rounding 
control bits). Here’s an example:

static
     fcw16:         word;
     fcw16_2:       word;
     IntResult:     int32;
          .
          .
          .
          fstcw( fcw16 );
          mov( fcw16, ax );
          or( $0c00, ax );        // Rounding control=%11 (truncate).
          mov( ax, fcw16_2 );     // Store into memory and reload the ctrl word.
          fldcw( fcw16_2 );

          fistp( IntResult );     // Truncate ST0 and store as int32 object.

          fldcw( fcw16 );         // Restore original rounding control.

6.5.5.3 The fbld and fbstp Instructions

The fbld and fbstp instructions load and store 80-bit BCD values. The fbld 
instruction converts a BCD value to its 80-bit extended-precision equivalent and 
pushes the result onto the stack. The fbstp instruction pops the extended-
precision real value on TOS, converts it to an 80-bit BCD value (rounding 
according to the bits in the floating-point control register), and stores the 
converted result at the address specified by the destination memory operand. 
Note that there is no fbst instruction.

The fbld instruction sets the stack exception bit and C1 if stack overflow 
occurs. It sets the invalid operation bit if you attempt to load an invalid BCD 
value. The fbstp instruction sets the stack exception bit and clears C1 if stack 
underflow occurs (the stack is empty). It sets the underflow flag under the 
same conditions as fist and fistp. Look at these examples:

// Assuming fewer than 8 items on the stack, the following
// code sequence is equivalent to an fbst instruction:

          fld( st0 );
          fbstp( tbyte_var );

// The following example easily converts an 80-bit BCD value to
// a 64-bit integer:

          fbld( tbyte_var );
          fist( qword_var );
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These two instructions are especially useful for converting between string 
and floating-point formats. See the floating-point-to-string and string-to-
floating-point conversion routines in the HLA Standard Library for more 
details.

6.5.6 Arithmetic Instructions

The arithmetic instructions make up a small but important subset of the FPU’s 
instruction set. These instructions fall into two general categories: those that 
operate on real values and those that operate on a real and an integer value.

6.5.6.1 The fadd and faddp Instructions

These two instructions take the following forms:

          fadd()
          faddp()
          fadd( st0, sti );
          fadd( sti, st0 );
          faddp( st0, sti );
          fadd( mem_32_64 );
          fadd( real_constant );

The fadd instruction, with no operands, adds the value in ST0 to the value 
in ST1 and stores the result into ST1. The faddp instruction (with no oper-
ands) pops the two values on the top of stack, adds them, and pushes their 
sum back onto the stack.

The next two forms of the fadd instruction, those with two FPU register 
operands, behave like the 80x86’s add instruction. They add the value in the 
source register operand to the value in the destination register operand. Note 
that one of the register operands must be ST0.

The faddp instruction with two operands adds ST0 (which must always be 
the source operand) to the destination operand and then pops ST0. The des-
tination operand must be one of the other FPU registers.

The last form above, fadd with a memory operand, adds a 32- or 64-bit 
floating-point variable to the value in ST0. This instruction will convert the 
32- or 64-bit operands to an 80-bit extended-precision value before perform-
ing the addition. Note that this instruction does not allow an 80-bit memory 
operand.

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, and illegal operation exceptions, as appropriate. If a stack 
fault exception occurs, C1 denotes stack overflow or underflow.

Like fld( real_constant), the fadd( real_constant ) instruction is an HLA 
extension. Note that it creates a 64-bit variable holding the constant value and 
emits the fadd( mem64 ) instruction, specifying the read-only object it creates in 
the constants segment.
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6.5.6.2 The fsub, fsubp, fsubr, and fsurpb Instructions

These four instructions take the following forms:

          fsub()
          fsubp()
          fsubr()
          fsubrp()

          fsub( st0, sti )
          fsub( sti, st0 );
          fsubp( st0, sti );
          fsub( mem_32_64 );
          fsub( real_constant );

          fsubr( st0, sti )
          fsubr( sti, st0 );
          fsubrp( st0, sti );
          fsubr( mem_32_64 );
          fsubr( real_constant );

With no operands, the fsub instruction subtracts ST0 from ST1 and leaves 
the result in ST1. With no operands the fsubp instruction pops ST0 and ST1 
from the register stack, computes st1 - st0 and then pushes the difference 
back onto the stack. The fsubr and fsubrp instructions (reverse subtraction) 
operate in an almost identical fashion except they compute st0 - st1.

With two register operands (source, destination) the fsub instruction com-
putes destination := destination - source. One of the two registers must be 
ST0. With two registers as operands, the fsubp also computes destination := 
destination - source, and then it pops ST0 off the stack after computing the 
difference. For the fsubp instruction, the source operand must be ST0.

With two register operands, the fsubr and fsubrp instructions work in a 
similar fashion to fsub and fsubp, except they compute destination := source -
destination.

The fsub( mem ) and fsubr( mem ) instructions accept a 32- or 64-bit 
memory operand. They convert the memory operand to an 80-bit extended-
precision value and subtract this from ST0 (fsub) or subtract ST0 from this 
value (fsubr) and store the result back into ST0.

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, and illegal operation exceptions, as appropriate. If a stack 
fault exception occurs, C1 denotes stack overflow or underflow.

NOTE The instructions that have real constants as operands aren’t true FPU instructions. 
These are extensions provided by HLA. HLA generates a constant segment memory 
object initialized with the constant’s value.
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6.5.6.3 The fmul and fmulp Instructions

The fmul and fmulp instructions multiply two floating-point values. These 
instructions allow the following forms:

          fmul()
          fmulp()

          fmul( sti, st0 );
          fmul( st0, sti );
          fmul( mem_32_64 );
          fmul( real_constant );

          fmulp( st0, sti );

With no operands, fmul will compute st0 * st1 and store the product into 
ST1. The fmulp instruction, with no operands, will pop ST0 and ST1, multiply 
these values, and push their product back onto the stack. The fmul instructions 
with two register operands compute destination := destination * source. One 
of the registers (source or destination) must be ST0.

The fmulp( st0, sti ) instruction computes sti := sti * st0 and then pops 
ST0. This instruction uses the value for STi before popping ST0. The fmul( mem ) 
instruction requires a 32- or 64-bit memory operand. It converts the specified 
memory variable to an 80-bit extended-precision value and then multiplies 
ST0 by this value.

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, and illegal operation exceptions, as appropriate. If rounding 
occurs during the computation, these instructions set the C1 condition code 
bit. If a stack fault exception occurs, C1 denotes stack overflow or underflow.

NOTE The instruction that has a real constant as its operand isn’t a true FPU instruction. It 
is an extension provided by HLA (see the note at the end of Section 6.5.6.2 for details).

6.5.6.4 The fdiv, fdivp, fdivr, and fdivrp Instructions

These four instructions allow the following forms:

          fdiv()
          fdivp()
          fdivr()
          fdivrp()

          fdiv( sti, st0 );
          fdiv( st0, sti );
          fdivp( st0, sti );

          fdivr( sti, st0 );
          fdivr( st0, sti );
          fdivrp( st0, sti );
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          fdiv( mem_32_64 );
          fdivr( mem_32_64 );
          fdiv( real_constant );
          fdivr( real_constant );

With no operands, the fdivp instruction pops ST0 and ST1, computes 
st1/st0, and pushes the result back onto the stack. The fdiv instruction with 
no operands computes st1 := st1/st0. The fdivr and fdivrp instructions work 
in a similar fashion to fdiv and fdivp except that they compute st0/st1 rather 
than st1/st0.

With two register operands, these instructions compute the following 
quotients:

          fdiv( sti, st0 );          // st0 := st0/sti
          fdiv( st0, sti );          // sti := sti/st0
          fdivp( st0, sti );         // sti := sti/st0 then pop st0
          fdivr( st0, sti );         // st0 := st0/sti
          fdivrp( st0, sti );        // sti := st0/sti then pop st0

The fdivp and fdivrp instructions also pop ST0 after performing the divi-
sion operation. The value for i in these two instructions is computed before 
popping ST0.

These instructions can raise the stack, precision, underflow, overflow, 
denormalized, zero divide, and illegal operation exceptions, as appropriate. 
If rounding occurs during the computation, these instructions set the C1 con-
dition code bit. If a stack fault exception occurs, C1 denotes stack overflow or 
underflow.

Note that the instructions that have real constants as operands aren’t true 
FPU instructions. These are extensions provided by HLA.

6.5.6.5 The fsqrt Instruction  

The fsqrt routine does not allow any operands. It computes the square root of 
the value on top of stack (TOS) and replaces ST0 with this result. The value 
on TOS must be 0 or positive; otherwise fsqrt will generate an invalid opera-
tion exception.

This instruction can raise the stack, precision, denormalized, and invalid 
operation exceptions, as appropriate. If rounding occurs during the compu-
tation, fsqrt sets the C1 condition code bit. If a stack fault exception occurs, 
C1 denotes stack overflow or underflow.

Here’s an example:

// Compute z := sqrt(x**2 + y**2);

          fld( x );                  // Load x.
          fld( st0 );                // Duplicate x on TOS.
          fmulp();                   // Compute x**2.
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          fld( y );                  // Load y.
          fld( st0 );                // Duplicate y.
          fmul();                    // Compute y**2.

          faddp();                   // Compute x**2 + y**2.
          fsqrt();                   // Compute sqrt( x**2 + y**2 ).
          fstp( z );                 // Store result away into z.

6.5.6.6 The fprem and fprem1 Instructions 

The fprem and fprem1 instructions compute a partial remainder. Intel designed 
the fprem instruction before the IEEE finalized its floating-point standard. 
In the final draft of the IEEE floating-point standard, the definition of 
fprem was a little different than Intel’s original design. Unfortunately, Intel 
needed to maintain compatibility with the existing software that used the 
fprem instruction, so it designed a new version to handle the IEEE partial 
remainder operation, fprem1. You should always use fprem1 in new software; 
therefore we will discuss only fprem1 here, although you use fprem in an 
identical fashion.

fprem1 computes the partial remainder of st0/st1. If the difference between 
the exponents of ST0 and ST1 is less than 64, fprem1 can compute the exact 
remainder in one operation. Otherwise you will have to execute the fprem1 
two or more times to get the correct remainder value. The C2 condition code 
bit determines when the computation is complete. Note that fprem1 does not 
pop the two operands off the stack; it leaves the partial remainder in ST0 and 
the original divisor in ST1 in case you need to compute another partial prod-
uct to complete the result.

The fprem1 instruction sets the stack exception flag if there aren’t two values 
on the top of stack. It sets the underflow and denormal exception bits if the 
result is too small. It sets the invalid operation bit if the values on TOS are 
inappropriate for this operation. It sets the C2 condition code bit if the partial 
remainder operation is not complete. Finally, it loads C3, C1, and C0 with bits 0, 
1, and 2 of the quotient, respectively.

An example follows:

// Compute z := x mod y

          fld( y );
          fld( x );
          repeat

               fprem1();
               fstsw( ax );   // Get condition code bits into ax.
               and( 1, ah );  // See if C2 is set.

          until( @z );        // Repeat until C2 is clear.
          fstp( z );          // Store away the remainder.
          fstp( st0 );        // Pop old y value.
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6.5.6.7 The frndint Instruction

The frndint instruction rounds the value on the top of stack (TOS) to the 
nearest integer using the rounding algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the 
TOS (it will also clear C1 in this case). It sets the precision and denormal 
exception bits if there was a loss of precision. It sets the invalid operation flag 
if the value on the TOS is not a valid number. Note that the result on TOS is 
still a floating-point value; it simply does not have a fractional component.

6.5.6.8 The fabs Instruction

fabs computes the absolute value of ST0 by clearing the mantissa sign bit of 
ST0. It sets the stack exception bit and invalid operation bits if the stack is 
empty.

Here’s an example:

// Compute x := sqrt(abs(x));

          fld( x );
          fabs();
          fsqrt();
          fstp( x );

6.5.6.9 The fchs Instruction 

fchs changes the sign of ST0’s value by inverting the mantissa sign bit (that is, 
this is the floating-point negation instruction). It sets the stack exception bit 
and invalid operation bits if the stack is empty. 

Look at this example:

// Compute x := -x if x is positive, x := x if x is negative.
// That is, force x to be a negative value.

          fld( x );
          fabs();
          fchs();
          fstp( x );

6.5.7 Comparison Instructions  

The FPU provides several instructions for comparing real values. The fcom, 
fcomp, and fcompp instructions compare the two values on the top of stack and 
set the condition codes appropriately. The ftst instruction compares the 
value on the top of stack with 0.

Generally, most programs test the condition code bits immediately after a 
comparison. Unfortunately, there are no FPU instructions that test the FPU 
condition codes. Instead, you use the fstsw instruction to copy the floating-
point status register into the AX register; then you can use the sahf instruction 
to copy the AH register into the 80x86’s condition code bits. After doing this, 
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you can test the standard 80x86 flags to check for some condition. This tech-
nique copies C0 into the carry flag, C2 into the parity flag, and C3 into the zero 
flag. The sahf instruction does not copy C1 into any of the 80x86’s flag bits.

Because the sahf instruction does not copy any FPU status bits into the 
sign or overflow flags, you cannot use signed comparison instructions. Instead, 
use unsigned operations (e.g., seta, setb) when testing the results of a floating-
point comparison. Yes, these instructions normally test unsigned values, and 
floating-point numbers are signed values. However, use the unsigned operations 
anyway; the fstsw and sahf instructions set the 80x86 flags register as though 
you had compared unsigned values with the cmp instruction.

The Pentium II and (upward) compatible processors provide an extra set 
of floating-point comparison instructions that directly affect the 80x86 condi-
tion code flags. These instructions circumvent having to use fstsw and sahf 
to copy the FPU status into the 80x86 condition codes. These instructions 
include fcomi and fcomip. You use them just like the fcom and fcomp instruc-
tions, except, of course, you do not have to manually copy the status bits to 
the FLAGS register.

6.5.7.1 The fcom, fcomp, and fcompp Instructions

The fcom, fcomp, and fcompp instructions compare ST0 to the specified operand 
and set the corresponding FPU condition code bits based on the result of the 
comparison. The legal forms for these instructions are:

          fcom()
          fcomp()
          fcompp()

          fcom( sti )
          fcomp( sti )

          fcom( mem_32_64 )
          fcomp( mem_32_64 )
          fcom( real_constant )
          fcomp( real_constant )

With no operands, fcom, fcomp, and fcompp compare ST0 against ST1 and 
set the FPU flags accordingly. In addition, fcomp pops ST0 off the stack and 
fcompp pops both ST0 and ST1 off the stack.

With a single-register operand, fcom and fcomp compare ST0 against the 
specified register. fcomp also pops ST0 after the comparison.

With a 32- or 64-bit memory operand, the fcom and fcomp instructions 
convert the memory variable to an 80-bit extended-precision value and then 
compare ST0 against this value, setting the condition code bits accordingly. 
fcomp also pops ST0 after the comparison.

These instructions set C2 (which winds up in the parity flag) if the two 
operands are not comparable (e.g., NaN). If it is possible for an illegal floating-
point value to wind up in a comparison, you should check the parity flag for 
an error before checking the desired condition (e.g., using HLA’s @p and @np 
conditions, or by using the setp/setnp instructions).
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These instructions set the stack fault bit if there aren’t two items on the 
top of the register stack. They set the denormalized exception bit if either or 
both operands are denormalized. They set the invalid operation flag if either 
or both operands are quiet NaNs. These instructions always clear the C1 condi-
tion code.

Note that the instructions that have real constants as operands aren’t 
true FPU instructions. These are extensions provided by HLA. When HLA 
encounters such an instruction, it creates a real64 read-only variable in the 
constants segment and initializes this variable with the specified constant. 
Then HLA translates the instruction to one that specifies a real64 memory 
operand. 

NOTE Because of the precision differences (64 bits versus 80 bits), if you use a constant 
operand in a floating-point instruction you may not get results that are as precise as 
you would expect.

Let’s look at an example of a floating-point comparison:

          fcompp();
          fstsw( ax );
          sahf();
          setb( al );   // al = true if st1 < st0.
               .
               .
               .

Note that you cannot compare floating-point values in an HLA runtime 
boolean expression (e.g., within an if statement). You may, however, test the 
conditions in such statements after a floating-point comparison like the 
sequence above. For example:

          fcompp();
          fstsw( ax );
          sahf();
          if( @b ) then

               << Code that executes if st1 < st0 >>

          endif;

6.5.7.2 The fcomi and fcomip Instructions

The fcomi and fcomip instructions compare ST0 to the specified operand and 
set the corresponding EFLAG condition code bits based on the result of the 
comparison. You use these instructions in a similar manner to fcom and fcomp 
except you can test the CPU’s flag bits directly after the execution of these 
instructions without first moving the FPU status bits into the EFLAGS register. 
The legal forms for these instructions are as follows:

          fcomi()
          fcomip()
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          fcomi( sti )
          fcomip( sti )

          fcomi( mem_32_64 )
          fcomip( mem_32_64 )
          fcomi( real_constant )
          fcomip( real_constant )

6.5.7.3 The ftst Instruction  

The ftst instruction compares the value in ST0 against 0.0. It behaves just like 
the fcom instruction would if ST1 contained 0.0. Note that this instruction 
does not differentiate −0.0 from +0.0. If the value in ST0 is either of these 
values, ftst will set C3 to denote equality. This instruction does not pop ST0 
off the stack.

Here’s an example:

          ftst();
          fstsw( ax );
          sahf();
          sete( al );                         // Set al to 1 if TOS = 0.0

6.5.8 Constant Instructions      
The FPU provides several instructions that let you load commonly used con-
stants onto the FPU’s register stack. These instructions set the stack fault, 
invalid operation, and C1 flags if a stack overflow occurs; they do not other-
wise affect the FPU flags. The specific instructions in this category include the 
following:

fldz()               // Pushes +0.0.
          fld1()               // Pushes +1.0.
          fldpi()              // Pushes pi.
          fldl2t()             // Pushes log2(10).
          fldl2e()             // Pushes log2(e).
          fldlg2()             // Pushes log10(2).
          fldln2()             // Pushes ln(2).

6.5.9 Transcendental Instructions

The FPU provides eight transcendental (logarithmic and trigonometric) 
instructions to compute sine, cosine, partial tangent, partial arctangent, 2x − 1, 
y * log2(x), and y * log2(x + 1). Using various algebraic identities, it is easy to 
compute most of the other common transcendental functions using these 
instructions.

6.5.9.1 The f2xm1 Instruction   

f2xm1 computes 2ST0 − 1. The value in ST0 must be in the range −1.0..ST0..+1.0. 
If ST0 is out of range, f2xm1 generates an undefined result but raises no excep-
tions. The computed value replaces the value in ST0.
402 Chapte r  6



AAL2E_03.book  Page 403  Thursday, February 18, 2010  12:49 PM
Here’s an example computing 10x using the identity 10x = 2x*log2(10). This 
is only useful for a small range of x that doesn’t put ST0 outside of the previ-
ously mentioned valid range.

fld( x );
          fldl2t();
          fmul();
          f2xm1();
          fld1();
          fadd();

Note that f2xm1 computes 2x − 1, which is why the code above adds 1.0 to 
the result at the end of the computation.

6.5.9.2 The fsin, fcos, and fsincos Instructions     

These instructions pop the value off the top of the register stack and compute 
the sine, cosine, or both and push the result(s) back onto the stack. The 
fsincos instruction pushes the sine followed by the cosine of the original oper-
and; hence it leaves cos(ST0) in ST0 and sin(ST0) in ST1.

These instructions assume ST0 specifies an angle in radians and this 
angle must be in the range −263 < ST0 < +263. If the original operand is out of 
range, these instructions set the C2 flag and leave ST0 unchanged. You can 
use the fprem1 instruction, with a divisor of 2π, to reduce the operand to a 
reasonable range.

These instructions set the stack fault/C1, precision, underflow, denormal-
ized, and invalid operation flags according to the result of the computation.

6.5.9.3 The fptan Instruction  

fptan computes the tangent of ST0 and pushes this value, and then it pushes 1.0 
onto the stack. Like the fsin and fcos instructions, the value of ST0 must be in 
radians and in the range −263 < ST0 < +263. If the value is outside this range, 
fptan sets C2 to indicate that the conversion did not take place. As with the 
fsin, fcos, and fsincos instructions, you can use the fprem1 instruction to 
reduce this operand to a reasonable range using a divisor of 2π.

If the argument is invalid (i.e., zero or π radians, which causes a division 
by 0), the result is undefined and this instruction raises no exceptions. fptan 
will set the stack fault, precision, underflow, denormal, invalid operation, C2, 
and C1 bits as required by the operation.

6.5.9.4 The fpatan Instruction

This instruction expects two values on the top of stack. It pops them and com-
putes ST0 = tan−1(ST1/ST0).

The resulting value is the arctangent of the ratio on the stack expressed 
in radians. If you have a value you wish to compute the tangent of, use fld1 to 
create the appropriate ratio and then execute the fpatan instruction.

This instruction affects the stack fault/C1, precision, underflow, denormal, 
and invalid operation bits if a problem occurs during the computation. It sets 
the C1 condition code bit if it has to round the result.
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6.5.9.5 The fyl2x Instruction

This instruction expects two operands on the FPU stack: y is found in ST1 and 
x is found in ST0. This function computes ST0 = ST1 * log2(ST0).

This instruction has no operands (to the instruction itself). The instruc-
tion uses the following syntax:

          fyl2x();

Note that this instruction computes the base-2 logarithm. Of course, it is 
a trivial matter to compute the log of any other base by multiplying by the 
appropriate constant.

6.5.9.6 The fyl2xp1 Instruction

This instruction expects two operands on the FPU stack: y is found in ST1 and 
x is found in ST0. This function computes ST0 = ST1 * log2(ST0 + 1.0).

The syntax for this instruction is:

          fyl2xp1();

Otherwise, the instruction is identical to fyl2x.

6.5.10 Miscellaneous Instructions

The FPU includes several additional instructions that control the FPU, syn-
chronize operations, and let you test or set various status bits. These instructions 
include finit/fninit, fldcw, fstcw, fclex/fnclex, and fstsw.

6.5.10.1 The finit and fninit Instructions

The finit instruction initializes the FPU for proper operation. Your applications 
should execute this instruction before executing any other FPU instructions. 
This instruction initializes the control register to $37F, the status register to 0, 
and the tag word to $FFFF. The other registers are unaffected.

Here are some examples:

finit();
fninit();

The difference between finit and fninit is that finit first checks for any 
pending floating-point exceptions before initializing the FPU; fninit does not.

6.5.10.2 The fldcw and fstcw Instructions   

The fldcw and fstcw instructions require a single 16-bit memory operand:

          fldcw( mem16 );
          fstcw( mem16 );
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These two instructions load the control register from a memory location 
(fldcw) or store the control word to a 16-bit memory location (fstcw).

When using the fldcw instruction to turn on one of the exceptions, if the 
corresponding exception flag is set when you enable that exception, the FPU 
will generate an immediate interrupt before the CPU executes the next 
instruction. Therefore, you should use the fclex instruction to clear any pend-
ing interrupts before changing the FPU exception enable bits.

6.5.10.3 The fclex and fnclex Instructions   

The fclex and fnclex instructions clear all exception bits, the stack fault bit, 
and the busy flag in the FPU status register.

Here are some examples:

     fclex();
     fnclex();

The difference between these instructions is the same as between finit 
and fninit.

6.5.10.4 The fstsw and fnstsw Instructions  

These instructions store the FPU status register into a 16-bit memory location 
or the AX register.

          fstsw( ax );
          fnstsw( ax );
          fstsw( mem16 );
          fnstsw( mem16 );

These instructions are unusual in the sense that they can copy an FPU 
value into one of the 80x86 general-purpose registers (specifically, AX). Of 
course, the whole purpose behind allowing the transfer of the status register 
into AX is to allow the CPU to easily test the condition code register with the 
sahf instruction. The difference between fstsw and fnstsw is the same as for 
fclex and fnclex.

6.5.11 Integer Operations        

The FPU provides special instructions that combine integer-to-extended-
precision conversion with various arithmetic and comparison operations. 
These instructions are the following:

          fiadd( int_16_32 );
          fisub( int_16_32 );
          fisubr( int_16_32 );
          fimul( int_16_32 );
          fidiv( int_16_32 );
          fidivr( int_16_32 );
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          ficom( int_16_32 );
          ficomp( int_16_32 );

These instructions convert their 16- or 32-bit integer operands to an 80-bit 
extended-precision floating-point value and then use this value as the source 
operand for the specified operation. These instructions use ST0 as the desti-
nation operand.

6.6 Converting Floating-Point Expressions to Assembly 
Language

Because the FPU register organization is different than the 80x86 integer reg-
ister set, translating arithmetic expressions involving floating-point operands 
is a little different than the techniques for translating integer expressions. 
Therefore, it makes sense to spend some time discussing how to manually 
translate floating-point expressions into assembly language.

In one respect, it’s actually easier to translate floating-point expressions 
into assembly language. The stack architecture of the Intel FPU eases the 
translation of arithmetic expressions into assembly language. If you’ve ever 
used a Hewlett-Packard calculator, you’ll be right at home on the FPU because, 
like the HP calculator, the FPU uses postfix notation (also called Reverse Polish 
notation, or RPN), for arithmetic operations. Once you get used to using post-
fix notation, it’s actually a bit more convenient for translating expressions 
because you don’t have to worry about allocating temporary variables—they 
always wind up on the FPU stack.

Postfix notation, as opposed to standard infix notation, places the oper-
ands before the operator. The following examples give some simple examples 
of infix notation and the corresponding postfix notation:

infix notation postfix notation
5 + 6 5  6  +
7 - 2 7  2  -
x * y x  y  *
a / b a  b  /

A postfix expression like 5 6 + says, “push 5 onto the stack, push 6 onto 
the stack, and then pop the value off the top of stack (6) and add it to the new 
top of stack.” Sound familiar? This is exactly what the fld and fadd instructions 
do. In fact, you can calculate this using the following code:

          fld( 5.0 );
          fld( 6.0 );
          fadd();                    // 11.0 is now on the top of the FPU stack.

As you can see, postfix is a convenient notation because it’s very easy to 
translate this code into FPU instructions.
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One advantage to postfix notation is that it doesn’t require any paren-
theses. The following examples demonstrate some slightly more complex infix-
to-postfix conversions:

          infix notation                    postfix notation
          (x + y) * 2 x  y + 2 *
          x * 2 - (a + b) x 2 * a b + -
          (a + b) * (c + d) a b + c d + *

The postfix expression x y + 2 * says, “Push x, then push y; next, add those 
values on the stack (producing x + y on the stack). Next, push 2 and then 
multiply the two values (2 and x + y) on the stack to produce two times the 
quantity x + y.” Once again, we can translate these postfix expressions directly 
into assembly language. The following code demonstrates the conversion for 
each of the above expressions:

//          x y + 2 *

          fld( x );
          fld( y );
          fadd();
          fld( 2.0 );
          fmul();

//          x 2 * a b + -

          fld( x );
          fld( 2.0 );
          fmul();
          fld( a );
          fld( b );
          fadd();
          fsub();

//          a b + c d + *

          fld( a );
          fld( b );
          fadd();
          fld( c );
          fld( d );
          fadd();
          fmul();

6.6.1 Converting Arithmetic Expressions to Postfix Notation

Because the process of translating arithmetic expressions into assembly lan-
guage involves postfix notation (RPN), converting arithmetic expressions 
into postfix notation seems like a good place to begin our discussion of float-
ing-point expression conversion. This section will concentrate on postfix 
conversion.
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For simple expressions, those involving two operands and a single 
expression, the translation is trivial. Simply move the operator from the 
infix position to the postfix position (that is, move the operator from between 
the operands to after the second operand). For example, 5 + 6 becomes 5 6 +. 
Other than separating your operands so you don’t confuse them (i.e., is it 5 
and 6 or 56?), converting simple infix expressions into postfix notation is 
straightforward.

For complex expressions, the idea is to convert the simple subexpressions 
into postfix notation and then treat each converted subexpression as a single 
operand in the remaining expression. The following discussion surrounds 
completed conversions with square brackets so it is easy to see which text 
needs to be treated as a single operand in the conversion.

As for integer expression conversion, the best place to start is in the 
innermost parenthetical subexpression and then work your way outward con-
sidering precedence, associativity, and other parenthetical subexpressions. As 
a concrete working example, consider the following expression:

x = ((y - z) * a) - ( a + b * c ) / 3.14159

A possible first translation is to convert the subexpression (y - z) into 
postfix notation:

x = ([y z -] * a) - ( a + b * c ) / 3.14159

Square brackets surround the converted postfix code just to separate it 
from the infix code. These exist only to make the partial translations more 
readable. Remember, for the purposes of conversion we will treat the text 
inside the square brackets as a single operand. Therefore, you would treat 
[y z -] as though it were a single variable name or constant.

The next step is to translate the subexpression ([y z -] * a ) into postfix 
form. This yields the following:

x = [y z - a *] - ( a + b * c ) / 3.14159

Next, we work on the parenthetical expression ( a + b * c ). Because 
multiplication has higher precedence than addition, we convert b * c first:

x = [y z - a *] - ( a + [b c *]) / 3.14159

After converting b * c we finish the parenthetical expression:

x = [y z - a *] - [a b c * +] / 3.14159

This leaves only two infix operators: subtraction and division. Because 
division has the higher precedence, we’ll convert that first:

x = [y z - a *] - [a b c * + 3.14159 /]
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Finally, we convert the entire expression into postfix notation by dealing 
with the last infix operation, subtraction:

x = [y z - a *] [a b c * + 3.14159 /] -

Removing the square brackets to give us true postfix notation yields the 
following postfix expression:

x = y z - a * a b c * + 3.14159 / -

The following steps demonstrate another infix-to-postfix conversion for 
the expression:

a = (x * y - z + t) / 2.0

1. Work inside the parentheses. Because multiplication has the highest 
precedence, convert that first:

a = ( [x y *] - z + t) / 2.0

2. Still working inside the parentheses, we note that addition and subtraction 
have the same precedence, so we rely on associativity to determine what 
to do next. These operators are left associative, so we must translate the 
expressions in a left-to-right order. This means translate the subtraction 
operator first:

a = ( [x y * z -] + t) / 2.0

3. Now translate the addition operator inside the parentheses. Because this 
finishes the parenthetical operators, we can drop the parentheses:

a = [x y * z - t +] / 2.0

4. Translate the final infix operator (division). This yields the following:

a = [x y * z - t + 2.0 / ]

5. Drop the square brackets and we’re done:

a = x y * z - t + 2.0 /

6.6.2 Converting Postfix Notation to Assembly Language

Once you’ve translated an arithmetic expression into postfix notation, finish-
ing the conversion to assembly language is easy. All you have to do is issue an 
fld instruction whenever you encounter an operand and issue an appropriate 
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arithmetic instruction when you encounter an operator. This section uses the 
completed examples from the previous section to demonstrate how little there 
is to this process.

x = y z - a * a b c * + 3.14159 / -

1. Convert y to fld(y).

2. Convert z to fld(z).

3. Convert - to fsub().

4. Convert a to fld(a).

5. Convert * to fmul().

6. Continuing in a left-to-right fashion, generate the following code for the 
expression:

          fld( y );
          fld( z );
          fsub();
          fld( a );
          fmul();
          fld( a );
          fld( b );
          fld( c );
          fmul();
          fadd();
          fldpi(); // Loads pi (3.14159)
          fdiv();
          fsub();

          fstp( x ); // Store result away into x.

Here’s the translation for the second example in the previous section:

a = x y * z - t + 2.0 /
          fld( x );
          fld( y );
          fmul();
          fld( z );
          fsub();
          fld( t );
          fadd();
          fld( 2.0 );
          fdiv();
     
          fstp( a ); // Store result away into a.
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As you can see, the translation is fairly simple once you’ve converted the 
infix notation to postfix notation. Also note that, unlike integer expression 
conversion, you don’t need any explicit temporaries. It turns out that the FPU 
stack provides the temporaries for you.3 For these reasons, conversion of 
floating-point expressions into assembly language is actually easier than con-
verting integer expressions.

6.7 HLA Standard Library Support for Floating-Point 
Arithmetic

Chapter 2 briefly mentioned the stdin.getf function. What it left out of that 
discussion is where stdin.getf returns the floating-point value is reads from 
the standard input. Now that you’ve seen the floating-point extensions to the 
80x86, it’s possible to finish the discussion of that standard library function. 
The stdin.getf function reads a string of characters from the standard input, 
converts those characters to an 80-bit floating-point number, and leaves the 
result sitting on the FPU stack (in ST0).

The HLA Standard Library also provides the math.hhf module that 
includes several mathematical functions that the FPU doesn’t directly sup-
port as well as support for various functions (like sine and cosine) that the 
FPU partially supports. Some of the functions that the math.hhf module pro-
vides are acos, acot, acsc, asec, asin, cot, csc, sec, 2x, 10x, yx, ex, log, and ln. Please 
consult the HLA standard library documentation for more information about 
these functions and other mathematical functions the HLA standard library 
supports.

6.8 For More Information

The Intel/AMD processor manuals fully describe the operation of each of 
the integer and floating-point arithmetic instructions, including a detailed 
description of how these instructions affect the condition code bits and other 
flags in the EFLAGS and FPU status registers. To write the best possible 
assembly language code, you need to be intimately familiar with how the 
arithmetic instructions affect the execution environment, so spending time 
with the Intel/AMD manuals is a good idea.

The HLA Standard Library provides a large number of floating-point 
functions for which there are no individual machine instructions. The HLA 
Standard Library also provides functions like math.sin and math.cos that over-
come limitations of the native machine instructions. See the HLA Standard 
Library reference manual for more details. Also, the HLA Standard Library is 
available in source code form, so you can look at the implementation of these 
mathematical functions for more examples of floating-point coding.

3 This assumes, of course, that your calculations aren’t so complex that you exceed the eight-
element limitation of the FPU stack.
Ari thmet ic 411



AAL2E_03.book  Page 412  Thursday, February 18, 2010  12:49 PM
Chapter 8 discusses multiprecision integer arithmetic. See that chapter 
for details on handling integer operands that are greater than 32 bits in size.

The 80x86 SSE instruction set found on later members of the CPU pro-
vides support for floating-point arithmetic using the SSE register set. Consult 
http://webster.cs.ucr.edu/ or the Intel/AMD documentation for details concern-
ing the SSE floating-point instruction set.
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7
L O W - L E V E L  C O N T R O L  

S T R U C T U R E S

This chapter discusses “pure” assembly 
language control statements. You’ll need 

to master these low-level control structures 
before you can claim to be an assembly language 

programmer. By the time you finish this chapter, you 
should be able to stop using HLA’s high-level control 
statements and synthesize them using low-level 80x86 
machine instructions.

The last section of this chapter discusses hybrid control structures that 
combine the features of HLA’s high-level control statements with the 80x86 
control instructions. These combine the power and efficiency of the low-
level control statements with the readability of high-level control statements. 
Advanced assembly programmers may want to use these hybrid statements 
to improve their programs’ readability without sacrificing efficiency.
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7.1 Low-Level Control Structures
Until now, most of the control structures you’ve seen and have used in your 
programs are similar to the control structures found in high-level languages 
like Pascal, C++, and Ada. While these control structures make learning 
assembly language easy, they are not true assembly language statements. 
Instead, the HLA compiler translates these control structures into a sequence 
of “pure” machine instructions that achieve the same result as the high-level 
control structures. This text uses the high-level control structures to allow you 
to learn assembly language without having to learn everything all at once. 
Now, however, it’s time to put aside these high-level control structures and 
learn how to write your programs in real assembly language, using low-level 
control structures.

7.2 Statement Labels
Assembly language low-level control structures make extensive use of labels 
within your source code. A low-level control structure usually transfers con-
trol between two points in your program. You typically specify the destination 
of such a transfer using a statement label. A statement label consists of a valid 
(unique) HLA identifier and a colon. For example:

aLabel:

Of course, as for procedure, variable, and constant identifiers, you should 
attempt to choose descriptive and meaningful names for your labels. The 
example identifier above, aLabel, is hardly descriptive or meaningful.

Statement labels have one important attribute that differentiates them 
from most other identifiers in HLA: You don’t have to declare a label before 
you use it. This is important, because low-level control structures must often 
transfer control to some point later in the code; therefore the label may not 
be defined by the time you reference it.

You can do three things with labels: transfer control to a label via a jump 
(goto) instruction, call a label via the call instruction, and take the address of 
a label. There is very little else you can directly do with a label (of course, 
there is very little else you would want to do with a label, so this is hardly a 
restriction). The program in Listing 7-1 demonstrates two ways to take the 
address of a label in your program and print out the address (using the lea 
instruction and using the & address-of operator):

program labelDemo;
#include( "stdlib.hhf" );
    
begin labelDemo;

    lbl1:
    
        lea( ebx, lbl1 );
        mov( &lbl2, eax );
        stdout.put( "&lbl1=$", ebx, " &lbl2=", eax, nl );
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     lbl2:
        
end labelDemo;

Listing 7-1: Displaying the address of statement labels in a program

HLA also allows you to initialize double-word variables with the addresses 
of statement labels. However, there are some restrictions on labels that appear 
in the initialization portions of variable declarations. The most important 
restriction is that you must define the statement label at the same lexical level 
as the variable declaration. That is, if you reference a statement label in the 
initializer of a variable declaration appearing in the main program, the state-
ment label must also be in the main program. Conversely, if you take the 
address of a statement label in a local variable declaration, that symbol must 
appear in the same procedure as the local variable. Listing 7-2 demonstrates 
the use of statement labels in variable initialization:

program labelArrays;
#include( "stdlib.hhf" );
    
static
    labels:dword[2] := [ &lbl1, &lbl2 ];
    
    procedure hasLabels;
    static
        stmtLbls: dword[2] := [ &label1, &label2 ];

    begin hasLabels;
    
        label1:
            
            stdout.put
            ( 
                "stmtLbls[0]= $", stmtLbls[0], nl,
                "stmtLbls[1]= $", stmtLbls[4], nl
            );
            
        label2:
        
    end hasLabels;
        
begin labelArrays;

    hasLabels();
    lbl1:
    
        stdout.put( "labels[0]= $", labels[0], " labels[1]=", labels[4], nl );
    
    lbl2:
        
end labelArrays;

Listing 7-2: Initializing dword variables with the address of statement labels
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Once in a while, you’ll need to refer to a label that is not within the current 
procedure. The need for this is sufficiently rare that this text will not describe 
all the details. See the HLA documentation for more details should you ever 
need to do this.

7.3 Unconditional Transfer of Control (jmp)

The jmp ( jump) instruction unconditionally transfers control to another 
point in the program. There are three forms of this instruction: a direct jump 
and two indirect jumps. These instructions take the following forms:

     jmp label;
     jmp( reg32 );
     jmp( mem32 );

The first instruction is a direct jump above. For direct jumps you normally 
specify the target address using a statement label. The label appears either on 
the same line as an executable machine instruction or by itself on a line pre-
ceding an executable machine instruction. The direct jump is completely 
equivalent to a goto statement in a high-level language.1

Here’s an example:

          << statements >>
          jmp laterInPgm;
               .
               .
               .
laterInPgm:
          << statements >>

The second form of the jmp instruction given earlier—jmp( reg32 );—is a 
register indirect jump instruction. This instruction transfers control to the 
instruction whose address appears in the specified 32-bit general-purpose 
register. To use this form of the jmp instruction, you must load a 32-bit register 
with the address of some machine instruction prior to the execution of the 
jmp. You could use this instruction to implement a state machine by loading a 
register with the address of some label at various points throughout your 
program and then use a single indirect jump at a common point to transfer 
control to one of those labels. The short sample program in Listing 7-3 dem-
onstrates how you could use the jmp in this manner.

program regIndJmp;
#include( "stdlib.hhf" );
    
static
    i:int32;
    

1 Unlike high-level languages, where your instructors usually forbid you to use goto statements, 
you will find that the use of the jmp instruction in assembly language is essential.
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begin regIndJmp;

    // Read an integer from the user and set ebx to
    // denote the success or failure of the input.
    
    try
    
        stdout.put( "Enter an integer value between 1 and 10: " );
        stdin.get( i );
        mov( i, eax );
        if( eax in 1..10 ) then
        
            mov( &GoodInput, ebx );
            
        else
        
            mov( &valRange, ebx );
            
        endif;
        
      exception( ex.ConversionError )
      
        mov( &convError, ebx );
        
      exception( ex.ValueOutOfRange )
      
        mov( &valRange, ebx );
        
    endtry;
    
    // Okay, transfer control to the appropriate
    // section of the program that deals with
    // the input.
    
    jmp( ebx );
    
    valRange:
        stdout.put( "You entered a value outside the range 1..10" nl );
        jmp Done;
        
    convError:
        stdout.put( "Your input contained illegal characters" nl );
        jmp Done;
        
    GoodInput:
        stdout.put( "You entered the value ", i, nl );
        
    Done:
    
        
end regIndJmp;

Listing 7-3: Using register-indirect jmp instructions
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The third form of the jmp instruction given earlier is a memory-indirect 
jmp. This form of the jmp instruction fetches the double-word value from the 
memory location and jumps to that address. This is similar to the register-
indirect jmp except the address appears in a memory location rather than in a 
register. Listing 7-4 demonstrates a rather trivial use of this form of the jmp 
instruction.

program memIndJmp;
#include( "stdlib.hhf" );
    
static
    LabelPtr:dword := &stmtLabel;
    
begin memIndJmp;

    stdout.put( "Before the JMP instruction" nl );
    jmp( LabelPtr );
    
        stdout.put( "This should not execute" nl );
    
    stmtLabel:
        
        stdout.put( "After the LabelPtr label in the program" nl );
        
end memIndJmp;

Listing 7-4: Using memory-indirect jmp instructions

WARNING Unlike the HLA high-level control structures, the low-level jmp instructions can cause 
you a lot of trouble. In particular, if you do not initialize a register with the address of 
a valid instruction and you jump indirectly through that register, the results are unde-
fined (though this will usually cause a general protection fault). Similarly, if you do 
not initialize a double-word variable with the address of a legal instruction, jumping 
indirectly through that memory location will probably crash your program.

7.4 The Conditional Jump Instructions

Although the jmp instruction provides transfer of control, it is inconvenient to 
use when making decisions such as those you’ll need to implement statements 
like if and while. The 80x86’s conditional jump instructions handle this task.

The conditional jumps test one or more CPU flags to see if they match 
some particular pattern. If the flag settings match the condition, the condi-
tional jump instruction transfers control to the target location. If the match 
fails, the CPU ignores the conditional jump and execution continues with the 
instruction following the conditional jump. Some conditional jump instruc-
tions simply test the setting of the sign, carry, overflow, and zero flags. For 
example, after the execution of a shl instruction, you could test the carry flag 
to determine if the shl shifted a 1 out of the H.O. bit of its operand. Likewise, 
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you could test the zero flag after a test instruction to check if the result was 0. 
Most of the time, however, you will probably execute a conditional jump after 
a cmp instruction. The cmp instruction sets the flags so that you can test for less 
than, greater than, equality, and so on.

The conditional jmp instructions take the following form:

jcc label;

The cc in jcc indicates that you must substitute some character sequence 
that specifies the type of condition to test. These are the same characters the 
setcc instruction uses. For example, js stands for jump if the sign flag is set. A 
typical js instruction is:

js ValueIsNegative;

In this example, the js instruction transfers control to the ValueIsNegative 
label if the sign flag is currently set; control falls through to the next instruc-
tion following the js instruction if the sign flag is clear.

Unlike the unconditional jmp instruction, the conditional jump instruc-
tions do not provide an indirect form. They only allow a branch to a statement 
label in your program.

NOTE Intel’s documentation defines various synonyms or instruction aliases for many conditional 
jump instructions. 

 Tables 7-1, 7-2, and 7-3 list all the aliases for a particular instruction. 
These tables also list the opposite branches. You’ll soon see the purpose of 
the opposite branches.  

Table 7-1: jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite

jc Jump if carry Carry = 1 jb, jnae jnc

jnc Jump if no carry Carry = 0 jnb, jae jc

jz Jump if zero Zero = 1 je jnz

jnz Jump if not zero Zero = 0 jne jz

js Jump if sign Sign = 1 jns

jns Jump if no sign Sign = 0 js

jo Jump if overflow Overflow = 1 jno

jno Jump if no overflow Overflow = 0 jo

jp Jump if parity Parity = 1 jpe jnp

jpe Jump if parity even Parity = 1 jp jpo

jnp Jump if no parity Parity = 0 jpo jp

jpo Jump if parity odd Parity = 0 jnp jpe
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One brief comment about the Opposite column is in order. In many 
instances you will need to be able to generate the opposite of a specific branch 
instruction (examples appear later in this section). With only two exceptions, 
a very simple rule completely describes how to generate an opposite branch:

If the second letter of the jcc instruction is not an n, insert an n after the j. 
For example, je becomes jne and jl becomes jnl.

If the second letter of the jcc instruction is an n, then remove that n from 
the instruction. For example, jng becomes jg and jne becomes je.

The two exceptions to this rule are jpe ( jump if parity is even) and jpo 
( jump if parity is odd). These exceptions cause few problems because (1) you’ll 
hardly ever need to test the parity flag, and (2) you can use the aliases jp and 
jnp as synonyms for jpe and jpo. The “N/No N” rule applies to jp and jnp.

Though you know that jge is the opposite of jl, get in the habit of using 
jnl rather than jge as the opposite jump instruction for jl. It’s too easy in an 

Table 7-2: jcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases Opposite

ja Jump if above (>) Carry = 0, Zero = 0 jnbe jna

jnbe Jump if not below or equal (not <=) Carry = 0, Zero = 0 ja jbe

jae Jump if above or equal (>=) Carry = 0 jnc, jnb jnae

jnb Jump if not below (not <) Carry = 0 jnc, jae jb

jb Jump if below (<) Carry = 1 jc, jnae jnb

jnae Jump if not above or equal (not >=) Carry = 1 jc, jb jae

jbe Jump if below or equal (<=) Carry = 1 or Zero = 1 jna jnbe

jna Jump if not above 
(not >)

Carry = 1 or Zero = 1 jbe ja

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (¦) Zero = 0 jnz je

Table 7-3: jcc Instructions for Signed Comparisons 

Instruction Description Condition Aliases Opposite

jg Jump if greater (>) Sign = Overflow or Zero = 0 jnle jng

jnle Jump if not less than or equal (not <=) Sign = Overflow or Zero = 0 jg jle

jge Jump if greater than or equal (>=) Sign = Overflow jnl jge

jnl Jump if not less than (not <) Sign = Overflow jge jl

jl Jump if less than (<) Sign <> Overflow jnge jnl

jnge Jump if not greater or equal (not >=) Sign <> Overflow jl jge

jle Jump if less than or equal (<=) Sign <> Overflow or Zero = 1 jng jnle

jng Jump if not greater than (not >) Sign <> Overflow or Zero = 1 jle jg

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (¦) Zero = 0 jnz je
420 Chapte r  7



AAL2E_03.book  Page 421  Thursday, February 18, 2010  12:49 PM
important situation to start thinking “greater is the opposite of less” and substi-
tute jg instead. You can avoid this confusion by always using the “N/No N” rule.

The 80x86 conditional jump instructions give you the ability to split pro-
gram flow into one of two paths depending on some condition. Suppose you 
want to increment the AX register if BX is equal to CX. You can accomplish 
this with the following code:

          cmp( bx, cx );
          jne SkipStmts;
          inc( ax );
SkipStmts:

The trick is to use the opposite branch to skip over the instructions you want 
to execute if the condition is true. Always use the “opposite branch (N/No N)” 
rule given earlier to select the opposite branch.

You can also use the conditional jump instructions to synthesize loops. 
For example, the following code sequence reads a sequence of characters 
from the user and stores each character in successive elements of an array 
until the user presses the ENTER key (carriage return):

          mov( 0, edi );
RdLnLoop:
          stdin.getc();              // Read a character into the al register.
          mov( al, Input[ edi ] );   // Store away the character.
          inc( edi );                // Move on to the next character.
          cmp( al, stdio.cr );       // See if the user pressed Enter.
          jne RdLnLoop;

Like the setcc instructions, the conditional jump instructions come in 
two basic categories: those that test specific processor flags (e.g., jz, jc, jno) 
and those that test some condition (less than, greater than, etc.). When test-
ing a condition, the conditional jump instructions almost always follow a cmp 
instruction. The cmp instruction sets the flags so that you can use a ja, jae, jb, 
jbe, je, or jne instruction to test for unsigned less than, less than or equal, 
equal, unequal, greater than, or greater than or equal. Simultaneously, the 
cmp instruction sets the flags so that you can also do a signed comparison using 
the jl, jle, je, jne, jg, and jge instructions.

The conditional jump instructions only test the 80x86 flags; they do not 
affect any of them.

7.5 “Medium-Level” Control Structures: jt and jf

HLA provides two special conditional jump instructions: jt ( jump if true) 
and jf ( jump if false). These instructions take the following syntax:

jt( boolean_expression ) target_label;
jf( boolean_expression ) target_label;
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The boolean_expression is the standard HLA boolean expression allowed 
by if..endif and other HLA high-level language statements. These instructions 
evaluate the boolean expression and jump to the specified label if the expres-
sion evaluates true (jt) or false (jf).

These are not real 80x86 instructions. HLA compiles them into a sequence 
of one or more 80x86 machine instructions that achieve the same result. In 
general, you should not use these two instructions in your main code; they 
offer few benefits over using an if..endif statement and they are no more 
readable than the pure assembly language sequences they compile into. HLA 
provides these “medium-level” instructions so that you may create your own 
high-level control structures using macros (see Chapter 9 and the HLA refer-
ence manual for more details).

7.6 Implementing Common Control Structures in 
Assembly Language

Because a primary goal of this chapter is to teach you how to use the low-level 
machine instructions to implement decisions, loops, and other control con-
structs, it would be wise to show you how to implement these high-level 
statements using pure assembly language. The following sections provide 
this information.

7.7 Introduction to Decisions

In its most basic form, a decision is some sort of branch within the code that 
switches between two possible execution paths based on some condition. 
Normally (though not always), conditional instruction sequences are imple-
mented with the conditional jump instructions. Conditional instructions 
correspond to the if..then..endif statement in HLA:

      if( expression ) then
          << statements >>
     endif;

Assembly language, as usual, offers much more flexibility when dealing 
with conditional statements. Consider the following C/C++ statement:

      if( (( x < y ) && ( z > t )) || ( a != b ) ) 
          stmt1;

A “brute force” approach to converting this statement into assembly 
language might produce the following:

          mov( x, eax );
          cmp( eax, y );
          setl( bl );       // Store x<y in bl.
          mov( z, eax );
          cmp( eax, t );
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          setg( bh );       // Store z>t in bh.
          and( bh, bl );    // Put (x<y) && (z>t) into bl.
          mov( a, eax );
          cmp( eax, b );
          setne( bh );      // Store a != b into bh.
          or( bh, bl );     // Put (x<y) && (z>t) || (a!=b) into bl
          je SkipStmt1;     // Branch if result is false.

     << Code for Stmt1 goes here. >>

SkipStmt1:

As you can see, it takes a considerable number of conditional statements 
just to process the expression in the example above. This roughly corresponds 
to the (equivalent) C/C++ statements:

          bl = x < y;
          bh = z > t;
          bl = bl && bh;
          bh = a != b;
          bl = bl || bh;
          if( bl )
               << Stmt1 >>;

Now compare this with the following “improved” code:

          mov( a, eax );
          cmp( eax, b );
          jne DoStmt;
          mov( x, eax );
          cmp( eax, y );
          jnl SkipStmt;
          mov( z, eax );
          cmp( eax, t );
          jng SkipStmt;
DoStmt:
          << Place code for Stmt1 here. >>
SkipStmt:

Two things should be apparent from the code sequences above: First, a 
single conditional statement in C/C++ (or some other HLL) may require 
several conditional jumps in assembly language; second, organization of com-
plex expressions in a conditional sequence can affect the efficiency of the 
code. Therefore, you should exercise care when dealing with conditional 
sequences in assembly language.

Conditional statements may be broken down into three basic categories: 
if statements, switch/case statements, and indirect jumps. The following sec-
tions describe these program structures, how to use them, and how to write 
them in assembly language.
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7.7.1 if..then..else Sequences   

The most common conditional statements are the if..then..endif and 
if..then..else..endif statements. These two statements take the form shown 
in Figure 7-1.

Figure 7-1: if..then..else..endif and if..then..endif statement flow

The if..then..endif statement is just a special case of the if..then..
else..endif statement (with an empty else block). Therefore, we’ll consider 
only the more general if..then..else..endif form. The basic implementation 
of an if..then..else..endif statement in 80x86 assembly language looks some-
thing like this:

<< Sequence of statements to test some condition >>
jcc ElseCode; 

<< Sequence of statements corresponding to the THEN block >>

          jmp EndOfIf;

ElseCode: 
<< Sequence of statements corresponding to the ELSE block >> 

EndOfIf:

Note that jcc represents some conditional jump instruction. For example, to 
convert the C/C++ statement

     if( a == b ) 
          c = d;
     else 
          b = b + 1;

if..then..else..endif if..then..endif

Test for some condition Test for some condition

Execute this block
of statements if the
condition is true. Execute this block

of statements if the
condition is true.

Execute this block
of statements if the
condition is false.

Continue execution
down here after the 
completion of the 
then or else blocks.

Continue execution
down here after the 
completion of the then 
block or if skipping
the then block.
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to assembly language, you could use the following 80x86 code:

          mov( a, eax );
          cmp( eax, b );
          jne ElsePart;
          mov( d, c );
          jmp EndOfIf;

ElseBlk:
          inc( b );

EndOfIf: 

For simple expressions like ( a == b ) generating the proper code for an 
if..then..else..endif statement is almost trivial. Should the expression 
become more complex, the code complexity increases as well. Consider the 
following C/C++ if statement presented earlier:

     if( (( x > y ) && ( z < t )) || ( a != b ) )
          c = d;

When processing complex if statements such as this one, you’ll find the 
conversion task easier if you break the if statement into a sequence of three 
different if statements as follows:

     if( a != b ) c = d;
     else if( x > y)
          if( z < t )
               c = d;

This conversion comes from the following C/C++ equivalents:

if( expr1 && expr2 ) stmt;

is equivalent to

if( expr1 ) if( expr2 ) stmt;

and

if( expr1 || expr2 ) stmt;

is equivalent to

if( expr1 ) stmt;
else if( expr2 ) stmt;
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In assembly language, the former if statement becomes

// if( (( x > y ) && ( z < t )) || ( a != b ) )
//      c = d;

          mov( a, eax );
          cmp( eax, b );
          jne DoIF;
          mov( x, eax );
          cmp( eax, y );
          jng EndOfIF;
          mov( z, eax );
          cmp( eax, t );
          jnl EndOfIf;
DoIf:
          mov( d, eax );
          mov( eax, c );
EndOfIf:

As you can see, testing a condition can easily become more complex than 
the statements appearing in the else and then blocks. Although it seems some-
what paradoxical that it may take more effort to test a condition than to act on 
the results of that condition, it happens all the time. Therefore, you should be 
prepared to accept this.

Probably the biggest problem with complex conditional statements in 
assembly language is trying to figure out what you’ve done after you’ve written 
the code. A big advantage high-level languages offer over assembly language 
is that expressions are much easier to read and comprehend. The high-level 
version is (more) self-documenting, whereas assembly language tends to hide 
the true nature of the code. Therefore, well-written comments are an essential 
ingredient to assembly language implementations of if..then..else..endif 
statements. An elegant implementation of the example above is as follows:

// if ((x > y) && (z < t)) or (a != b)  c = d;
// Implemented as: 
// if (a != b) then goto DoIf; 

          mov( a, eax );
          cmp( eax, b );
          jne DoIf;

// if not (x > t) then goto EndOfIf;

          mov( x, eax );
          cmp( eax, y );
          jng EndOfIf;

// if not (z < t) then goto EndOfIf;
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          mov( z, eax );
          cmp( eax, t );
          jnl EndOfIf;

// then block: 

DoIf:     
          mov( d, eax );
          mov( eax, c );

// End of if statement 

EndOfIf: 

Admittedly, this appears to be going overboard for such a simple example. 
The following would probably suffice:

// if ( (( x > y ) && ( z < t )) || ( a != b ) )  c = d; 
// Test the boolean expression: 

          mov( a, eax );
          cmp( eax, b );
          jne DoIf;
          mov( x, eax );
          cmp( eax, y );
          jng EndOfIf;
          mov( z, eax );
          cmp( eax, t );
          jnl EndOfIf;

// then block: 

DoIf:
          mov( d, eax );
          mov( eax, c );

// End of if statement 

EndOfIf: 

However, as your if statements become complex, the density (and quality) 
of your comments become more and more important.

7.7.2 Translating HLA if Statements into Pure Assembly Language

Translating HLA if statements into pure assembly language is very easy. The 
boolean expressions that the HLA if statement supports were specifically 
chosen to expand into a few simple machine instructions. The following para-
graphs discuss the conversion of each supported boolean expression into pure 
machine code.
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if( flag_specification ) then stmts endif;

This form is, perhaps, the easiest HLA if statement to convert. To execute the 
code immediately following the then keyword if a particular flag is set (or 
clear), all you need do is skip over the code if the flag is clear (set). This 
requires only a single conditional jump instruction for implementation, as 
the following examples demonstrate:

// if( @c ) then inc( eax );  endif;

          jnc SkipTheInc;

               inc( eax );

          SkipTheInc:

// if( @ns ) then neg( eax ); endif;

          js SkipTheNeg;

               neg( eax );

          SkipTheNeg:

if( register ) then stmts endif;

This form uses the test instruction to check the specified register for 0. If the 
register contains 0 (false), then the program jumps around the statements 
after the then clause with a jz instruction. Converting this statement to assembly 
language requires a test instruction and a jz instruction, as the following 
examples demonstrate:

// if( eax ) then mov( false, eax );  endif;

          test( eax, eax );
          jz DontSetFalse;

               mov( false, eax );

          DontSetFalse:

// if( al ) then mov( bl, cl );  endif;

          test( al, al );
          jz noMove;

               mov( bl, cl );

          noMove:
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if( !register ) then stmts endif;

This form of the if statement uses the test instruction to check the specified 
register to see if it is 0. If the register is not 0 (true), then the program jumps 
around the statements after the then clause with a jnz instruction. Converting 
this statement to assembly language requires a test instruction and a jnz 
instruction in a manner identical to the previous examples.

if( boolean_variable ) then stmts endif;

This form of the if statement compares the boolean variable against 0 (false) 
and branches around the statements if the variable contains false. HLA imple-
ments this statement by using the cmp instruction to compare the boolean 
variable to 0, and then it uses a jz (je) instruction to jump around the statements 
if the variable is false. The following example demonstrates the conversion:

// if( bool ) then mov( 0, al );  endif;

          cmp( bool, false );
          je SkipZeroAL;

               mov( 0, al );

          SkipZeroAL:

if( !boolean_variable ) then stmts endif;

This form of the if statement compares the boolean variable against 0 (false) 
and branches around the statements if the variable contains true (the oppo-
site condition of the previous example). HLA implements this statement by 
using the cmp instruction to compare the boolean variable to 0 and then it uses 
a jnz (jne) instruction to jump around the statements if the variable contains 
true. The following example demonstrates the conversion:

// if( !bool ) then mov( 0, al );  endif;

          cmp( bool, false );
          jne SkipZeroAL;

               mov( 0, al );

          SkipZeroAL:

if( mem_reg relop mem_reg_const ) then stmts endif;

HLA translates this form of the if statement into a cmp instruction and a condi-
tional jump that skips over the statements on the opposite condition specified 
by the relop operator. Table 7-4 lists the correspondence between operators 
and conditional jump instructions.
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Here are a few examples of if statements translated into pure assembly 
language that use expressions involving relational operators:

// if( al == ch ) then inc( cl ); endif;

          cmp( al, ch );
          jne SkipIncCL;

               inc( cl );

          SkipIncCL:

// if( ch >= 'a' ) then and( $5f, ch ); endif;

          cmp( ch, 'a' );
          jnae NotLowerCase

               and( $5f, ch );

          NotLowerCase:

// if( (type int32 eax ) < -5 ) then mov( -5, eax );  endif;

          cmp( eax, -5 );
          jnl DontClipEAX;

               mov( -5, eax );

          DontClipEAX:

// if( si <> di ) then inc( si );  endif;

          cmp( si, di );
          je DontIncSI;

               inc( si );

          DontIncSI:

Table 7-4: if Statement Conditional Jump Instructions

Relational 
operation

Conditional jump instruction
if both operands are unsigned

Conditional jump instruction
if either operand is signed

= or == jne jne

<> or != je je

< jnb jnl

<= jnbe jnle

> jna jng

>= jnae jnge
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if( reg/mem in LowConst..HiConst ) then stmts endif;

HLA translates this if statement into a pair of cmp instructions and a pair of 
conditional jump instructions. It compares the register or memory location 
against the lower-valued constant and jumps if less than (signed) or below 
(unsigned) past the statements after the then clause. If the register or memory 
location’s value is greater than or equal to LowConst, the code falls through to 
the second cmp and conditional jump pair that compares the register or mem-
ory location against the higher constant. If the value is greater than (above) 
this constant, a conditional jump instruction skips the statements in the then 
clause.

Here’s an example:

// if( eax in 1000..125_000 ) then sub( 1000, eax );  endif;

          cmp( eax, 1000 );
          jb DontSub1000;
          cmp( eax, 125_000 );
          ja DontSub1000;

               sub( 1000, eax );

          DontSub1000:

// if( i32 in -5..5 ) then add( 5, i32 ); endif;

          cmp( i32, -5 );
          jl NoAdd5;
          cmp( i32, 5 );
          jg NoAdd5;

               add(5, i32 );

          NoAdd5:

if( reg/mem not in LowConst..HiConst ) then stmts endif;

This form of the HLA if statement tests a register or memory location to see 
if its value is outside a specified range. The implementation is very similar to 
the previous code except you branch to the then clause if the value is less than 
the LowConst value or greater than the HiConst value, and you branch over the 
code in the then clause if the value is within the range specified by the two con-
stants. The following examples demonstrate how to do this conversion:

// if( eax not in 1000..125_000 ) then add( 1000, eax );  endif;

          cmp( eax, 1000 );
          jb Add1000;
          cmp( eax, 125_000 );
          jbe SkipAdd1000;
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               Add1000:
               add( 1000, eax );

          SkipAdd1000:

// if( i32 not in -5..5 ) then mov( 0, i32 );  endif;

          cmp( i32, -5 );
          jl Zeroi32;
          cmp( i32, 5 );
          jle SkipZero;

               Zeroi32:
               mov( 0, i32 );

          SkipZero:

7.7.3 Implementing Complex if Statements Using Complete 
Boolean Evaluation
Many boolean expressions involve conjunction (and) or disjunction (or) oper-
ations. This section describes how to convert boolean expressions into assembly 
language. There are two different ways to convert complex boolean expres-
sions involving conjunction and disjunction into assembly language: using 
complete boolean evaluation or using short-circuit boolean evaluation. This 
section discusses complete boolean evaluation. The next section discusses 
short-circuit boolean evaluation.

Conversion via complete boolean evaluation is almost identical to con-
verting arithmetic expressions into assembly language. Indeed, the previous 
chapter on arithmetic covers this conversion process. About the only thing 
worth noting about that process is that you do not need to store the result in 
some variable; once the evaluation of the expression is complete, you check 
to see if you have a false (0) or true (1, or nonzero) result to take whatever 
action the boolean expression dictates. As you can see in the examples in the 
preceding sections, you can often use the fact that the last logical instruction 
(and/or) sets the zero flag if the result is false and clears the zero flag if the 
result is true. This lets you avoid explicitly testing for the result. Consider the 
following if statement and its conversion to assembly language using com-
plete boolean evaluation:

//     if( (( x < y ) && ( z > t )) || ( a != b ) ) 
//         << Stmt1 >>;

          mov( x, eax );
          cmp( eax, y );
          setl( bl );     // Store x<y in bl.
          mov( z, eax );
          cmp( eax, t );
          setg( bh );     // Store z>t in bh.
          and( bh, bl );  // Put (x<y) && (z>t) into bl.
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          mov( a, eax );
          cmp( eax, b );
          setne( bh );    // Store a != b into bh.
          or( bh, bl );   // Put (x<y) && (z>t) || (a != b) into bl.
          je SkipStmt1;   // Branch if result is false.

     << Code for Stmt1 goes here. >> 

SkipStmt1:

This code computes a boolean result in the BL register and then, at the 
end of the computation, tests this value to see if it contains true or false. If the 
result is false, this sequence skips over the code associated with Stmt1. The 
important thing to note in this example is that the program will execute each 
and every instruction that computes this boolean result (up to the je instruction).

7.7.4 Short-Circuit Boolean Evaluation

If you are willing to expend a little more effort, you can usually convert a bool-
ean expression to a much shorter and faster sequence of assembly language 
instructions using short-circuit boolean evaluation. Short-circuit boolean evalua-
tion attempts to determine whether an expression is true or false by executing 
only some of the instructions that would compute the complete expression. 
For this reason, plus the fact that short-circuit boolean evaluation doesn’t 
require the use of any temporary registers, HLA uses short-circuit evaluation 
when translating complex boolean expressions into assembly language.

Consider the expression a && b. Once we determine that a is false, there is 
no need to evaluate b because there is no way the expression can be true. If 
and b represent subexpressions rather than simple variables, the savings 
possible with short-circuit boolean evaluation are apparent. As a concrete 
example, consider the subexpression ((x<y) && (z>t)) from the previous sec-
tion. Once you determine that x is not less than y, there is no need to check to 
see if z is greater than t because the expression will be false regardless of z and 
t’s values. The following code fragment shows how you can implement short-
circuit boolean evaluation for this expression:

// if( (x<y) && (z>t) ) then ...

          mov( x, eax );
          cmp( eax, y );
          jnl TestFails;
          mov( z, eax );
          cmp( eax, t );
          jng TestFails;

               << Code for THEN clause of IF statement >>

          TestFails:
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Notice how the code skips any further testing once it determines that x is 
not less than y. Of course, if x is less than y, then the program has to test z to 
see if it is greater than t; if not, the program skips over the then clause. Only if 
the program satisfies both conditions does the code fall through to the then 
clause.

For the logical or operation the technique is similar. If the first subexpres-
sion evaluates to true, then there is no need to test the second operand. 
Whatever the second operand’s value is at that point, the full expression still 
evaluates to true. The following example demonstrates the use of short-circuit 
evaluation with disjunction (or):

// if( ch < 'A' || ch > 'Z' ) 
// then stdout.put( "Not an uppercase char" ); 
// endif;

          cmp( ch, 'A' );
          jb ItsNotUC
          cmp( ch, 'Z' );
          jna ItWasUC;

               ItsNotUC:
               stdout.put( "Not an uppercase char" );

          ItWasUC:

Because the conjunction and disjunction operators are commutative, you 
can evaluate the left or right operand first if it is more convenient to do so.2 
As one last example in this section, consider the full boolean expression from 
the previous section:

// if( (( x < y ) && ( z > t )) || ( a != b ) ) << Stmt1 >>;

          mov( a, eax );
          cmp( eax, b );
          jne DoStmt1;
          mov( x, eax );
          cmp( eax, y );
          jnl SkipStmt1;
          mov( z, eax );
          cmp( eax, t );
jng SkipStmt1;

               DoStmt1:
               << Code for Stmt1 goes here. >> 

          SkipStmt1:

2 However, be aware of the fact that some expressions depend on the leftmost subexpression 
evaluating one way in order for the rightmost subexpression to be valid; for example, a common 
test in C/C++ is if( x != NULL && x->y )...
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Notice how the code in this example chose to evaluate a != b first and the 
remaining subexpression last. This is a common technique assembly language 
programmers use to write better code.

7.7.5 Short-Circuit vs. Complete Boolean Evaluation

When using complete boolean evaluation, every statement in the sequence 
for that expression will execute; short-circuit boolean evaluation, on the 
other hand, may not require the execution of every statement associated with 
the boolean expression. As you’ve seen in the previous two sections, code 
based on short-circuit evaluation is usually shorter and faster. So it would 
seem that short-circuit evaluation is the technique of choice when converting 
complex boolean expressions to assembly language.

Sometimes, unfortunately, short-circuit boolean evaluation may not 
produce the correct result. In the presence of side effects in an expression, 
short-circuit boolean evaluation will produce a different result than complete 
boolean evaluation. Consider the following C/C++ example:

if( ( x == y ) && ( ++z != 0 )) << Stmt >>;

Using complete boolean evaluation, you might generate the following 
code:

          mov( x, eax );      // See if x == y.
          cmp( eax, y );
          sete( bl );
          inc( z );           // ++z
          cmp( z, 0 );        // See if incremented z is 0.
          setne( bh );
          and( bh, bl );      // Test x == y && ++z != 0.
          jz SkipStmt;

          << Code for Stmt goes here. >>

SkipStmt:

Using short-circuit boolean evaluation, you might generate the following 
code:

          mov( x, eax );      // See if x == y.
          cmp( eax, y );
          jne SkipStmt;
          inc( z );           // ++z
          cmp( z, 0 );        // See if incremented z is 0.
          je SkipStmt;

          << Code for Stmt goes here. >>

SkipStmt:
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Notice a very subtle but important difference between these two conver-
sions: If x is equal to y, then the first version above still increments z and compares 
it to 0 before it executes the code associated with Stmt; the short-circuit ver-
sion, on the other hand, skips the code that increments z if it turns out that x 
is equal to y. Therefore, the behavior of these two code fragments is different 
if x is equal to y. Neither implementation is particularly wrong; depending on 
the circumstances you may or may not want the code to increment z if x is 
equal to y. However, it is important that you realize that these two schemes 
produce different results, so you can choose an appropriate implementation 
if the effect of this code on z matters to your program.

Many programs take advantage of short-circuit boolean evaluation and 
rely on the fact that the program may not evaluate certain components of the 
expression. The following C/C++ code fragment demonstrates what is proba-
bly the most common example that requires short-circuit boolean evaluation:

                    if( Ptr != NULL && *Ptr == 'a' ) << Stmt >>;

If it turns out that Ptr is NULL, then the expression is false and there is no 
need to evaluate the remainder of the expression (and, therefore, code that 
uses short-circuit boolean evaluation will not evaluate the remainder of this 
expression). This statement relies on the semantics of short-circuit boolean 
evaluation for correct operation. Were C/C++ to use complete boolean eval-
uation, and the variable Ptr contained NULL, then the second half of the 
expression would attempt to dereference a NULL pointer (which tends to crash 
most programs). Consider the translation of this statement using complete 
and short-circuit boolean evaluation:

// Complete boolean evaluation:

          mov( Ptr, eax );
          test( eax, eax );    // Check to see if eax is 0 (NULL is 0).
          setne( bl );
          mov( [eax], al );    // Get *Ptr into al.
          cmp( al, 'a' );
          sete( bh );
          and( bh, bl );
          jz SkipStmt;

          << Code for Stmt goes here. >>

SkipStmt:

Notice in this example that if Ptr contains NULL (0), then this program will 
attempt to access the data at location 0 in memory via the mov( [eax], al ); 
instruction. Under most operating systems this will cause a memory access 
fault (general protection fault).
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Now consider the short-circuit boolean conversion:

// Short-circuit boolean evaluation

          mov( Ptr, eax );     // See if Ptr contains NULL (0) and
          test( eax, eax );    // immediately skip past Stmt if this
          jz SkipStmt;         // is the case.

          mov( [eax], al );    // If we get to this point, Ptr contains
          cmp( al, 'a' );      // a non-NULL value, so see if it points
          jne SkipStmt;        // at the character 'a'.

          << Code for Stmt goes here. >>

SkipStmt:

As you can see in this example, the problem with dereferencing the NULL 
pointer doesn’t exist. If Ptr contains NULL, this code skips over the statements 
that attempt to access the memory address Ptr contains.

7.7.6 Efficient Implementation of if Statements in Assembly Language

Encoding if statements efficiently in assembly language takes a bit more 
thought than simply choosing short-circuit evaluation over complete boolean 
evaluation. To write code that executes as quickly as possible in assembly 
language, you must carefully analyze the situation and generate the code 
appropriately. The following paragraphs provide some suggestions you can 
apply to your programs to improve their performance.

7.7.6.1 Know Your Data!

A mistake programmers often make is the assumption that data is random. In 
reality, data is rarely random, and if you know the types of values that your 
program commonly uses, you can use this knowledge to write better code. To 
see how, consider the following C/C++ statement:

          if(( a == b ) && ( c < d )) ++i;

Because C/C++ uses short-circuit evaluation, this code will test to see if a 
is equal to b. If so, then it will test to see if c is less than d. If you expect a to be 
equal to b most of the time but don’t expect c to be less than d most of the 
time, this statement will execute slower than it should. Consider the following 
HLA implementation of this code:

          mov( a, eax );
          cmp( eax, b );
          jne DontIncI;
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          mov( c, eax );
          cmp( eax, d );
          jnl DontIncI;

               inc( i );

          DontIncI:

As you can see in this code, if a is equal to b most of the time and c is not 
less than d most of the time, you will have to execute all six instructions nearly 
every time in order to determine that the expression is false. Now consider 
the following implementation of the above C/C++ statement that takes 
advantage of this knowledge and the fact that the && operator is commutative:

          mov( c, eax );
          cmp( eax, d );
          jnl DontIncI;

          mov( a, eax );
          cmp( eax, b );
          jne DontIncI;

               inc( i );

          DontIncI:

In this example the code first checks to see if c is less than d. If most of the 
time c is less than d, then this code determines that it has to skip to the label 
DontIncI after executing only three instructions in the typical case (compared 
with six instructions in the previous example). This fact is much more obvious 
in assembly language than in a high-level language; this is one of the main 
reasons why assembly programs are often faster than their high-level language 
counterparts: optimizations are more obvious in assembly language than in a 
high-level language. Of course, the key here is to understand the behavior of 
your data so you can make intelligent decisions such as the one above.

7.7.6.2 Rearranging Expressions

Even if your data is random (or you can’t determine how the input values will 
affect your decisions), there may still be some benefit to rearranging the terms 
in your expressions. Some calculations take far longer to compute than others. 
For example, the div instruction is much slower than a simple cmp instruction. 
Therefore, if you have a statement like the following, you may want to rear-
range the expression so that the cmp comes first:

if( (x % 10 = 0 ) && (x != y ) ++x;
438 Chapte r  7



AAL2E_03.book  Page 439  Thursday, February 18, 2010  12:49 PM
Converted to assembly code, this if statement becomes:

          mov( x, eax );            // Compute X % 10.
          cdq();                    // Must sign extend eax -> edx:eax.
          imod( 10, edx:eax );      // Remember, remainder goes into edx.
          test( edx, edx );         // See if edx is 0.
          jnz SkipIf;

          mov( x, eax );
          cmp( eax, y );
          je SkipIf;

               inc( x );

          SkipIf:

The imod instruction is very expensive (often 50–100 times slower than 
most of the other instructions in this example). Unless it is 50–100 times 
more likely that the remainder is 0 rather than x is equal to y, it would be better 
to do the comparison first and the remainder calculation afterward:

          mov( x, eax );
          cmp( eax, y );
          je SkipIf;

          mov( x, eax );            // Compute X % 10.
          cdq();                    // Must sign extend eax -> edx:eax.
          imod( 10, edx:eax );      // Remember, remainder goes into edx.
          test( edx, edx );         // See if edx is 0.
          jnz SkipIf;

               inc( x );

          SkipIf:

Of course, in order to rearrange the expression in this manner, the code 
must not assume the use of short-circuit evaluation semantics (because the && 
and || operators are not commutative if the code must compute one subex-
pression before another).

7.7.6.3 Destructuring Your Code

Although there are many good things to be said about structured program-
ming techniques, there are some drawbacks to writing structured code. 
Specifically, structured code is sometimes less efficient than unstructured 
code. Most of the time this is tolerable because unstructured code is difficult 
to read and maintain; it is often acceptable to sacrifice some performance in 
exchange for maintainable code. In certain instances, however, you may need 
all the performance you can get. In those rare instances you might choose to 
compromise the readability of your code in order to gain some additional 
performance.
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One classic way to do this is to use code movement to move code your 
program rarely uses out of the way of code that executes most of the time. For 
example, consider the following pseudo C/C++ statement:

     if( See_If_an_Error_Has_Occurred )
     {
          << Statements to execute if no error >>
     }
     else
     {
          << Error handling statements >>
     }

In normal code, one does not expect errors to be frequent. Therefore, 
you would normally expect the then section of the above if to execute far 
more often than the else clause. The code above could translate into the follow-
ing assembly code:

     cmp( See_If_an_Error_Has_Occurred, true );
     je HandleTheError;

          << Statements to execute if no error >>
          jmp EndOfIF;

     HandleTheError:
          << Error handling statements >>
     EndOfIf:

Notice that if the expression is false, this code falls through to the normal 
statements and then jumps over the error-handling statements. Instructions 
that transfer control from one point in your program to another (for exam-
ple, jmp instructions) tend to be slow. It is much faster to execute a sequential 
set of instructions rather than jump all over the place in your program. Unfor-
tunately, the code above doesn’t allow this. One way to rectify this problem is 
to move the else clause of the code somewhere else in your program. That is, 
you could rewrite the code as follows:

     cmp( See_If_an_Error_Has_Occurred, true );
     je HandleTheError;

          << Statements to execute if no error >>

     EndOfIf:

At some other point in your program (typically after a jmp instruction) 
you would insert the following code:

     HandleTheError:
          << Error handling statements >>
          jmp EndOfIf;
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Note that the program isn’t any shorter. The jmp you removed from the 
original sequence winds up at the end of the else clause. However, because 
the else clause rarely executes, moving the jmp instruction from the then clause 
(which executes frequently) to the else clause is a big performance win because 
the then clause executes using only straight-line code. This technique is sur-
prisingly effective in many time-critical code segments.

There is a difference between writing destructured code and writing 
unstructured code. Unstructured code is written in an unstructured way to 
begin with. It is generally hard to read, difficult to maintain, and often con-
tains defects. Destructured code, on the other hand, starts out as structured 
code, and you make a conscious decision to eliminate the structure in order 
to gain a small performance boost. Generally, you’ve already tested the code 
in its structured form before destructuring it. Therefore, destructured code is 
often easier to work with than unstructured code.

7.7.6.4 Calculation Rather Than Branching

On many processors in the 80x86 family, branches ( jumps) are very expen-
sive compared to many other instructions. For this reason it is sometimes 
better to execute more instructions in a sequence than fewer instructions 
that involve branching. For example, consider the simple assignment 
eax = abs( eax );. Unfortunately, there is no 80x86 instruction that com-
putes the absolute value of an integer. The obvious way to handle this is with 
an instruction sequence like the following:

          test( eax, eax );
          jns ItsPositive;

               neg( eax );

          ItsPositive:

However, as you can plainly see in this example, it uses a conditional 
jump to skip over the neg instruction (that creates a positive value in EAX if 
EAX was negative). Now consider the following sequence that will also do 
the job:

// Set edx to $FFFF_FFFF if eax is negative, $0000_0000 if eax is 
// 0 or positive:

          cdq();

// If eax was negative, the following code inverts all the bits in eax;
// otherwise it has no effect on eax.

          xor( edx, eax );

// If eax was negative, the following code adds 1 to eax; otherwise
// it doesn't modify eax's value.
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          and( 1, edx );      // edx = 0 or 1 (1 if eax was negative).
          add( edx, eax );

This code will invert all the bits in EAX and then add 1 to EAX if EAX was 
negative prior to the sequence; that is, it negates the value in EAX. If EAX 
was 0 or positive, then this code does not change the value in EAX.

Note that this sequence takes four instructions rather than the three the 
previous example requires. However, because there are no transfer-of-control 
instructions in this sequence, it may execute faster on many CPUs in the 
80x86 family.

7.7.7 switch/case Statements 

The HLA switch statement takes the following form:

      switch( reg32 )
case( const1 )

               << Stmts1: code to execute if reg32 equals const1 >>

case( const2 )
               << Stmts2: code to execute if reg32 equals const2 >>
            .
            .
            .

case( constn )
               << Stmtsn: code to execute if reg32 equals constn >> 

default      // Note that the default section is optional.
               << Stmts_default: code to execute if reg32

does not equal any of the case values >> 

     endswitch;

When this statement executes, it checks the value of the register against 
the constants const1..constn. If a match is found, then the corresponding 
statements execute. HLA places a few restrictions on the switch statement. 
First, the HLA switch statement allows only a 32-bit register as the switch 
expression. Second, all the constants in the case clauses must be unique. The 
reason for these restrictions will become clear in a moment.

Most introductory programming texts introduce the switch/case statement 
by explaining it as a sequence of if..then..elseif..else..endif statements. 
They might claim that the following two pieces of HLA code are equivalent:

     switch( eax ) 
          case(0) stdout.put("i=0");
          case(1) stdout.put("i=1");
          case(2) stdout.put("i=2");
     endswitch;
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     if( eax = 0 ) then 
          stdout.put("i=0")
     elseif( eax = 1 ) then 
          stdout.put("i=1")
     elseif( eax = 2 ) then 
          stdout.put("i=2");
     endif;

While semantically these two code segments may be the same, their 
implementation is usually different. Whereas the if..then..elseif..else..endif 
chain does a comparison for each conditional statement in the sequence, the 
switch statement normally uses an indirect jump to transfer control to any one 
of several statements with a single computation. Consider the two examples 
presented above; they could be written in assembly language with the follow-
ing code:

// if..then..else..endif form: 

          mov( i, eax );
          test( eax, eax );   // Check for 0.
          jnz Not0;
               stdout.put( "i=0" );
               jmp EndCase;

          Not0:
          cmp( eax, 1 );
          jne Not1;
               stdou.put( "i=1" );
               jmp EndCase;

          Not1:
          cmp( eax, 2 );
          jne EndCase;
               stdout.put( "i=2" );
     EndCase: 

// Indirect Jump Version

readonly
     JmpTbl:dword[3] := [ &Stmt0, &Stmt1, &Stmt2 ];
           .
           .
           .
     mov( i, eax );
     jmp( JmpTbl[ eax*4 ] );

          Stmt0:
               stdout.put( "i=0" );
               jmp EndCase;
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          Stmt1:
               stdout.put( "I=1" );
               jmp EndCase;

          Stmt2:
               stdout.put( "I=2" );

     EndCase: 

The implementation of the if..then..elseif..else..endif version is fairly 
obvious and needs little in the way of explanation. The indirect jump version, 
however, is probably quite mysterious to you, so let’s consider how this partic-
ular implementation of the switch statement works.

Remember that there are three common forms of the jmp instruction. The 
standard unconditional jmp instruction, like the jmp EndCase; instruction in the 
previous examples, transfers control directly to the statement label specified 
as the jmp operand. The second form of the jmp instruction—jmp( reg32 );— 
transfers control to the memory location specified by the address found in a 
32-bit register. The third form of the jmp instruction, the one the previous 
example uses, transfers control to the instruction specified by the contents 
of a double-word memory location. As this example clearly illustrates, that 
memory location can use any addressing mode. You are not limited to the 
displacement-only addressing mode. Now let’s consider exactly how this sec-
ond implementation of the switch statement works.

To begin with, a switch statement requires that you create an array of 
pointers with each element containing the address of a statement label in 
your code (those labels must be attached to the sequence of instructions to 
execute for each case in the switch statement). In the example above, the 
JmpTbl array serves this purpose. Note that this code initializes JmpTbl with the 
address of the statement labels Stmt0, Stmt1, and Stmt2. The program places 
this array in the readonly section because the program should never change 
these values during execution.

WARNING Whenever you initialize an array with a set of addresses of statement labels as in this 
example, the declaration section in which you declare the array (e.g., readonly in this
case) must be in the same procedure that contains the statement labels.3

During the execution of this code sequence, the program loads the EAX 
register with i’s value. Then the program uses this value as an index into the 
JmpTbl array and transfers control to the 4-byte address found at the specified 
location. For example, if EAX contains 0, the jmp( JmpTbl[eax*4] ); instruction 
will fetch the double word at address JmpTbl+0 ( eax*4=0 ). Because the first 
double word in the table contains the address of Stmt0, the jmp instruction 
transfers control to the first instruction following the Stmt0 label. Likewise, if i 
(and therefore, EAX) contains 1, then the indirect jmp instruction fetches the 
double word at offset 4 from the table and transfers control to the first instruc-
tion following the Stmt1 label (because the address of Stmt1 appears at offset 

3 If the switch statement appears in your main program, you must declare the array in the 
declaration section of your main program.
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4 in the table). Finally, if i/EAX contains 2, then this code fragment transfers 
control to the statements following the Stmt2 label because it appears at offset 8 
in the JmpTbl table.

You should note that as you add more (consecutive) cases, the jump table 
implementation becomes more efficient (in terms of both space and speed) 
than the if/elseif form. Except for simple cases, the switch statement is almost 
always faster and usually by a large margin. As long as the case values are con-
secutive, the switch statement version is usually smaller as well.

What happens if you need to include nonconsecutive case labels or you 
cannot be sure that the switch value doesn’t go out of range? With the HLA 
switch statement, such an occurrence will transfer control to the first state-
ment after the endswitch clause (or to a default case, if one is present in the 
switch). However, this doesn’t happen in the example above. If variable i does 
not contain 0, 1, or 2, executing the code above produces undefined results. 
For example, if i contains 5 when you execute the code in the previous 
example, the indirect jmp instruction will fetch the dword at offset 20 (5 * 4) 
in JmpTbl and transfer control to that address. Unfortunately, JmpTbl doesn’t 
have six entries; so the program will wind up fetching the value of the third 
double word following JmpTbl and use that as the target address. This will 
often crash your program or transfer control to an unexpected location.

The solution is to place a few instructions before the indirect jmp to verify 
that the switch selection value is within some reasonable range. In the previ-
ous example, we’d probably want to verify that i’s value is in the range 0..2 
before executing the jmp instruction. If i’s value is outside this range, the pro-
gram should simply jump to the endcase label (this corresponds to dropping 
down to the first statement after the endswitch clause). The following code 
provides this modification:

readonly
     JmpTbl:dword[3] := [ &Stmt0, &Stmt1, &Stmt2 ];
      .
      .
      .
     mov( i, eax );
     cmp( eax, 2 );          // Verify that i is in the range
     ja EndCase;             // 0..2 before the indirect jmp.
     jmp( JmpTbl[ eax*4 ] );

          Stmt0:
               stdout.put( "i=0" );
               jmp EndCase;

          Stmt1:
               stdout.put( "i=1" );
               jmp EndCase;
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          Stmt2:
               stdout.put( "i=2" );

     EndCase: 

Although the example above handles the problem of selection values 
being outside the range 0..2, it still suffers from a couple of severe restrictions:

The cases must start with the value 0. That is, the minimum case constant 
has to be 0 in this example.

The case values must be contiguous.

Solving the first problem is easy, and you deal with it in two steps. First, 
you must compare the case selection value against a lower and upper bounds 
before determining if the case value is legal. For example:

// SWITCH statement specifying cases 5, 6, and 7:
// WARNING: This code does *NOT* work. Keep reading to find out why.

     mov( i, eax );
     cmp( eax, 5 );
     jb EndCase
     cmp( eax, 7 );              // Verify that i is in the range
     ja EndCase;                 // 5..7 before the indirect jmp.
     jmp( JmpTbl[ eax*4 ] );

          Stmt5:
               stdout.put( "i=5" );
               jmp EndCase;

          Stmt6:
               stdout.put( "i=6" );
               jmp EndCase;

          Stmt7:
               stdout.put( "i=7" );

     EndCase: 

As you can see, this code adds a pair of extra instructions, cmp and jb, to test 
the selection value to ensure it is in the range 5..7. If not, control drops down to 
the EndCase label; otherwise control transfers via the indirect jmp instruction. 
Unfortunately, as the comments point out, this code is broken. Consider what 
happens if variable i contains the value 5: the code will verify that 5 is in the 
range 5..7 and then it will fetch the dword at offset 20 (5*@size(dword)) and 
jump to that address. As before, however, this loads 4 bytes outside the bounds 
of the table and does not transfer control to a defined location. One solution 
is to subtract the smallest case selection value from EAX before executing the 
jmp instruction, as shown in the following example.
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// SWITCH statement specifying cases 5, 6, and 7:
// WARNING: There is a better way to do this. Keep reading.

readonly
     JmpTbl:dword[3] := [ &Stmt5, &Stmt6, &Stmt7 ];
           .
           .
           .
     mov( i, eax );
     cmp( eax, 5 );
     jb EndCase
     cmp( eax, 7 );              // Verify that i is in the range
     ja EndCase;                 // 5..7 before the indirect jmp.
     sub( 5, eax );              // 5->0, 6->1, 7->2.
     jmp( JmpTbl[ eax*4 ] );

          Stmt5:
               stdout.put( "i=5" );
               jmp EndCase;

          Stmt6:
               stdout.put( "i=6" );
               jmp EndCase;

          Stmt7:
               stdout.put( "i=7" );

     EndCase: 

By subtracting 5 from the value in EAX, this code forces EAX to take on 
the value 0, 1, or 2 prior to the jmp instruction. Therefore, case-selection value 5 
jumps to Stmt5, case-selection value 6 transfers control to Stmt6, and case-selection 
value 7 jumps to Stmt7.

There is a sneaky way to improve the code above. You can eliminate the 
sub instruction by merging this subtraction into the jmp instruction’s address 
expression. Consider the following code that does this:

// SWITCH statement specifying cases 5, 6, and 7:

readonly
     JmpTbl:dword[3] := [ &Stmt5, &Stmt6, &Stmt7 ];
           .
           .
           .
     mov( i, eax );
     cmp( eax, 5 );
     jb EndCase
     cmp( eax, 7 );              // Verify that i is in the range
     ja EndCase;                 // 5..7 before the indirect jmp.
     jmp( JmpTbl[ eax*4 - 5*@size(dword)] );
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          Stmt5:
               stdout.put( "i=5" );
               jmp EndCase;

          Stmt6:
               stdout.put( "i=6" );
               jmp EndCase;

          Stmt7:
               stdout.put( "i=7" );

     EndCase: 

The HLA switch statement provides a default clause that executes if the 
case-selection value doesn’t match any of the case values. For example:

     switch( ebx )

          case( 5 )  stdout.put( "ebx=5" );
          case( 6 )  stdout.put( "ebx=6" );
          case( 7 )  stdout.put( "ebx=7" );
          default
               stdout.put( "ebx does not equal 5, 6, or 7" );

     endswitch;

Implementing the equivalent of the default clause in pure assembly lan-
guage is very easy. Just use a different target label in the jb and ja instructions 
at the beginning of the code. The following example implements an HLA 
switch statement similar to the one immediately above:

// SWITCH statement specifying cases 5, 6, and 7 with a DEFAULT clause:

readonly
     JmpTbl:dword[3] := [ &Stmt5, &Stmt6, &Stmt7 ];
           .
           .
           .
     mov( i, eax );
     cmp( eax, 5 );
     jb DefaultCase;
     cmp( eax, 7 );              // Verify that i is in the range
     ja DefaultCase;             // 5..7 before the indirect jmp.
     jmp( JmpTbl[ eax*4 - 5*@size(dword)] );

          Stmt5:
               stdout.put( "i=5" );
               jmp EndCase;
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          Stmt6:
               stdout.put( "i=6" );
               jmp EndCase;

          Stmt7:
               stdout.put( "i=7" );
               jmp EndCase;

          DefaultCase:
               stdout.put( "i does not equal 5, 6, or 7" );
     EndCase: 

The second restriction noted earlier, that the case values need to be 
contiguous, is easy to handle by inserting extra entries into the jump table. 
Consider the following HLA switch statement:

     switch( ebx )

          case( 1 ) stdout.put( "ebx = 1" );
          case( 2 ) stdout.put( "ebx = 2" );
          case( 4 ) stdout.put( "ebx = 4" );
          case( 8 ) stdout.put( "ebx = 8" );
          default
               stdout.put( "ebx is not 1, 2, 4, or 8" );

     endswitch;

The minimum switch value is 1 and the maximum value is 8. Therefore, 
the code before the indirect jmp instruction needs to compare the value in 
EBX against 1 and 8. If the value is between 1 and 8, it’s still possible that EBX 
might not contain a legal case-selection value. However, because the jmp 
instruction indexes into a table of double words using the case-selection table, 
the table must have eight double-word entries. To handle the values between 
1 and 8 that are not case-selection values, simply put the statement label of the 
default clause (or the label specifying the first instruction after the endswitch if 
there is no default clause) in each of the jump table entries that don’t have a 
corresponding case clause. The following code demonstrates this technique:

readonly
     JmpTbl2: dword := 
                    [
                         &Case1, &Case2, &dfltCase, &Case4, 
                         &dfltCase, &dfltCase, &dfltCase, &Case8
                    ];
          .
          .
          .
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     cmp( ebx, 1 );
     jb dfltCase;
     cmp( ebx, 8 );
     ja dfltCase;
     jmp( JmpTbl2[ ebx*4 - 1*@size(dword) ] );

          Case1:
               stdout.put( "ebx = 1" );
               jmp EndOfSwitch;

          Case2:
               stdout.put( "ebx = 2" );
               jmp EndOfSwitch;

          Case4:
               stdout.put( "ebx = 4" );
               jmp EndOfSwitch;

          Case8:
               stdout.put( "ebx = 8" );
               jmp EndOfSwitch;

          dfltCase:
               stdout.put( "ebx is not 1, 2, 4, or 8" );

     EndOfSwitch:

There is a problem with this implementation of the switch statement. If 
the case values contain nonconsecutive entries that are widely spaced, the 
jump table could become exceedingly large. The following switch statement 
would generate an extremely large code file:

     switch( ebx )

          case( 1      ) << Stmt1 >>;
          case( 100    ) << Stmt2 >>;
          case( 1_000  ) << Stmt3 >>;
          case( 10_000 ) << Stmt4 >>;
          default << Stmt5 >>;

     endswitch; 

In this situation, your program will be much smaller if you implement the 
switch statement with a sequence of if statements rather than using an indi-
rect jump statement. However, keep one thing in mind—the size of the jump 
table does not normally affect the execution speed of the program. If the 
jump table contains two entries or two thousand, the switch statement will 
execute the multiway branch in a constant amount of time. The if statement 
implementation requires a linearly increasing amount of time for each case 
label appearing in the case statement.
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Probably the biggest advantage to using assembly language over an HLL 
like Pascal or C/C++ is that you get to choose the actual implementation of 
statements like switch. In some instances you can implement a switch state-
ment as a sequence of if..then..elseif statements, or you can implement it as 
a jump table, or you can use a hybrid of the two:

     switch( eax )

          case( 0 ) << Stmt0 >>;
          case( 1 ) << Stmt1 >>;
          case( 2 ) << Stmt2 >>;
          case( 100 ) << Stmt3 >>;
          default << Stmt4 >>;

     endswitch;

This could become

          cmp( eax, 100 );
          je DoStmt3;
          cmp( eax, 2 );
          ja TheDefaultCase;
          jmp( JmpTbl[ eax*4 ]);

...

Of course, HLA supports the following code high-level control structures:

      if( ebx = 100 ) then 
         << Stmt3 >>;
     else
          switch( eax )
               case(0) << Stmt0 >>;

case(1) << Stmt1 >>;
case(2) << Stmt2 >>;
Otherwise << Stmt4 >>;

          endswitch;
     endif;

But this tends to destroy the readability of the program. On the other 
hand, the extra code to test for 100 in the assembly language code doesn’t 
adversely affect the readability of the program (perhaps because it’s so hard 
to read already). Therefore, most people will add the extra code to make 
their program more efficient.

The C/C++ switch statement is very similar to the HLA switch statement. 
There is only one major semantic difference: The programmer must explicitly 
place a break statement in each case clause to transfer control to the first state-
ment beyond the switch. This break corresponds to the jmp instruction at the 
end of each case sequence in the assembly code above. If the corresponding 
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break is not present, C/C++ transfers control into the code of the following 
case. This is equivalent to leaving off the jmp at the end of the case’s sequence:

     switch (i) 
     {
          case 0: << Stmt1 >>;
          case 1: << Stmt2 >>;
          case 2: << Stmt3 >>;
               break;
          case 3: << Stmt4 >>;
               break;
          default: << Stmt5 >>;
     }

This translates into the following 80x86 code:

readonly
     JmpTbl: dword[4] := [ &case0, &case1, &case2, &case3 ];
          .
          .
          .
          mov( i, ebx );
          cmp( ebx, 3 );
          ja DefaultCase;
          jmp( JmpTbl[ ebx*4 ]);

               case0:
                    Stmt1;

               case1:
                    Stmt2;

               case2:
                    Stmt3;
                    jmp EndCase;    // Emitted for the break stmt.

               case3:
                    Stmt4;
                    jmp EndCase;    // Emitted for the break stmt.

               DefaultCase:
                    Stmt5;

          EndCase:

7.8 State Machines and Indirect Jumps 
Another control structure commonly found in assembly language programs 
is the state machine. A state machine uses a state variable to control program 
flow. The FORTRAN programming language provides this capability with 
the assigned goto statement. Certain variants of C (for example, GNU’s GCC 
from the Free Software Foundation) provide similar features. In assembly 
language, the indirect jump can implement state machines.
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So what is a state machine? In very basic terms, it is a piece of code that 
keeps track of its execution history by entering and leaving certain “states.” 
For the purposes of this chapter, we’ll just assume that a state machine is a 
piece of code that (somehow) remembers the history of its execution (its 
state) and executes sections of code based on that history.

In a very real sense, all programs are state machines. The CPU registers 
and values in memory constitute the state of that machine. However, we’ll use 
a much more constrained view. Indeed, for most purposes only a single variable 
(or the value in the EIP register) will denote the current state.

Now let’s consider a concrete example. Suppose you have a procedure 
that you want to perform one operation the first time you call it, a different 
operation the second time you call it, yet something else the third time you 
call it, and then something new again on the fourth call. After the fourth call 
it repeats these four different operations in order. For example, suppose you 
want the procedure to add EAX and EBX the first time, subtract them on the 
second call, multiply them on the third, and divide them on the fourth. You 
could implement this procedure as follows:

procedure StateMachine;
static
     State:byte := 0;
begin StateMachine;

     cmp( State, 0 );
     jne TryState1;

          // State 0: Add ebx to eax and switch to State 1:

          add( ebx, eax );
          inc( State );
          exit StateMachine;

     TryState1:
     cmp( State, 1 );
     jne TryState2;

          // State 1: Subtract ebx from eax and switch to State 2:

          sub( ebx, eax );
          inc( State );       // State 1 becomes State 2.
          exit StateMachine;

     TryState2:
     cmp( State, 2 );
     jne MustBeState3;

          // If this is State 2, multiply ebx by eax and switch to State 3:

          intmul( ebx, eax );
          inc( State );       // State 2 becomes State 3.
          exit StateMachine;
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     // If it isn't one of the above states, we must be in State 3,
     // so divide eax by ebx and switch back to State 0.

     MustBeState3:
     push( edx );         // Preserve this 'cause it gets whacked by div.
     xor( edx, edx );     // Zero extend eax into edx.
     div( ebx, edx:eax);
     pop( edx );          // Restore edx's value preserved above.
     mov( 0, State );     // Reset the state back to 0.

end StateMachine;

Technically, this procedure is not the state machine. Instead, it is the vari-
able State and the cmp/jne instructions that constitute the state machine.

There is nothing particularly special about this code. It’s little more than 
a switch statement implemented via the if..then..elseif construct. The only 
thing unique about this procedure is that it remembers how many times it has 
been called4 and behaves differently depending upon the number of calls. 
While this is a correct implementation of the desired state machine, it is not 
particularly efficient. The astute reader, of course, would recognize that this 
code could be made a little faster using an actual switch statement rather than 
the if..then..elseif implementation. However, there is an even better solution.

A common implementation of a state machine in assembly language is to 
use an indirect jump. Rather than having a state variable that contains a value 
like 0, 1, 2, or 3, we could load the state variable with the address of the code 
to execute upon entry into the procedure. By simply jumping to that address, 
the state machine could save the tests needed to select the proper code frag-
ment. Consider the following implementation using the indirect jump:

procedure StateMachine;
static
     State:dword := &State0;
begin StateMachine;

     jmp( State );

          // State 0: Add ebx to eax and switch to State 1:

     State0:
          add( ebx, eax );
          mov( &State1, State );
          exit StateMachine;

     State1:

          // State 1: Subtract ebx from eax and switch to State 2:

4 Actually, it remembers how many times, modulo 4, that it has been called.
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          sub( ebx, eax );
          mov( &State2, State );    // State 1 becomes State 2.
          exit StateMachine;

     State2:

          // If this is State 2, multiply ebx by eax and switch to State 3:

          intmul( ebx, eax );
          mov( &State3, State );    // State 2 becomes State 3.
          exit StateMachine;

     // State 3: Divide eax by ebx and switch back to State 0.

     State3:
          push( edx ); // Preserve this 'cause it gets whacked by div.
          xor( edx, edx ); // Zero extend eax into edx.
          div( ebx, edx:eax);
          pop( edx ); // Restore edx's value preserved above.
          mov( &State0, State ); // Reset the state back to 0.

end StateMachine;

The jmp instruction at the beginning of the StateMachine procedure trans-
fers control to the location pointed at by the State variable. The first time you 
call StateMachine it points at the State0 label. Thereafter, each subsection of 
code sets the State variable to point at the appropriate successor code.

7.9 Spaghetti Code

One major problem with assembly language is that it takes several statements 
to realize a simple idea encapsulated by a single high-level language state-
ment. All too often an assembly language programmer will notice that she or 
he can save a few bytes or cycles by jumping into the middle of some program 
structure. After a few such observations (and corresponding modifications) 
the code contains a whole sequence of jumps in and out of portions of the 
code. If you were to draw a line from each jump to its destination, the result-
ing listing would end up looking like someone dumped a bowl of spaghetti on 
your code, hence the term spaghetti code.

Spaghetti code suffers from one major drawback—it’s difficult (at best) 
to read such a program and figure out what it does. Most programs start out 
in a “structured” form only to become spaghetti code when sacrificed at the 
altar of efficiency. Alas, spaghetti code is rarely efficient. Because it’s difficult 
to figure out exactly what’s going on, it’s very difficult to determine if you can 
use a better algorithm to improve the system. Hence, spaghetti code may wind 
up less efficient than structured code.
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While it’s true that producing some spaghetti code in your programs may 
improve its efficiency, doing so should always be a last resort after you’ve tried 
everything else and you still haven’t achieved what you need. Always start out 
writing your programs with straightforward if and switch statements. Start 
combining sections of code (via jmp instructions) once everything is working 
and well understood. Of course, you should never obliterate the structure of 
your code unless the gains are worth it.

A famous saying in structured programming circles is, “After gotos, point-
ers are the next most dangerous element in a programming language.” A 
similar saying is “Pointers are to data structures what gotos are to control struc-
tures.” In other words, avoid excessive use of pointers. If pointers and gotos 
are bad, then the indirect jump must be the worst construct of all because it 
involves both gotos and pointers! Seriously, though, the indirect jump instruc-
tion should be avoided for casual use. Its use tends to make a program harder 
to read. After all, an indirect jump can (theoretically) transfer control to any 
point within a program. Imagine how hard it would be to follow the flow 
through a program if you have no idea what a pointer contains and you come 
across an indirect jump using that pointer. Therefore, you should always exer-
cise care when using jump indirect instructions.

7.10 Loops

Loops represent the final basic control structure (sequences, decisions, and 
loops) that make up a typical program. Like so many other structures in assem-
bly language, you’ll find yourself using loops in places you’ve never dreamed of 
using loops. Most high-level languages have implied loop structures hidden 
away. For example, consider the BASIC statement if A$ = B$ then 100. This if 
statement compares two strings and jumps to statement 100 if they are equal. 
In assembly language, you would need to write a loop to compare each char-
acter in A$ to the corresponding character in B$ and then jump to statement 
100 if and only if all the characters matched. In BASIC, there is no loop to be 
seen in the program. Assembly language requires a loop to compare the indi-
vidual characters in the string.5 This is but a small example that shows how 
loops seem to pop up everywhere.

Program loops consist of three components: an optional initialization 
component, an optional loop termination test, and the body of the loop. The 
order in which you assemble these components can dramatically affect the 
loop’s operation. Three permutations of these components appear frequently 
in programs. Because of their frequency, these loop structures are given special 
names in high-level languages: while loops, repeat..until loops (do..while in 
C/C++), and infinite loops (e.g., forever..endfor in HLA).

5 Of course, the HLA Standard Library provides the str.eq routine that compares the strings for 
you, effectively hiding the loop even in an assembly language program.
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7.10.1 while Loops

The most general loop is the while loop. In HLA’s high-level syntax it takes the 
following form:

     while( expression ) do statements endwhile;

There are two important points to note about the while loop. First, the 
test for termination appears at the beginning of the loop. Second, as a direct 
consequence of the position of the termination test, the body of the loop may 
never execute if the boolean expression is always false.

Consider the following HLA while loop:

     mov( 0, i );
     while( i < 100 ) do 

          inc( i );

     endwhile;

The mov( 0, i ); instruction is the initialization code for this loop. i is a 
loop-control variable, because it controls the execution of the body of the loop. 
i < 100 is the loop termination condition. That is, the loop will not terminate 
as long as i is less than 100. The single instruction inc( i ); is the loop body 
that executes on each loop iteration.

Note that an HLA while loop can be easily synthesized using if and jmp 
statements. For example, you may replace the previous HLA while loop with 
the following HLA code:

     mov( 0, i );
     WhileLp:
     if( i < 100 ) then

          inc( i );
          jmp WhileLp;

     endif;

More generally, you can construct any while loop as follows:

     << Optional initialization code >>

     UniqueLabel:
     if( not_termination_condition ) then
          
          << Loop body >>
          jmp UniqueLabel;

     endif;
Low-Level  Cont rol  S t ruc tures 457



AAL2E_03.book  Page 458  Thursday, February 18, 2010  12:49 PM
Therefore, you can use the techniques from earlier in this chapter to convert 
if statements to assembly language and add a single jmp instruction to produce 
a while loop. The example we’ve been looking at in this section translates to 
the following pure 80x86 assembly code:6

     mov( 0, i );
     WhileLp:
          cmp( i, 100 );
          jnl WhileDone;
          inc( i );
          jmp WhileLp;

     WhileDone:

7.10.2 repeat..until Loops

The repeat..until (do..while) loop tests for the termination condition at the 
end of the loop rather than at the beginning. In HLA high-level syntax, the 
repeat..until loop takes the following form:

     << Optional initialization code >>
     repeat

          << Loop body >>

     until( termination_condition );

This sequence executes the initialization code, then executes the loop 
body, and finally tests some condition to see if the loop should repeat. If the 
boolean expression evaluates to false, the loop repeats; otherwise the loop ter-
minates. The two things you should note about the repeat..until loop are that 
the termination test appears at the end of the loop and, as a direct consequence 
of this, the loop body always executes at least once.

Like the while loop, the repeat..until loop can be synthesized with an if 
statement and a jmp. You could use the following:

     << Initialization code >>
     SomeUniqueLabel:

          << Loop body >>

     if( not_the_termination_condition ) then jmp SomeUniqueLabel; endif;

6 Note that HLA will actually convert most while statements to different 80x86 code than this 
section presents. The reason for the difference appears in Section 7.11, when we explore how to 
write more efficient loop code.
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Based on the material presented in the previous sections, you can easily 
synthesize repeat..until loops in assembly language. The following is a simple 
example:

     repeat

          stdout.put( "Enter a number greater than 100: " );
          stdin.get( i );

     until( i > 100 );

// This translates to the following if/jmp code:

     RepeatLabel:

          stdout.put( "Enter a number greater than 100: " );
          stdin.get( i );

     if( i <= 100 ) then jmp RepeatLabel; endif;

// It also translates into the following "pure" assembly code:

     RepeatLabel:

          stdout.put( "Enter a number greater than 100: " );
          stdin.get( i );

     cmp( i, 100 );
     jng RepeatLabel;

7.10.3 forever..endfor Loops

If while loops test for termination at the beginning of the loop and repeat..until 
loops check for termination at the end of the loop, the only place left to test for 
termination is in the middle of the loop. The HLA high-level forever..endfor 
loop, combined with the break and breakif statements, provides this capabil-
ity. The forever..endfor loop takes the following form:

     forever

          << Loop body >>

     endfor;
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Note that there is no explicit termination condition. Unless otherwise 
provided for, the forever..endfor construct forms an infinite loop. A breakif 
statement usually handles loop termination. Consider the following HLA 
code that employs a forever..endfor construct:

     forever

          stdin.get( character );
          breakif( character = '.' );
          stdout.put( character );

     endfor;

Converting a forever loop to pure assembly language is easy. All you need 
is a label and a jmp instruction. The breakif statement in this example is really 
nothing more than an if and a jmp instruction. The pure assembly language 
version of the code above looks something like the following:

     foreverLabel:

          stdin.get( character );
          cmp( character, '.' );
          je ForIsDone;
          stdout.put( character );
          jmp foreverLabel;

     ForIsDone:

7.10.4 for Loops

The for loop is a special form of the while loop that repeats the loop body a 
specific number of times. In HLA, the for loop takes the following form:

     for( Initialization_Stmt; Termination_Expression; inc_Stmt ) do

          << statements >>

     endfor;

This is completely equivalent to the following:

     Initialization_Stmt;
     while( Termination_Expression ) do

          << statements >>

          inc_Stmt;

     endwhile;
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Traditionally, programs use the for loop to process arrays and other 
objects accessed in sequential order. One normally initializes a loop-control 
variable with the initialization statement and then uses the loop-control vari-
able as an index into the array (or other data type). For example:

for( mov( 0, esi ); esi < 7; inc( esi )) do

     stdout.put( "Array Element = ", SomeArray[ esi*4 ], nl );

endfor;

To convert this to pure assembly language, begin by translating the for 
loop into an equivalent while loop:

          mov( 0, esi );
          while( esi < 7 ) do

               stdout.put( "Array Element = ", SomeArray[ esi*4 ], nl );

               inc( esi );
          endwhile;

Now, using the techniques from the section on while loops, translate the 
code into pure assembly language:

          mov( 0, esi );
          WhileLp:
          cmp( esi, 7 );
          jnl EndWhileLp;

               stdout.put( "Array Element = ", SomeArray[ esi*4 ], nl );

               inc( esi );
               jmp WhileLp;

          EndWhileLp:

7.10.5 The break and continue Statements

The HLA break and continue statements both translate into a single jmp instruc-
tion. The break instruction exits the loop that immediately contains the break 
statement; the continue statement restarts the loop that immediately contains 
the continue statement.

Converting a break statement to pure assembly language is very easy. Just 
emit a jmp instruction that transfers control to the first statement following the 
endxxxx (or until) clause of the loop to exit. You can do this by placing a label 
after the associated endxxxx clause and jumping to that label. The following 
code fragments demonstrate this technique for the various loops.
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// Breaking out of a FOREVER loop:

forever
     << stmts >>
          // break;
          jmp BreakFromForever;
     << stmts >>
endfor;
BreakFromForever:

// Breaking out of a FOR loop;
for( initStmt; expr; incStmt ) do
     << stmts >>
          // break;
          jmp BrkFromFor;
     << stmts >>
endfor;
BrkFromFor:

// Breaking out of a WHILE loop:

while( expr ) do
     << stmts >>
          // break;
          jmp BrkFromWhile;
     << stmts >>
endwhile;
BrkFromWhile:

// Breaking out of a REPEAT..UNTIL loop:

repeat
     << stmts >>
          // 20break;
          jmp BrkFromRpt;
     << stmts >>
until( expr );
BrkFromRpt:

The continue statement is slightly more complex than the break state-
ment. The implementation is still a single jmp instruction; however, the 
target label doesn’t wind up going in the same spot for each of the different 
loops. Figures 7-2, 7-3, 7-4, and 7-5 show where the continue statement transfers 
control for each of the HLA loops.

Figure 7-2: continue destination 
for the forever loop

forever

    << stmts >>
    continue;
    << stmts >>

endfor;
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Figure 7-3: continue destination and the while loop

Figure 7-4: continue destination and the for loop 

Figure 7-5: continue destination and the repeat..until loop

The following code fragments demonstrate how to convert the continue 
statement into an appropriate jmp instruction for each of these loop types.

forever..continue..endfor

// Conversion of forever loop with continue
// to pure assembly:
forever
     << stmts >>
     continue;
     << stmts >>
endfor;

// Converted code:

foreverLbl:
     << stmts >>
          // continue;
          jmp foreverLbl;
     << stmts >>
     jmp foreverLbl;

while..continue..endwhile

// Conversion of while loop with continue
// into pure assembly:

while( expr ) do

    << stmts >>
    continue;
    << stmts >>

endwhile;

for( initStmt; expr; incStmt ) do

    << stmts >>
    continue;
    << stmts >>

endfor;

Note: continue forces the 
execution of the incStmt 
clause and then transfers control 
to the test for loop termination.

repeat

    << stmts >>
    continue;
    << stmts >>

until( expr );
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while( expr ) do
     << stmts >>
     continue;
     << stmts >>
endwhile;

// Converted code:

whlLabel:
<< Code to evaluate expr >>
jcc EndOfWhile;         // Skip loop on expr failure.
     << stmts >>
          // continue;
          jmp whlLabel; // Jump to start of loop on continue.
     << stmts >>
     jmp whlLabel;      // Repeat the code.
EndOfwhile:

for..continue..endfor

// Conversion for a for loop with continue
// into pure assembly:

for( initStmt; expr; incStmt ) do
     << stmts >>
     continue;
     << stmts >>
endfor;

// Converted code:

initStmt
ForLpLbl:
<< Code to evaluate expr >>
jcc EndOfFor;           // Branch if expression fails.
     << stmts >>
          // continue;
          jmp ContFor;  // Branch to incStmt on continue.
     << stmts >>

     ContFor:
     incStmt
     jmp ForLpLbl;
EndOfFor:

repeat..continue..until

repeat
     << stmts >>
     continue;
     << stmts >>
until( expr );
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// Converted code:

RptLpLbl:
     << stmts >>
          // continue;
          jmp ContRpt;  // Continue branches to loop termination test.
          << stmts >>
     ContRpt:
     << Code to test expr >>
     jcc RptLpLbl;      // Jumps if expression evaluates false.

7.10.6 Register Usage and Loops  

Given that the 80x86 accesses registers more efficiently than memory loca-
tions, registers are the ideal spot to place loop-control variables (especially for 
small loops). However, there are some problems associated with using regis-
ters within a loop. The primary problem with using registers as loop-control 
variables is that registers are a limited resource. The following will not work 
properly because it attempts to reuse a register (CX) that is already in use:

          mov( 8, cx );
          loop1:
               mov( 4, cx );
               loop2:
                    << stmts >>
                    dec( cx );
                    jnz loop2;
               dec( cx );
           jnz loop1;

The intent here, of course, was to create a set of nested loops, that is, one 
loop inside another. The inner loop (loop2) should repeat four times for each 
of the eight executions of the outer loop (loop1). Unfortunately, both loops 
use the same register as a loop-control variable. Therefore, this will form an 
infinite loop because CX will contain 0 at the end of the first loop. Because 
CX is always 0 upon encountering the second dec instruction, control will 
always transfer to the loop1 label (because decrementing 0 produces a non-
zero result). The solution here is to save and restore the CX register or to use 
a different register in place of CX for the outer loop:

          mov( 8, cx );
          loop1:
               push( cx );
               mov( 4, cx );
               loop2:
                    << stmts >>
                    dec( cx );
                    jnz loop2;

               pop( cx );
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               dec( cx );
               jnz loop1;

or

          mov( 8, dx );
          loop1:
               mov( 4, cx );
               loop2:
                    << stmts >>
                    dec( cx );
                    jnz loop2;

               dec( dx );
               jnz loop1;

Register corruption is one of the primary sources of bugs in loops in 
assembly language programs, so always keep an eye out for this problem.

7.11 Performance Improvements

The 80x86 microprocessors execute sequences of instructions at blinding 
speed. Therefore, you’ll rarely encounter a slow program that doesn’t contain 
any loops. Because loops are the primary source of performance problems 
within a program, they are the place to look when attempting to speed up 
your software. While a treatise on how to write efficient programs is beyond 
the scope of this chapter, there are some things you should be aware of when 
designing loops in your programs. They’re all aimed at removing unnecessary 
instructions from your loops in order to reduce the time it takes to execute a 
single iteration of the loop.

7.11.1 Moving the Termination Condition to the End of a Loop

Consider the following flow graphs for the three types of loops presented earlier:

repeat..until loop:
     Initialization code 
          Loop body 
     Test for termination 
     Code following the loop

while loop:
     Initialization code
     Loop termination test
          Loop body
          Jump back to test
     Code following the loop
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forever..endfor loop:
     Initialization code
          Loop body part one
          Loop termination test
          Loop body part two
          Jump back to Loop body part one
     Code following the loop 

As you can see, the repeat..until loop is the simplest of the bunch. This is 
reflected in the assembly language implementation of these loops. Consider 
the following repeat..until and while loops that are semantically identical:

// Example involving a WHILE loop:

     mov( edi, esi );
     sub( 20, esi );
     while( esi <= edi ) do

          << stmts >>
          inc( esi );

     endwhile;

// Conversion of the code above into pure assembly language:

     mov( edi, esi );
     sub( 20, esi );
     whlLbl:
     cmp( esi, edi );
     jnle EndOfWhile;

          << stmts >>
          inc( esi );
          << stmts >>
          jmp whlLbl;

     EndOfWhile:

// Example involving a REPEAT..UNTIL loop:

     mov( edi, esi );
     sub( 20, esi );
     repeat

          << stmts >>
          inc( esi );

     until( esi > edi );
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// Conversion of the REPEAT..UNTIL loop into pure assembly:

     rptLabel:
          << stmts >>
          inc( esi );
          cmp( esi, edi );
          jng rptLabel;

As you can see by carefully studying the conversion to pure assembly lan-
guage, testing for the termination condition at the end of the loop allowed us 
to remove a jmp instruction from the loop. This can be significant if this loop 
is nested inside other loops. In the preceding example there wasn’t a problem 
with executing the body at least once. Given the definition of the loop, you 
can easily see that the loop will be executed exactly 20 times. This suggests 
that the conversion to a repeat..until loop is trivial and always possible. Unfor-
tunately, it’s not always quite this easy. Consider the following HLA code:

     while( esi <= edi ) do
          << stmts >> 
          inc( esi );
     endwhile;

In this particular example, we haven’t the slightest idea what ESI contains 
upon entry into the loop. Therefore, we cannot assume that the loop body 
will execute at least once. So we must test for loop termination before execut-
ing the body of the loop. The test can be placed at the end of the loop with 
the inclusion of a single jmp instruction:

     jmp WhlTest;
     TopOfLoop:
          << stmts >>
          inc( esi );
     WhlTest:
          cmp( esi, edi );
          jle TopOfLoop;

Although the code is as long as the original while loop, the jmp instruction 
executes only once rather than on each repetition of the loop. Note that this 
slight gain in efficiency is obtained via a slight loss in readability. The second 
code sequence above is closer to spaghetti code than the original implemen-
tation. Such is often the price of a small performance gain. Therefore, you 
should carefully analyze your code to ensure that the performance boost is 
worth the loss of clarity. More often than not, assembly language programmers 
sacrifice clarity for dubious gains in performance, producing impossible-to-
understand programs.

Note, by the way, that HLA translates its high-level while statement into a 
sequence of instructions that test the loop termination condition at the bottom 
of the loop using exactly the technique this section describes.
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7.11.2 Executing the Loop Backwards

Because of the nature of the flags on the 80x86, loops that repeat from some 
number down to (or up to) 0 are more efficient than loops that execute from 0 
to some other value. Compare the following HLA for loop and the code it 
generates:

for( mov( 1, j ); j <= 8; inc( j ) ) do
     << stmts >>
endfor;

// Conversion to pure assembly (as well as using a REPEAT..UNTIL form):

mov( 1, j );
ForLp:
     << stmts >>
     inc( j );
     cmp( j, 8 );
     jnge ForLp;

Now consider another loop that also has eight iterations but runs its loop-
control variable from 8 down to 1 rather than 1 up to 8:

mov( 8, j );
LoopLbl:
     << stmts >>
     dec( j );
     jnz LoopLbl;

Note that by running the loop from 8 down to 1 we saved a comparison 
on each repetition of the loop.

Unfortunately, you cannot force all loops to run backward. However, with 
a little effort and some coercion you should be able to write many for loops so 
that they operate backward. Saving the execution time of the cmp instruction 
on each iteration of the loop may result in faster code.

The example above worked out well because the loop ran from 8 down to 1. 
The loop terminated when the loop-control variable became 0. What hap-
pens if you need to execute the loop when the loop-control variable goes to 0? 
For example, suppose that the loop above needed to range from 7 down to 0. 
As long as the upper bound is positive, you can substitute the jns instruction 
in place of the jnz instruction in the earlier code:

mov( 7, j );
LoopLbl:
     << stmts >>
     dec( j );
     jns LoopLbl;

This loop will repeat eight times, with j taking on the values 7..0. When it 
decrements 0 to −1, it sets the sign flag and the loop terminates.
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Keep in mind that some values may look positive but are actually nega-
tive. If the loop-control variable is a byte, then values in the range 128..255 are 
negative in the two’s complement system. Therefore, initializing the loop-
control variable with any 8-bit value in the range 129..255 (or, of course, 0) 
terminates the loop after a single execution. This can get you into trouble if 
you’re not careful.

7.11.3 Loop-Invariant Computations  

A loop-invariant computation is some calculation that appears within a loop that 
always yields the same result. You needn’t do such computations inside the 
loop. You can compute them outside the loop and reference the value of the 
computations inside the loop. The following HLA code demonstrates an 
invariant computation:

     for( mov( 0, eax ); eax < n; inc( eax )) do

          mov( eax, edx );
          add( j, edx );
          sub( 2, edx );
          add( edx, k );

     endfor;

Because j never changes throughout the execution of this loop, the sub-
expression j-2 can be computed outside the loop:

     mov( j, ecx );
     sub( 2, ecx );
     for( mov( 0, eax ); eax < n; inc( eax )) do

          mov( eax, edx );
          add( ecx, edx );
          add( edx, k );

     endfor;

Although we’ve eliminated a single instruction by computing the sub-
expression j-2 outside the loop, there is still an invariant component to this 
calculation. Note that this invariant component executes n times in the loop; 
this means that we can translate the previous code to the following:

     mov( j, ecx );
     sub( 2, ecx );
     intmul( n, ecx );   // Compute n*(j-2) and add this into k outside
     add( ecx, k );      // the loop.
     for( mov( 0, eax ); eax < n; inc( eax )) do
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          add( eax, k );

     endfor;

As you can see, we’ve shrunk the loop body from four instructions down 
to one. Of course, if you’re really interested in improving the efficiency of this 
particular loop, you can compute the result without using a loop at all (there 
is a formula that corresponds to the iterative calculation above). Still, this 
simple example demonstrates elimination of loop-invariant calculations from 
a loop.

7.11.4 Unraveling Loops  

For small loops, that is, those whose body is only a few statements, the over-
head required to process a loop may constitute a significant percentage of the 
total processing time. For example, look at the following Pascal code and its 
associated 80x86 assembly language code:

     for i := 3 downto 0 do A[i] := 0;

     mov( 3, i );
     LoopLbl:
          mov( i, ebx );
          mov( 0, A[ ebx*4 ] );
          dec( i );
          jns LoopLbl;

Four instructions execute on each repetition of the loop. Only one 
instruction is doing the desired operation (moving a 0 into an element of A). The 
remaining three instructions control the loop. Therefore, it takes 16 instructions 
to do the operation logically required by 4.

While there are many improvements we could make to this loop based on 
the information presented thus far, consider carefully exactly what it is that 
this loop is doing—it’s storing four 0s into A[0] through A[3]. A more efficient 
approach is to use four mov instructions to accomplish the same task. For 
example, if A is an array of double words, then the following code initializes A 
much faster than the code above:

     mov( 0, A[0] );
     mov( 0, A[4] );
     mov( 0, A[8] );
     mov( 0, A[12] );

Although this is a simple example, it shows the benefit of loop unraveling 
(also known as loop unrolling). If this simple loop appeared buried inside a set 
of nested loops, the 4:1 instruction reduction could possibly double the per-
formance of that section of your program.
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Of course, you cannot unravel all loops. Loops that execute a variable 
number of times are difficult to unravel because there is rarely a way to deter-
mine (at assembly time) the number of loop iterations. Therefore, unraveling 
a loop is a process best applied to loops that execute a known number of 
times (and the number of times is known at assembly time).

Even if you repeat a loop some fixed number of iterations, it may not be 
a good candidate for loop unraveling. Loop unraveling produces impressive per-
formance improvements when the number of instructions controlling the loop 
(and handling other overhead operations) represents a significant percentage of 
the total number of instructions in the loop. Had the previous loop contained 
36 instructions in the body (exclusive of the 4 overhead instructions), then 
the performance improvement would be, at best, only 10 percent (compared 
with the 300–400 percent it now enjoys). Therefore, the costs of unraveling 
a loop, that is, all the extra code that must be inserted into your program, 
quickly reach a point of diminishing returns as the body of the loop grows 
larger or as the number of iterations increases. Furthermore, entering that 
code into your program can become quite a chore. Therefore, loop unravel-
ing is a technique best applied to small loops.

Note that the superscalar 80x86 chips (Pentium and later) have branch-
prediction hardware and use other techniques to improve performance. Loop 
unrolling on such systems may actually slow down the code because these pro-
cessors are optimized to execute short loops.

7.11.5 Induction Variables 

Consider the following loop:

     for i := 0 to 255 do csetVar[i] := {};

Here the program is initializing each element of an array of character sets 
to the empty set. The straightforward code to achieve this is the following:

mov( 0, i );
FLp:

     // Compute the index into the array (note that each element
     // of a CSET array contains 16 bytes).

     mov( i, ebx );
     shl( 4, ebx );

     // Set this element to the empty set (all 0 bits).

     mov( 0, csetVar[ ebx ] );
     mov( 0, csetVar[ ebx+4 ] );
     mov( 0, csetVar[ ebx+8 ] );
     mov( 0, csetVar[ ebx+12 ] );
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     inc( i );
     cmp( i, 256 );
     jb FLp;

Although unraveling this code will still produce a performance improve-
ment, it will take 1,024 instructions to accomplish this task, too many for all 
but the most time-critical applications. However, you can reduce the execution 
time of the body of the loop using induction variables. An induction variable is 
one whose value depends entirely on the value of some other variable. In the 
example above, the index into the array csetVar tracks the loop-control variable 
(it’s always equal to the value of the loop-control variable times 16). Because 
i doesn’t appear anywhere else in the loop, there is no sense in performing 
the computations on i. Why not operate directly on the array index value? 
The following code demonstrates this technique:

mov( 0, ebx );
FLp:
     mov( 0, csetVar[ ebx ]);
     mov( 0, csetVar[ ebx+4 ] );
     mov( 0, csetVar[ ebx+8 ] );
     mov( 0, csetVar[ ebx+12 ] );

     add( 16, ebx );
     cmp( ebx, 256*16 );
     jb FLp;

The induction that takes place in this example occurs when the code 
increments the loop-control variable (moved into EBX for efficiency reasons) 
by 16 on each iteration of the loop rather than by 1. Multiplying the loop-
control variable by 16 (and also the final loop-termination constant value) 
allows the code to eliminate multiplying the loop-control variable by 16 on 
each iteration of the loop (that is, this allows us to remove the shl instruction 
from the previous code). Further, because this code no longer refers to the 
original loop-control variable (i), the code can maintain the loop-control 
variable strictly in the EBX register.

7.12 Hybrid Control Structures in HLA

The HLA high-level language control structures have a few drawbacks: 
(1) they’re not true assembly language instructions, (2) complex boolean 
expressions support only short-circuit evaluation, and (3) they often intro-
duce inefficient coding practices into a language that most people use only 
when they need to write high-performance code. On the other hand, while 
the 80x86 low-level control structures let you write efficient code, the result-
ing code is very difficult to read and maintain. HLA provides a set of hybrid 
control structures that allow you to use pure assembly language statements to 
evaluate boolean expressions while using the high-level control structures to 
delineate the statements controlled by the boolean expressions. The result is 
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code that is much more readable than pure assembly language without being 
a whole lot less efficient.

HLA provides hybrid forms of the if..elseif..else..endif, while..endwhile, 
repeat..until, breakif, exitif, and continueif statements (that is, those that 
involve a boolean expression). For example, a hybrid if statement takes the 
following form:

     if( #{ instructions }# ) then statements endif;

Note the use of #{ and }# operators to surround a sequence of instruc-
tions within this statement. This is what differentiates the hybrid control 
structures from the standard high-level language control structures. The 
remaining hybrid control structures take the following forms:

while( #{ statements }# ) statements endwhile;
repeat statements until( #{ statements }# );
breakif( #{ statements }# );
exitif( #{ statements }# );
continueif( #{ statements }# );

The statements within the curly braces replace the normal boolean 
expression in an HLA high-level control structure. These particular statements 
are special insofar as HLA defines two pseudo-labels, true and false, within 
their context. HLA associates the label true with the code that would normally 
execute if a boolean expression were present and that expression’s result was 
true. Similarly, HLA associates the label false with the code that would exe-
cute if a boolean expression in one of these statements evaluated false. As a 
simple example, consider the following two (equivalent) if statements:

if( eax < ebx ) then inc( eax ); endif;

if
( #{
     cmp( eax, ebx );
     jnb false;
}# ) then
     inc( eax );

endif;

The jnb that transfers control to the false label in this latter example will 
skip over the inc instruction if EAX is not less than EBX. Note that if EAX is 
less than EBX, then control falls through to the inc instruction. This is roughly 
equivalent to the following pure assembly code:

cmp( eax, ebx );
jnb falseLabel;
     inc( eax );
falseLabel:
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As a slightly more complex example, consider the statement

if( eax >= j && eax <= k ) then sub( j, eax ); endif;

The following hybrid if statement accomplishes the above:

if
( #{
     cmp( eax, j );
     jnae false;
     cmp( eax, k );
     jnae false;
}# ) then
     sub( j, eax );

endif;

As one final example of the hybrid if statement, consider the following:

// if( ((eax > ebx) && (eax < ecx)) || (eax = edx)) then
// mov( ebx, eax ); 
// endif;

if
( #{
     cmp( eax, edx );
     je true;
     cmp( eax, ebx );
     jng false;
     cmp( eax, ecx );
     jnb false;
}# ) then
     mov( ebx, eax );

endif;

Because these examples are rather trivial, they don’t really demonstrate 
how much more readable the code can be when using hybrid statements 
rather than pure assembly code. However, one thing you should notice is that 
using hybrid statements eliminates the need to insert labels throughout your 
code. This can make your programs easier to read and understand.

For the if statement, the true label corresponds to the then clause of the 
statement; the false label corresponds to the elseif, else, or endif clause (which-
ever follows the then clause). For the while loop, the true label corresponds to 
the body of the loop, whereas the false label is attached to the first statement 
following the corresponding endwhile. For the repeat..until statement, the 
true label is attached to the code following the until clause, whereas the false 
label is attached to the first statement of the body of the loop. The breakif, 
exitif, and continueif statements associate the false label with the statement 
immediately following one of these statements; they associate the true label 
with the code normally associated with a break, exit, or continue statement.
Low-Level  Cont rol  S t ruc tures 475



AAL2E_03.book  Page 476  Thursday, February 18, 2010  12:49 PM
7.13 For More Information

HLA contains a few additional high-level control structures beyond those this 
chapter describes. Examples include the try..endtry block and the foreach 
statement. A discussion of these statements does not appear in this chapter 
because these are advanced control structures and their implementation is 
too complex to describe this early in the text. For more information on their 
implementation, see the electronic edition at http://www.artofasm.com/ (or 
http://webster.cs.ucr.edu/) or the HLA reference manual.
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8
A D V A N C E D  A R I T H M E T I C

This chapter deals with those arithmetic 
operations for which assembly language is 

especially well suited. It covers four main 
topics: extended-precision arithmetic, arith-

metic on operands whose sizes are different, decimal 
arithmetic, and computation via table lookup.

By far, the most extensive subject this chapter covers is multiprecision 
arithmetic. By the conclusion of this chapter you will know how to apply arith-
metic and logical operations to integer operands of any size. If you need to 
work with integer values outside the range ±2 billion (or with unsigned values 
beyond 4 billion), no sweat; this chapter shows you how to get the job done.

Different-size operands also present some special problems. For example, 
you may want to add a 64-bit unsigned integer to a 128-bit signed integer 
value. This chapter discusses how to convert these two operands to a compat-
ible format.

This chapter also discusses decimal arithmetic using the 80x86 BCD 
(binary-coded decimal) instructions and the FPU (floating-point unit). This 
lets you use decimal arithmetic in those few applications that absolutely require 
base-10 operations.
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Finally, this chapter concludes by discussing how to speed up complex 
computations using table lookups.

8.1 Multiprecision Operations

One big advantage of assembly language over high-level languages is that 
assembly language does not limit the size of integer operations. For example, 
the standard C programming language defines three different integer sizes: 
short int, int, and long int.1 On the PC, these are often 16- and 32-bit integers. 
Although the 80x86 machine instructions limit you to processing 8-, 16-, or 
32-bit integers with a single instruction, you can always use multiple instruc-
tions to process integers of any size. If you want to add 256-bit integer values 
together, no problem; it’s relatively easy to accomplish this in assembly lan-
guage. The following sections describe how to extend various arithmetic and 
logical operations from 16 or 32 bits to as many bits as you please.

8.1.1 HLA Standard Library Support for Extended-Precision Operations

Although it is important for you to understand how to do extended-precision 
arithmetic yourself, you should note that the HLA Standard Library provides 
a full set of 64-bit and 128-bit arithmetic and logical functions that you can 
use. These routines are general purpose and very convenient to use. This 
section briefly describes the HLA Standard Library support for extended-
precision arithmetic.

As noted in earlier chapters, the HLA compiler supports several different 
64-bit and 128-bit data types. These extended data types are:

uns64: 64-bit unsigned integers

int64: 64-bit signed integers

qword: 64-bit untyped values

uns128: 128-bit unsigned integers

int128: 128-bit signed integers

lword: 128-bit untyped values

HLA also provides a tbyte type, but we will not consider that here (see 
Section 8.2).

HLA fully supports 64-bit and 128-bit literal constants and constant arith-
metic. This allows you to initialize 64- and 128-bit static objects using standard 
decimal, hexadecimal, or binary notation. For example:

static
    u128    :uns128 := 123456789012345678901233567890;
    i64     :int64  := -12345678901234567890;
    lw      :lword  := $1234_5678_90ab_cdef_0000_ffff;

1 Newer C standards also provide for a long long int, which is usually a 64-bit integer.
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In order to easily manipulate 64-bit and 128-bit values, the HLA Standard 
Library’s math.hhf module provides a set of functions that handle most of the 
standard arithmetic and logical operations. You use these functions in a manner 
similar to the 32-bit arithmetic and logical instructions. For example, consider 
the math.addq (qword) and math.addl (lword) functions:

    math.addq( left64, right64, dest64 );
    math.addl( left128, right128, dest128 );

These functions compute the following:

dest64 := left64 + right64;    // dest64, left64, and right64 
                               // must be 8-byte operands
dest128 := left128 + right128; // dest128, left128, and right128 
                               // must be 16-byte operands

These functions set the 80x86 flags the same way you’d expect after the 
execution of an add instruction. Specifically, these functions set the zero flag if 
the (full) result is 0, they set the carry flag if there is a carry from the H.O. bit, 
they set the overflow flag if there is a signed overflow, and they set the sign 
flag if the H.O. bit of the result contains 1.

Most of the remaining arithmetic and logical routines use the same call-
ing sequence as math.addq and math.addl. Briefly, here are those functions:

    math.andq( left64, right64, dest64 );
    math.andl( left128, right128, dest128 );
    math.divq( left64, right64, dest64 );
    math.divl( left128, right128, dest128 );
    math.idivq( left64, right64, dest64 );
    math.idivl( left128, right128, dest128 );
    math.modq( left64, right64, dest64 );
    math.modl( left128, right128, dest128 );
    math.imodq( left64, right64, dest64 );
    math.imodl( left128, right128, dest128 );
    math.mulq( left64, right64, dest64 );
    math.mull( left128, right128, dest128 );
    math.imulq( left64, right64, dest64 );
    math.imull( left128, right128, dest128 );
    math.orq( left64, right64, dest64 );
    math.orl( left128, right128, dest128 );
    math.subq( left64, right64, dest64 );
    math.subl( left128, right128, dest128 );
    math.xorq( left64, right64, dest64 );
    math.xorl( left128, right128, dest128 );

These functions set the flags the same way as the corresponding 32-bit 
machine instructions and, in the case of the division and remainder (modulo) 
functions, raise the same exceptions. Note that the multiplication functions 
do not produce an extended-precision result. The destination value is the 
same size as the source operands. These functions set the overflow and carry 
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flags if the result does not fit into the destination operand. All of these func-
tions compute the following:

dest64 := left64 op right64;
dest128 := left128 op right128;

where op represents the specific operation.
In addition to these functions, the HLA Standard Library’s math module 

also provides a few additional functions whose syntax is slightly different from 
math.addq and math.addl. These functions include math.negq, math.negl, math.notq, 
math.notl, math.shlq, math.shll, math.shrq, and math.shrl. Note that there are no 
rotates or arithmetic shift-right functions. However, you’ll soon see that these 
operations are easy to synthesize using standard instructions. Here are the 
prototypes for these additional functions:

math.negq( source:qword; var dest:qword );
math.negl( source:lword; var dest:lword );
math.notq( source:qword; var dest:qword );
math.notl( source:lword; var dest:lword );
math.shlq( count:uns32; source:qword; var dest:qword );
math.shll( count:uns32; source:lword; var dest:lword );
math.shrq( count:uns32; source:qword; var dest:qword );
math.shrl( count:uns32; source:lword; var dest:lword );

Again, all these functions set the flags exactly the same way the correspond-
ing machine instructions would set the flags were they to support 64-bit or 
128-bit operands.

The HLA Standard Library also provides a full complement of I/O and 
conversion routines for 64-bit and 128-bit values. For example, you can use 
stdout.put to display 64- and 128-bit values, you may use stdin.get to read these 
values, and there is a set of routines in the HLA conversions module that con-
vert between these values and their string equivalents. In general, anything 
you can do with a 32-bit value can be done with a 64-bit or 128-bit value as 
well. See the HLA Standard Library documentation for more details.

8.1.2 Multiprecision Addition Operations    

The 80x86 add instruction adds two 8-, 16-, or 32- bit numbers. After the execu-
tion of the add instruction, the 80x86 carry flag is set if there is an overflow out 
of the H.O. bit of the sum. You can use this information to do multiprecision 
addition operations. Consider the way you manually perform a multidigit 
(multiprecision) addition operation:

    Step 1: Add the least significant digits together:

             289                      289
            +456    produces         +456
            ----                     ----
                                        5 with carry 1.
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    Step 2: Add the next significant digits plus the carry:

               1 (previous carry)
             289                         289
            +456        produces        +456
            ----                        ----
               5                          45 with carry 1.

    Step 3: Add the most significant digits plus the carry:

                                       1 (previous carry)
             289                     289
            +456        produces    +456
            ----                    ----
              45                     745

The 80x86 handles extended-precision arithmetic in an identical fashion, 
except instead of adding the numbers a digit at a time, it adds them together 
a byte, word, or double word at a time. Consider the three double-word (96-bit) 
addition operation in Figure 8-1. 

Figure 8-1: Adding two 96-bit objects together

As you can see from this figure, the idea is to break up a larger operation 
into a sequence of smaller operations. Since the x86 processor family is capable 
of adding together, at most, 32 bits at a time, the operation must proceed in 
blocks of 32 bits or less. So the first step is to add the two L.O. double words 

Step 1: Add the least significant words together.

Step 2: Add the middle words together.

Step 3: Add the most significant words together.

C

C

(plus carry, if any)

(plus carry, if any)
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together just as you would add the two L.O. digits of a decimal number together 
in the manual algorithm. There is nothing special about this operation; you 
can use the add instruction to achieve this.

The second step involves adding together the second pair of double words 
in the two 96-bit values. Note that in step 2, the calculation must also add in 
the carry out of the previous addition (if any). If there is a carry out of the 
L.O. addition, the add instruction sets the carry flag to 1; conversely, if there is 
no carry out of the L.O. addition, the earlier add instruction clears the carry 
flag. Therefore, in this second addition, we really need to compute the sum 
of the two double words plus the carry out of the first instruction. Fortunately, 
the x86 CPUs provide an instruction that does exactly this: the adc (add with 
carry) instruction. The adc instruction uses the same syntax as the add instruc-
tion and performs almost the same operation:

adc( source, dest );  // dest := dest + source + C

As you can see, the only difference between the add and adc instructions is 
that the adc instruction adds in the value of the carry flag along with the source 
and destination operands. It also sets the flags the same way the add instruc-
tion does (including setting the carry flag if there is an unsigned overflow). 
This is exactly what we need to add together the middle two double words of 
our 96-bit sum.

In step 3 of Figure 8-1, the algorithm adds together the H.O. double 
words of the 96-bit value. This addition operation must also incorporate the 
carry out of the sum of the middle two double words; hence the adc instruction 
is needed here as well. To sum it up, the add instruction adds the L.O. double 
words together. The adc (add with carry) instruction adds all other double-
word pairs together. At the end of the extended-precision addition sequence, 
the carry flag indicates unsigned overflow (if set), a set overflow flag indicates 
signed overflow, and the sign flag indicates the sign of the result. The zero flag 
doesn’t have any real meaning at the end of the extended-precision addition (it 
simply means that the sum of the two H.O. double words is 0 and does not 
indicate that the whole result is 0). If you want to see how to check for an 
extended-precision zero result, see the source code for the HLA Standard 
Library math.addq or math.addl function.

For example, suppose that you have two 64-bit values you wish to add 
together, defined as follows: 

static
    X: qword;
    Y: qword;

Suppose also that you want to store the sum in a third variable, Z, which is 
also a qword. The following 80x86 code will accomplish this task:

    mov( (type dword X), eax );          // Add together the L.O. 32 bits
    add( (type dword Y), eax );          // of the numbers and store the
    mov( eax, (type dword Z) );          // result into the L.O. dword of Z.
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    mov( (type dword X[4]), eax );       // Add together (with carry) the
    adc( (type dword Y[4]), eax );       // H.O. 32 bits and store the result
    mov( eax, (type dword Z[4]) );       // into the H.O. dword of Z.

Remember, these variables are qword objects. Therefore the compiler will 
not accept an instruction of the form mov( X, eax ); because this instruction 
would attempt to load a 64-bit value into a 32-bit register. This code uses the 
coercion operator to coerce symbols X, Y, and Z to 32 bits. The first three 
instructions add the L.O. double words of X and Y together and store the 
result at the L.O. double word of Z. The last three instructions add the H.O. 
double words of X and Y together, along with the carry from the L.O. word, 
and store the result in the H.O. double word of Z. Remember, address expres-
sions of the form X[4] access the H.O. double word of a 64-bit entity. This is 
because the x86 memory space addresses bytes, and it takes 4 consecutive 
bytes to form a double word.

You can extend this to any number of bits by using the adc instruction to 
add in the higher-order values. For example, to add together two 128-bit values, 
you could use code like the following:

type
    tBig: dword[4];  // Storage for four dwords is 128 bits.

static
    BigVal1: tBig;
    BigVal2: tBig;
    BigVal3: tBig;
     .
     .
     .
    mov( BigVal1[0], eax );   // Note there is no need for (type dword BigValx)
    add( BigVal2[0], eax );   // because the base type of BitValx is dword.
    mov( eax, BigVal3[0] );

    mov( BigVal1[4], eax );
    adc( BigVal2[4], eax );
    mov( eax, BigVal3[4] );

    mov( BigVal1[8], eax );
    adc( BigVal2[8], eax );
    mov( eax, BigVal3[8] );

    mov( BigVal1[12], eax );
    adc( BigVal2[12], eax );
    mov( eax, BigVal3[12] );

8.1.3 Multiprecision Subtraction Operations

The 80x86 performs multibyte subtraction, just as it does addition, the same 
way you would manually, except it subtracts whole bytes, words, or double 
words at a time rather than decimal digits. The mechanism is similar to that 
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for the add operation. You use the sub instruction on the L.O. byte/word/double 
word and the sbb (subtract with borrow) instruction on the high-order values. 

The following example demonstrates a 64-bit subtraction using the 32-bit 
registers on the 80x86:

static
    Left:        qword;
    Right:       qword;
    Diff:        qword;
         .
         .
         .
    mov( (type dword Left), eax );
    sub( (type dword Right), eax );
    mov( eax, (type dword Diff) );

    mov( (type dword Left[4]), eax );
    sbb( (type dword Right[4]), eax );
    mov( (type dword Diff[4]), eax );

The following example demonstrates a 128-bit subtraction:

type
    tBig: dword[4];  // Storage for four dwords is 128 bits.

static
    BigVal1: tBig;
    BigVal2: tBig;
    BigVal3: tBig;
     .
     .
     .

    // Compute BigVal3 := BigVal1 - BigVal2

    mov( BigVal1[0], eax ); // Note there is no need for (type dword BigValx)
    sub( BigVal2[0], eax ); // because the base type of BitValx is dword.
    mov( eax, BigVal3[0] );

    mov( BigVal1[4], eax );
    sbb( BigVal2[4], eax );
    mov( eax, BigVal3[4] );

    mov( BigVal1[8], eax );
    sbb( BigVal2[8], eax );
    mov( eax, BigVal3[8] );

    mov( BigVal1[12], eax );
    sbb( BigVal2[12], eax );
    mov( eax, BigVal3[12] );
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8.1.4 Extended-Precision Comparisons

Unfortunately, there isn’t a “compare with borrow” instruction that you can 
use to perform extended-precision comparisons. Since the cmp and sub instruc-
tions perform the same operation, at least as far as the flags are concerned, 
you’d probably guess that you could use the sbb instruction to synthesize an 
extended-precision comparison; however, that approach won’t always work. 
Fortunately, there is a better solution.

Consider the two unsigned values $2157 and $1293. The L.O. bytes of 
these two values do not affect the outcome of the comparison. Simply com-
paring the H.O. bytes, $21 with $12, tells us that the first value is greater than 
the second. In fact, the only time you ever need to look at both bytes of these 
values is if the H.O. bytes are equal. In all other cases comparing the H.O. 
bytes tells you everything you need to know about the values. Of course, this is 
true for any number of bytes, not just 2. The following code compares two 
signed 64-bit integers by comparing their H.O. double words first and com-
paring their L.O. double words only if the H.O. double words are equal:

// This sequence transfers control to location "IsGreater" if
// QwordValue > QwordValue2. It transfers control to "IsLess" if
// QwordValue < QwordValue2. It falls through to the instruction
// following this sequence if QwordValue = QwordValue2. To test for
// inequality, change the "IsGreater" and "IsLess" operands to "NotEqual"
// in this code.

        mov( (type dword QWordValue[4]), eax );  // Get H.O. dword.
        cmp( eax, (type dword QWordValue2[4]));
        jg IsGreater;
        jl IsLess;

        mov( (type dword QWordValue[0]), eax );  // If H.O. dwords were equal,
        cmp( eax, (type dword QWordValue2[0]));  // then we must compare the 
        jg IsGreater;                            // L.O. dwords.
        jl IsLess;

// Fall through to this point if the two values were equal.

To compare unsigned values, simply use the ja and jb instructions in 
place of jg and jl.

You can easily synthesize any possible comparison from the preceding 
sequence. The following examples show how to do this. These examples dem-
onstrate signed comparisons; just substitute ja, jae, jb, and jbe for jg, jge, jl, 
and jle (respectively) if you want unsigned comparisons. Each of the follow-
ing examples assumes these declarations:

static
    QW1: qword;
    QW2: qword;
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const
    QW1d: text := "(type dword QW1)";
    QW2d: text := "(type dword QW2)";

The following code implements a 64-bit test to see if QW1 < QW2 (signed). 
Control transfers to IsLess label if QW1 < QW2. Control falls through to the next 
statement if this is not true.

    mov( QW1d[4], eax );   // Get H.O. dword.
    cmp( eax, QW2d[4] );
    jg NotLess;
    jl IsLess;

    mov( QW1d[0], eax );   // Fall through to here if the H.O. dwords are equal.
    cmp( eax, QW2d[0] );
    jl IsLess;
NotLess:

Here is a 64-bit test to see if QW1 <= QW2 (signed). This code jumps to 
IsLessEq if the condition is true.

    mov( QW1d[4], eax );   // Get H.O. dword.
    cmp( eax, QW2d[4] );
    jg NotLessEQ;
    jl IsLessEQ;

    mov( QW1d[0], eax );   // Fall through to here if the H.O. dwords are equal.
    cmp( eax, QW2d[0] );
    jle IsLessEQ;
NotLessEQ:

This is a 64-bit test to see if QW1 > QW2 (signed). It jumps to IsGtr if this con-
dition is true.

    mov( QW1d[4], eax );   // Get H.O. dword.
    cmp( eax, QW2d[4] );
    jg IsGtr;
    jl NotGtr;

    mov( QW1d[0], eax );   // Fall through to here if the H.O. dwords are equal.
    cmp( eax, QW2d[0] );
    jg IsGtr;
NotGtr:

The following is a 64-bit test to see if QW1 >= QW2 (signed). This code jumps 
to label IsGtrEQ if this is the case.

    mov( QW1d[4], eax );   // Get H.O. dword.
    cmp( eax, QW2d[4] );
    jg IsGtrEQ;
    jl NotGtrEQ;
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    mov( QW1d[0], eax );   // Fall through to here if the H.O. dwords are equal.
    cmp( eax, QW2d[0] );
    jge IsGtrEQ;
NotGtrEQ:

Here is a 64-bit test to see if QW1 = QW2 (signed or unsigned). This code 
branches to the label IsEqual if QW1 = QW2. It falls through to the next instruc-
tion if they are not equal.

    mov( QW1d[4], eax );   // Get H.O. dword.
    cmp( eax, QW2d[4] );
    jne NotEqual;

    mov( QW1d[0], eax );   // Fall through to here if the H.O. dwords are equal.
    cmp( eax, QW2d[0] );
    je IsEqual;
NotEqual:

The following is a 64-bit test to see if QW1 <> QW2 (signed or unsigned). This 
code branches to the label NotEqual if QW1 <> QW2. It falls through to the next 
instruction if they are equal.

    mov( QW1d[4], eax );   // Get H.O. dword.
    cmp( eax, QW2d[4] );
    jne IsNotEqual;

    mov( QW1d[0], eax );   // Fall through to here if the H.O. dwords are equal.
    cmp( eax, QW2d[0] );
    jne IsNotEqual;

// Fall through to this point if they are equal.

You cannot directly use the HLA high-level control structures if you need 
to perform an extended-precision comparison. However, you may use the 
HLA hybrid control structures and bury the appropriate comparison in the 
boolean expression. Doing so may produce easier to read code. For example, 
the following if..then..else..endif statement checks to see if QW1 > QW2 using a 
64-bit extended-precision unsigned comparison:

if
( #{
    mov( QW1d[4], eax );
    cmp( eax, QW2d[4] );
    jg true;

    mov( QW1d[0], eax );
    cmp( eax, QW2d[0] );
    jng false;
}# ) then

    << Code to execute if QW1 > QW2 >>
Advanced Ar i thmet ic 487



AAL2E_03.book  Page 488  Thursday, February 18, 2010  12:49 PM
else

    << Code to execute if QW1 <= QW2 >>

endif;

If you need to compare objects that are larger than 64 bits, it is very easy 
to generalize the code given above for 64-bit operands. Always start the com-
parison with the H.O. double words of the objects and work your way down to 
the L.O. double words of the objects as long as the corresponding double 
words are equal. The following example compares two 128-bit values to see if 
the first is less than or equal (unsigned) to the second:

static
    Big1: uns128;
    Big2: uns128;
     .
     .
     .
    if
    ( #{
        mov( Big1[12], eax );
        cmp( eax, Big2[12] );
        jb true;
        ja false;
        mov( Big1[8], eax );
        cmp( eax, Big2[8] );
        jb true;
        ja false;
        mov( Big1[4], eax );
        cmp( eax, Big2[4] );
        jb true;
        ja false;
        mov( Big1[0], eax );
        cmp( eax, Big2[0] );
        jnbe false;
    }# ) then

        << Code to execute if Big1 <= Big2 >>

    else

        << Code to execute if Big1 > Big2 >>

    endif;

8.1.5 Extended-Precision Multiplication

Although an 8×8-bit, 16×16-bit, or 32×32-bit multiplication is usually sufficient, 
there are times when you may want to multiply larger values. You will use the x86 
single operand mul and imul instructions for extended-precision multiplication 
operations. 
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Not surprisingly (in view of how we achieved extended-precision addition 
using adc and sbb), you use the same techniques to perform extended-precision 
multiplication on the 80x86 that you employ when manually multiplying two 
values. Consider a simplified form of the way you perform multidigit multipli-
cation by hand:

        1) Multiply the first two              2) Multiply 5*2: 
           digits together (5*3):

            123                                      123
             45                                       45
            ---                                      ---
             15                                       15
                                                      10

         3) Multiply 5*1:                       4) Multiply 4*3:

            123                                      123
             45                                       45
            ---                                      ---
             15                                       15
             10                                       10
              5                                        5
                                                      12

         5) Multiply 4*2:                       6) Multiply 4*1:

             123                                     123
              45                                      45
             ---                                     ---
              15                                      15
              10                                      10
               5                                       5
              12                                      12
               8                                       8
                                                       4

         7) Add all the partial products together:

             123
              45
             ---
              15
              10
               5
              12
               8
               4
          ------
            5535
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The 80x86 does extended-precision multiplication in the same manner 
except that it works with bytes, words, and double words rather than digits. 
Figure 8-2 shows how this works.

Figure 8-2: Extended-precision multiplication

Probably the most important thing to remember when performing an 
extended-precision multiplication is that you must also perform a multiple-
precision addition at the same time. Adding up all the partial products requires 
several additions that will produce the result. Listing 8-1 demonstrates the 
proper way to multiply two 64-bit values on a 32-bit processor.

1) Multiply the L.O. words.

A B

C D

D * B

A B

C D

D * B

D * A

2) Multiply D * A.

A B

C D

A B

C D

D * B D * B

D * A D * A

C * B C * B

C * A

3) Multiply C * B. 4) Multiply C * A.

A B

C D

D * B

D * A

C * B

C * A

AB * CB

5) Compute sum of partial products.
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program testMUL64;
#include( "stdlib.hhf" )

    
procedure MUL64( Multiplier:qword; Multiplicand:qword; var Product:lword );
const
    mp: text := "(type dword Multiplier)";
    mc: text := "(type dword Multiplicand)";
    prd:text := "(type dword [edi])";

begin MUL64;

    mov( Product, edi );

    // Multiply the L.O. dword of Multiplier times Multiplicand.
                                           
    mov( mp, eax );
    mul( mc, eax );     // Multiply L.O. dwords.
    mov( eax, prd );    // Save L.O. dword of product.
    mov( edx, ecx );    // Save H.O. dword of partial product result.

    mov( mp, eax );
    mul( mc[4], eax );  // Multiply mp(L.O.) * mc(H.O.)
    add( ecx, eax );    // Add to the partial product.
    adc( 0, edx );      // Don't forget the carry!
    mov( eax, ebx );    // Save partial product for now.
    mov( edx, ecx );

    // Multiply the H.O. word of Multiplier with Multiplicand.

    mov( mp[4], eax );  // Get H.O. dword of Multiplier.
    mul( mc, eax );     // Multiply by L.O. word of Multiplicand.
    add( ebx, eax );    // Add to the partial product.
    mov( eax, prd[4] ); // Save the partial product.
    adc( edx, ecx );    // Add in the carry!
    
    mov( mp[4], eax );  // Multiply the two H.O. dwords together.
    mul( mc[4], eax );
    add( ecx, eax );    // Add in partial product.
    adc( 0, edx );      // Don't forget the carry!
    mov( eax, prd[8] ); // Save the partial product.
    mov( edx, prd[12] );
    
end MUL64;

static
    op1: qword;
    op2: qword;
    rslt: lword; 
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begin testMUL64;

    // Initialize the qword values (note that static objects
    // are initialized with 0 bits).
    
    mov( 1234, (type dword op1 ));
    mov( 5678, (type dword op2 ));
    MUL64( op1, op2, rslt );
    
    // The following only prints the L.O. qword, but
    // we know the H.O. qword is 0 so this is okay.
    
    stdout.put( "rslt=" );
    stdout.putu64( (type qword rslt));
    
end testMUL64;

Listing 8-1: Extended-precision multiplication

One thing you must keep in mind concerning this code is that it works 
only for unsigned operands. To multiply two signed values you must note the 
signs of the operands before the multiplication, take the absolute value of the 
two operands, do an unsigned multiplication, and then adjust the sign of the 
resulting product based on the signs of the original operands. Multiplication 
of signed operands is left as an exercise to the reader (or you could just check 
out the source code in the HLA Standard Library).

The example in Listing 8-1 was fairly straightforward because it was possible 
to keep the partial products in various registers. If you need to multiply larger 
values together, you will need to maintain the partial products in temporary 
(memory) variables. Other than that, the algorithm that Listing 8-1 uses gen-
eralizes to any number of double words.

8.1.6 Extended-Precision Division

You cannot synthesize a general n -bit/m -bit division operation using the div 
and idiv instructions. Extended-precision division requires a sequence of 
shift and subtract instructions and is extremely messy. However, a less-general 
operation, dividing an n -bit quantity by a 32-bit quantity, is easily synthesized 
using the div instruction. This section presents both methods for extended-
precision division.

Before we describe how to perform a multiprecision division operation, 
you should note that some operations require an extended-precision division 
even though they may look calculable with a single div or idiv instruction. 
Dividing a 64-bit quantity by a 32-bit quantity is easy, as long as the resulting 
quotient fits into 32 bits. The div and idiv instructions will handle this directly. 
However, if the quotient does not fit into 32 bits, then you have to handle this 
problem as an extended-precision division. The trick here is to divide the 
(zero- or sign-extended) H.O. double word of the dividend by the divisor and 
then repeat the process with the remainder and the L.O. dword of the divi-
dend. The following sequence demonstrates this.
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static
    dividend: dword[2] := [$1234, 4];  // = $4_0000_1234.
    divisor:  dword := 2;              // dividend/divisor = $2_0000_091A
    quotient: dword[2];
    remainder:dword;
     .
     .
     .
    mov( divisor, ebx );
    mov( dividend[4], eax );
    xor( edx, edx );            // Zero extend for unsigned division.
    div( ebx, edx:eax );
    mov( eax, quotient[4] );    // Save H.O. dword of the quotient (2).
    mov( dividend[0], eax );    // Note that this code does *NOT* zero extend
    div( ebx, edx:eax );        // eax into edx before this div instr.
    mov( eax, quotient[0] );    // Save L.O. dword of the quotient ($91a).
    mov( edx, remainder );      // Save away the remainder.

Since it is perfectly legal to divide a value by 1, it is possible that the resulting 
quotient could require as many bits as the dividend. That is why the quotient 
variable in this example is the same size (64 bits) as the dividend variable (note 
the use of an array of two double words rather than a qword type; this spares the 
code from having to coerce the operands to double words). Regardless of 
the size of the dividend and divisor operands, the remainder is always no 
larger than the size of the division operation (32 bits in this case). Hence the 
remainder variable in this example is just a double word.

Before analyzing this code to see how it works, let’s take a brief look at 
why a single 64/32 division will not work for this particular example even 
though the div instruction does indeed calculate the result for a 64/32 division. 
The naive approach, assuming that the x86 were capable of this operation, 
would look something like the following:

    // This code does *NOT* work!

    mov( dividend[0], eax );    // Get dividend into edx:eax
    mov( dividend[4], edx );
    div( divisor, edx:eax );    // Divide edx:eax by divisor.

Although this code is syntactically correct and will compile, if you attempt to 
run this code it will raise an ex.DivideError2 exception. The reason is that the quo-
tient must fit into 32 bits. Because the quotient turns out to be $2_0000_091A, 
it will not fit into the EAX register, hence the resulting exception.

Now let’s take another look at the former code that correctly computes 
the 64/32 quotient. This code begins by computing the 32/32 quotient of 
dividend[4]/divisor. The quotient from this division (2) becomes the H.O. 
double word of the final quotient. The remainder from this division (0) 
becomes the extension in EDX for the second half of the division operation. 
The second half of the code divides edx:dividend[0] by divisor to produce the 

2 Windows may translate this to an ex.IntoInstr exception.
Advanced Ar i thmet ic 493



AAL2E_03.book  Page 494  Thursday, February 18, 2010  12:49 PM
L.O. double word of the quotient and the remainder from the division. Note that 
the code does not zero extend EAX into EDX prior to the second div instruction. 
EDX already contains valid bits, and this code must not disturb them.

The 64/32 division operation above is actually just a special case of the 
general division operation that lets you divide an arbitrary size value by a 32-bit 
divisor. To achieve this, you begin by moving the H.O. double word of the div-
idend into EAX and zero extending this into EDX. Next, you divide this value 
by the divisor. Then, without modifying EDX along the way, you store away the 
partial quotients, load EAX with the next-lower double word in the dividend, 
and divide it by the divisor. You repeat this operation until you’ve processed 
all the double words in the dividend. At that time the EDX register will con-
tain the remainder. The program in Listing 8-2 demonstrates how to divide a 
128-bit quantity by a 32-bit divisor, producing a 128-bit quotient and a 32-bit 
remainder.

program testDiv128;
#include( "stdlib.hhf" )
    
procedure div128
( 
        Dividend:   lword; 
        Divisor:    dword; 
    var QuotAdrs:   lword; 
    var Remainder:  dword 
);  @nodisplay;

const
    Quotient: text := "(type dword [edi])";

begin div128;

    push( eax );
    push( edx );
    push( edi );
    
    mov( QuotAdrs, edi );       // Pointer to quotient storage.
    
    mov( (type dword Dividend[12]), eax ); // Begin division with the H.O. dword.
    xor( edx, edx );            // Zero extend into edx.
    div( Divisor, edx:eax );    // Divide H.O. dword.
    mov( eax, Quotient[12] );   // Store away H.O. dword of quotient.
    
    mov( (type dword Dividend[8]), eax ); // Get dword #2 from the dividend.
    div( Divisor, edx:eax );    // Continue the division.
    mov( eax, Quotient[8] );    // Store away dword #2 of the quotient.
    
    mov( (type dword Dividend[4]), eax ); // Get dword #1 from the dividend.
    div( Divisor, edx:eax );    // Continue the division.
    mov( eax, Quotient[4] );    // Store away dword #1 of the quotient.
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    mov( (type dword Dividend[0]), eax );    // Get the L.O. dword of the
// dividend.

    div( Divisor, edx:eax );    // Finish the division.
    mov( eax, Quotient[0] );    // Store away the L.O. dword of the quotient.
    
    mov( Remainder, edi );      // Get the pointer to the remainder's value.
    mov( edx, [edi] );          // Store away the remainder value.
    
    pop( edi );
    pop( edx );
    pop( eax );
            
end div128;

static
    op1:    lword   := $8888_8888_6666_6666_4444_4444_2222_2221;
    op2:    dword   := 2;
    quo:    lword;
    rmndr:  dword;

begin testDiv128;

    div128( op1, op2, quo, rmndr );
    
    stdout.put
    ( 
        nl
        nl
        "After the division: " nl
        nl
        "Quotient = $",
        quo[12], "_",
        quo[8], "_",
        quo[4], "_",
        quo[0], nl
        
        "Remainder = ", (type uns32 rmndr )
    );
        
end testDiv128;

Listing 8-2: Unsigned 128/32-bit extended-precision division

You can extend this code to any number of bits by simply adding addi-
tional mov/div/mov instructions to the sequence. Like the extended-precision 
multiplication the previous section presents, this extended-precision division 
algorithm works only for unsigned operands. If you need to divide two signed 
quantities, you must note their signs, take their absolute values, do the unsigned 
division, and then set the sign of the result based on the signs of the operands.

If you need to use a divisor larger than 32 bits, you’re going to have to 
implement the division using a shift-and-subtract strategy. Unfortunately, such 
algorithms are very slow. In this section we’ll develop two division algorithms 
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that operate on an arbitrary number of bits. The first is slow but easier to 
understand; the second is quite a bit faster (in the average case).

As for multiplication, the best way to understand how the computer per-
forms division is to study how you were taught to do long division by hand. 
Consider the operation 3,456/12 and the steps you would take to manually 
perform this operation, as shown in Figure 8-3.

Figure 8-3: Manual digit-by-digit division operation

This algorithm is actually easier in binary because at each step you do not 
have to guess how many times 12 goes into the remainder, nor do you have to 
multiply 12 by your guess to obtain the amount to subtract. At each step in the 
binary algorithm the divisor goes into the remainder exactly zero or one times. 
As an example, consider the division of 27 (11011) by 3 (11) that is shown in 
Figure 8-4.

There is a novel way to implement this binary division algorithm that 
computes the quotient and the remainder at the same time. The algorithm is 
the following:

Quotient := Dividend;
Remainder := 0;
for i := 1 to NumberBits do

    Remainder:Quotient := Remainder:Quotient SHL 1;
    if Remainder >= Divisor then

        Remainder := Remainder - Divisor;
        Quotient := Quotient + 1;

    endif
endfor

12 3456
24

12 3456
24
105

2

12 3456
24
105

2

96

12 3456
24
105

28

96
96

12 3456
24
105

28

96
96
96

12 3456
24
105

288

96
96
96

(1) 12 goes into 34 two times. (2) Subtract 24 from 35
and drop down the 105.

(3) 12 goes into 105
eight times.

(4) Subtract 96 from 105
and drop down the 96.

(5) 12 goes into 96
exactly eight times.

(6) Therefore, 12
goes into 3456
exactly 288 times.
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Figure 8-4: Longhand division in binary

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and 
Dividend variables. Note that the Quotient := Quotient + 1; statement sets the 
L.O. bit of Quotient to 1 because this algorithm previously shifts Quotient 1 bit 
to the left. The program in Listing 8-3 implements this algorithm.

program testDiv128b;
#include( "stdlib.hhf" )

// div128-
//
// This procedure does a general 128/128 division operation using the
// following algorithm (all variables are assumed to be 128-bit objects):
//
// Quotient := Dividend;
// Remainder := 0;
// for i := 1 to NumberBits do
// 

11 11011
11

(1) 11 goes into 11 
one time.

11 11011
11
00

1
(2) Subtract out the 11 
and bring down the zero.

11 11011
11
00

1

00
(3) 11 goes into 00 
zero times.

11 11011
11
00

10

00
01

(4) Subtract out the zero 
and bring down the one.

11 11011
11
00

10

00
01
00

(5) 11 goes into 01 
zero times.

11 11011
11
00

100

00
01
00

(6) Subtract out the zero 
and bring down the one.

11

11 11011
11
00

1001

00
01
00

(7) This produces the 
final result of 1001.

11
11
00
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//  Remainder:Quotient := Remainder:Quotient SHL 1;
//  if Remainder >= Divisor then
// 
//      Remainder := Remainder - Divisor;
//      Quotient := Quotient + 1;
// 
//  endif
// endfor
// 

procedure div128
( 
        Dividend:   lword; 
        Divisor:    lword; 
    var QuotAdrs:   lword; 
    var RmndrAdrs:  lword 
);  @nodisplay;

const
    Quotient: text := "Dividend";   // Use the Dividend as the Quotient.

var
    Remainder: lword;

begin div128;

    push( eax );
    push( ecx );
    push( edi );
    
    mov( 0, eax );              // Set the remainder to 0.
    mov( eax, (type dword Remainder[0]) );
    mov( eax, (type dword Remainder[4]) );
    mov( eax, (type dword Remainder[8]) );
    mov( eax, (type dword Remainder[12]));

    mov( 128, ecx );            // Count off 128 bits in ecx.
    repeat

        // Compute Remainder:Quotient := Remainder:Quotient SHL 1:

        shl( 1, (type dword Dividend[0]) );  // See Section 8.1.12 to see
        rcl( 1, (type dword Dividend[4]) );  // how this code shifts 256
        rcl( 1, (type dword Dividend[8]) );  // bits to the left by 1 bit.
        rcl( 1, (type dword Dividend[12]));
        rcl( 1, (type dword Remainder[0]) );
        rcl( 1, (type dword Remainder[4]) );
        rcl( 1, (type dword Remainder[8]) );
        rcl( 1, (type dword Remainder[12]));

        // Do a 128-bit comparison to see if the remainder
        // is greater than or equal to the divisor.
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        if
        ( #{
            mov( (type dword Remainder[12]), eax );
            cmp( eax, (type dword Divisor[12]) );
            ja true;
            jb false;

            mov( (type dword Remainder[8]), eax );
            cmp( eax, (type dword Divisor[8]) );
            ja true;
            jb false;

            mov( (type dword Remainder[4]), eax );
            cmp( eax, (type dword Divisor[4]) );
            ja true;
            jb false;

            mov( (type dword Remainder[0]), eax );
            cmp( eax, (type dword Divisor[0]) );
            jb false;
        }# ) then

            // Remainder := Remainder - Divisor

            mov( (type dword Divisor[0]), eax );
            sub( eax, (type dword Remainder[0]) );

            mov( (type dword Divisor[4]), eax );
            sbb( eax, (type dword Remainder[4]) );

            mov( (type dword Divisor[8]), eax );
            sbb( eax, (type dword Remainder[8]) );

            mov( (type dword Divisor[12]), eax );
            sbb( eax, (type dword Remainder[12]) );

            // Quotient := Quotient + 1;

            add( 1, (type dword Quotient[0]) );
            adc( 0, (type dword Quotient[4]) );
            adc( 0, (type dword Quotient[8]) );
            adc( 0, (type dword Quotient[12]) );

        endif;
        dec( ecx );

    until( @z );

    // Okay, copy the quotient (left in the Dividend variable)
    // and the remainder to their return locations.
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    mov( QuotAdrs, edi );
    mov( (type dword Quotient[0]), eax );
    mov( eax, [edi] );
    mov( (type dword Quotient[4]), eax );
    mov( eax, [edi+4] );
    mov( (type dword Quotient[8]), eax );
    mov( eax, [edi+8] );
    mov( (type dword Quotient[12]), eax );
    mov( eax, [edi+12] );
    
    mov( RmndrAdrs, edi );
    mov( (type dword Remainder[0]), eax );
    mov( eax, [edi] );
    mov( (type dword Remainder[4]), eax );
    mov( eax, [edi+4] );
    mov( (type dword Remainder[8]), eax );
    mov( eax, [edi+8] );
    mov( (type dword Remainder[12]), eax );
    mov( eax, [edi+12] );
        
         
    pop( edi );
    pop( ecx );
    pop( eax );
            
end div128;

// Some simple code to test out the division operation:

static
    op1:    lword    := $8888_8888_6666_6666_4444_4444_2222_2221;
    op2:    lword    := 2;
    quo:    lword;
    rmndr:  lword;

begin testDiv128b;

    div128( op1, op2, quo, rmndr );
    
    stdout.put
    ( 
        nl
        nl
        "After the division: " nl
        nl
        "Quotient = $",
        (type dword quo[12]), "_",
        (type dword quo[8]), "_",
        (type dword quo[4]), "_",
        (type dword quo[0]), nl
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        "Remainder = ", (type uns32 rmndr )
    );
        
end testDiv128b;

Listing 8-3: Extended-precision division

This code looks simple but there are a few problems with it: It does not 
check for division by 0 (it will produce the value $FFFF_FFFF_FFFF_FFFF if 
you attempt to divide by 0), it handles only unsigned values, and it is very slow. 
Handling division by 0 is very simple; just check the divisor against 0 prior to 
running this code and return an appropriate error code if the divisor is 0 (or 
raise the ex.DivisionError exception). Dealing with signed values is the same 
as the earlier division algorithm: Note the signs, take the operands’ absolute 
values, do the unsigned division, and then fix the sign afterward. The perfor-
mance of this algorithm, however, leaves a lot to be desired. It’s around an 
order of magnitude or two worse than the div/idiv instructions on the 80x86, 
and they are among the slowest instructions on the CPU.

There is a technique you can use to boost the performance of this divi-
sion by a fair amount: Check to see if the divisor variable uses only 32 bits. 
Often, even though the divisor is a 128-bit variable, the value itself fits just fine 
into 32 bits (that is, the H.O. double words of Divisor are 0). In this special 
case, which occurs frequently, you can use the div instruction, which is much 
faster. The algorithm is a bit more complex because you have to first compare 
the H.O. double words for 0, but on the average it runs much faster while 
remaining capable of dividing any two pairs of values.

8.1.7 Extended-Precision neg Operations

Although there are several ways to negate an extended-precision value, the 
shortest way for smaller values (96 bits or less) is to use a combination of neg 
and sbb instructions. This technique uses the fact that neg subtracts its operand 
from 0. In particular, it sets the flags the same way the sub instruction would if 
you subtracted the destination value from 0. This code takes the following 
form (assuming you want to negate the 64-bit value in EDX:EAX):

    neg( edx );
    neg( eax );
    sbb( 0, edx );

The sbb instruction decrements EDX if there is a borrow out of the L.O. 
word of the negation operation (which always occurs unless EAX is 0). 

Extending this operation to additional bytes, words, or double words is 
easy; all you have to do is start with the H.O. memory location of the object 
you want to negate and work toward the L.O. byte. The following code com-
putes a 128-bit negation.
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static
    Value: dword[4];
     .
     .
     .
    neg( Value[12] );      // Negate the H.O. double word.
    neg( Value[8] );       // Neg previous dword in memory.
    sbb( 0, Value[12] );   // Adjust H.O. dword.

    neg( Value[4] );       // Negate the second dword in the object.
    sbb( 0, Value[8] );    // Adjust third dword in object.
    sbb( 0, Value[12] );   // Adjust the H.O. dword.

    neg( Value );          // Negate the L.O. dword.
    sbb( 0, Value[4] );    // Adjust second dword in object.
    sbb( 0, Value[8] );    // Adjust third dword in object.
    sbb( 0, Value[12] );   // Adjust the H.O. dword.

Unfortunately, this code tends to get really large and slow because you 
need to propagate the carry through all the H.O. words after each negation 
operation. A simpler way to negate larger values is to simply subtract that 
value from 0:

static
    Value: dword[5];   // 160-bit value.
     .
     .
     .
    mov( 0, eax );
    sub( Value, eax );
    mov( eax, Value );

    mov( 0, eax );
    sbb( Value[4], eax );
    mov( eax, Value[4] );

    mov( 0, eax );
    sbb( Value[8], eax );
    mov( eax, Value[8] );

    mov( 0, eax );
    sbb( Value[12], eax );
    mov( eax, Value[12] );

    mov( 0, eax );
    sbb( Value[16], eax );
    mov( eax, Value[16] );
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8.1.8 Extended-Precision and Operations

Performing an n-byte and operation is very easy: Simply and the corresponding 
bytes between the two operands, saving the result. For example, to perform 
the and operation where all operands are 64 bits long, you could use the fol-
lowing code:

    mov( (type dword source1), eax );
    and( (type dword source2), eax );
    mov( eax, (type dword dest) );

    mov( (type dword source1[4]), eax );
    and( (type dword source2[4]), eax );
    mov( eax, (type dword dest[4]) );

This technique easily extends to any number of words; all you need to do 
is logically and the corresponding bytes, words, or double words together in 
the operands. Note that this sequence sets the flags according to the value 
of the last and operation. If you and the H.O. double words last, this sets all but 
the zero flag correctly. If you need to test the zero flag after this sequence, you 
will need to logically or the two resulting double words together (or otherwise 
compare them both against 0).

8.1.9 Extended-Precision or Operations

Multibyte logical or operations are performed in the same way as multibyte 
and operations. You simply or the corresponding bytes in the two operands 
together. For example, to logically or two 96-bit values, use the following code:

    mov( (type dword source1), eax );
    or( (type dword source2), eax );
    mov( eax, (type dword dest) );

    mov( (type dword source1[4]), eax );
    or( (type dword source2[4]), eax );
    mov( eax, (type dword dest[4]) );

    mov( (type dword source1[8]), eax );
    or( (type dword source2[8]), eax );
    mov( eax, (type dword dest[8]) );

As for the previous example, this does not set the zero flag properly for 
the entire operation. If you need to test the zero flag after a multiprecision or, 
you must logically or all the resulting double words together.
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8.1.10 Extended-Precision xor Operations

Extended-precision xor operations are performed in a manner identical to 
and/or—simply xor the corresponding bytes in the two operands to obtain the 
extended-precision result. The following code sequence operates on two 64-bit 
operands, computes their exclusive-or, and stores the result into a 64-bit variable:

    mov( (type dword source1), eax );
    xor( (type dword source2), eax );
    mov( eax, (type dword dest) );

    mov( (type dword source1[4]), eax );
    xor( (type dword source2[4]), eax );
    mov( eax, (type dword dest[4]) );

The comment about the zero flag in the previous two sections applies 
here.

8.1.11 Extended-Precision not Operations

The not instruction inverts all the bits in the specified operand. An extended-
precision not is performed by simply executing the not instruction on all the 
affected operands. For example, to perform a 64-bit not operation on the 
value in (edx:eax), all you need to do is execute the following instructions:

    not( eax );
    not( edx );

Keep in mind that if you execute the not instruction twice, you wind up 
with the original value. Also note that exclusive-oring a value with all 1s ($FF, 
$FFFF, or $FFFF_FFFF) performs the same operation as the not instruction.

8.1.12 Extended-Precision Shift Operations

Extended-precision shift operations require a shift and a rotate instruction. 
Consider what must happen to implement a 64-bit shl using 32-bit operations 
(see Figure 8-5):

1. A 0 must be shifted into bit 0. 

2. Bits 0 through 30 are shifted into the next-higher bit. 

3. Bit 31 is shifted into bit 32. 

4. Bits 32 through 62 must be shifted into the next-higher bit.

5. Bit 63 is shifted into the carry flag.
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Figure 8-5: 64-bit shift-left operation

The two instructions you can use to implement this 64-bit shift are shl and 
rcl. For example, to shift the 64-bit quantity in (EDX:EAX) one position to 
the left, you’d use the following instructions:

    shl( 1, eax );
    rcl( 1, eax );

Note that using this technique you can shift an extended-precision value 
only 1 bit at a time. You cannot shift an extended-precision operand several 
bits using the CL register. Nor can you specify a constant value greater than 1 
using this technique.

To understand how this instruction sequence works, consider the opera-
tion of the individual instructions. The shl instruction shifts a 0 into bit 0 of 
the 64-bit operand and shifts bit 31 into the carry flag. The rcl instruction 
then shifts the carry flag into bit 32 and then shifts bit 63 into the carry flag. 
The result is exactly what we want.

To perform a shift left on an operand larger than 64 bits, you simply use 
additional rcl instructions. An extended-precision shift-left operation always 
starts with the least-significant double word, and each succeeding rcl instruc-
tion operates on the next-most-significant double word. For example, to 
perform a 96-bit shift-left operation on a memory location, you could use the 
following instructions:

    shl( 1, (type dword Operand[0]) );
    rcl( 1, (type dword Operand[4])  );
    rcl( 1, (type dword Operand[8])  );

If you need to shift your data by 2 or more bits, you can either repeat the 
above sequence the desired number of times (for a constant number of shifts) 
or you can place the instructions in a loop to repeat them some number of 
times. For example, the following code shifts the 96-bit value Operand to the 
left the number of bits specified in ECX:

ShiftLoop:
    shl( 1, (type dword Operand[0]) );
    rcl( 1, (type dword Operand[4]) );
    rcl( 1, (type dword Operand[8]) );
    dec( ecx );
    jnz ShiftLoop;

0124 3
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You implement shr and sar in a similar way, except you must start at the 
H.O. word of the operand and work your way down to the L.O. word:

// Extended-precision SAR:

    sar( 1, (type dword Operand[8]) );
    rcr( 1, (type dword Operand[4]) );
    rcr( 1, (type dword Operand[0]) );

// Double-precision SHR:

    shr( 1, (type dword Operand[8]) );
    rcr( 1, (type dword Operand[4]) );
    rcr( 1, (type dword Operand[0]) );

There is one major difference between the extended-precision shifts 
described here and their 8/16/32-bit counterparts—the extended-precision 
shifts set the flags differently than the single-precision operations. This is 
because the rotate instructions affect the flags differently than the shift 
instructions. Fortunately, the carry flag is the one you’ll test most often after 
a shift operation, and the extended-precision shift operations (i.e., rotate 
instructions) properly set this flag.

The shld and shrd instructions let you efficiently implement multipreci-
sion shifts of several bits. These instructions have the following syntax:

    shld( constant, Operand1, Operand2 );
    shld( cl, Operand1, Operand2 );
    shrd( constant, Operand1, Operand2 );
    shrd( cl, Operand1, Operand2 );

The shld instruction works as shown in Figure 8-6.

Figure 8-6: shld operation

Operand1 must be a 16- or 32-bit register. Operand2 can be a register or a 
memory location. Both operands must be the same size. The immediate oper-
and can be a value in the range 0 through n−1, where n is the number of bits 
in the two operands; this operand specifies the number of bits to shift.

The shld instruction shifts bits in Operand2 to the left. The H.O. bits shift 
into the carry flag, and the H.O. bits of Operand1 shift into the L.O. bits of 
Operand2. Note that this instruction does not modify the value of Operand1; it 

H.O Bit

C

0124 3H.O Bit

0124 3

Operand2

Temporary copy of Operand1
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uses a temporary copy of Operand1 during the shift. The immediate operand 
specifies the number of bits to shift. If the count is n, then shld shifts bit n−1 
into the carry flag. It also shifts the H.O. n bits of Operand1 into the L.O. n bits 
of Operand2. The shld instruction sets the flag bits as follows:

1. If the shift count is 0, the shld instruction doesn’t affect any flags.

2. The carry flag contains the last bit shifted out of the H.O. bit of the 
Operand2.

3. If the shift count is 1, the overflow flag will contain 1 if the sign bit of 
Operand2 changes during the shift. If the count is not 1, the overflow flag 
is undefined.

4. The zero flag will be 1 if the shift produces a 0 result.

5. The sign flag will contain the H.O. bit of the result.

The shrd instruction is similar to shld except, of course, it shifts its bits 
right rather than left. To get a clear picture of the shrd instruction, consider 
Figure 8-7.

Figure 8-7: shrd operation

The shrd instruction sets the flag bits as follows:

1. If the shift count is 0, the shrd instruction doesn’t affect any flags.

2. The carry flag contains the last bit shifted out of the L.O. bit of the 
Operand2.

3. If the shift count is 1, the overflow flag will contain 1 if the H.O. bit of 
Operand2 changes. If the count is not 1, the overflow flag is undefined.

4. The zero flag will be 1 if the shift produces a 0 result.

5. The sign flag will contain the H.O. bit of the result.

Consider the following code sequence:

static
    ShiftMe: dword[3] := [ $1234, $5678, $9012 ];
     .
     .
     .

H.O Bit
Operand2

Temporary copy of Operand1
H.O Bit 5 4 3 2 1 0

5 4 3 2 1 0

C
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    mov( ShiftMe[4], eax )
    shld( 6, eax, ShiftMe[8] );
    mov( ShiftMe[0], eax );
    shld( 6, eax, ShiftMe[4] );
    shl( 6, ShiftMe[0] );

The first shld instruction above shifts the bits from ShiftMe[4] into ShiftMe[8] 
without affecting the value in ShiftMe[4]. The second shld instruction shifts 
the bits from ShiftMe into ShiftMe[4]. Finally, the shl instruction shifts the L.O. 
double word the appropriate amount. There are two important things to note 
about this code. First, unlike the other extended-precision shift-left operations, 
this sequence works from the H.O. double word down to the L.O. double 
word. Second, the carry flag does not contain the carry from the H.O. shift 
operation. If you need to preserve the carry flag at that point, you will need to 
push the flags after the first shld instruction and pop the flags after the shl 
instruction.

You can do an extended-precision shift-right operation using the shrd 
instruction. It works almost the same way as the code sequence above, except 
you work from the L.O. double word to the H.O. double word. The solution 
is left as an exercise for the reader.

8.1.13 Extended-Precision Rotate Operations
The rcl and rcr operations extend in a manner almost identical to shl and 
shr. For example, to perform 96-bit rcl and rcr operations, use the following 
instructions:

    rcl( 1, (type dword Operand[0]) );
    rcl( 1, (type dword Operand[4])  );
    rcl( 1, (type dword Operand[8])  );

    rcr( 1, (type dword Operand[8]) );
    rcr( 1, (type dword Operand[4])  );
    rcr( 1, (type dword Operand[0])  );

The only difference between this code and the code for the extended-
precision shift operations is that the first instruction is a rcl or rcr rather than 
a shl or shr instruction. 

Performing an extended-precision rol or ror operation isn’t quite as 
simple. You can use the bt, shld, and shrd instructions to implement an 
extended-precision rol or ror instruction. The following code shows how to 
use the shld instruction to do an extended-precision rol:

// Compute rol( 4, edx:eax );

        mov( edx, ebx );
        shld, 4, eax, edx );
        shld( 4, ebx, eax );
        bt( 0, eax );        // Set carry flag, if desired.
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An extended-precision ror instruction is similar; just keep in mind that 
you work on the L.O. end of the object first and the H.O. end last.

8.1.14 Extended-Precision I/O

Once you can do extended-precision arithmetic, the next problem is how to 
get those extended-precision values into your program and how to display 
their values to the user. HLA’s Standard Library provides routines for unsigned 
decimal, signed decimal, and hexadecimal I/O for values that are 8, 16, 32, 
64, or 128 bits in length. So as long as you’re working with values whose size 
is less than or equal to 128 bits in length, you can use the Standard Library 
code. If you need to input or output values that are greater than 128 bits in 
length, you will need to write your own procedures to handle the operation. 
This section discusses the strategies you will need to write such routines.

The examples in this section work specifically with 128-bit values. The 
algorithms are perfectly general and extend to any number of bits (indeed, 
the 128-bit algorithms in this section are really nothing more than the algo-
rithms the HLA Standard Library uses for 128-bit values). Of course, if you 
need a set of 128-bit unsigned I/O routines, you can use the Standard Library 
code as is. If you need to handle larger values, simple modifications to the fol-
lowing code are all that should be necessary.

The sections that follow use a common set of 128-bit data types in order 
to avoid having to coerce lword/uns128/int128 values in each instruction. Here 
are these types:

type
    h128        :dword[4];
    u128        :dword[4];
    i128        :dword[4];

8.1.14.1 Extended-Precision Hexadecimal Output

Extended-precision hexadecimal output is very easy. All you have to do is out-
put each double-word component of the extended-precision value from the 
H.O. double word to the L.O. double word using a call to the stdout.puth32 
routine. The following procedure does exactly this to output an lword value:

procedure puth128( b128: h128 ); @nodisplay;
begin puth128;

    stdout.puth32( b128[12] );
    stdout.puth32( b128[8] );
    stdout.puth32( b128[4] );
    stdout.puth32( b128[0] );

end puth128;
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Of course, the HLA Standard Library supplies a stdout.puth128 procedure 
that directly writes lword values, so you can call stdout.puth128 multiple times 
when outputting larger values (e.g., a 256-bit value). As it turns out, the imple-
mentation of the HLA stdlib.puth128 routine is very similar to puth128, above.

8.1.14.2 Extended-Precision Unsigned Decimal Output

Decimal output is a little more complicated than hexadecimal output because 
the H.O. bits of a binary number affect the L.O. digits of the decimal repre-
sentation (this was not true for hexadecimal values, which is why hexadecimal 
output is so easy). Therefore, we will have to create the decimal representa-
tion for a binary number by extracting one decimal digit at a time from the 
number.

The most common solution for unsigned decimal output is to successively 
divide the value by 10 until the result becomes 0. The remainder after the first 
division is a value in the range 0..9, and this value corresponds to the L.O. digit 
of the decimal number. Successive divisions by 10 (and their corresponding 
remainder) extract successive digits from the number.

Iterative solutions to this problem generally allocate storage for a string 
of characters large enough to hold the entire number. Then the code extracts 
the decimal digits in a loop and places them in the string one by one. At the 
end of the conversion process, the routine prints the characters in the string 
in reverse order (remember, the divide algorithm extracts the L.O. digits first 
and the H.O. digits last, the opposite of the way you need to print them).

In this section, we employ a recursive solution because it is a little more 
elegant. The recursive solution begins by dividing the value by 10 and saving 
the remainder in a local variable. If the quotient is not 0, the routine recur-
sively calls itself to print any leading digits first. On return from the recursive 
call (which prints all the leading digits), the recursive algorithm prints the 
digit associated with the remainder to complete the operation. Here’s how 
the operation works when printing the decimal value 789:

1. Divide 789 by 10. Quotient is 78, and remainder is 9.

2. Save the remainder (9) in a local variable and recursively call the routine 
with the quotient.

3. [Recursive entry 1] Divide 78 by 10. Quotient is 7, and remainder is 8.

4. Save the remainder (8) in a local variable and recursively call the routine 
with the quotient.

5. [Recursive entry 2] Divide 7 by 10. Quotient is 0, and remainder is 7.

6. Save the remainder (7) in a local variable. Because the quotient is 0, 
don’t call the routine recursively.

7. Output the remainder value saved in the local variable (7). Return to the 
caller (recursive entry 1).
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8. [Return to recursive entry 1] Output the remainder value saved in the 
local variable in recursive entry 1 (8). Return to the caller (original invo-
cation of the procedure).

9. [Original invocation] Output the remainder value saved in the local 
variable in the original call (9). Return to the original caller of the out-
put routine.

The only operation that requires extended-precision calculation through 
this entire algorithm is the “divide by 10” statement. Everything else is simple 
and straightforward. We are in luck with this algorithm, because we are dividing 
an extended-precision value by a value that easily fits into a double word, and 
we can use the fast (and easy) extended-precision division algorithm that uses 
the div instruction. The program in Listing 8-4 implements a 128-bit decimal 
output routine utilizing this technique.

program out128;

#include( "stdlib.hhf" );

// 128-bit unsigned integer data type:

type
    u128: dword[4];

// DivideBy10-
//
//  Divides "divisor" by 10 using fast
//  extended-precision division algorithm
//  that employs the div instruction.
//
//  Returns quotient in "quotient".
//  Returns remainder in eax.
//  Trashes ebx, edx, and edi.

procedure DivideBy10( dividend:u128; var quotient:u128 ); @nodisplay;
begin DivideBy10;

    mov( quotient, edi );
    xor( edx, edx );
    mov( dividend[12], eax );
    mov( 10, ebx );
    div( ebx, edx:eax );
    mov( eax, [edi+12] );
    
    mov( dividend[8], eax );
    div( ebx, edx:eax );
    mov( eax, [edi+8] );
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    mov( dividend[4], eax );
    div( ebx, edx:eax );
    mov( eax, [edi+4] );
    
    mov( dividend[0], eax );
    div( ebx, edx:eax );
    mov( eax, [edi+0] );
    mov( edx, eax );
    
end DivideBy10;

// Recursive version of putu128.
// A separate "shell" procedure calls this so that
// this code does not have to preserve all the registers
// it uses (and DivideBy10 uses) on each recursive call.

procedure recursivePutu128( b128:u128 ); @nodisplay;
var
    remainder: byte;

begin recursivePutu128;

    // Divide by 10 and get the remainder (the char to print).
    
    DivideBy10( b128, b128 );
    mov( al, remainder );       // Save away the remainder (0..9).
    
    // If the quotient (left in b128) is not 0, recursively
    // call this routine to print the H.O. digits.
    
    mov( b128[0], eax );    // If we logically OR all the dwords
    or( b128[4], eax );     // together, the result is 0 if and
    or( b128[8], eax );     // only if the entire number is 0.
    or( b128[12], eax );
    if( @nz ) then
    
        recursivePutu128( b128 );
        
    endif;
    
    // Okay, now print the current digit.
    
    mov( remainder, al );
    or( '0', al );          // Converts 0..9 -> '0'..'9'.
    stdout.putc( al );

end recursivePutu128;
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// Nonrecursive shell to the above routine so we don't bother
// saving all the registers on each recursive call.

procedure putu128( b128:u128 ); @nodisplay;
begin putu128;

    push( eax );
    push( ebx );
    push( edx );
    push( edi );
    
    recursivePutu128( b128 );
    
    pop( edi );
    pop( edx );
    pop( ebx );
    pop( eax );
    
end putu128;

// Code to test the routines above:

static
    b0: u128 := [0, 0, 0, 0];             // decimal = 0
    b1: u128 := [1234567890, 0, 0, 0];    // decimal = 1234567890
    b2: u128 := [$8000_0000, 0, 0, 0];    // decimal = 2147483648
    b3: u128 := [0, 1, 0, 0 ];            // decimal = 4294967296
    
    // Largest uns128 value
    // (decimal=340,282,366,920,938,463,463,374,607,431,768,211,455):
    
    b4: u128 := [$FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF, $FFFF_FFFF ];
    
begin out128;

    stdout.put( "b0 = " );
    putu128( b0 );
    stdout.newln();
    
    stdout.put( "b1 = " );
    putu128( b1 );
    stdout.newln();
    
    stdout.put( "b2 = " );
    putu128( b2 );
    stdout.newln();
    
    stdout.put( "b3 = " );
    putu128( b3 );
    stdout.newln();
    
Advanced Ar i thmet ic 513



AAL2E_03.book  Page 514  Thursday, February 18, 2010  12:49 PM
    stdout.put( "b4 = " );
    putu128( b4 );
    stdout.newln();
    
end out128;

Listing 8-4: 128-bit extended-precision decimal output routine

8.1.14.3 Extended-Precision Signed Decimal Output

Once you have an extended-precision unsigned decimal output routine, 
writing an extended-precision signed decimal output routine is very easy. The 
basic algorithm takes the following form:

1. Check the sign of the number. 

2. If it is positive, call the unsigned output routine to print it. If the number 
is negative, print a minus sign. Then negate the number and call the 
unsigned output routine to print it.

To check the sign of an extended-precision integer, of course, you simply 
test the H.O. bit of the number. To negate a large value, the best solution is 
probably to subtract that value from 0. Here’s a quick version of puti128 that 
uses the putu128 routine from the previous section:

procedure puti128( i128: u128 ); @nodisplay;
begin puti128;

    if( (type int32 i128[12]) < 0 ) then

        stdout.put( '-' );

        // Extended-precision Negation:

        push( eax );
        mov( 0, eax );
        sub( i128[0], eax );
        mov( eax, i128[0] );

        mov( 0, eax );
        sbb( i128[4], eax );
        mov( eax, i128[4] );

        mov( 0, eax );
        sbb( i128[8], eax );
        mov( eax, i128[8] );

        mov( 0, eax );
        sbb( i128[12], eax );
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        mov( eax, i128[12] );
        pop( eax );

    endif;
    putu128( i128 );

end puti128;

8.1.14.4 Extended-Precision Formatted Output

The code in the previous two sections prints signed and unsigned integers 
using the minimum number of necessary print positions. To create nicely 
formatted tables of values you will need the equivalent of a puti128Size or 
putu128Size routine. Once you have the “unformatted” versions of these rou-
tines, implementing the formatted versions is very easy.

The first step is to write i128Size and u128Size routines that compute the 
minimum number of digits needed to display the value. The algorithm to 
accomplish this is very similar to the numeric output routines. In fact, the 
only difference is that you initialize a counter to 0 upon entry into the routine 
(for example, the nonrecursive shell routine), and you increment this counter 
rather than outputting a digit on each recursive call. (Don’t forget to incre-
ment the counter inside i128Size if the number is negative; you must allow for 
the output of the minus sign.) After the calculation is complete, these routines 
should return the size of the operand in the EAX register.

Once you have the i128Size and u128Size routines, writing the formatted 
output routines is easy. Upon initial entry into puti128Size or putu128Size, 
these routines call the corresponding size routine to determine the number 
of print positions for the number to display. If the value that the size routine 
returns is greater than the absolute value of the minimum size parameter 
(passed into puti128Size or putu128Size), all you need to do is call the put rou-
tine to print the value; no other formatting is necessary. If the absolute value 
of the parameter size is greater than the value i128Size or u128Size returns, 
then the program must compute the difference between these two values and 
print that many spaces (or other filler characters) before printing the num-
ber (if the parameter size value is positive) or after printing the number (if 
the parameter size value is negative). The actual implementation of these two 
routines is left as an exercise to the reader (or just check out the source code 
in the HLA Standard Library for the stdout.putiSize128 and stdout.putuSize128 
routines).

The HLA Standard Library implements the i128Size and u128Size by 
doing a set of successive extended-precision comparisons to determine the 
number of digits in the values. Interested readers may want to look at the 
source code for these routines as well as the source code for the stdout.puti128 
and stdout.putu128 procedures (this source code appears on Webster at 
http://webster.cs.ucr.edu/ or http://www.artofasm.com/).
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8.1.14.5 Extended-Precision Input Routines

There are a couple of fundamental differences between the extended-
precision output routines and the extended-precision input routines. First 
of all, numeric output generally occurs without possibility of error;3 numeric 
input, on the other hand, must handle the very real possibility of an input 
error such as illegal characters and numeric overflow. Also, HLA’s Standard 
Library and runtime system encourage a slightly different approach to input 
conversion. This section discusses those issues that differentiate input conver-
sion from output conversion.

Perhaps the biggest difference between input and output conversion is 
the fact that output conversion is not bracketed. That is, when converting a 
numeric value to a string of characters for output, the output routine does 
not concern itself with characters preceding the output string, nor is it con-
cerned with the characters following the numeric value in the output stream. 
Numeric output routines convert their data to a string and print that string 
without considering the context (that is, the characters before and after the 
string representation of the numeric value). Numeric input routines cannot 
be so cavalier; the contextual information surrounding the numeric string is 
very important.

A typical numeric input operation consists of reading a string of characters 
from the user and then translating this string of characters into an internal 
numeric representation. For example, a statement like stdin.get(i32); typically 
reads a line of text from the user and converts a sequence of digits appearing 
at the beginning of that line of text into a 32-bit signed integer (assuming i32 
is an int32 object). Note, however, that the stdin.get routine skips over certain 
characters in the string that may appear before the actual numeric characters. 
For example, stdin.get automatically skips any leading spaces in the string. 
Likewise, the input string may contain additional data beyond the end of the 
numeric input (for example, it is possible to read two integer values from the 
same input line), and therefore the input conversion routine must somehow 
determine where the numeric data ends in the input stream. Fortunately, 
HLA provides a simple mechanism that lets you easily determine the start and 
end of the input data: the Delimiters character set.

The Delimiters character set is a variable, internal to the HLA Standard 
Library, that contains the set of legal characters that may precede or follow a 
legal numeric value. By default, this character set includes the end-of-string 
marker (a 0 byte), a tab character, a line-feed character, a carriage-return 
character, a space, a comma, a colon, and a semicolon. Therefore, HLA’s 
numeric input routines will automatically ignore any characters in this set 
that occur on input before a numeric string. Likewise, characters from this set 
may legally follow a numeric string on input (conversely, if any non-delimiter 
character follows the numeric string, HLA will raise an ex.ConversionError 
exception).

3 Technically speaking, this isn't entirely true. It is possible for a device error (e.g., disk full) to 
occur. The likelihood of this is so low that we can effectively ignore this possibility.
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The Delimiters character set is a private variable inside the HLA Standard 
Library. Although you do not have direct access to this object, the HLA Stan-
dard Library does provide two accessor functions, conv.setDelimiters and 
conv.getDelimiters, that let you access and modify the value of this character 
set. These two functions have the following prototypes (found in the conv.hhf 
header file):

procedure conv.setDelimiters( Delims:cset );
procedure conv.getDelimiters( var Delims:cset );

The conv.setDelimiters procedure will copy the value of the Delims param-
eter into the internal Delimiters character set. Therefore, you can use this 
procedure to change the character set if you want to use a different set of 
delimiters for numeric input. The conv.getDelimiters call returns a copy of 
the internal Delimiters character set in the variable you pass as a parameter 
to the conv.getDelimiters procedure. We will use the value returned by 
conv.getDelimiters to determine the end of numeric input when writing our 
own extended-precision numeric input routines.

When reading a numeric value from the user, the first step is to get a copy 
of the Delimiters character set. The second step is to read and discard input 
characters from the user as long as those characters are members of the 
Delimiters character set. Once a character is found that is not in the Delimiters 
set, the input routine must check this character and verify that it is a legal 
numeric character. If not, the program should raise an ex.IllegalChar excep-
tion if the character’s value is outside the range $00..$7F, or it should raise 
the ex.ConversionError exception if the character is not a legal numeric char-
acter. Once the routine encounters a numeric character, it should continue 
reading characters as long as they are valid numeric characters; while reading 
the characters, the conversion routine should be translating them to the 
internal representation of the numeric data. If, during conversion, an over-
flow occurs, the procedure should raise the ex.ValueOutOfRange exception.

Conversion to numeric representation should end when the procedure 
encounters the first delimiter character at the end of the string of digits. How-
ever, it is very important that the procedure does not consume the delimiter 
character that ends the string. That is, the following is incorrect:

static
    Delimiters: cset;
         .
         .
         .
    conv.getDelimiters( Delimiters );

    // Skip over leading delimiters in the string:

    while( stdin.getc() in Delimiters ) do  /* getc did the work */ endwhile;
    while( al in '0'..'9') do 
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        // Convert character in al to numeric representation and
        // accumulate result...

        stdin.getc();

    endwhile;
    if( al not in Delimiters ) then

        raise( ex.ConversionError );

    endif;

The first while loop reads a sequence of delimiter characters. When this 
first while loop ends, the character in AL is not a delimiter character. The 
second while loop processes a sequence of decimal digits. First, it checks the 
character read in the previous while loop to see if it is a decimal digit; if so, it 
processes that digit and reads the next character. This process continues until 
the call to stdin.getc (at the bottom of the loop) reads a nondigit character. 
After the second while loop, the program checks the last character read to 
ensure that it is a legal delimiter character for a numeric input value.

The problem with this algorithm is that it consumes the delimiter charac-
ter after the numeric string. For example, the colon symbol is a legal delimiter 
in the default Delimiters character set. If the user types the input 123:456 and 
executes the code above, this code will properly convert 123 to the numeric 
value 123. However, the very next character read from the input stream will 
be the character 4, not the colon character (:). While this may be acceptable 
in certain circumstances, most programmers expect numeric input routines 
to consume only leading delimiter characters and the numeric digit charac-
ters. They do not expect the input routine to consume any trailing delimiter 
characters (for example, many programs will read the next character and 
expect a colon as input if presented with the string 123:456). Because stdin.getc 
consumes an input character, and there is no way to put the character back 
onto the input stream, some other way of reading input characters from the 
user that doesn’t consume those characters is needed.4

The HLA Standard Library comes to the rescue by providing the stdin.peekc 
function. Like stdin.getc, the stdin.peekc routine reads the next input char-
acter from HLA’s internal buffer. There are two major differences between 
stdin.peekc and stdin.getc. First, stdin.peekc will not force the input of a new 
line of text from the user if the current input line is empty (or you’ve already 
read all the text from the input line). Instead, stdin.peekc simply returns 0 in 
the AL register to indicate that there are no more characters on the input 
line. Because #0 (the NUL character) is (by default) a legal delimiter charac-
ter for numeric values, and the end of line is certainly a legal way to terminate 
numeric input, this works out rather well. The second difference between 
stdin.getc and stdin.peekc is that stdin.peekc does not consume the character 

4 The HLA Standard Library routines actually buffer up input lines in a string and process 
characters out of the string. This makes it easy to “peek” ahead one character when looking for a 
delimiter to end the input value. Your code can also do this; however, the code in this chapter 
uses a different approach.
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read from the input buffer. If you call stdin.peekc several times in a row, it will 
always return the same character; likewise, if you call stdin.getc immediately 
after stdin.peekc, the call to stdin.getc will generally return the same character 
as returned by stdin.peekc (the only exception being the end-of-line condition). 
So, although we cannot put characters back onto the input stream after we’ve 
read them with stdin.getc, we can peek ahead at the next character on the 
input stream and base our logic on that character’s value. A corrected version 
of the previous algorithm might be the following:

static
    Delimiters: cset;
         .
         .
         .
        conv.getDelimiters( Delimiters );

    // Skip over leading delimiters in the string:

    while( stdin.peekc() in Delimiters ) do  

        // If at the end of the input buffer, we must explicitly read a
        // new line of text from the user. stdin.peekc does not do this
        // for us.

        if( al = #0 ) then

            stdin.ReadLn();

        else

            stdin.getc();  // Remove delimiter from the input stream.

        endif;

    endwhile;
    while( stdin.peekc in '0'..'9') do 

        stdin.getc();     // Remove the input character from the input stream.

        // Convert character in al to numeric representation and
        // accumulate result...

    endwhile;
    if( al not in Delimiters ) then

        raise( ex.ConversionError );

    endif;
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Note that the call to stdin.peekc in the second while does not consume the 
delimiter character when the expression evaluates false. Hence, the delimiter 
character will be the next character read after this algorithm finishes.

The only remaining comment to make about numeric input is to point 
out that the HLA Standard Library input routines allow arbitrary underscores 
to appear within a numeric string. The input routines ignore these under-
score characters. This allows the user to input strings like FFFF_F012 and 
1_023_596, which are a little more readable than FFFFF012 and 1023596. 
Allowing underscores (or any other symbol you choose) within a numeric input 
routine is quite simple; just modify the second while loop above as follows:

    while( stdin.peekc in {'0'..'9', '_'}) do 

        stdin.getc();  // Read the character from the input stream.

        // Ignore underscores while processing numeric input.

        if( al <> '_' ) then

            // Convert character in al to numeric representation and
            // accumulate result...

        endif;

    endwhile;

8.1.14.6 Extended-Precision Hexadecimal Input

As was the case for numeric output, hexadecimal input is the easiest numeric 
input routine to write. The basic algorithm for hexadecimal-string-to-numeric 
conversion is the following:

1. Initialize the extended-precision value to 0.

2. For each input character that is a valid hexadecimal digit, do the 
following:

a. Convert the hexadecimal character to a value in the range 0..15 
($0..$F).

b. If the H.O. 4 bits of the extended-precision value are nonzero, raise 
an exception.

c. Multiply the current extended-precision value by 16 (i.e., shift left 
4 bits).

d. Add the converted hexadecimal digit value to the accumulator.

e. Check the last input character to ensure it is a valid delimiter. Raise 
an exception if it is not.

The program in Listing 8-5 implements this extended-precision hexa-
decimal input routine for 128-bit values.
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program Xin128;

#include( "stdlib.hhf" );

// 128-bit unsigned integer data type:

type
    b128: dword[4];

procedure getb128( var inValue:b128 ); @nodisplay;
const
    HexChars  := {'0'..'9', 'a'..'f', 'A'..'F', '_'};
var
    Delimiters: cset;
    LocalValue: b128;
    
begin getb128;

    push( eax );
    push( ebx );
    
    // Get a copy of the HLA standard numeric input delimiters:
    
    conv.getDelimiters( Delimiters );
    
    // Initialize the numeric input value to 0:
    
    xor( eax, eax );
    mov( eax, LocalValue[0] );
    mov( eax, LocalValue[4] );
    mov( eax, LocalValue[8] );
    mov( eax, LocalValue[12] );
    
    // By default, #0 is a member of the HLA Delimiters
    // character set. However, someone may have called
    // conv.setDelimiters and removed this character
    // from the internal Delimiters character set. This
    // algorithm depends upon #0 being in the Delimiters
    // character set, so let's add that character in
    // at this point just to be sure. 
    
    cs.unionChar( #0, Delimiters );

    // If we're at the end of the current input
    // line (or the program has yet to read any input),
    // for the input of an actual character.
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    if( stdin.peekc() = #0 ) then
    
        stdin.readLn();
        
    endif;
    

    // Skip the delimiters found on input. This code is
    // somewhat convoluted because stdin.peekc does not
    // force the input of a new line of text if the current
    // input buffer is empty. We have to force that input
    // ourselves in the event the input buffer is empty.
        
    while( stdin.peekc() in Delimiters ) do

        // If we're at the end of the line, read a new line
        // of text from the user; otherwise, remove the
        // delimiter character from the input stream.
        
        if( al = #0 ) then
        
            stdin.readLn(); // Force a new input line.
            
        else
        
            stdin.getc();   // Remove the delimiter from the input buffer.
            
        endif;
            
    endwhile;
    
    // Read the hexadecimal input characters and convert
    // them to the internal representation:
    
    while( stdin.peekc() in HexChars ) do
    
        // Actually read the character to remove it from the
        // input buffer.
        
        stdin.getc();
        
        // Ignore underscores, process everything else.
        
        if( al <> '_' ) then
        
            if( al in '0'..'9' ) then
            
                and( $f, al );  // '0'..'9' -> 0..9
                
            else
            
                and( $f, al );  // 'a'/'A'..'f'/'F' -> 1..6
                add( 9, al );   // 1..6 -> 10..15
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            endif;
            
            // Conversion algorithm is the following:
            //
            // (1) LocalValue := LocalValue * 16.
            // (2) LocalValue := LocalValue + al
            //
            // Note that "* 16" is easily accomplished by
            // shifting LocalValue to the left 4 bits.
            //
            // Overflow occurs if the H.O. 4 bits of LocalValue
            // contain a nonzero value prior to this operation.
            
            // First, check for overflow:
            
            test( $F0, (type byte LocalValue[15]));
            if( @nz ) then
            
                raise( ex.ValueOutOfRange );
                
            endif;
            
            // Now multiply LocalValue by 16 and add in
            // the current hexadecimal digit (in eax).
            
            mov( LocalValue[8], ebx );
            shld( 4, ebx, LocalValue[12] );
            mov( LocalValue[4], ebx );
            shld( 4, ebx, LocalValue[8] );
            mov( LocalValue[0], ebx );
            shld( 4, ebx, LocalValue[4] );
            shl( 4, ebx );
            add( eax, ebx );
            mov( ebx, LocalValue[0] );
            
        endif;
        
    endwhile;

    // Okay, we've encountered a non-hexadecimal character.
    // Let's make sure it's a valid delimiter character.
    // Raise the ex.ConversionError exception if it's invalid.
    
    if( al not in Delimiters ) then
    
        raise( ex.ConversionError );
        
    endif;
    
    // Okay, this conversion has been a success. Let's store
    // away the converted value into the output parameter.
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    mov( inValue, ebx );
    mov( LocalValue[0], eax );
    mov( eax, [ebx] );
    
    mov( LocalValue[4], eax );
    mov( eax, [ebx+4] );
    
    mov( LocalValue[8], eax );
    mov( eax, [ebx+8] );
    
    mov( LocalValue[12], eax );
    mov( eax, [ebx+12] );
    
    pop( ebx );
    pop( eax );
    
end getb128;

// Code to test the routines above:

static
    b1:b128;
        
begin Xin128;

    stdout.put( "Input a 128-bit hexadecimal value: " );
    getb128( b1 );
    stdout.put
    ( 
        "The value is: $",
        b1[12], '_',
        b1[8],  '_',
        b1[4],  '_',
        b1[0],
        nl
    );
    
end Xin128;   

Listing 8-5: Extended-precision hexadecimal input

Extending this code to handle objects that are greater than 128 bits long 
is very easy. There are only three changes necessary: You must zero out the 
whole object at the beginning of the getb128 routine; when checking for over-
flow (the test( $F, (type byte LocalValue[15]) ); instruction), you must test 
the H.O. 4 bits of the new object you’re processing; and you must modify the 
code that multiplies LocalValue by 16 (via shld) so that it multiplies your object 
by 16 (i.e., shifts it to the left 4 bits).
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8.1.14.7 Extended-Precision Unsigned Decimal Input

The algorithm for extended-precision unsigned decimal input is nearly iden-
tical to that for hexadecimal input. In fact, the only difference (beyond only 
accepting decimal digits) is that you multiply the extended-precision value 
by 10 rather than 16 for each input character (in general, the algorithm is the 
same for any base; just multiply the accumulating value by the input base). 
The code in Listing 8-6 demonstrates how to write a 128-bit unsigned decimal 
input routine.

program Uin128;

#include( "stdlib.hhf" );

// 128-bit unsigned integer data type:

type
    u128: dword[4];

procedure getu128( var inValue:u128 ); @nodisplay;
var
    Delimiters: cset;
    LocalValue: u128;
    PartialSum: u128;
    
begin getu128;

    push( eax );
    push( ebx );
    push( ecx );
    push( edx );
    
    // Get a copy of the HLA standard numeric input delimiters:
    
    conv.getDelimiters( Delimiters );
    
    // Initialize the numeric input value to 0:
    
    xor( eax, eax );
    mov( eax, LocalValue[0] );
    mov( eax, LocalValue[4] );
    mov( eax, LocalValue[8] );
    mov( eax, LocalValue[12] );
    
    // By default, #0 is a member of the HLA Delimiters
    // character set. However, someone may have called
    // conv.setDelimiters and removed this character
    // from the internal Delimiters character set. This
    // algorithm depends upon #0 being in the Delimiters
    // character set, so let's add that character in
    // at this point just to be sure. 
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    cs.unionChar( #0, Delimiters );

    // If we're at the end of the current input
    // line (or the program has yet to read any input),
    // wait for the input of an actual character.
    
    if( stdin.peekc() = #0 ) then
    
        stdin.readLn();
        
    endif;
    

    // Skip the delimiters found on input. This code is
    // somewhat convoluted because stdin.peekc does not
    // force the input of a new line of text if the current
    // input buffer is empty. We have to force that input
    // ourselves in the event the input buffer is empty.
        
    while( stdin.peekc() in Delimiters ) do

        // If we're at the end of the line, read a new line
        // of text from the user; otherwise, remove the
        // delimiter character from the input stream.
        
        if( al = #0 ) then
        
            stdin.readLn(); // Force a new input line.
            
        else
        
            stdin.getc();   // Remove the delimiter from the input buffer.
            
        endif;
            
    endwhile;
    
    // Read the decimal input characters and convert
    // them to the internal representation:
    
    while( stdin.peekc() in '0'..'9' ) do
    
        // Actually read the character to remove it from the
        // input buffer.
        
        stdin.getc();
        
        // Ignore underscores, process everything else.
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        if( al <> '_' ) then
        
            and( $f, al );              // '0'..'9' -> 0..9
            mov( eax, PartialSum[0] );  // Save to add in later.
            
            // Conversion algorithm is the following:
            //
            // (1) LocalValue := LocalValue * 10.
            // (2) LocalValue := LocalValue + al
            //
            // First, multiply LocalValue by 10:
            
            mov( 10, eax );
            mul( LocalValue[0], eax );
            mov( eax, LocalValue[0] );
            mov( edx, PartialSum[4] );
            
            mov( 10, eax );
            mul( LocalValue[4], eax );
            mov( eax, LocalValue[4] );
            mov( edx, PartialSum[8] );
            
            mov( 10, eax );
            mul( LocalValue[8], eax );
            mov( eax, LocalValue[8] );
            mov( edx, PartialSum[12] );
                        
            mov( 10, eax );
            mul( LocalValue[12], eax );
            mov( eax, LocalValue[12] );
            
            // Check for overflow. This occurs if edx
            // contains a nonzero value.
            
            if( edx /* <> 0 */ ) then
            
                raise( ex.ValueOutOfRange );
                
            endif;
            
            // Add in the partial sums (including the
            // most recently converted character).
            
            mov( PartialSum[0], eax );
            add( eax, LocalValue[0] );

            mov( PartialSum[4], eax );
            adc( eax, LocalValue[4] );

            mov( PartialSum[8], eax );
            adc( eax, LocalValue[8] );
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            mov( PartialSum[12], eax );
            adc( eax, LocalValue[12] );
            
            // Another check for overflow. If there
            // was a carry out of the extended-precision
            // addition above, we've got overflow.
            
            if( @c ) then
            
                raise( ex.ValueOutOfRange );
                
            endif;

        endif;
        
    endwhile;

    // Okay, we've encountered a non-decimal character.
    // Let's make sure it's a valid delimiter character.
    // Raise the ex.ConversionError exception if it's invalid.
    
    if( al not in Delimiters ) then
    
        raise( ex.ConversionError );
        
    endif;
    
    // Okay, this conversion has been a success. Let's store
    // away the converted value into the output parameter.
    
    mov( inValue, ebx );
    mov( LocalValue[0], eax );
    mov( eax, [ebx] );
    
    mov( LocalValue[4], eax );
    mov( eax, [ebx+4] );
    
    mov( LocalValue[8], eax );
    mov( eax, [ebx+8] );
    
    mov( LocalValue[12], eax );
    mov( eax, [ebx+12] );
    
    pop( edx );
    pop( ecx );
    pop( ebx );
    pop( eax );
    
end getu128;
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// Code to test the routines above:

static
    b1:u128;
        
begin Uin128;

    stdout.put( "Input a 128-bit decimal value: " );
    getu128( b1 );
    stdout.put
    ( 
        "The value is: $",
        b1[12], '_',
        b1[8],  '_',
        b1[4],  '_',
        b1[0],
        nl
    );
    
end Uin128;

Listing 8-6: Extended-precision unsigned decimal input

As for hexadecimal input, extending this decimal input to some number 
of bits beyond 128 is fairly easy. All you need do is modify the code that zeros 
out the LocalValue variable and the code that multiplies LocalValue by 10 (over-
flow checking is done in this same code, so there are only two spots in this 
code that require modification).

8.1.14.8 Extended-Precision Signed Decimal Input

Once you have an unsigned decimal input routine, writing a signed decimal 
input routine is easy. The following algorithm describes how to accomplish 
this:

1. Consume any delimiter characters at the beginning of the input stream.

2. If the next input character is a minus sign, consume this character and 
set a flag noting that the number is negative.

3. Call the unsigned decimal input routine to convert the rest of the string 
to an integer.

4. Check the return result to make sure its H.O. bit is clear. Raise the 
ex.ValueOutOfRange exception if the H.O. bit of the result is set.

5. If the code encountered a minus sign in step 2, negate the result.

The actual code is left as a programming exercise for the reader (or see 
the conversion routines in the HLA Standard Library for concrete examples).
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8.2 Operating on Different-Size Operands

Occasionally you may need to do some computation on a pair of operands 
that are not the same size. For example, you may need to add a word and a 
double word together or subtract a byte value from a word value. The solution 
is simple: just extend the smaller operand to the size of the larger operand 
and then do the operation on two similarly sized operands. For signed operands, 
you would sign extend the smaller operand to the same size as the larger 
operand; for unsigned values, you zero extend the smaller operand. This 
works for any operation, although the following examples demonstrate this 
for the addition operation.

To extend the smaller operand to the size of the larger operand, use a 
sign extension or zero extension operation (depending upon whether you’re 
adding signed or unsigned values). Once you’ve extended the smaller value 
to the size of the larger, the addition can proceed. Consider the following 
code that adds a byte value to a word value:

static
    var1: byte;
    var2: word;
         .
         .
         .
// Unsigned addition:

    movzx( var1, ax );
    add( var2, ax );

// Signed addition:

movsx( var1, ax );
add( var2, ax );

In both cases, the byte variable was loaded into the AL register, extended 
to 16 bits, and then added to the word operand. This code works out really 
well if you can choose the order of the operations (for example, adding the 
8-bit value to the 16-bit value). Sometimes, you cannot specify the order of 
the operations. Perhaps the 16-bit value is already in the AX register and you 
want to add an 8-bit value to it. For unsigned addition, you could use the fol-
lowing code:

mov( var2, ax ); // Load 16-bit value into ax.
. // Do some other operations leaving
. // a 16-bit quantity in ax.
add( var1, al ); // Add in the 8-bit value.
adc( 0, ah );       // Add carry into the H.O. word.
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The first add instruction in this example adds the byte at var1 to the L.O. 
byte of the value in the accumulator. The adc instruction above adds the carry 
from the addition of the L.O. bytes into the H.O. byte of the accumulator. 
You must take care to ensure that this adc instruction is present. If you leave it 
out, you may not get the correct result.

Adding an 8-bit signed operand to a 16-bit signed value is a little more dif-
ficult. Unfortunately, you cannot add an immediate value (as above) to the 
H.O. word of AX. This is because the H.O. extension byte can be either $00 
or $FF. If a register is available, the best thing to do is the following:

    mov( ax, bx ); // bx is the available register.
    movsx( var1, ax );
    add( bx, ax );

If an extra register is not available, you might try the following code:

push( ax );          // Save word value.
movsx( var1, ax );   // Sign extend 8-bit operand to 16 bits.
add( [esp], ax );    // Add in previous word value.
add( 2, esp );       // Pop junk from stack.

Another alternative is to store the 16-bit value in the accumulator into a 
memory location and then proceed as before:

    mov( ax, temp );
    movsx( var1, ax );
    add( temp, ax );

All the examples above added a byte value to a word value. By zero or sign 
extending the smaller operand to the size of the larger operand, you can easily 
add any two different-size variables together. 

As a last example, consider adding an 8-bit signed value to a quadword 
(64-bit) value:

static
    QVal:qword;
    BVal:int8;
     .
     .
     .
    movsx( BVal, eax );
    cdq();
    add( (type dword QVal), eax );
    adc( (type dword QVal[4]), edx );
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8.3 Decimal Arithmetic

The 80x86 CPUs use the binary numbering system for their native internal 
representation. The binary numbering system is, by far, the most common 
numbering system in use in computer systems today. In the early days, however, 
there were computer systems that were based on the decimal (base 10) num-
bering system instead of the binary numbering system. Consequently, their 
arithmetic system was decimal based rather than binary. Such computer systems 
were very popular in systems targeted for business/commercial systems.5 
Although systems designers have discovered that binary arithmetic is almost 
always better than decimal arithmetic for general calculations, the myth still 
persists that decimal arithmetic is better for money calculations than binary 
arithmetic. Therefore, many software systems still specify the use of decimal 
arithmetic in their calculations (not to mention that there is lots of legacy 
code out there whose algorithms are stable only if they use decimal arithmetic). 
Therefore, despite the fact that decimal arithmetic is generally inferior to 
binary arithmetic, the need for decimal arithmetic persists.

Of course, the 80x86 is not a decimal computer; therefore, we have to 
play tricks in order to represent decimal numbers using the native binary for-
mat. The most common technique, even employed by most so-called decimal 
computers, is to use the binary-coded decimal, or BCD, representation. The 
BCD representation uses 4 bits to represent the 10 possible decimal digits (see 
Table 8-1). The binary value of those 4 bits is equal to the corresponding decimal 
value in the range 0..9. Of course, with 4 bits we can actually represent 16 dif-
ferent values; the BCD format ignores the remaining six bit combinations.

Because each BCD digit requires 4 bits, we can represent a 2-digit BCD 
value with a single byte. This means that we can represent the decimal values 
in the range 0..99 using a single byte (versus 0..255 if we treat the value as an 
unsigned binary number). Clearly it takes more memory to represent the 
same value in BCD than it does to represent the same value in binary. For 
example, with a 32-bit value you can represent BCD values in the range 
0..99,999,999 (eight significant digits). However, you can represent values in 
the range 0..4,294,967,295 (more than nine significant digits) by using binary 
representation.

Not only does the BCD format waste memory on a binary computer 
(because it uses more bits to represent a given integer value), decimal arith-
metic is also slower. For these reasons, you should avoid the use of decimal 
arithmetic unless it is absolutely mandated for a given application.

Binary-coded decimal representation does offer one big advantage over 
binary representation: It is fairly simple to convert between the string repre-
sentation of a decimal number and the BCD representation. This feature is 
particularly beneficial when working with fractional values because fixed 
and floating-point binary representations cannot exactly represent many 

5 In fact, until the release of the IBM 360 in the mid-1960s, most scientific computer systems 
were binary based, whereas most commercial/business systems were decimal based. IBM pushed 
its system\360 as a single-purpose solution for both business and scientific applications. Indeed, 
the model designation (360) was derived from the 360 degrees on a compass so as to suggest 
that the system\360 was suitable for computations “at all points of the compass” (i.e., business 
and scientific).
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commonly used values between 0 and 1 (e.g., 1/10). Therefore, BCD oper-
ations can be efficient when reading from a BCD device, doing a simple 
arithmetic operation (for example, a single addition), and then writing the 
BCD value to some other device.

8.3.1 Literal BCD Constants

HLA does not provide, nor do you need, a special literal BCD constant. Because 
BCD is just a special form of hexadecimal notation that does not allow the 
values $A..$F, you can easily create BCD constants using HLA’s hexadecimal 
notation. Of course, you must take care not to include the symbols A..F in a 
BCD constant because they are illegal BCD values. As an example, consider 
the following mov instruction that copies the BCD value 99 into the AL register:

    mov( $99, al );

The important thing to keep in mind is that you must not use HLA literal 
decimal constants for BCD values. That is, mov( 95, al ); does not load the 
BCD representation for 95 into the AL register. Instead, it loads $5F into AL, 
and that’s an illegal BCD value. Any computations you attempt with illegal 
BCD values will produce garbage results. Always remember that, even though 
it seems counterintuitive, you use hexadecimal literal constants to represent 
literal BCD values.

Table 8-1: Binary-Coded Decimal (BCD) Representation

BCD Representation Decimal Equivalent

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 Illegal

1011 Illegal

1100 Illegal

1101 Illegal

1110 Illegal

1111 Illegal
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8.3.2 The 80x86 daa and das Instructions

The integer unit on the 80x86 does not directly support BCD arithmetic. 
Instead, the 80x86 requires that you perform the computation using binary 
arithmetic and use some auxiliary instructions to convert the binary result to 
BCD. To support packed BCD addition and subtraction with two digits per 
byte, the 80x86 provides two instructions: decimal adjust after addition (daa) 
and decimal adjust after subtraction (das). You would execute these two instruc-
tions immediately after an add/adc or sub/sbb instruction to correct the binary 
result in the AL register.

To add a pair of two-digit (i.e., single-byte) BCD values together, you would 
use the following sequence:

    mov( bcd_1, al );    // Assume that bcd_1 and bcd_2 both contain
    add( bcd_2, al );    // valid BCD values.
    daa();

The first two instructions above add the 2-byte values together using 
standard binary arithmetic. This may not produce a correct BCD result. For 
example, if bcd_1 contains $9 and bcd_2 contains $1, then the first two instruc-
tions above will produce the binary sum $A instead of the correct BCD result 
$10. The daa instruction corrects this invalid result. It checks to see if there 
was a carry out of the low-order BCD digit and adjusts the value (by adding 6 
to it) if there was an overflow. After adjusting for overflow out of the L.O. digit, 
the daa instruction repeats this process for the H.O. digit. daa sets the carry 
flag if there was a (decimal) carry out of the H.O. digit of the operation.

The daa instruction operates only on the AL register. It will not adjust 
(properly) for a decimal addition if you attempt to add a value to AX, EAX, or 
any other register. Specifically note that daa limits you to adding two decimal 
digits (a single byte) at a time. This means that for the purposes of computing 
decimal sums, you have to treat the 80x86 as though it were an 8-bit processor, 
capable of adding only 8 bits at a time. If you wish to add more than two digits 
together, you must treat this as a multiprecision operation. For example, to 
add four decimal digits together (using daa), you must execute a sequence 
like the following:

// Assume "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

    mov( bcd_1[0], al );
    add( bcd_2[0], al );
    daa();
    mov( al, bcd_3[0] );
    mov( bcd_1[1], al );
    adc( bcd_2[1], al );
    daa();
    mov( al, bcd_3[1], al );

// Carry is set at this point if there was unsigned overflow.
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Because a binary addition of two words (producing a word result) requires 
only three instructions, you can see that decimal arithmetic is expensive.6

The das (decimal adjust after subtraction) instruction adjusts the decimal 
result after a binary sub or sbb instruction. You use it the same way you use the 
daa instruction. Here are some examples:

// Two-digit (1-byte) decimal subtraction:

    mov( bcd_1, al );    // Assume that bcd_1 and bcd_2 both contain
    sub( bcd_2, al );    // valid BCD values.
    das();

// Four-digit (2-byte) decimal subtraction.
// Assume "bcd_1:byte[2];", "bcd_2:byte[2];", and "bcd_3:byte[2];"

    mov( bcd_1[0], al );
    sub( bcd_2[0], al );
    das();
    mov( al, bcd_3[0] );
    mov( bcd_1[1], al );
    sbb( bcd_2[1], al );
    das();
    mov( al, bcd_3[1], al );

// Carry is set at this point if there was unsigned overflow.

Unfortunately, the 80x86 provides support only for addition and sub-
traction of packed BCD values using the daa and das instructions. It does not 
support multiplication, division, or any other arithmetic operations. Because 
decimal arithmetic using these instructions is so limited, you’ll rarely see any 
programs use these instructions.

8.3.3 The 80x86 aaa, aas, aam, and aad Instructions

In addition to the packed decimal instructions (daa and das), the 80x86 CPUs 
support four unpacked decimal adjustment instructions. Unpacked decimal 
numbers store only one digit per 8-bit byte. As you can imagine, this data rep-
resentation scheme wastes a considerable amount of memory. However, the 
unpacked decimal adjustment instructions support the multiplication and 
division operations, so they are marginally more useful.

The instruction mnemonics aaa, aas, aam, and aad stand for “ASCII adjust 
for Addition, Subtraction, Multiplication, and Division” (respectively). Despite 
their names, these instructions do not process ASCII characters. Instead, they 
support an unpacked decimal value in AL whose L.O. 4 bits contain the decimal 
digit and the H.O. 4 bits contain 0. Note, though, that you can easily convert an 
ASCII decimal digit character to an unpacked decimal number by simply anding 
AL with the value $0F.

6 You’ll also soon see that it’s rare to find decimal arithmetic done this way. So it hardly matters.
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The aaa instruction adjusts the result of a binary addition of two unpacked 
decimal numbers. If the addition of those two values exceeds 10, then aaa will sub-
tract 10 from AL and increment AH by 1 (as well as set the carry flag). aaa assumes 
that the two values you add together are legal unpacked decimal values. Other 
than the fact that aaa works with only one decimal digit at a time (rather than 
two), you use it the same way you use the daa instruction. Of course, if you need to 
add together a string of decimal digits, using unpacked decimal arithmetic will 
require twice as many operations and, therefore, twice the execution time.

You use the aas instruction the same way you use the das instruction except, 
of course, it operates on unpacked decimal values rather than packed decimal 
values. As for aaa, aas will require twice the number of operations to add the same 
number of decimal digits as the das instruction. If you’re wondering why anyone 
would want to use the aaa or aas instruction, keep in mind that the unpacked for-
mat supports multiplication and division, while the packed format does not. 
Since packing and unpacking the data is usually more expensive than working on 
the data a digit at a time, the aaa and aas instructions are more efficient if you 
have to work with unpacked data (because of the need for multiplication and 
division).

The aam instruction modifies the result in the AX register to produce a 
correct unpacked decimal result after multiplying two unpacked decimal dig-
its using the mul instruction. Because the largest product you may obtain is 
81 (9 * 9 produces the largest possible product of two single-digit values), the 
result will fit in the AL register. aam unpacks the binary result by dividing it by 
10, leaving the quotient (H.O. digit) in AH and the remainder (L.O. digit) in 
AL. Note that aam leaves the quotient and remainder in different registers than 
a standard 8-bit div operation.

Technically, you do not have to use the aam instruction for BCD multipli-
cation operations. aam simply divides AL by 10 and leaves the quotient and 
remainder in AH and AL (respectively). If you have need of this particular 
operation, you may use the aam instruction for this purpose (indeed, that’s 
about the only use for aam in most programs these days).

If you need to multiply more than two unpacked decimal digits together 
using mul and aam, you will need to devise a multiprecision multiplication that 
uses the manual algorithm from earlier in this chapter. Since that is a lot of 
work, this section will not present that algorithm. If you need a multiprecision 
decimal multiplication, see Section 8.3.4; it presents a better solution.

The aad instruction, as you might expect, adjusts a value for unpacked 
decimal division. The unusual thing about this instruction is that you must 
execute it before a div operation. It assumes that AL contains the least-
significant digit of a two-digit value and AH contains the most-significant 
digit of a two-digit unpacked decimal value. It converts these two numbers to 
binary so that a standard div instruction will produce the correct unpacked 
decimal result. Like aam, this instruction is nearly useless for its intended pur-
pose because extended-precision operations (for example, division of more 
than one or two digits) are extremely inefficient. However, this instruction 
is actually quite useful in its own right. It computes AX = AH * 10 + AL 
(assuming that AH and AL contain single-digit decimal values). You can use 
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this instruction to convert a two-character string containing the ASCII repre-
sentation of a value in the range 0..99 to a binary value. For example:

    mov( '9', al );
    mov( '9', ah );    // "99" is in ah:al.
    and( $0F0F, ax );  // Convert from ASCII to unpacked decimal.
    aad();             // After this, ax contains 99.

The decimal and ASCII adjust instructions provide an extremely poor 
implementation of decimal arithmetic. To better support decimal arithmetic 
on 80x86 systems, Intel incorporated decimal operations into the FPU. The 
next section discusses how to use the FPU for this purpose. However, even 
with FPU support, decimal arithmetic is inefficient and less precise than binary 
arithmetic. Therefore, you should consider carefully if you really need to use 
decimal arithmetic before incorporating it into your programs.

8.3.4 Packed Decimal Arithmetic Using the FPU

To improve the performance of applications that rely on decimal arithmetic, 
Intel incorporated support for decimal arithmetic directly into the FPU. Unlike 
the packed and unpacked decimal formats of the previous sections, the FPU 
easily supports values with up to 18 decimal digits of precision, all at FPU 
speeds. Furthermore, all the arithmetic capabilities of the FPU (for example, 
transcendental operations) are available in addition to addition, subtraction, 
multiplication, and division. Assuming you can live with only 18 digits of pre-
cision and a few other restrictions, decimal arithmetic on the FPU is the right 
way to go if you must use decimal arithmetic in your programs.

The first fact you must note when using the FPU is that it doesn’t really 
support decimal arithmetic. Instead, the FPU provides two instructions, fbld 
and fbstp, that convert between packed decimal and binary floating-point 
formats when moving data to and from the FPU. The fbld (float/BCD load) 
instruction loads an 80-bit packed BCD value unto the top of the FPU stack 
after converting that BCD value to the IEEE binary floating-point format. 
Likewise, the fbstp (float/BCD store and pop) instruction pops the floating-
point value off the top of stack, converts it to a packed BCD value, and stores 
the BCD value into the destination memory location.

Once you load a packed BCD value into the FPU, it is no longer BCD. It’s 
just a floating-point value. This presents the first restriction on the use of the 
FPU as a decimal integer processor: Calculations are done using binary arith-
metic. If you have an algorithm that absolutely positively depends on the use 
of decimal arithmetic, it may fail if you use the FPU to implement it.7

7 An example of such an algorithm might be a multiplication by 10 by shifting the number one 
digit to the left. However, such operations are not possible within the FPU itself, so algorithms 
that misbehave inside the FPU are actually quite rare.
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The second limitation is that the FPU supports only one BCD data type: a 
10-byte 18-digit packed decimal value. It will not support smaller values, nor 
will it support larger values. Since 18 digits are usually sufficient and memory 
is cheap, this isn’t a big restriction.

A third consideration is that the conversion between packed BCD and the 
floating-point format is not a cheap operation. The fbld and fbstp instructions 
can be quite slow (more than two orders of magnitude slower than fld and 
fstp, for example). Therefore, these instructions can be costly if you’re doing 
simple additions or subtractions; the cost of conversion far outweighs the 
time spent adding the values a byte at a time using the daa and das instructions 
(multiplication and division, however, are going to be faster on the FPU).

You may be wondering why the FPU’s packed decimal format supports 
only 18 digits. After all, with 10 bytes it should be possible to represent 20 BCD 
digits. As it turns out, the FPU’s packed decimal format uses the first 9 bytes to 
hold the packed BCD value in a standard packed decimal format (the first byte 
contains the two L.O. digits and the ninth byte holds the two H.O. digits). The 
H.O. bit of the tenth byte holds the sign bit, and the FPU ignores the remain-
ing bits in the tenth byte. If you’re wondering why Intel didn’t squeeze in one 
more digit (that is, use the L.O. 4 bits of the tenth byte to allow for 19 digits 
of precision), just keep in mind that doing so would create some possible 
BCD values that the FPU could not exactly represent in the native floating-
point format. Hence, you have the limitation of 18 digits.

The FPU uses a one’s complement notation for negative BCD values. 
That is, the sign bit contains a 1 if the number is negative or 0 and it contains 
a 0 if the number is positive or 0 (like the binary one’s complement format, 
there are two distinct representations for 0). 

HLA’s tbyte type is the standard data type you would use to define packed 
BCD variables. The fbld and fbstp instructions require a tbyte operand (which 
you can initialize with a hexadecimal/BCD value). 

Because the FPU converts packed decimal values to the internal floating-
point format, you can mix packed decimal, floating point, and (binary) integer 
formats in the same calculation. The program in Listing 8-7 demonstrates 
how you might achieve this.

program MixedArithmetic;
#include( "stdlib.hhf" )

static
    tb: tbyte := $654321;

begin MixedArithmetic;

    fbld( tb );
    fmul( 2.0 );
    fiadd( 1 );
    fbstp( tb );
    stdout.put( "bcd value is " );
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    stdout.puth80( tb );
    stdout.newln();
            
end MixedArithmetic;

Listing 8-7: Mixed-mode FPU arithmetic

The FPU treats packed decimal values as integer values. Therefore, if 
your calculations produce fractional results, the fbstp instruction will round 
the result according to the current FPU rounding mode. If you need to work 
with fractional values, you need to stick with floating-point results.

8.4 Tables

The term table has different meanings to different programmers. To most 
assembly language programmers, a table is nothing more than an array that is 
initialized with some data. The assembly language programmer often uses 
tables to compute complex or otherwise slow functions. Many very-high-level 
languages (for example, SNOBOL4 and Icon) directly support a table data 
type. Tables in these languages are essentially associative arrays whose elements 
you can access with a noninteger index (for example, floating point, string, 
or any other data type). HLA provides a table module that lets you index an 
array using a string. However, in this chapter we will adopt the assembly lan-
guage programmer’s view of tables. 

A table is an array containing initialized values that do not change during 
the execution of the program. In assembly language, you can use tables for a 
variety of purposes: computing functions, controlling program flow, or simply 
looking things up. In general, tables provide a fast mechanism for performing 
some operation at the expense of some space in your program (the extra 
space holds the tabular data). In the following sections we’ll explore some of 
the many possible uses of tables in an assembly language program.

Note that because tables typically contain initialized data that does not 
change during program execution, the readonly section is a good place to put 
your table objects.

8.4.1 Function Computation via Table Lookup

Tables can do all kinds of things in assembly language. In high-level languages 
like Pascal, it’s easy to create a formula that computes some value. A simple-
looking high-level-language arithmetic expression can be equivalent to a con-
siderable amount of 80x86 assembly language code and, therefore, could be 
expensive to compute. Assembly language programmers often precompute 
many values and use a table lookup of those values to speed up their programs. 
This has the advantage of being easier, and it’s often more efficient as well. 
Consider the following Pascal statement:

if (character >= 'a') and (character <= 'z') then character := 
chr(ord(character) - 32);
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This Pascal if statement converts the character variable’s value from lower-
case to uppercase if character is in the range a..z. The HLA code that does the 
same thing follows:

        mov( character, al );
        if( al in 'a'..'z' ) then

            and( $5f, al );        // Same as sub( 32, al ) in this code.

        endif;
        mov( al, character );

Note that HLA’s high-level if statement translates into four machine 
instructions in this particular example. Hence, this code requires a total of 
seven machine instructions.

Had you buried this code in a nested loop, you’d be hard pressed to reduce 
the size of this code without using a table lookup. Using a table lookup, how-
ever, allows you to reduce this sequence of instructions to just four instructions:

    mov( character, al );
    lea( ebx, CnvrtLower );
    xlat
    mov( al, character );

You’re probably wondering how this code works and asking, “What is this 
new instruction, xlat?” The xlat, or translate, instruction does the following:

mov( [ebx+al*1], al );

That is, it uses the current value of the AL register as an index into the 
array whose base address is found in EBX. It fetches the byte at that index in 
the array and copies that byte into the AL register. Intel calls this instruction 
translate because programmers typically use it to translate characters from one 
form to another using a lookup table. That’s exactly how we are using it here.

In the previous example, CnvrtLower is a 256-byte table that contains the 
values 0..$60 at indices 0..$60, $41..$5A at indices $61..$7A, and $7B..$FF at 
indices $7Bh..0FF. Therefore, if AL contains a value in the range $0..$60, the 
xlat instruction returns the value $0..$60, effectively leaving AL unchanged. 
However, if AL contains a value in the range $61..$7A (the ASCII codes for 
a..z), then the xlat instruction replaces the value in AL with a value in the 
range $41..$5A. The values $41..$5A just happen to be the ASCII codes for 
A..Z. Therefore, if AL originally contains a lowercase character ($61..$7A), 
the xlat instruction replaces the value in AL with a corresponding value in 
the range $61..$7A, effectively converting the original lowercase character 
($61..$7A) to an uppercase character ($41..$5A). The remaining entries in 
the table, like entries $0..$60, simply contain the index into the table of their 
particular element. Therefore, if AL originally contains a value in the range 
$7A..$FF, the xlat instruction will return the corresponding table entry that 
also contains $7A..$FF.
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As the complexity of the function increases, the performance benefits of 
the table lookup method increase dramatically. While you would almost never 
use a lookup table to convert lowercase to uppercase, consider what happens 
if you want to swap cases, for example, via computation:

        mov( character, al );
        if( al in 'a'..'z' ) then

            and( $5f, al );

        elseif( al in 'A'..'Z' ) then

            or( $20, al );

        endif;
        mov( al, character ):

The if and elseif statements generate 4 and 5 actual machine instructions, 
respectively, so this code is equivalent to 13 actual machine instructions.

The table lookup code to compute this same function is:

        mov( character, al );
        lea( ebx, SwapUL );
        xlat();
        mov( al, character );

As you can see, when using a table lookup to compute a function, only the 
table changes; the code remains the same. 

Table lookups suffer from one major problem—functions computed via 
table lookup have a limited domain. The domain of a function is the set of 
possible input values (parameters) it will accept. For example, the upper-
case/lowercase conversion functions above have the 256-character ASCII 
character set as their domain. 

A function such as SIN or COS accepts the set of real numbers as possible 
input values. Clearly the domain for SIN and COS is much larger than for the 
upper/lowercase conversion function. If you are going to do computations 
via table lookup, you must limit the domain of a function to a small set. This 
is because each element in the domain of a function requires an entry in 
the lookup table. You won’t find it very practical to implement a function via 
table lookup whose domain is the set of real numbers.

Most lookup tables are quite small, usually 10 to 256 entries. Rarely do 
lookup tables grow beyond 1,000 entries. Most programmers don’t have the 
patience to create (and verify the correctness) of a 1,000-entry table. 

Another limitation of functions based on lookup tables is that the elements 
in the domain of the function must be fairly contiguous. Table lookups take 
the input value for a function, use this input value as an index into the table, 
and return the value at that entry in the table. If you do not pass a function 
any values other than 0, 100, 1,000, and 10,000, it would seem an ideal candi-
date for implementation via table lookup; its domain consists of only four 
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items. However, the table would actually require 10,001 different elements 
due to the range of the input values. Therefore, you cannot efficiently create 
such a function via a table lookup. Throughout this section on tables, we’ll 
assume that the domain of the function is a fairly contiguous set of values. 

The best functions you can implement via table lookups are those whose 
domain and range are always 0..255 (or some subset of this range). You can 
efficiently implement such functions on the 80x86 via the xlat instruction. 
The uppercase/lowercase conversion routines presented earlier are good 
examples of such a function. Any function in this class (those whose domain 
and range take on the values 0..255) can be computed using the same two 
instructions: lea( table, ebx ); and xlat();. The only thing that ever changes 
is the lookup table. 

You cannot (conveniently) use the xlat instruction to compute a function 
value once the range or domain of the function takes on values outside 0..255. 
There are three situations to consider: 

The domain is outside 0..255 but the range is within 0..255.

The domain is inside 0..255 but the range is outside 0..255. 

Both the domain and range of the function take on values outside 0..255. 

We will consider each of these cases separately. 
If the domain of a function is outside 0..255, but the range of the function 

falls within this set of values, our lookup table will require more than 256 entries, 
but we can represent each entry with a single byte. Therefore, the lookup 
table can be an array of bytes. Other than those lookups that can use the xlat 
instruction, functions falling into this class are the most efficient. The follow-
ing Pascal function invocation

    B := Func(X); 

where Func is

    function Func(X:dword):byte; 

is easily converted to the following HLA code:

        mov( X, ebx );
        mov( FuncTable[ ebx ], al );
        mov( al, B );

This code loads the function parameter into ebx, uses this value (in the 
range 0..??) as an index into the FuncTable table, fetches the byte at that location, 
and stores the result into B. Obviously, the table must contain a valid entry for 
each possible value of X. For example, suppose you wanted to map a cursor 
position on the video screen in the range 0..1,999 (there are 2,000 character 
positions on an 80×25 video display) to its X or Y coordinate on the screen. You 
could easily compute the X coordinate via the function

X := Posn mod 80 
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and the Y coordinate with the formula 

Y := Posn div 80 

(where Posn is the cursor position on the screen). This can be easily computed 
using the 80x86 code:

        mov( Posn, ax );
        div( 80, ax );

// X is now in ah, Y is now in al 

However, the div instruction on the 80x86 is very slow. If you need to do 
this computation for every character you write to the screen, you will seriously 
degrade the speed of your video display code. The following code, which real-
izes these two functions via table lookup, may improve the performance of 
your code considerably:

        movzx( Posn, ebx );            // Use a plain mov instr if Posn is 
        mov( YCoord[ebx], al );        // uns32 rather than an uns16 value.
        mov( XCoord[ebx], ah );

If the domain of a function is within 0..255 but the range is outside this 
set, the lookup table will contain 256 or fewer entries, but each entry will 
require 2 or more bytes. If both the range and domains of the function are 
outside 0..255, each entry will require 2 or more bytes and the table will con-
tain more than 256 entries. 

Recall from the chapter on arrays that the formula for indexing into a single-
dimensional array (of which a table is a special case) is:

        Address := Base + index * size

If elements in the range of the function require 2 bytes, then you must 
multiply the index by 2 before indexing into the table. Likewise, if each entry 
requires 3, 4, or more bytes, the index must be multiplied by the size of each 
table entry before being used as an index into the table. For example, suppose 
you have a function, F(x), defined by the following (pseudo) Pascal declaration:

function F(x:dword):word;

You can easily create this function using the following 80x86 code (and, 
of course, the appropriate table named F):

        mov( X, ebx );
        mov( F[ebx*2], ax );
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Any function whose domain is small and mostly contiguous is a good 
candidate for computation via table lookup. In some cases, noncontiguous 
domains are acceptable as well, as long as the domain can be coerced into an 
appropriate set of values. Such operations are called conditioning and are the 
subject of the next section.

8.4.2 Domain Conditioning

Domain conditioning is taking a set of values in the domain of a function and 
massaging them so that they are more acceptable as inputs to that function. 
Consider the following function:

This says that the (computer) function sin(x) is equivalent to the (math-
ematical) function sin x where

As we all know, sine is a circular function, which will accept any real val-
ued input. The formula used to compute sine, however, accepts only a small 
set of these values. 

This range limitation doesn’t present any real problems; by simply comput-
ing sin(X mod (2*pi)) we can compute the sine of any input value. Modifying 
an input value so that we can easily compute a function is called conditioning 
the input. In the example above we computed X mod 2*pi and used the result as 
the input to the sin function. This truncates X to the domain sin needs with-
out affecting the result. We can apply input conditioning to table lookups as 
well. In fact, scaling the index to handle word entries is a form of input con-
ditioning. Consider the following Pascal function:

function val(x:word):word; begin
    case x of
        0: val := 1;
        1: val := 1; 
        2: val := 4; 
        3: val := 27; 
        4: val := 256; 
        otherwise val := 0;
    end;
end; 

This function computes some value for x in the range 0..4 and it returns 0 
if x is outside this range. Since x can take on 65,536 different values (being a 
16-bit word), creating a table containing 65,536 words where only the first five 
entries are nonzero seems to be quite wasteful. However, we can still compute 

xsin x x 2π– 2π[ , ]∈( )sin=

2π…x…2π–
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this function using a table lookup if we use input conditioning. The following 
assembly language code presents this principle:

        mov( 0, ax );            // ax = 0, assume x > 4.
        movzx( x, ebx );         // Note that H.O. bits of ebx must be 0!
        if( bx <= 4 ) then

            mov( val[ ebx*2 ], ax );

        endif;

This code checks to see if x is outside the range 0..4. If so, it manually sets 
AX to 0; otherwise it looks up the function value through the val table. With 
input conditioning, you can implement several functions that would other-
wise be impractical to do via table lookup.

8.4.3 Generating Tables

One big problem with using table lookups is creating the table in the first 
place. This is particularly true if there is a large number of entries in the table. 
Figuring out the data to place in the table, then laboriously entering the data, 
and, finally, checking that data to make sure it is valid is a very time-consum-
ing and boring process. For many tables, there is no way around this process. 
For other tables, there is a better way—using the computer to generate the 
table for you. An example is probably the best way to describe this. Consider 
the following modification to the sine function:

This states that x is an integer in the range 0..359 and r must be an integer. 
The computer can easily compute this with the following code:

        movzx( x, ebx );
        mov( Sines[ ebx*2], eax );  // Get sin(X) * 1000
        imul( r, eax );             // Note that this extends eax into edx.
        idiv( 1000, edx:eax );      // Compute (r*(sin(X)*1000)) / 1000

Note that integer multiplication and division are not associative. You can-
not remove the multiplication by 1,000 and the division by 1,000 because they 
appear to cancel one another out. Furthermore, this code must compute this 
function in exactly this order. All that we need to complete this function is a 
table containing 360 different values corresponding to the sine of the angle 
(in degrees) times 1,000. Entering such a table into an assembly language pro-
gram containing such values is extremely boring and you’d probably make 
several mistakes entering and verifying this data. However, you can have the 
program generate this table for you. Consider the HLA program in Listing 8-8.

x( )sin r× r 1000(× x )sin×( )
1000

--------------------------- x 0 359,∈[ ]〈 〉=
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program GenerateSines;
#include( "stdlib.hhf" );

var
    outFile: dword;
    angle:   int32;
    r:       int32;
    
readonly
    RoundMode: uns16 := $23f;

    
        
begin GenerateSines; 

    // Open the file:
    
    mov( fileio.openNew( "sines.hla" ), outFile );
    
    // Emit the initial part of the declaration to the output file:
    
    fileio.put
    ( 
        outFile, 
        stdio.tab, 
        "sines: int32[360] := " nl,
        stdio.tab, stdio.tab, stdio.tab, "[" nl );
    
    // Enable rounding control (round to the nearest integer).
    
    fldcw( RoundMode );
    
    // Emit the sines table:
    
    for( mov( 0, angle); angle < 359; inc( angle )) do
    
        // Convert angle in degrees to an angle in radians using
        // radians := angle * 2.0 * pi / 360.0;
        
        fild( angle );
        fld( 2.0 );
        fmulp();
        fldpi();
        fmulp();
        fld( 360.0 );
        fdivp();
        
        // Okay, compute the sine of st0.
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        fsin();
        
        // Multiply by 1000 and store the rounded result into 
        // the integer variable r.
        
        fld( 1000.0 );
        fmulp();
        fistp( r );
        
        // Write out the integers eight per line to the source file.
        // Note: If (angle AND %111) is 0, then angle is evenly
        // divisible by 8 and we should output a newline first.
        
        test( %111, angle );
        if( @z ) then
        
            fileio.put
            ( 
                outFile, 
                nl, 
                stdio.tab, 
                stdio.tab, 
                stdio.tab,
                stdio.tab,
                r:5,  
                ',' 
            );
            
        else
        
            fileio.put( outFile, r:5, ',' );
            
        endif;
        
    endfor;
    
    // Output sine(359) as a special case (no comma following it).
    // Note: This value was computed manually with a calculator.
    
    fileio.put
    ( 
        outFile, 
        "  -17",
        nl,
        stdio.tab, 
        stdio.tab, 
        stdio.tab,
        "];",
        nl
    );
    fileio.close( outFile );
        
end GenerateSines;

Listing 8-8: An HLA program that generates a table of sines
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The program above produces the following output (truncated for brevity):

        sines: int32[360] := 
            [

                    0,   17,   35,   52,   70,   87,  105,  122,
                  139,  156,  174,  191,  208,  225,  242,  259,
                  276,  292,  309,  326,  342,  358,  375,  391,
                  407,  423,  438,  454,  469,  485,  500,  515,
                  530,  545,  559,  574,  588,  602,  616,  629,
                  643,  656,  669,  682,  695,  707,  719,  731,
                                                               .
                                                               .
                                                               .
                 -643, -629, -616, -602, -588, -574, -559, -545,
                 -530, -515, -500, -485, -469, -454, -438, -423,
                 -407, -391, -375, -358, -342, -326, -309, -292,
                 -276, -259, -242, -225, -208, -191, -174, -156,
                 -139, -122, -105,  -87,  -70,  -52,  -35,  -17
            ];

Obviously it’s much easier to write the HLA program that generated this 
data than to enter (and verify) this data by hand. Of course, you don’t even 
have to write the table-generation program in HLA. If you prefer, you might 
find it easier to write the program in Pascal/Delphi, C/C++, or some other 
high-level language. Because the program will only execute once, the perfor-
mance of the table-generation program is not an issue. If it’s easier to write 
the table-generation program in a high-level language, by all means do so. 
Note also that HLA has a built-in interpreter that allows you to easily create 
tables without having to use an external program. For more details, see 
Chapter 9.

Once you run your table-generation program, all that remains to be done 
is to cut and paste the table from the file (sines.hla in this example) into the 
program that will actually use the table.

8.4.4 Table Lookup Performance

In the early days of PCs, table lookups were a preferred way to do high-
performance computations. However, as the speed of new CPUs vastly out-
paces the speed of memory, the advantages of lookup tables have been 
waning. Today, it is not uncommon for a CPU to be 10 to 100 times faster 
than main memory. As a result, using a table lookup may not be faster than 
doing the same calculation with machine instructions. So it’s worthwhile to 
briefly discuss when table lookups offer a big advantage.

Although the CPU is much faster than main memory, the on-chip CPU 
cache memory subsystems operate at near CPU speeds. Therefore, table look-
ups can be cost effective if your table resides in cache memory on the CPU. 
This means that the way to get good performance using table lookups is to use 
small tables (because there’s only so much room on the cache) and use tables 
whose entries you reference frequently (so the tables stay in the cache). See 
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Write Great Code, Volume 1 (No Starch Press) or the electronic version of The Art 
of Assembly Language at http://webster.cs.ucr.edu/ or http://www.artofasm.com/ for 
details concerning the operation of cache memory and how you can optimize 
your use of cache memory.

8.5 For More Information

The HLA Standard Library reference manual contains lots of information 
about the HLA Standard Library’s extended-precision arithmetic capabilities. 
You’ll also want to check out the source code for several of the HLA Standard 
Library routines to see how to do various extended-precision operations (that 
properly set the flags once the computation is complete). The HLA Standard 
Library source code also covers the extended-precision I/O operations that 
do not appear in this chapter.

Donald Knuth’s The Art of Computer Programming, Volume Two: Seminumerical 
Algorithms contains a lot of useful information about decimal arithmetic and 
extended-precision arithmetic, though that text is generic and doesn’t describe 
how to do this in x86 assembly language.
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9
M A C R O S  A N D  T H E  H L A  

C O M P I L E - T I M E  L A N G U A G E

This chapter discusses the HLA compile-
time language. This discussion includes 

what is perhaps the most important compo-
nent of the HLA compile-time language, macros. 

Many people judge the power of an assembler by the 
power of its macro processing capabilities. If you happen to be one of these 
people, you’ll probably agree that HLA is one of the more powerful assem-
blers on the planet after reading this chapter, because HLA has one of the 
most powerful macro processing facilities of any computer language process-
ing system.

9.1 Introduction to the Compile-Time Language (CTL)

HLA is actually two languages rolled into a single program. The runtime 
language is the standard 80x86/HLA assembly language you’ve been reading 
about in all the previous chapters. This is called the runtime language because 
the programs you write execute when you run the executable file. HLA con-
tains an interpreter for a second language, the HLA compile-time language 
(CTL), which executes programs while HLA is compiling a program. 
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The source code for the CTL program is embedded in an HLA assembly lan-
guage source file; that is, HLA source files contain instructions for both the 
HLA CTL and the runtime program. HLA executes the CTL program during 
compilation. Once HLA completes compilation, the CTL program termi-
nates; the CTL application is not a part of the runtime executable that HLA 
emits, although the CTL application can write part of the runtime program 
for you, and, in fact, this is the major purpose of the CTL (see Figure 9-1).

Figure 9-1: Compile-time versus runtime execution

It may seem confusing to have two separate languages built into the same 
compiler. Perhaps you’re even questioning why anyone would need a compile-
time language. To understand the benefits of a compile-time language, consider 
the following statement that you should be very comfortable with at this point:

stdout.put("i32=",i32," strVar=",strVar," charVar=",charVar,nl); 

This statement is neither a statement in the HLA language nor a call to 
some HLA Standard Library procedure. Instead, stdout.put is actually a state-
ment in a CTL application provided by the HLA Standard Library. The 
stdout.put “application” processes the parameter list and generates calls to 
various other Standard Library procedures; it chooses the procedure to call 
based on the type of the parameter it is currently processing. For example, 
the stdout.put “application” above will emit the following statements to the 
runtime executable:

stdout.puts( "i32=" ); 
stdout.puti32( i32 ); 
stdout.puts( " strVar=" ); 
stdout.puts( strVar ); 
stdout.puts( " charVar=" ); 
stdout.putc( charVar ); 
stdout.newln(); 

Actions produced by the interpretation 
of the compile-time language during 
compilation

HLA Compiler & 
Compile-Time 
Interpreter

Actions produced by the executing object code 
produced by the compiler

Executable File
Compile time

Runtime
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Clearly the stdout.put statement is much easier to read and write than the 
sequence of statements that stdout.put emits in response to its parameter list. 
This is one of the more powerful capabilities of the HLA programming lan-
guage: the ability to modify the language to simplify common programming 
tasks. Printing different data objects in a sequential fashion is a common task; 
the stdout.put “application” greatly simplifies this process.

The HLA Standard Library is loaded with many HLA CTL examples. In 
addition to Standard Library usage, the HLA CTL is quite adept at handling 
“one-use” applications. A classic example is filling in the data for a lookup 
table. Chapter 8 noted that it is possible to construct lookup tables using the 
HLA CTL. Not only is this possible, but it is often far less work to use the HLA 
CTL to construct these tables.

Although the CTL itself is relatively inefficient and you would not normally 
use it to write end-user applications, it does maximize the use of your time. By 
learning how to use the HLA CTL and applying it properly, you can develop 
assembly language applications as rapidly as high-level language applications 
(even faster because HLA’s CTL lets you create very high-level-language 
constructs).

9.2 The #print and #error Statements

You may recall that Chapter 1 began with the typical first program most people 
write when learning a new language, the “Hello, world!” program. It is only 
fitting for this chapter to present that same program when discussing the 
second language of this book. Listing 9-1 provides the basic “Hello, world!” 
program written in the HLA compile-time language.

program ctlHelloWorld; 
begin ctlHelloWorld; 

    #print( "Hello, World of HLA/CTL" ) 

end ctlHelloWorld; 

Listing 9-1: The CTL “Hello, world!” program

The only CTL statement in this program is the #print statement. The 
remaining lines are needed just to keep the compiler happy (though we 
could have reduced the overhead to two lines by using a unit rather than a 
program declaration).

The #print statement displays the textual representation of its argument 
list during the compilation of an HLA program. Therefore, if you compile 
the program above with the command hla ctlHW.hla, the HLA compiler will 
immediately print the text:

Hello, World of HLA/CTL 
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Note that there is a big difference between the following two statements 
in an HLA source file:

#print( "Hello World" ) 
stdout.puts( "Hello World" nl ); 

The first statement prints Hello World (and a new line) during the compi-
lation process. This first statement does not have any effect on the executable 
program. The second line doesn’t affect the compilation process (other than 
the emission of code to the executable file). However, when you run the exe-
cutable file, the second statement prints the string Hello World followed by a 
newline sequence.

The HLA/CTL #print statement uses the following basic syntax:

#print( list_of_comma_separated_constants ) 

Note that a semicolon does not terminate this statement. Semicolons 
terminate runtime statements; they generally do not terminate compile-time 
statements (there is one big exception, as you will see a little later).

The #print statement must have at least one operand; if multiple operands 
appear in the parameter list, you must separate each operand with a comma 
( just like stdout.put). If a particular operand is not a string constant, HLA will 
translate that constant to its corresponding string representation and print 
that string. Here’s an example:

#print( "A string Constant ", 45, ' ', 54.9, ' ', true ) 

You may specify named symbolic constants and constant expressions. 
However, all #print operands must be constants (either literal constants or 
constants you define in the const or val sections), and those constants must be 
defined before you use them in the #print statement. For example:

const 
    pi := 3.14159; 
    charConst := 'c'; 

#print( "PI = ", pi, "  CharVal=", charConst ) 

The HLA #print statement is particularly invaluable for debugging CTL 
programs. This statement is also useful for displaying the progress of the com-
pilation and displaying assumptions and default actions that take place during 
compilation. Other than displaying the text associated with the #print parame-
ter list, the #print statement has no effect on the compilation of the program.

The #error statement allows a single-string constant operand. Like #print, 
this statement will display the string to the console during compilation. How-
ever, the #error statement treats the string as an error message and displays 
the string as part of an HLA error diagnostic. Further, the #error statement 
increments the error count, and this will cause HLA to stop the compilation 
(without assembling or linking) after processing the current source file. You 
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would normally use the #error statement to display an error message during 
compilation if your CTL code discovers something that prevents it from creat-
ing valid code. For example:

#error( "Statement must have exactly one operand" ) 

Like the #print statement, the #error statement does not end with a semi-
colon. Although #error allows only a single-string operand, it’s very easy to 
print other values by using the compile-time string concatenation operator 
and several of the HLA built-in compile-time functions. You’ll learn about 
these a little later in this chapter.

9.3 Compile-Time Constants and Variables

Just as the runtime language does, the compile-time language supports con-
stants and variables. You declare compile-time constants in the const section, 
just as you would with the runtime language. You declare compile-time vari-
ables in the val section. Objects you declare in the val section are constants to 
the runtime language, but remember that you can change the value of an 
object you declare in the val section throughout the source file. Hence the 
term “compile-time variable.” See Chapter 4 for more details.

The CTL assignment statement (?) computes the value of the constant 
expression to the right of the assignment operator (:=) and stores the result 
into the val object name appearing immediately to the left of the assignment 
operator.1 This example code may appear anywhere in your HLA source file, 
not just in the val section of the program.

     ?ConstToPrint := 25;
     #print( "ConstToPrint = ", ConstToPrint )
     ?ConstToPrint := ConstToPrint + 5;
     #print( "Now ConstToPrint = ", ConstToPrint )

9.4 Compile-Time Expressions and Operators

The HLA CTL supports constant expressions in the CTL assignment state-
ment. Unlike the runtime language (where you have to translate algebraic 
notation into a sequence of machine instructions), the HLA CTL allows a full 
set of arithmetic operations using familiar expression syntax. This gives the 
HLA CTL considerable power, especially when combined with the built-in 
compile-time functions the next section discusses.

Tables 9-1 and 9-2 list operators that the HLA CTL supports in compile-
time expressions. 

1 If the identifier to the left of the assignment operator is undefined, HLA will automatically 
declare this object at the current scope level.
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Table 9-1: Compile-Time Operators

Operator(s) Operand Types* Description 

- (unary) numeric Negates the specific numeric value (int, uns, 
real). 

cset Returns the complement of the specified 
character set. 

! (unary) integer Inverts all the bits in the operand (bitwise not). 

boolean Boolean not of the operand. 

* numericL * numericR Multiplies the two operands. 

csetL * csetR Computes the intersection of the two sets. 

div integerL divintegerR Computes the integer quotient of the two 
integer (int/uns/dword) operands. 

mod integerL modintegerR Computes the remainder of the division of the 
two integer (int/uns/dword) operands. 

/ numericL / numericR Computes the real quotient of the two numeric 
operands. Returns a real result even if both 
operands are integers. 

<< integerL << integerR Shifts integerL operand to the left the number 
of bits specified by the integerR operand. 

>> integerL >> integerR Shifts integerL operand to the right the number 
of bits specified by the integerR operand. 

+ numericL + numericR Adds the two numeric operands. 

csetL + csetR Computes the union of the two sets. 

strL + strR Concatenates the two strings. 

- numericL numericR Computes the difference between numericL 
and numericR. 

csetL - csetR Computes the set difference of csetL - csetR. 

= or == numericL = numericR Returns true if the two operands have the 
same value. 

csetL = csetR Returns true if the two sets are equal. 

strL = strR Returns true if the two strings/chars are equal. 

typeL = typeR Returns true if the two values are equal. They 
must be the same type. 

<> or != typeL <> typeR (sameas !=) Returns false if the two (compatible) operands 
are not equal to one another (numeric, cset, 
or string). 

< numericL < numericR Returns true if numericL is less than numericR. 

csetL < csetR Returns true if csetL is a proper subset of csetR. 

strL < strR Returns true if strL is less than strR. 

booleanL < booleanR Returns true if the left operand is less than the 
right operand (note: false < true). 

enumL < enumR Returns true if enumL appears in the same 
enumlist as enumR and enumL appears first. 
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<= Same as < Returns true if the left operand is less than or 
equal to the right operand. For character sets, 
this means that the left operand is a subset of 
the right operand. 

> Same as < Returns true if the left operand is greater than 
the right operand. For character sets, this 
means that the left operand is a proper 
superset of the right operand. 

>= Same as <= Returns true if the left operand is greater than 
or equal to the right operand. For character 
sets, this means that the left operand is a 
superset of the right operand. 

& integerL & integerR Computes the bitwise and of the two 
operands. 

booleanL & booleanR Computes the logical and of the two 
operands. 

| integerL | integerR Computes the bitwise or of the two operands. 

booleanL | booleanR Computes the logical or of the two operands. 

^ integerL ^ integerR Computes the bitwise xor of the two 
operands. 

booleanL ^ booleanR Computes the logical xor of the two 
operands. Note that this is equivalent to 
booleanL <> booleanR. 

in charL in csetR Returns true if charL is a member of csetR. 
* Type numeric is {intXX, unsXX, byte, word, dword, and realXX} values. Type cset is a character set op-
erand. Type integer is {intXX, unsXX, byte, word, dword}. Type str is any string or character value. Type 
indicates an arbitrary HLA type. Other types specify an explicit HLA data type.

Table 9-2: Operator Precedence and Associativity

Associativity 
Precedence 
(Highest to Lowest) Operator 

Right to left 6 ! (unary) 

- (unary) 

Left to right 5 * 

div 

mod 

/ 

>> 

<< 

Left to right 4 + 

-

Table 9-1: Compile-Time Operators (continued)

Operator(s) Operand Types* Description 

(continued)
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Of course, you can always override the default precedence and associativity 
of an operator by using parentheses in an expression.

9.5 Compile-Time Functions

HLA provides a wide range of compile-time functions you can use. These func-
tions compute values during compilation the same way a high-level-language 
function computes values at runtime. The HLA compile-time language 
includes a wide variety of numeric, string, and symbol table functions that 
help you write sophisticated compile-time programs.

Most of the names of the built-in compile-time functions begin with the 
special symbol @ and have names like @sin or @length. The use of these special 
identifiers prevents conflicts with common names you might want to use in 
your own programs (like length). The remaining compile-time functions 
(those that do not begin with @) are typically data conversion functions that 
use type names like int8 and real64. You can even create your own compile-
time functions using macros (which is discussed in Section 9.8).

HLA organizes the compile-time functions into various classes depending 
on the type of operation. For example, there are functions that convert con-
stants from one form to another (such as string-to-integer conversion), there 
are many useful string functions, and HLA provides a full set of compile-time 
numeric functions.

The complete list of HLA compile-time functions is too lengthy to 
present here. Instead, a complete description of each of the compile-time 
objects and functions appears in the HLA reference manual (found at http://
webster.cs.ucr.edu/ or http://www.artofasm.com/); this section highlights a few of 
the functions in order to demonstrate their use. Later sections in this chapter, 
as well as future chapters, make extensive use of the various compile-time 
functions.

Left to right 3 = or == 

<> or != 

< 

<= 

> 

>= 

Left to right 2 & 

| 

^ 

Nonassociative 1 in 

Table 9-2: Operator Precedence and Associativity (continued)

Associativity 
Precedence 
(Highest to Lowest) Operator 
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Perhaps the most important concept to understand about the compile-
time functions is that they are equivalent to constants in your assembly language 
code (i.e., the runtime program). For example, the compile-time function 
invocation @sin(3.1415265358979328) is roughly equivalent to specifying 0.0 at 
that point in your program.2 A function invocation like @sin( x ) is legal only 
if x is a constant with a previous declaration at the point of the function call in 
the source file. In particular, x cannot be a runtime variable or other object 
whose value exists at runtime rather than compile time. Because HLA replaces 
compile-time function calls with their constant result, you may ask why you 
should even bother with compile-time functions. After all, it’s probably more 
convenient to type 0.0 than it is to type @sin(3.1415265358979328) in your 
program. However, compile-time functions are handy for generating lookup 
tables and other mathematical results that may change whenever you change 
a const value in your program. Section 9.9 will explore this idea further.

9.5.1 Type-Conversion Compile-Time Functions 

Probably the most commonly used compile-time functions are the type-
conversion functions. These functions take a single parameter of one type 
and convert that information to some specified type. These functions use several 
of the HLA built-in data type names as the function names. Functions in this 
category are the following:

boolean 

int8, int16, int32, int64, and int128 

uns8, uns16, uns32, uns64, and uns128 

byte, word, dword, qword, and lword (these are effectively equivalent to uns8, 
uns16, uns32, uns64, and uns128, respectively) 

real32, real64, and real80 
char 

string 

cset 

text 

These functions accept a single constant expression parameter and, if at 
all reasonable, convert that expression’s value to the type specified by the 
type name. For example, the following function call returns the value −128 
because it converts the string constant to the corresponding integer value:

int8( "-128" ) 

Certain conversions don’t make sense or have restrictions associated with 
them. For example, the boolean function will accept a string parameter, but 
that string must be “true” or “false” or the function will generate a compile-time 
error. Likewise, the numeric conversion functions (e.g., int8) allow a string oper-

2 Actually, because @sin’s parameter in this example is not exactly pi, you will get a small positive 
number instead of zero as the function result, but in theory you should get zero. 
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and, but the string operand must represent a legal numeric value. Some 
conversions (for example, int8 with a character set parameter) simply don’t 
make sense and are always illegal.

One of the most useful functions in this category is the string function. 
This function accepts nearly all the constant expression types, and it generates 
a string that represents the parameter’s data. For example, the invocation 
string( 128 ) produces the string 128 as the return result. This function is 
handy when you have a value that you wish to use where HLA requires a string. 
For example, the #error compile-time statement allows only a single-string 
operand. You can use the string function and the string concatenation 
operator (+) to easily get around this limitation. For example:

#error( "theValue (" + string( theValue ) + ") is out of range" ) 

Note that these type functions actually perform a conversion. This means 
that the bit pattern these functions return may be considerably different than 
the bit pattern you pass as an argument. For example, consider the following 
invocation of the real32 function:

real32( $3F80_0000 ) 

Now it turns out that $3F80_0000 is the hexadecimal equivalent of the 
real32 value 1.0. However, the preceding function invocation does not return 
1.0; instead it attempts to convert the integer value $3F80_0000 (1,065,353,216) 
to a real32 value but fails because the value is too large to exactly represent 
using a real32 object. Contrast this with the following constant function:

char( 65 ) 

This CTL function invocation returns the character A (because 65 is the 
ASCII code for A). Notice how the char function simply uses the bit pattern of 
the integer argument you pass it as an ASCII code, whereas the real32 function 
attempts to translate the integer argument to a floating-point value. Although 
the semantics are quite different between these two functions, the bottom 
line is that they tend to do the intuitive operation, even at the expense of 
consistency.

Sometimes, however, you might not want these functions to do the “intu-
itive” thing. For example, you might want the real32 function to simply treat 
the bit pattern you pass it as a real32 value. To handle this situation, HLA 
provides a second set of type functions, which are simply the type names with 
an @ prefix that treat the argument as a bit pattern of the final type. So if you 
really want to produce 1.0 from $3F80_0000, then you could use the following 
function invocation:

@real32( $3F80_0000 ) 
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Generally, type coercion of this form is somewhat advanced in the 
compile-time language, so you’ll probably not use it very often. However, 
when it is needed, it’s nice to have around.

9.5.2 Numeric Compile-Time Functions

The functions in this category perform standard mathematical operations at 
compile time. These functions are handy for generating lookup tables and 
“parameterizing” your source code by recalculating functions on constants 
defined at the beginning of your program. Functions in this category include 
the following:

See the HLA reference manual at http://webster.cs.ucr.edu/ or http://
www.artofasm.com/ for more details on these functions.

9.5.3 Character-Classification Compile-Time Functions

The functions in this group all return a boolean result. They test a character 
(or all the characters in a string) to see if it belongs to a certain class of char-
acters. The functions in this category include the following:

@isAlpha( c ), @isAlphanum( c )

@isDigit( c ), @isxDigit( c )

@isLower( c ), @isUpper( c )

@isSpace( c )

In addition to these character-classification functions, the HLA language 
provides a set of pattern-matching functions that you can also use to classify 
character and string data. See the HLA reference manual at for the discussion 
of these routines.

9.5.4 Compile-Time String Functions

The functions in this category operate on string parameters. Most return a 
string result, although a few (for example, @length and @index) return integer 
results. These functions do not directly affect the values of their parameters; 

@abs( n ) Absolute value of numeric argument
@ceil( r ), @floor( r ) Extract integer component of 

floating-point value
@sin( r ), @cos( r ), @tan( r ) Standard trig functions
@exp( r ), @log( r ), @log10( r ) Standard log/exponent functions
@min( list ), @max( list ) Return min/max value from a list 

of values
@random, @randomize Return a pseudo-random int32 value
@sqrt( n ) Computes the square root of its 

numeric argument (real result)
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instead, they return an appropriate result that you can assign back to the 
parameter if you wish to do so.

@delete, @insert

@index, @rindex
@length

@lowercase, @uppercase

@strbrk, @strspan
@strset

@substr, @tokenize, @trim

For specific details concerning these functions, their parameters, and 
their types, see the HLA reference manual. Note that these are the compile-
time equivalents of many of the string functions found in the HLA Standard 
Library.

The @length function deserves a special discussion because it is probably 
the most popular function in this category. It returns an uns32 constant speci-
fying the number of characters found in its string parameter. The syntax is 
the following:

@length( string_expression )

where string_expression represents any compile-time string expression. As noted, 
this function returns the length, in characters, of the specified expression.

9.5.5 Compile-Time Symbol Information

During compilation HLA maintains an internal database known as the symbol 
table. The symbol table contains lots of useful information concerning all the 
identifiers you’ve defined up to a given point in the program. In order to gen-
erate machine code output, HLA needs to query this database to determine 
how to treat certain symbols. In your compile-time programs, it is often nec-
essary to query the symbol table to determine how to handle an identifier or 
expression in your code. The HLA compile-time symbol-information functions 
handle this task.

Many of the compile-time symbol-information functions are well beyond 
the scope of this text. This chapter will present a few of the functions. For a 
complete list of the compile-time symbol-table functions, see the HLA refer-
ence manual. The functions we will consider in this chapter include the 
following:

@size

@defined

@typeName

@elements

@elementSize
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Without question, the @size function is probably the most important 
function in this group. Indeed, previous chapters have made use of this func-
tion already. The @size function requires a single HLA identifier or constant 
expression as a parameter. It returns the size, in bytes, of the data type of that 
object (or expression). If you supply an identifier, it can be a constant, type, 
or variable identifier. As you’ve seen in previous chapters, this function is 
invaluable for allocating storage via mem.alloc and allocating storage for arrays.

Another very useful function in this group is the @defined function. This 
function accepts a single HLA identifier as a parameter. For example:

@defined( MyIdentifier ) 

This function returns true if the identifier is defined at that point in the 
program; it returns false otherwise.

The @typeName function returns a string specifying the type name of the 
identifier or expression you supply as a parameter. For example, if i32 is an 
int32 object, then @typeName( i32 ) returns the string int32. This function is 
useful for testing the types of objects you are processing in your compile-time 
programs.

The @elements function requires an array identifier or expression. It 
returns the total number of array elements as the function result. Note that 
for multidimensional arrays this function returns the product of all the array 
dimensions.3

The @elementSize function returns the size, in bytes, of an element of an 
array whose name you pass as a parameter. This function is extremely valuable 
for computing indices into an array (that is, this function computes the 
element_size component of the array index calculation; see Chapter 4 for 
more details).

9.5.6 Miscellaneous Compile-Time Functions
The HLA compile-time language contains several additional functions that 
don’t fall into one of the categories above. Some of the more useful miscella-
neous functions include the following:

@odd 

@lineNumber 

@text 

The @odd function takes an ordinal value (i.e., nonreal numeric or charac-
ter) as a parameter and returns true if the value is odd, false if it is even. The 
@lineNumber function requires no parameters; it returns the current line num-
ber in the source file. This function is quite useful for debugging compile-time 
(and runtime!) programs.

The @text function is probably the most useful function in this group. It 
requires a single-string parameter. It expands that string as text in place of the 

3 There is an @dim function that returns an array specifying the bounds on each dimension of a 
multidimensional array. See the documentation at http://webster.cs.ucr.edu/ or http://www.artofasm
.com/ for more details if you’re interested in this function.
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@text function call. This function is quite useful in conjunction with the 
compile-time string-processing functions. You can build an instruction (or a 
portion of an instruction) using the string-manipulation functions and then 
convert that string to program source code using the @text function. The 
following is a trivial example of this function in operation:

?id1:string := "eax"; 
?id2:string := "i32"; 
@text( "mov( " + id1 + ", " + id2 + ");" ) 

The preceding sequence compiles to

mov( eax, i32 ); 

9.5.7 Compile-Time Type Conversions of Text Objects

Once you create a text constant in your program, it’s difficult to manipulate 
that object. The following example demonstrates a programmer’s desire to 
change the definition of a text symbol within a program:

val 
     t:text := "stdout.put"; 
          . 
          . 
          . 
     ?t:text := "fileio.put"; 

The basic idea in this example is that the symbol t expands to stdout.put 
in the first half of the code, and it expands to fileio.put in the second half of 
the program. Unfortunately, this simple example will not work. The problem 
is that HLA will expand a text symbol in place almost anywhere it finds that 
symbol. This includes occurrences of t within a ? statement. Therefore, the 
previous code expands to the following (incorrect) text:

val 
     t:text := "stdout.put";
          .
          .
          .
     ?stdout.put:text := "fileio.put"; 

HLA doesn’t know how to deal with this ? statement, so it generates a 
syntax error.

At times you may not want HLA to expand a text object. Your code may 
want to process the string data held by the text object. HLA provides a couple 
of ways to deal with these two problems:

@string( identifier ) 

@toString:identifier 
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For @string( identifier ), HLA returns a string constant corresponding to 
the text data associated with the text object. In other words, this operator lets 
you treat a text object as though it were a string constant within an expression.

Unfortunately, the @string function converts a text object to a string 
constant, not a string identifier. Therefore, you cannot say something like

?@string(t) := "Hello" 

This doesn’t work because @string(t) replaces itself with the string constant 
associated with the text object t. Given the former assignment to t, this state-
ment expands to

?"stdout.put" := "Hello"; 

This statement is still illegal.
The @toString:identifier operator comes to the rescue in this case. The 

@toString: operator requires a text object as the associated identifier. It con-
verts this text object to a string object (still maintaining the same string data) 
and then returns the identifier. Because the identifier is now a string object, 
you can assign a value to it (and change its type to something else, for example, 
text, if that’s what you need). To achieve the original goal, therefore, you’d 
use code like the following:

val 
     t:text := "stdout.put";
          .
          .
          .
     ?@toString:t : text := "fileio.put"; 

9.6 Conditional Compilation (Compile-Time Decisions)

HLA’s compile-time language provides an if statement, #if, that lets you 
make decisions at compile time. The #if statement has two main purposes: 
The traditional use of #if is to support conditional compilation (or conditional 
assembly), allowing you to include or exclude code during a compilation 
depending on the status of various symbols or constant values in your program. 
The second use of this statement is to support the standard if statement 
decision-making process in the HLA compile-time language. This section 
discusses these two uses for the HLA #if statement.

The simplest form of the HLA compile-time #if statement uses the follow-
ing syntax:

#if( constant_boolean_expression ) 
     << text >> 
#endif 
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Note that you do not place semicolons after the #endif clause. If you place 
a semicolon after the #endif, it becomes part of the source code, and this 
would be identical to inserting that semicolon immediately before the next 
item in the program.

At compile time, HLA evaluates the expression in the parentheses after 
the #if. This must be a constant expression, and its type must be boolean. 
If the expression evaluates true, HLA continues to process the text in the 
source file as though the #if statement was not present. However, if the 
expression evaluates false, HLA treats all the text between the #if and the cor-
responding #endif clause as though it were a comment (that is, it ignores this 
text), as shown in Figure 9-2.

Figure 9-2: Operation of an HLA compile-time #if statement

Keep in mind that HLA’s constant expressions support a full expression 
syntax like you’d find in a high-level language like C or Pascal. The #if expres-
sion syntax is not limited to the syntax allowed by expressions in the HLA if 
statement. Therefore, it is perfectly reasonable to write fancy expressions like 
the following:

#if( @length( someStrConst ) < 10*i & ( (MaxItems*2 + 2) < 100 | MinItems-5 < 10 )) 
     << text >> 
#endif 

Also keep in mind that the identifiers in a compile-time expression must 
all be const or val identifiers or an HLA compile-time function call (with 
appropriate parameters). In particular, remember that HLA evaluates these 
expressions at compile time so they cannot contain runtime variables.4 HLA’s 
compile-time language uses complete boolean evaluation, so any side effects 
that occur in the expression may produce undesired results.

The HLA #if statement supports optional #elseif and #else clauses that 
behave in the intuitive fashion. The complete syntax for the #if statement 
looks like the following:

#if( constant_boolean_expression_1 ) 
     << text >> 
#elseif( constant_boolean_expression_2 ) 
     << text >> 

4 Except, of course, as parameters to certain HLA compile-time functions like @size or @typeName.

HLA compiles this code if 
the expression is true. Else 
HLA treats this code like a 
comment.

#endif

#if( constant_boolean_expression )
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#else 
     << text >> 
#endif 

If the first boolean expression evaluates true, then HLA processes the 
text up to the #elseif clause. It then skips all text (that is, treats it like a com-
ment) until it encounters the #endif clause. HLA continues processing the 
text after the #endif clause in the normal fashion.

If the first boolean expression above evaluates false, then HLA skips all 
the text until it encounters a #elseif, #else, or #endif clause. If it encounters a 
#elseif clause (as above), then HLA evaluates the boolean expression associ-
ated with that clause. If it evaluates true, HLA processes the text between the 
#elseif and the #else clauses (or to the #endif clause if the #else clause is not 
present). If, during the processing of this text, HLA encounters another 
#elseif or, as above, a #else clause, then HLA ignores all further text until it 
finds the corresponding #endif.

If both the first and second boolean expressions in the previous example 
evaluate false, HLA skips their associated text and begins processing the text 
in the #else clause. As you can see, the #if statement behaves in a relatively 
intuitive fashion once you understand how HLA “executes” the body of these 
statements; the #if statement processes the text or treats it as a comment, 
depending on the state of the boolean expression. Of course, you can create 
a nearly infinite variety of different #if statement sequences by including zero 
or more #elseif clauses and optionally supplying the #else clause. Because the 
construction is identical to the HLA if..then..elseif..else..endif statement, 
there is no need to elaborate further here.

A very traditional use of conditional compilation is to develop software 
that you can easily configure for several different environments. For example, 
the fcomip instruction makes floating-point comparisons very easy, but this 
instruction is available only on Pentium Pro and later processors. If you want 
to use this instruction on the processors that support it and fall back to the 
standard floating-point comparison on the older processors, you would nor-
mally have to write two versions of the program—one with the fcomip instruction 
and one with the traditional floating-point comparison sequence. Unfortu-
nately, maintaining two different source files (one for newer processors and 
one for older processors) is very difficult. Most engineers prefer to use condi-
tional compilation to embed the separate sequences in the same source file. 
The following example demonstrates how to do this:

const 
    // Set true to use FCOMIxx instrs.
    PentProOrLater: boolean := false;   
          . 
          . 
          . 
    #if( PentProOrLater ) 

          fcomip();      // Compare st1 to st0 and set flags. 
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     #else 
          fcomp();       // Compare st1 to st0.
          fstsw( ax );   // Move the FPU condition code bits
          sahf();        // into the flags register.

     #endif 

As currently written, this code fragment will compile the three-instruction 
sequence in the #else clause and ignore the code between the #if and #else 
clauses (because the constant PentProOrLater is false). By changing the value of 
PentProOrLater to true, you can tell HLA to compile the single fcomip instruc-
tion rather than the three-instruction sequence. Of course, you can use the 
PentProOrLater constant in other #if statements throughout your program to 
control how HLA compiles your code.

Note that conditional compilation does not let you create a single executable 
that runs efficiently on all processors. When using this technique you will still 
have to create two executable programs (one for Pentium Pro and later pro-
cessors, one for the earlier processors) by compiling your source file twice: 
During the first compilation you must set the PentProOrLater constant to false; 
during the second compilation you must set this constant to true. Although 
you must create two separate executables, you need only maintain a single 
source file.

If you are familiar with conditional compilation in other languages, such 
as the C/C++ language, you may be wondering if HLA supports a statement 
like C’s #ifdef statement. The answer is no, it does not. However, you can use 
the HLA compile-time function @defined to easily test to see if a symbol has 
been defined earlier in the source file. Consider the following modification 
to the preceding code that uses this technique:

const 
     // Note: Uncomment the following line if you are compiling this 
     // code for a Pentium Pro or later CPU. 

     // PentProOrLater :=0;  // Value and type are irrelevant. 
          . 
          . 
          . 
#if( @defined( PentProOrLater ) ) 

     fcomip();    // Compare st1 to st0 and set flags. 

#else 

     fcomp();     // Compare st1 to st0.
     fstsw( ax ); // Move the FPU condition code bits
     sahf();      // into the flags register.

#endif 
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Another common use of conditional compilation is to introduce debug-
ging and testing code into your programs. A typical debugging technique 
that many HLA programmers use is to insert “print” statements at strategic 
points throughout their code; this enables them to trace through their code 
and display important values at various checkpoints. A big problem with this 
technique, however, is that they must remove the debugging code prior to 
completing the project. The software’s customer (or a student’s instructor) 
probably doesn’t want to see debugging output in the middle of a report the 
program produces. Therefore, programmers who use this technique tend to 
insert code temporarily and then remove the code once they run the pro-
gram and determine what is wrong. There are at least two problems with this 
technique:

Programmers often forget to remove some debugging statements, and 
this creates defects in the final program.

After removing a debugging statement, these programmers often discover 
that they need that same statement to debug some different problem at a 
later time. Hence they are constantly inserting and removing the same 
statements over and over again.

Conditional compilation can provide a solution to this problem. By defin-
ing a symbol (say, debug) to control debug output in your program, you can 
easily activate or deactivate all debugging output by simply modifying a single 
line of source code. The following code fragment demonstrates this:

const 
     // Set to true to activate debug output.
     debug: boolean := false;    
          . 
          . 
          . 
     #if( debug ) 

          stdout.put( "At line ", @lineNumber, " i=", i, nl ); 

     #endif 

As long as you surround all debugging output statements with an #if 
statement like the preceding, you don’t have to worry about debug output 
accidentally appearing in your final application. By setting the debug symbol to 
false, you can automatically disable all such output. Likewise, you don’t have 
to remove all your debugging statements from your programs once they’ve 
served their immediate purpose. By using conditional compilation, you can 
leave these statements in your code because they are so easy to deactivate. 
Later, if you decide you need to view this same debugging information during 
a compilation, you won’t have to reenter the debugging statement; you simply 
reactivate it by setting the debug symbol to true.
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Although program configuration and debugging control are two of the 
more common, traditional uses for conditional compilation, don’t forget that 
the #if statement provides the basic conditional statement in the HLA compile-
time language. You will use the #if statement in your compile-time programs 
the same way you would use an if statement in HLA or some other language. 
Later sections in this text will present lots of examples of using the #if state-
ment in this capacity.

9.7 Repetitive Compilation (Compile-Time Loops)
HLA’s #while..#endwhile and #for..#endfor statements provide compile-time 
loop constructs. The #while statement tells HLA to process the same sequence 
of statements repetitively during compilation. This is very handy for construct-
ing data tables as well as providing a traditional looping structure for compile-
time programs. Although you will not employ the #while statement anywhere 
near as often as the #if statement, this compile-time control structure is very 
important when you write advanced HLA programs.

The #while statement uses the following syntax:

#while( constant_boolean_expression ) 
     << text >> 
#endwhile 

When HLA encounters the #while statement during compilation, it will 
evaluate the constant boolean expression. If the expression evaluates false, 
HLA will skip over the text between the #while and the #endwhile clauses (the 
behavior is similar to the #if statement if the expression evaluates false). If the 
expression evaluates true, then HLA will process the statements between the 
#while and #endwhile clauses and then “jump back” to the start of the #while 
statement in the source file and repeat this process, as shown in Figure 9-3.

Figure 9-3: HLA compile-time #while statement operation

To understand how this process works, consider the program in Listing 9-2.

program ctWhile;
#include( "stdlib.hhf" )

HLA repetitively compiles this code as long 
as the expression is true. It effectively 
inserts multiple copies of this statement 
sequence into your source file (the exact 
number of copies depends on the value of 
the loop control expression).

#endwhile

#while( constant_boolean_expression )
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static
ary: uns32[5] := [ 2, 3, 5, 8, 13 ];

begin ctWhile; 

     ?i := 0; 
     #while( i < 5 )  

          stdout.put( "array[ ", i, " ] = ", ary[i*4], nl );  
          ?i := i + 1; 

     #endwhile 

end ctWhile; 

Listing 9-2: #while..#endwhile demonstration

As you can probably surmise, the output from this program is the following:

array[ 0 ] = 2 
array[ 1 ] = 3 
array[ 2 ] = 4 
array[ 3 ] = 5 
array[ 4 ] = 13 

What is not quite obvious is how this program generates this output. 
Remember, the #while..#endwhile construct is a compile-time language fea-
ture, not a runtime control construct. Therefore, the previous #while loop 
repeats five times during compilation. On each repetition of the loop, the 
HLA compiler processes the statements between the #while and #endwhile 
clauses. Therefore, the preceding program is really equivalent to the code 
that is shown in Listing 9-3.

program ctWhile; 
#include( "stdlib.hhf" ) 

static 
     ary: uns32[5] := [ 2, 3, 5, 8, 13 ]; 

begin ctWhile;

     stdout.put( "array[ ", 0, " ] = ", ary[0*4], nl ); 
     stdout.put( "array[ ", 1, " ] = ", ary[1*4], nl ); 
     stdout.put( "array[ ", 2, " ] = ", ary[2*4], nl ); 
     stdout.put( "array[ ", 3, " ] = ", ary[3*4], nl ); 
     stdout.put( "array[ ", 4, " ] = ", ary[4*4], nl ); 

end ctWhile; 

Listing 9-3: Program equivalent to the code in Listing 9-2
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As you can see in this example, the #while statement is very convenient 
for constructing repetitive-code sequences. This is especially invaluable for 
unrolling loops.

HLA provides three forms of the #for..#endfor loop. These three loops 
take the following general form:

  #for( valObject := startExpr to endExpr ) 
           
          . 
          . 
     #endfor 

     #for( valObject := startExpr downto endExpr ) 
          . 
          . 
          . 
     #endfor 

     #for( valObject in composite_expr ) 
          . 
          . 
          . 
     #endfor 

Listing 9-4: HLA #for loops

As its name suggests, valObject must be an object you’ve defined in a val 
declaration.

For the first two forms of the #for loop above, the startExpr and endExpr 
components can be any HLA constant expression that yields an integer value. 
The first of these #for loops is semantically equivalent to the following #while 
code:

  ?valObject := startExpr; 
     #while( valObject <= endExpr ) 
               . 
               . 
               . 
          ?valObject := valObject + 1; 
  #endwhile 

The second of these #for loops is semantically equivalent to the #while 
loop:

  ?valObject := startExpr; 
     #while( valObject >= endExpr ) 
572 Chapte r  9



AAL2E_03.book  Page 573  Thursday, February 18, 2010  12:49 PM
               . 
               . 
               . 
     ?valObject := valObject - 1; 
  #endwhile 

The third of these #for loops (the one using the in keyword) is especially 
useful for processing individual items from some composite data type. This 
loop repeats once for each element, field, character, and so on of the com-
posite value you specify for composite_expr. This can be an array, string, record, 
or character set expression. For arrays, this #for loop repeats once for each 
element of the array and on each iteration of the loop; the loop control variable 
contains the current element’s value. For example, the following compile-
time loop displays the values 1, 10, 100, and 1,000:

 #for( i in [1, 10, 100, 1000]) 
          #print( i ) 
 #endfor 

If the composite_expr constant is a string constant, the #for loop repeats 
once for each character in the string and sets the value of the loop control 
variable to the current character. If the composite_expr constant expression is a 
record constant, then the loop will repeat once for each field of the record, 
and for each iteration the loop control variable will take on the type and value 
of the current field. If the composite_expr expression is a character set, the loop 
will repeat once for each character in the set, and the loop control variable will 
be assigned that character.

The #for loop actually turns out to be more useful than the #while loop 
because the larger number of compile-time loops you encounter repeat a 
fixed number of times (for example, processing a fixed number of array ele-
ments, macro parameters, and so on).

9.8 Macros (Compile-Time Procedures)

Macros are objects that a language processor replaces with other text during 
compilation. Macros are great devices for replacing long, repetitive sequences 
of text with much shorter sequences of text. In additional to the traditional 
role that macros play (e.g., #define in C/C++), HLA’s macros also serve as the 
equivalent of a compile-time language procedure or function. Therefore, 
macros are very important in HLA’s compile-time language—just as impor-
tant as functions and procedures are in other high-level languages.

Although macros are nothing new, HLA’s implementation of macros 
far exceeds the macro-processing capabilities of most other programming 
languages (high level or low level). The following sections explore HLA’s 
macro-processing facilities and the relationship between macros and other 
HLA CTL control constructs.
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9.8.1 Standard Macros

HLA supports a straightforward macro facility that lets you define macros in 
a manner that is similar to declaring a procedure. A typical, simple macro 
declaration takes the following form:

#macro macroname; 
     << Macro body >> 
#endmacro 

Although macro and procedure declarations are similar, there are several 
immediate differences between the two that are obvious from this example. 
First, of course, macro declarations use the reserved word #macro rather than 
procedure. Second, you do not begin the body of the macro with a begin 
macroname; clause. Finally, you will note that macros end with the #endmacro 
clause rather than end macroname;. The following code is a concrete example of 
a macro declaration:

#macro neg64; 

     neg( edx ); 
     neg( eax ); 
     sbb( 0, edx ); 

#endmacro 

Execution of this macro’s code will compute the two’s complement of the 
64-bit value in EDX:EAX (see the description of extended-precision neg in 
Section 8.1.7).

To execute the code associated with neg64, you simply specify the macro’s 
name at the point you want to execute these instructions. For example:

     mov( (type dword i64), eax ); 
     mov( (type dword i64[4]), edx ); 
     neg64; 

Note that you do not follow the macro’s name with a pair of empty paren-
theses as you would a procedure call (the reason for this will become clear a 
little later).

Other than the lack of parentheses following neg64’s invocation,5 this looks 
just like a procedure call. You could implement this simple macro as a proce-
dure using the following procedure declaration:

procedure neg64p; 
begin neg64p; 

5 To differentiate between macros and procedures, this text will use the term invocation when 
describing the use of a macro and call when describing the use of a procedure.
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     neg( edx ); 
     neg( eax ); 
     sbb( 0, edx ); 

end neg64p; 

Note that the following two statements will both negate the value in 
EDX:EAX:

     neg64;          neg64p(); 

The difference between these two (the macro invocation versus the proce-
dure call) is the fact that macros expand their text inline, whereas a procedure 
call emits a call to the corresponding procedure elsewhere in the text. That is, 
HLA replaces the invocation neg64; directly with the following text:

     neg( edx ); 
     neg( eax ); 
     sbb( 0, edx ); 

On the other hand, HLA replaces the procedure call neg64p(); with the 
single call instruction:

call neg64p; 

Presumably, you’ve defined the neg64p procedure earlier in the program.
You should make the choice of macro versus procedure call on the basis 

of efficiency. Macros are slightly faster than procedure calls because you don’t 
execute the call and corresponding ret instructions. On the other hand, the 
use of macros can make your program larger because a macro invocation 
expands to the text of the macro’s body on each invocation. Procedure calls 
jump to a single instance of the procedure’s body. Therefore, if the macro 
body is large and you invoke the macro several times throughout your program, 
it will make your final executable much larger. Also, if the body of your macro 
executes more than a few simple instructions, the overhead of a call/ret 
sequence has little impact on the overall execution time of the code, so the 
execution time savings are nearly negligible. On the other hand, if the body 
of a procedure is very short (like the neg64 example above), you’ll discover 
that the macro implementation is much faster and doesn’t expand the size of 
your program by much. A good rule of thumb is:

NOTE Use macros for short, time-critical program units. Use procedures for longer blocks of 
code and when execution time is not as critical.

Macros have many other disadvantages over procedures. Macros cannot 
have local (automatic) variables, macro parameters work differently than pro-
cedure parameters, macros don’t support (runtime) recursion, and macros 
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are a little more difficult to debug than procedures (just to name a few disad-
vantages). Therefore, you shouldn’t really use macros as a substitute for 
procedures except in cases where performance is absolutely critical.

9.8.2 Macro Parameters

Like procedures, macros allow you to define parameters that let you supply 
different data on each macro invocation. This lets you write generic macros 
whose behavior can vary depending on the parameters you supply. By process-
ing these macro parameters at compile time, you can write very sophisticated 
macros.

Macro parameter declaration syntax is very straightforward. You simply 
supply a list of parameter names within parentheses in a macro declaration:

#macro neg64( reg32HO, reg32LO ); 

     neg( reg32HO );
     neg( reg32LO );
     sbb( 0, reg32HO );

#endmacro; 

Note that you do not associate a data type with a macro parameter as you 
do for procedural parameters. This is because HLA macros are generally text 
objects.

When you invoke a macro, you simply supply the actual parameters the 
same way you would for a procedure call:

     neg64( edx, eax ); 

Note that a macro invocation that requires parameters expects you to 
enclose the parameter list within parentheses.

9.8.2.1 Standard Macro Parameter Expansion

As the previous section explains, HLA automatically associates the type text 
with macro parameters. This means that during a macro expansion, HLA 
substitutes the text you supply as the actual parameter everywhere the formal 
parameter name appears. The semantics of “pass by textual substitution” are 
a little different than “pass by value” or “pass by reference,” so it is worthwhile 
exploring those differences here.

Consider the following macro invocations, using the neg64 macro from 
the previous section:

     neg64( edx, eax ); 
     neg64( ebx, ecx ); 
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These two invocations expand into the following code:

// neg64(edx, eax ); 

     neg( edx ); 
     neg( eax ); 
     sbb( 0, edx ); 

// neg64( ebx, ecx ); 

     neg( ebx ); 
     neg( ecx ); 
     sbb( 0, ebx ); 

Note that macro invocations do not make a local copy of the parameters 
(as “pass by value” does), nor do they pass the address of the actual parameter 
to the macro. Instead, a macro invocation of the form neg64( edx, eax ); is 
equivalent to the following:

  ?reg32HO: text := "edx"; 
  ?reg32LO: text := "eax"; 

  neg( reg32HO ); 
  neg( reg32LO ); 
  sbb( 0, reg32HO ); 

Of course, the text objects immediately expand their string values inline, 
producing the former expansion for neg64( edx, eax );.

Note that macro parameters are not limited to memory, register, or con-
stant operands as are instruction or procedure operands. Any text is fine as 
long as its expansion is legal wherever you use the formal parameter. Similarly, 
formal parameters may appear anywhere in the macro body, not just where 
memory, register, or constant operands are legal. Consider the following 
macro declaration and sample invocations:

#macro chkError( instr, jump, target ); 

     instr; 
     jump target; 

#endmacro; 

     chkError( cmp( eax, 0 ), jnl, RangeError );       // Example 1
          ... 
     chkError( test( 1, bl ), jnz, ParityError );      // Example 2

// Example 1 expands to 

     cmp( eax, 0 ); 
     jnl RangeError; 
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// Example 2 expands to 

     test( 1, bl ); 
     jnz ParityError; 

In general, HLA assumes that all text between commas constitutes a single 
macro parameter. If HLA encounters any opening bracketing symbols (left 
parentheses, left braces, or left brackets), then it will include all text up to the 
appropriate closing symbol, ignoring any commas that may appear within the 
bracketing symbols. This is why the chkError invocations above treat cmp( eax, 0 ) 
and test( 1, bl ) as single parameters rather than as a pair of parameters. Of 
course, HLA does not consider commas (and bracketing symbols) within a 
string constant as the end of an actual parameter. So the following macro and 
invocation are perfectly legal:

#macro print( strToPrint ); 

     stdout.out( strToPrint ); 

#endmacro; 
     . 
     . 
     . 
     print( "Hello, world!" ); 

HLA treats the string Hello, world! as a single parameter because the 
comma appears inside a literal string constant, just as your intuition suggests.

If you are unfamiliar with textual macro parameter expansion in other 
languages, you should be aware that there are some problems you can run 
into when HLA expands your actual macro parameters. Consider the follow-
ing macro declaration and invocation:

#macro Echo2nTimes( n, theStr ); 
     #for( echoCnt := 1 to n*2 ) 
          #print( theStr ) 
     #endfor 
#endmacro; 

     . 
     . 
     . 
Echo2nTimes( 3+1, "Hello" ); 

This example displays Hello five times during compilation rather than the 
eight times you might intuitively expect. This is because the #for statement 
above expands to

     #for( echoCnt := 1 to 3+1*2 ) 
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The actual parameter for n is 3+1; because HLA expands this text directly 
in place of n, you get an erroneous text expansion. Of course, at compile time 
HLA computes 3+1*2 as the value 5 rather than as the value 8 (which you 
would get had HLA passed this parameter by value rather than by textual 
substitution).

The common solution to this problem when passing numeric parameters 
that may contain compile-time expressions is to surround the formal parame-
ter in the macro with parentheses; for example, you would rewrite the macro 
above as follows:

#macro Echo2nTimes( n, theStr ); 

#for( echoCnt := 1 to  (n)*2 ) 

#print( theStr ) 

#endfor 

#endmacro; 

The earlier invocation would expand to the following code:

#for( echoCnt := 1 to (3+1)*2 ) 
#print( theStr ) 

#endfor 

This version of the macro produces the intuitive result.
If the number of actual parameters does not match the number of formal 

parameters, HLA will generate a diagnostic message during compilation. As 
with procedures, the number of actual parameters must agree with the number 
of formal parameters. If you would like to have optional macro parameters, 
then keep reading.

9.8.2.2 Macros with a Variable Number of Parameters

You may have noticed by now that some HLA macros don’t require a fixed 
number of parameters. For example, the stdout.put macro in the HLA Stan-
dard Library allows one or more actual parameters. HLA uses a special array 
syntax to tell the compiler that you wish to allow a variable number of param-
eters in a macro parameter list. If you follow the last macro parameter in the 
formal parameter list with [ ], then HLA will allow a variable number of actual 
parameters (zero or more) in place of that formal parameter. For example:

#macro varParms( varying[] ); 

     << Macro body >> 
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#endmacro; 
     . 
     . 
     . 
     varParms( 1 ); 
     varParms( 1, 2 ); 
     varParms( 1, 2, 3 ); 
     varParms(); 

Note the last invocation especially. If a macro has any formal parameters, 
you must supply parentheses with the macro list after the macro invocation. 
This is true even if you supply zero actual parameters to a macro with a vary-
ing parameter list. Keep in mind this important difference between a macro 
with no parameters and a macro with a varying parameter list but no actual 
parameters.

When HLA encounters a formal macro parameter with the [ ] suffix 
(which must be the last parameter in the formal parameter list), HLA creates 
a constant string array and initializes that array with the text associated with the 
remaining actual parameters in the macro invocation. You can determine the 
number of actual parameters assigned to this array using the @elements com-
pile-time function. For example, @elements( varying ) will return some value, 0 
or greater, that specifies the total number of parameters associated with that 
parameter. The following declaration for varParms demonstrates how you 
might use this:

#macro varParms( varying[] ); 

     #for( vpCnt := 0 to @elements( varying ) - 1 ) 

          #print( varying[ vpCnt ] ) 

     #endfor 

#endmacro; 
     . 
     . 
     . 
 varParms( 1 );        // Prints "1" during compilation.
 varParms( 1, 2 );     // Prints "1" and "2" on separate lines.
 varParms( 1, 2, 3 );  // Prints "1", "2", and "3" on separate lines. 
 varParms();           // Doesn't print anything. 

Because HLA doesn’t allow arrays of text objects, the varying parameter 
must be an array of strings. This, unfortunately, means you must treat the 
varying parameters differently than you handle standard macro parameters. 
If you want some element of the varying string array to expand as text within 
the macro body, you can always use the @text function to achieve this. Con-
versely, if you want to use a nonvarying formal parameter as a string object, 
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you can always use the @string( name ) function. The following example 
demonstrates this:

#macro ReqAndOpt( Required, optional[] ); 
     ?@text( optional[0] ) := @string( ReqAndOpt ); 
     #print( @text( optional[0] )) 

     #endmacro; 
     . 
     .
     .
     ReqAndOpt( i, j );

// The macro invocation above expands to 

     ?@text( "j" ) := @string( i ); 
     #print( "j" ) 

// The above further expands to 

     j := "i"; 
     #print( j ) 

// The above simply prints "i" during compilation. 

Of course, it would be a good idea, in a macro like the above, to verify 
that there are at least two parameters before attempting to reference element 
zero of the optional parameter. You can easily do this as follows:

#macro ReqAndOpt( Required, optional[] ); 

     #if( @elements( optional ) > 0 ) 

          ?@text( optional[0] ) := @string( ReqAndOpt ); 
          #print( @text( optional[0] )) 

     #else 

          #error( "ReqAndOpt must have at least two parameters" ) 

     #endif 

#endmacro; 

9.8.2.3 Required vs. Optional Macro Parameters

As the previous section notes, HLA requires exactly one actual parameter for 
each nonvarying formal macro parameter. If there is no varying macro param-
eter (and there can be at most one), then the number of actual parameters 
must exactly match the number of formal parameters. If a varying formal 
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parameter is present, then there must be at least as many actual macro 
parameters as there are nonvarying (or required) formal macro parameters. 
If there is a single, varying actual parameter, then a macro invocation may 
have zero or more actual parameters.

There is one big difference between a macro invocation of a macro with 
no parameters and a macro invocation of a macro with a single, varying 
parameter that has no actual parameters: The macro with the varying param-
eter list must have an empty set of parentheses after it, while the macro 
invocation of the macro without any parameters does not allow this. You can 
use this fact to your advantage if you wish to write a macro that doesn’t have 
any parameters but you want to follow the macro invocation with ( ) so that 
it matches the syntax of a procedure call with no parameters. Consider the 
following macro:

#macro neg64( JustForTheParens[] ); 

     #if( @elements( JustForTheParens ) = 0 ) 

          neg( edx ); 
          neg( eax ); 
          sbb( 0, edx ); 

     #else 

          #error( "Unexpected operand(s)" ) 

     #endif 

#endmacro; 

The preceding macro requires invocations of the form neg64(); to use the 
same syntax you would use for a procedure call. This feature is useful if you 
want the syntax of your parameterless macro invocations to match the syntax 
of a parameterless procedure call. It’s not a bad idea to do this, just in the off 
chance you need to convert the macro to a procedure at some point (or vice 
versa, for that matter).

9.8.3 Local Symbols in a Macro

Consider the following macro declaration:

macro JZC( target ); 

         jnz NotTarget; 
         jc target; 
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     NotTarget: 

endmacro; 

The purpose of this macro is to simulate an instruction that jumps to 
the specified target location if the zero flag is set and the carry flag is set. Con-
versely, if either the zero flag is clear or the carry flag is clear, this macro transfers 
control to the instruction immediately following the macro invocation.

There is a serious problem with this macro. Consider what happens if you 
use this macro more than once in your program:

     JZC( Dest1 ); 
          . 
          . 
          . 
     JZC( Dest2 ); 
          . 
          . 
          . 

The preceding macro invocations expand to the following code:

    jnz NotTarget; 
    jc Dest1; 
NotTarget: 
         . 
         . 
         . 
    jnz NotTarget; 
    jc Dest2; 
NotTarget: 
         . 
         . 
         . 

The problem with the expansion of these two macro invocations is that 
they both emit the same label, NotTarget, during macro expansion. When 
HLA processes this code it will complain about a duplicate symbol definition. 
Therefore, you must take care when defining symbols inside a macro because 
multiple invocations of that macro may lead to multiple definitions of that 
symbol.

HLA’s solution to this problem is to allow the use of local symbols within a 
macro. Local macro symbols are unique to a specific invocation of a macro. 
For example, had NotTarget been a local symbol in the preceding JZC macro 
invocations, the program would have compiled properly because HLA treats 
each occurrence of NotTarget as a unique symbol.
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HLA does not automatically make internal macro symbol definitions 
local to that macro.6 Instead, you must explicitly tell HLA which symbols must 
be local. You do this in a macro declaration using the following generic syntax:

#macro macroname( optional_parameters ):optional_list_of_local_names ; 
     << Macro body >> 
#endmacro; 

The list of local names is a sequence of one or more HLA identifiers 
separated by commas. Whenever HLA encounters this name in a particular 
macro invocation, it automatically substitutes some unique name for that 
identifier. For each macro invocation, HLA substitutes a different name for 
the local symbol.

You can correct the problem with the JZC macro by using the following 
macro code:

#macro JZC( target ):NotTarget; 

         jnz NotTarget; 
         jc target; 
     NotTarget: 

#endmacro; 

Now whenever HLA processes this macro it will automatically associate 
a unique symbol with each occurrence of NotTarget. This will prevent the 
duplicate-symbol error that occurs if you do not declare NotTarget as a local 
symbol.

HLA implements local symbols by substituting a symbol like _nnnn_ 
(where nnnn is a four-digit hexadecimal number) wherever the local symbol 
appears in a macro invocation. For example, a macro invocation of the form 
JZC( SomeLabel ); might expand to

      jnz _010A_; 
      jc SomeLabel; 
_010A_: 

For each local symbol appearing within a macro expansion, HLA will 
generate a unique temporary identifier by simply incrementing this numeric 
value for each new local symbol it needs. As long as you do not explicitly cre-
ate labels of the form _nnnn_Text_ (where nnnn is a hexadecimal value), there 
will never be a conflict in your program. HLA explicitly reserves all symbols 
that begin and end with a single underscore for its own private use (and for 
use by the HLA Standard Library). As long as you honor this restriction, there 
should be no conflicts between HLA local symbol generation and labels in 
your own programs because all HLA-generated symbols begin and end with a 
single underscore.

6 Sometimes you actually want the symbols to be global.
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HLA implements local symbols by effectively converting that local symbol 
to a text constant that expands to the unique symbol HLA generates for the 
local label. That is, HLA effectively treats local symbol declarations as indi-
cated by the following example:

#macro JZC( target ); 
     ?NotTarget:text := "_010A_Text_"; 

         jnz NotTarget; 
         jc target; 

     NotTarget: 

#endmacro; 

Whenever HLA expands this macro it will substitute _010A_Text_ for each 
occurrence of NotTarget it encounters in the expansion. This analogy isn’t per-
fect because the text symbol NotTarget in this example is still accessible after 
the macro expansion, whereas this is not the case when defining local symbols 
within a macro. But this does give you an idea of how HLA implements local 
symbols.

9.8.4 Macros as Compile-Time Procedures

Although programmers typically use macros to expand to some sequence of 
machine instructions, there is absolutely no requirement that a macro body 
contain any executable instructions. Indeed, many macros contain only 
compile-time language statements (for example, #if, #while, #for, ? assign-
ments, and the like). By placing only compile-time language statements in the 
body of a macro, you can effectively write compile-time procedures and func-
tions using macros.

The following unique macro is a good example of a compile-time function 
that returns a string result. Consider the definition of this macro:

#macro unique:theSym; 
     @string(theSym)
#endmacro; 

Whenever your code references this macro, HLA replaces the macro 
invocation with the text @string(theSym), which, of course, expands to some 
string like _021F_Text_. Therefore, you can think of this macro as a compile-
time function that returns a string result.

Be careful that you don’t take the function analogy too far. Remember, 
macros always expand to their body text at the point of invocation. Some 
expansions may not be legal at any arbitrary point in your programs. Fortu-
nately, most compile-time statements are legal anywhere whitespace is legal in 
your programs. Therefore, macros behave as you would expect functions or 
procedures to behave during the execution of your compile-time programs.
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Of course, the only difference between a procedure and a function is that 
a function returns some explicit value, while procedures simply do some activ-
ity. There is no special syntax for specifying a compile-time function return 
value. As the example above indicates, simply specifying the value you wish to 
return as a statement in the macro body suffices. A compile-time procedure, 
on the other hand, would not contain any non-compile-time language state-
ments that expand into some sort of data during macro invocation.

9.8.5 Simulating Function Overloading with Macros

The C++ language supports a nifty feature known as function overloading. Func-
tion overloading lets you write several different functions or procedures that 
all have the same name. The difference between these functions is the types 
of their parameters or the number of parameters. A procedure declaration 
is unique in C++ if it has a different number of parameters than other 
functions with the same name or if the types of its parameters differ from 
other functions with the same name. HLA does not directly support proce-
dure overloading, but you can use macros to achieve the same result. This 
section explains how to use HLA’s macros and the compile-time language 
to achieve function/procedure overloading.

One good use for procedure overloading is to reduce the number of 
Standard Library routines you must remember how to use. For example, the 
HLA Standard Library provides five different “puti” routines that output an 
integer value: stdout.puti128, stdout.puti64, stdout.puti32, stdout.puti16, and 
stdout.puti8. The different routines, as their names suggest, output integer 
values according to the size of their integer parameter. In the C++ language 
(or another other language supporting procedure/function overloading) 
the engineer designing the input routines would probably have chosen to 
name them all stdout.puti and leave it up to the compiler to select the appro-
priate one based on the operand size.7 The macro in Listing 9-5 demonstrates 
how to do this in HLA using the compile-time language to figure out the size 
of the parameter operand.

// Puti.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a "puti" macro that calls stdout.puti8, stdout.puti16, 
// stdout.puti32, or stdout.puti64, depending on the size of 
// the operand.

program putiDemo;
#include( "stdlib.hhf" )

7 By the way, the HLA Standard Library does this as well. Although it doesn’t provide stdout.puti, 
it does provide stdout.put, which will choose an appropriate output routine based upon the 
parameter’s type. This is a bit more flexible than a puti routine.
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// puti-
//
// Automatically decides whether we have a 64-, 32-, 16-, or 8-bit
// operand and calls the appropriate stdout.putiX routine to
// output this value.

#macro puti( operand );

     // If we have an 8-byte operand, call puti64:

     #if( @size( operand ) = 8 )

          stdout.puti64( operand );

     // If we have a 5-byte operand, call puti32:

     #elseif( @size( operand ) = 4 )

          stdout.puti32( operand );

     // If we have a 2-byte operand, call puti16:

     #elseif( @size( operand ) = 2 )

          stdout.puti16( operand );  

     // If we have a 1-byte operand, call puti8:

     #elseif( @size( operand ) = 1 )

          stdout.puti8( operand );

     // If it's not an 8-, 4-, 2-, or 1-byte operand, 
     // then print an error message: 

     #else  

          #error( "Expected a 64-, 32-, 16-, or 8-bit operand" ) 

     #endif 

#endmacro; 

// Some sample variable declarations so we can test the macro above: 
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static 
     i8:  int8    := -8; 
     i16: int16   := -16; 
     i32: int32   := -32; 
     i64: qword; 

begin putiDemo; 

     // Initialize i64 because we can't do this in the static section. 

     mov( -64, (type dword i64 )); 
     mov( $FFFF_FFFF, (type dword i64[4]));

     // Demo the puti macro:

     puti( i8  ); stdout.newln();
     puti( i16 ); stdout.newln();
     puti( i32 ); stdout.newln();
     puti( i64 ); stdout.newln();

end putiDemo; 

Listing 9-5: Simple procedure overloading based on operand size

The example above simply tests the size of the operand to determine 
which output routine to use. You can use other HLA compile-time functions, 
such as @typename, to do more sophisticated processing. Consider the program 
in Listing 9-6, which demonstrates a macro that overloads stdout.puti32, 
stdout.putu32, and stdout.putd depending on the type of the operand.

// put32.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a put32 macro that calls stdout.puti32, stdout.putu32,
// or stdout.putdw depending on the type of the operand.

program put32Demo;
#include( "stdlib.hhf" )

// put32-
//
// Automatically decides whether we have an int32, uns32, or dword
// operand and calls the appropriate stdout.putX routine to
// output this value.

#macro put32( operand );
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// If we have an int32 operand, call puti32:

     #if( @typename( operand ) = "int32" )

          stdout.puti32( operand );

     // If we have an uns32 operand, call putu32:

     #elseif( @typename( operand ) = "uns32" )

          stdout.putu32( operand );

     // If we have a dword operand, call puth32:

     #elseif( @typename( operand ) = "dword" )

          stdout.puth32( operand );

     // If it's not a 32-bit integer value, report an error: 

     #else  

          #error( "Expected an int32, uns32, or dword operand" ) 

     #endif 

#endmacro; 

// Some sample variable declarations so we can test the macro above: 

static 
     i32: int32   := -32; 
     u32: uns32   := 32; 
     d32: dword   := $32; 

begin put32Demo;

     // Demo the put32 macro: 

     put32( d32 );  stdout.newln();
     put32( u32 );  stdout.newln();
     put32( i32 );  stdout.newln();

end put32Demo; 

Listing 9-6: Procedure overloading based on operand type
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You can easily extend this macro to output 8- and 16-bit operands as well 
as 32-bit operands. That is left as an exercise for the reader.

The number of actual parameters is another way to resolve which over-
loaded procedure to call. If you specify a variable number of macro parameters 
(using the [ ] syntax; see the discussion in Section 9.8.2.2), you can use the 
@elements compile-time function to determine exactly how many parameters are 
present and call the appropriate routine. The sample in Listing 9-7 uses this 
trick to determine whether it should call stdout.puti32 or stdout.puti32Size.

// puti32.hla
//
// This program demonstrates procedure overloading via macros.
//
// It defines a puti32 macro that calls
// stdout.puti32 or stdout.puti32size
// depending on the number of parameters present.

program puti32Demo;
#include( "stdlib.hhf" )

// puti32-
//
// Automatically decides whether we have an int32, uns32, or dword 
// operand and calls the appropriate stdout.putX routine to 
// output this value. 

#macro puti32( operand[] );

     // If we have a single operand, call stdout.puti32: 

     #if( @elements( operand ) = 1 )

          stdout.puti32( @text(operand[0]) );

     // If we have two operands, call stdout.puti32size and 
     // supply a default value of ' ' for the padding character: 

     #elseif( @elements( operand ) = 2 )

          stdout.puti32Size
          ( 
              @text(operand[0]), 
              @text(operand[1]), 
              ' ' 
           );
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     // If we have three parameters, then pass all three of them 
     // along to puti32size:

     #elseif( @elements( operand ) = 3 )

          stdout.puti32Size
           (
               @text(operand[0]),
               @text(operand[1]),
               @text(operand[2])
          );

     // If we don't have one, two, or three operands, report an error: 

     #else  

          #error( "Expected one, two, or three operands" ) 

     #endif 

#endmacro; 

// A sample variable declaration so we can test the macro above: 

Static
     i32: int32 := -32;

begin puti32Demo;

          // Demo the put32 macro:

     puti32( i32 );  stdout.newln(); 
     puti32( i32, 5 );  stdout.newln(); 
     puti32( i32, 5, '*' );  stdout.newln(); 

end puti32Demo; 

Listing 9-7: Using the number of parameters to resolve overloaded procedures

All the examples up to this point provide procedure overloading for Stan-
dard Library routines (specifically, the integer output routines). Of course, 
you are not limited to overloading procedures in the HLA Standard Library. 
You can create your own overloaded procedures as well. All you have to do is 
write a set of procedures, all with unique names, and then use a single macro 
to decide which routine to actually call based on the macro’s parameters. 
Rather than call the individual routines, invoke the common macro and let it 
decide which procedure to actually call.
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9.9 Writing Compile-Time “Programs”

The HLA compile-time language provides a powerful facility with which to 
write “programs” that execute while HLA is compiling your assembly language 
programs. Although it is possible to write some general-purpose programs 
using the HLA compile-time language, the real purpose of the HLA compile-
time language is to allow you to write short programs that write other programs. 
In particular, the primary purpose of the HLA compile-time language is to 
automate the creation of large or complex assembly language sequences. The 
following subsections provide some simple examples of such compile-time 
programs.

9.9.1 Constructing Data Tables at Compile Time

Earlier, this book suggested that you could write programs to generate large, 
complex lookup tables for your assembly language programs (see the discus-
sion of tables in Section 8.4.3). Chapter 8 provides examples in HLA but 
suggests that writing a separate program is unnecessary. This is true; you can 
generate most lookup tables you’ll need using nothing more than the HLA 
compile-time language facilities. Indeed, filling in table entries is one of the 
principle uses of the HLA compile-time language. In this section we will take 
a look at using the HLA compile-time language to construct data tables dur-
ing compilation.

In Section 8.4.3, you saw an example of an HLA program that writes a text 
file containing a lookup table for the trigonometric sine function. The table 
contains 360 entries with the index into the table specifying an angle in 
degrees. Each int32 entry in the table contains the value sin(angle)*1,000 
where angle is equal to the index into the table. Section 8.4.3 suggests running 
this program and then including the text output from that program into the 
actual program that used the resulting table. You can avoid much of this 
work by using the compile-time language. The HLA program in Listing 9-8 
includes a short compile-time code fragment that constructs this table of sines 
directly.

// demoSines.hla
//
// This program demonstrates how to create a lookup table
// of sine values using the HLA compile-time language.

program demoSines;
#include( "stdlib.hhf" )

const 
     pi :real80 := 3.1415926535897; 
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readonly 
     sines:  int32[ 360 ] := 
             [  
               // The following compile-time program generates  
               // 359 entries (out of 360). For each entry  
               // it computes the sine of the index into the  
               // table and multiplies this result by 1000  
               // in order to get a reasonable integer value.

               ?angle := 0;  
               #while( angle < 359 ) 

                    // Note: HLA's @sin function expects angles 
                    // in radians. radians = degrees*pi/180. 
                    // The int32 function truncates its result, 
                    // so this function adds 1/2 as a weak attempt 
                    // to round the value up. 

                    int32( @sin( angle * pi / 180.0 ) * 1000 + 0.5 ), 
                    ?angle := angle + 1;

               #endwhile

               // Here's the 360th entry in the table. This code  
               // handles the last entry specially because a comma  
               // does not follow this entry in the table.

               int32( @sin( 359 * pi / 180.0 ) * 1000 + 0.5 ) 
          ]; 
begin demoSines;

     // Simple demo program that displays all the values in the table:

     for( mov( 0, ebx); ebx<360; inc( ebx )) do

          mov( sines[ ebx*4 ], eax );
          stdout.put
           (
               "sin( ", 
               (type uns32 ebx ),
               " )*1000 = ",
               (type int32 eax ),
               nl 
           ); 

     endfor; 

end demoSines; 

Listing 9-8: Generating a sine lookup table with the compile-time language
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Another common use for the compile-time language is to build ASCII 
character lookup tables for use by the xlat instruction at runtime. Common 
examples include lookup tables for alphabetic case manipulation. The pro-
gram in Listing 9-9 demonstrates how to construct an uppercase conversion 
table and a lowercase conversion table.8 Note the use of a macro as a compile-
time procedure to reduce the complexity of the table-generating code:

// demoCase.hla 
// 
// This program demonstrates how to create a lookup table 
// of alphabetic case conversion values using the HLA 
// compile-time language. 

program demoCase; 
#include( "stdlib.hhf" ) 

const 
      
     // emitCharRange
     //
     // This macro emits a set of character entries
     // for an array of characters. It emits a list
     // of values (with a comma suffix on each value)
     // from the starting value up to, but not including,
     // the ending value.

     #macro emitCharRange( start, last ): index;

          ?index:uns8 := start;
          #while( index < last )

               char( index ),
               ?index := index + 1;

          #endwhile 

     #endmacro; 

     readonly

    // toUC: 
    // The entries in this table contain the value of the index 
    // into the table except for indices #$61..#$7A (those entries 
    // whose indices are the ASCII codes for the lowercase 
    // characters). Those particular table entries contain the 
    // codes for the corresponding uppercase alphabetic characters. 

8 Note that on modern processors, using a lookup table is probably not the most efficient way to 
convert between alphabetic cases. However, this is just an example of filling in the table using 
the compile-time language. The principles are correct, even if the code is not exactly the best it 
could be.
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    // If you use an ASCII character as an index into this table and 
    // fetch the specified byte at that location, you will effectively 
    // translate lowercase characters to uppercase characters and 
    // leave all other characters unaffected.

    toUC: char[ 256 ] := 
          [  
              // The following compile-time program generates  
              // 255 entries (out of 256). For each entry  
              // it computes toupper( index ) where index is  
              // the character whose ASCII code is an index  
              // into the table.

              emitCharRange( 0, uns8('a') )

              // Okay, we've generated all the entries up to  
              // the start of the lowercase characters. Output  
              // uppercase characters in place of the lowercase
              // characters here.

              emitCharRange( uns8('A'), uns8('Z') + 1 )  

              // Okay, emit the nonalphabetic characters 
              // through to byte code #$FE:

              emitCharRange( uns8('z') + 1, $FF ) 

              // Here's the last entry in the table. This code 
              // handles the last entry specially because a comma 
              // does not follow this entry in the table.

              #$FF

         ]; 

     // The following table is very similar to the one above. 
     // You would use this one, however, to translate uppercase 
     // characters to lowercase while leaving everything else alone. 
     // See the comments in the previous table for more details.

     TOlc: char[ 256 ] := 
           [  

               emitCharRange( 0, uns8('A') ) 
               emitCharRange( uns8('a'), uns8('z') + 1 ) 
               emitCharRange( uns8('Z') + 1, $FF ) 

               #$FF
          ]; 
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begin demoCase;
     for( mov( uns32( ' ' ), eax ); eax <= $FF; inc( eax )) do

          mov( toUC[ eax ], bl );
          mov( TOlc[ eax ], bh );
          stdout.put
          (
               "toupper( '", 
                (type char al),
                "' ) = '", 
                (type char bl),
                "'  tolower( '", 
                (type char al),
                "' ) = '", 
                (type char bh),
                "'",
                nl 
          ); 

     endfor; 

end demoCase; 

Listing 9-9: Generating case-conversion tables with the compile-time language

One important thing to note about this example is the fact that a semicolon 
does not follow the emitCharRange macro invocations. Macro invocations do 
not require a closing semicolon. Often, it is legal to go ahead and add one 
to the end of the macro invocation because HLA is normally very forgiving 
about having extra semicolons inserted into the code. In this case, however, 
the extra semicolons are illegal because they would appear between adjacent 
entries in the TOlc and toUC tables. Keep in mind that macro invocations don’t 
require a semicolon, especially when using macro invocations as compile-
time procedures.

9.9.2 Unrolling Loops

In the chapter on low-level control structures, this text points out that you can 
unravel loops to improve the performance of certain assembly language pro-
grams. One problem with unraveling, or unrolling, loops is that you may need 
to do a lot of extra typing, especially if there are many loop iterations. Fortu-
nately, HLA’s compile-time language facilities, especially the #while and #for 
loops, come to the rescue. With a small amount of extra typing plus one copy 
of the loop body, you can unroll a loop as many times as you please.

If you simply want to repeat the same exact code sequence some number 
of times, unrolling the code is especially trivial. All you have to do is wrap an 
HLA #for..#endfor loop around the sequence and count off a val object the 
specified number of times. For example, if you wanted to print Hello World
10 times, you could encode this as follows.
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#for( count := 1 to 10 ) 
     stdout.put( "Hello World", nl ); 
#endfor 

Although the code above looks very similar to an HLA for loop you could 
write in your program, remember the fundamental difference: The preced-
ing code simply consists of 10 straight stdout.put calls in the program. Were 
you to encode this using an HLA for loop, there would be only one call to 
stdout.put and lots of additional logic to loop back and execute that single call 
10 times.

Unrolling loops becomes slightly more complicated if any instructions in 
that loop refer to the value of a loop control variable or another value, which 
changes with each iteration of the loop. A typical example is a loop that zeros 
the elements of an integer array:

mov( 0, eax );
for( mov( 0, ebx ); ebx < 20; inc( ebx )) do

   mov( eax, array[ ebx*4 ] ); 

endfor; 

In this code fragment the loop uses the value of the loop control variable 
(in EBX) to index into array. Simply copying mov( eax, array[ ebx*4 ]); 20 times 
is not the proper way to unroll this loop. You must substitute an appropriate 
constant index in the range 0..76 (the corresponding loop indices, times 4) in 
place of ebx*4 in this example. Correctly unrolling this loop should produce 
the following code sequence:

          mov( eax, array[ 0*4 ] ); 
          mov( eax, array[ 1*4 ] ); 
          mov( eax, array[ 2*4 ] ); 
          mov( eax, array[ 3*4 ] ); 
          mov( eax, array[ 4*4 ] ); 
          mov( eax, array[ 5*4 ] ); 
          mov( eax, array[ 6*4 ] ); 
          mov( eax, array[ 7*4 ] ); 
          mov( eax, array[ 8*4 ] ); 
          mov( eax, array[ 9*4 ] ); 
          mov( eax, array[ 10*4 ] ); 
          mov( eax, array[ 11*4 ] ); 
          mov( eax, array[ 12*4 ] ); 
          mov( eax, array[ 13*4 ] ); 
          mov( eax, array[ 14*4 ] ); 
          mov( eax, array[ 15*4 ] ); 
          mov( eax, array[ 16*4 ] ); 
          mov( eax, array[ 17*4 ] ); 
          mov( eax, array[ 18*4 ] ); 
          mov( eax, array[ 19*4 ] ); 
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You can easily do this using the following compile-time code sequence:

#for( iteration := 0 to 19 ) 
     mov( eax, array[ iteration*4 ] ); 
#endfor 

If the statements in a loop make use of the loop control variable’s value, 
it is only possible to unroll such loops if those values are known at compile-
time. You cannot unroll loops when user input (or other runtime information) 
controls the number of iterations.

9.10 Using Macros in Different Source Files

Unlike procedures, macros do not have a fixed piece of code at some address 
in memory. Therefore, you cannot create external macros and link them with 
other modules in your program. However, it is very easy to share macros with 
different source files: Just put the macros you wish to reuse in a header file 
and include that file using the #include directive. You can make the macro 
available to any source file you choose using this simple trick.

9.11 For More Information

Although this chapter has spent a considerable amount of time describing 
various features of HLA’s macro support and compile-time language features, 
the truth is this chapter has barely described what’s possible with HLA. 
Indeed, this chapter made the claim that HLA’s macro facilities are far more 
powerful than those provided by other assemblers; however, this chapter 
doesn’t do HLA’s macros justice. If you’ve ever used a language with decent 
macro facilities, you’re probably wondering, “What’s the big deal?” Well, the 
really sophisticated stuff is beyond the scope of this chapter. If you’re inter-
ested in learning more about HLA’s powerful macro facilities, please consult 
the HLA reference manual and the electronic editions of The Art of Assembly 
Language at http://webster.cs.ucr.edu/ or http://www.artofasm.com/. You’ll discover 
that it’s actually possible to create your own high-level languages using HLA’s 
macro facilities. However, this chapter does not assume the reader has the 
prerequisite knowledge to do that type of programming (yet!), so this chapter 
defers that discussion to the material that you’ll also find on the websites.
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10
B I T  M A N I P U L A T I O N

Manipulating bits in memory is, perhaps, 
the feature for which assembly language is 

most famous. Indeed, one of the reasons 
people claim that the C programming language 

is a medium-level language rather than a high-level
language is because of the vast array of bit-manipulation operators that C 
provides. Even with this wide array of bit-manipulation operations, the C pro-
gramming language doesn’t provide as complete a set of bit-manipulation 
operations as assembly language.

This chapter discusses how to manipulate strings of bits in memory and 
registers using 80x86 assembly language. It begins with a review of the bit-
manipulation instructions covered thus far, and it also introduces a few new 
instructions. This chapter reviews information on packing and unpacking bit 
strings in memory because this is the basis for many bit-manipulation opera-
tions. Finally, this chapter discusses several bit-centric algorithms and their 
implementation in assembly language.
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10.1 What Is Bit Data, Anyway?

Before describing how to manipulate bits, it might not be a bad idea to define 
exactly what this text means by bit data. Most readers probably assume that bit-
manipulation programs twiddle individual bits in memory. While programs 
that do this are definitely bit-manipulation programs, we’re not going to limit 
our definition to just those programs. For our purposes, bit manipulation 
refers to working with data types that consist of strings of bits that are noncon-
tiguous or are not a multiple of 8 bits long. Generally, such bit objects will not 
represent numeric integers, although we will not place this restriction on our 
bit strings.

A bit string is some contiguous sequence of one or more bits. Note that a 
bit string does not have to start or end at any special point. For example, a bit 
string could start in bit 7 of one byte in memory and continue through to bit 6 
of the next byte in memory. Likewise, a bit string could begin in bit 30 of EAX, 
consume the upper 2 bits of EAX, and then continue from bit 0 through bit 17 
of EBX. In memory, the bits must be physically contiguous (that is, the bit 
numbers are always increasing except when crossing a byte boundary, and at 
byte boundaries the memory address increases by 1 byte). In registers, if a bit 
string crosses a register boundary, the application defines the continuation 
register, but the bit string always continues in bit 0 of that second register.

A bit set is a collection of bits, not necessarily contiguous, within some 
larger data structure. For example, bits 0..3, 7, 12, 24, and 31 from some double 
word form a set of bits. Usually, we will limit bit sets to some reasonably sized 
container object (the data structure that encapsulates the bit set), but the defi-
nition doesn’t specifically limit the size. Normally, we will deal with bit sets 
that are part of an object no more than about 32 or 64 bits in size, though this 
limit is completely artificial. Note that bit strings are special cases of bit sets.

A bit run is a sequence of bits with all the same value. A run of zeros is a bit 
string that contains all zeros, and a run of ones is a bit string containing all ones. 
The first set bit in a bit string is the bit position of the first bit containing a 1 in 
a bit string, that is, the first 1 bit following a possible run of zeros. A similar 
definition exists for the first clear bit. The last set bit is the last bit position in a 
bit string that contains 1; the remainder of the string forms an uninterrupted 
run of zeros. A similar definition exists for the last clear bit.

A bit offset is the number of bits from some boundary position (usually a 
byte boundary) to the specified bit. As noted in Chapter 2, we number the bits 
starting from 0 at the boundary location.

A mask is a sequence of bits that we’ll use to manipulate certain bits in 
another value. For example, the bit string %0000_1111_0000, when it’s used 
with the and instruction, can mask away (clear) all the bits except bits 4 through 
7. Likewise, if you use the same value with the or instruction, it can force bits 4 
through 7 to ones in the destination operand. The term mask comes from the 
use of these bit strings with the and instruction; in those situations the 1 and 
0 bits behave like masking tape when you’re painting something; they pass 
through certain bits unchanged while masking out (clearing) the other bits.

Armed with these definitions, we’re ready to start manipulating some bits!
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10.2 Instructions That Manipulate Bits

Bit manipulation generally consists of six activities: setting bits, clearing bits, 
inverting bits, testing and comparing bits, extracting bits from a bit string, 
and inserting bits into a bit string. By now you should be familiar with most 
of the instructions we’ll use to perform these operations; their introduction 
started way back in the earliest chapters of this text. Nevertheless, it’s worthwhile 
to review the old instructions here as well as present the few bit-manipulation 
instructions we’ve yet to consider.

The most basic bit-manipulation instructions are the and, or, xor, not, test, 
and shift and rotate instructions. Indeed, on the earliest 80x86 processors, 
these were the only instructions available for bit manipulation. The following 
paragraphs review these instructions, concentrating on how you could use 
them to manipulate bits in memory or registers.

The and instruction provides the ability to strip away unwanted bits from 
some bit sequence, replacing the unwanted bits with zeros. This instruction is 
especially useful for isolating a bit string or a bit set that is merged with other, 
unrelated data (or, at least, data that is not part of the bit string or bit set). For 
example, suppose that a bit string consumes bit positions 12 through 24 of 
the EAX register; we can isolate this bit string by setting all other bits in EAX 
to 0 by using the following instruction:

               and( %1_1111_1111_1111_0000_0000_0000, eax ); 

Most programs use the and instruction to clear bits that are not part of 
the desired bit string. In theory, you could use the or instruction to mask all 
unwanted bits to ones rather than zeros, but later comparisons and operations 
are often easier if the unneeded bit positions contain 0 (see Figure 10-1).

Figure 10-1: Isolating a bit string using the and instruction

Once you’ve cleared the unneeded bits in a set of bits, you can often 
operate on the bit set in place. For example, to see if the string of bits in posi-
tions 12 through 24 of EAX contains $12F3, you could use the following code:

  and( %1_1111_1111_1111_0000_0000_0000, eax ); 
  cmp( eax, %1_0010_1111_0011_0000_0000_0000 ); 

X XX X X X X SSSSSSSSSSSSS X XX XX XX XX XX X

1 00000000 0000000000 0111111111111

00000000 0000000000 0SSSSSSSSSSSSS

Using a bit mask to isolate bits 12..24 in EAX

Top: Original Value in EAX    Middle: Bit Mask    Bottom: Final Value in EAX
Bi t  Manipula t ion 601



AAL2E_03.book  Page 602  Thursday, February 18, 2010  12:49 PM
Here’s another solution, using constant expressions, that’s a little easier 
to digest:

  and( %1_1111_1111_1111_0000_0000_0000, eax );
  cmp( eax, $12F3 << 12 );  // "<<12" shifts $12F3 to the left 12 bits.

Most of the time, however, you’ll want (or need) the bit string aligned 
with bit 0 in EAX prior to any operations you would want to perform. Of 
course, you can use the shr instruction to properly align the value after you’ve 
masked it, like this:

     and( %1_1111_1111_1111_0000_0000_0000, eax );
     shr( 12, eax );
     cmp( eax, $12F3 );
     << Other operations that require the bit string at bit #0 >>

Now that the bit string is aligned to bit 0, the constants and other values 
you use in conjunction with this value are easier to deal with.

You can also use the or instruction to mask unwanted bits. However, the 
or instruction does not let you clear bits; it allows you to set bits to ones. In 
some instances setting all the bits around your bit set may be desirable; most 
software, however, is easier to write if you clear the surrounding bits rather 
than set them.

The or instruction is especially useful for inserting a bit set into some 
other bit string. To do this, there are several steps you must go through:

Clear all the bits surrounding your bit set in the source operand.

Clear all the bits in the destination operand where you wish to insert the 
bit set.

or the bit set and destination operand together.

For example, suppose you have a value in bits 0..12 of EAX that you wish 
to insert into bits 12..24 of EBX without affecting any of the other bits in EBX. 
You would begin by stripping out bits 13 and above from EAX; then you would 
strip out bits 12..24 in EBX. Next, you would shift the bits in EAX so the bit 
string occupies bits 12..24 of EAX. Finally, you would or the value in EAX into 
EBX (see Figure 10-2), as shown here:

     and( $1FFF, eax );      // Strip all but bits 0..12 from eax.
     and( $FE00_0FFF, ebx ); // Clear bits 12..24 in ebx. 
     shl( 12, eax );         // Move bits 0..12 to 12..24 in eax. 
     or( eax, ebx );         // Merge the bits into ebx. 
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Figure 10-2: Inserting bits 0..12 of EAX into bits 12..24 of EBX

In this figure the desired bits (AAAAAAAAAAAAA) formed a bit string. 
However, this algorithm still works fine even if you’re manipulating a noncon-
tiguous set of bits. All you have to do is to create an appropriate bit mask you 
can use for anding that has ones in the appropriate places.

When working with bit masks, it is incredibly poor programming style to 
use literal numeric constants as in the past few examples. You should always 
create symbolic constants in the HLA const (or val) section for your bit masks. 

X YXXXXXX YYYYYYYYYYYY XXXXXXXXXXX X

EBX:

EAX:

Step 1: Strip the unneeded bits from EAX (the “U” bits).

A AAAAAAAAAAA AU UUUUUUUUUUUUUUUUUU

X YXXXXXX YYYYYYYYYYYY XXXXXXXXXXX X

EBX:

EAX:

Step 2: Mark out the destination bit field in EBX.

A AAAAAAAAAAA A0000000000000000000

EBX:

EAX:

Step 3: Shift the bits in EAX 12 positions to the left to align them with the destination bit field.

A AAAAAAAAAAA A0000000000000000000

XXXXXXX XXXXXXXXXXX X0 000000000000

EBX:

EAX:

Step 4: Merge the value in EAX with the value in EBX.

A AAAAAAAAAAA A 0000000000000000000

XXXXXXX XXXXXXXXXXX X0 000000000000

EBX:

EAX:

Final result is in EBX.

A AAAAAAAAAAA A 0000000000000000000

XXXXXXX XXXXXXXXXXX XA AAAAAAAAAAA A
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Combined with some constant expressions, you can produce code that is much 
easier to read and maintain. The current example code is more properly 
written as the following:

const 
     StartPosn := 12; 
     BitMask: dword := $1FFF << StartPosn; // Mask occupies bits 12..24. 
          . 
          .
          . 
          shl( StartPosn, eax );  // Move into position. 
          and( BitMask, eax );    // Strip all but bits 12..24 from eax. 
          and( !BitMask, ebx );   // Clear bits 12..24 in ebx. 
          or( eax, ebx );         // Merge the bits into ebx. 

Notice the use of the compile time not operator (!) to invert the bit mask 
in order to clear the bit positions in EBX where the code inserts the bits from 
EAX. This saves having to create another constant in the program that has to 
be changed anytime you modify the BitMask constant. Having to maintain two 
separate symbols whose values are dependent on one another is not a good 
thing in a program.

Of course, in addition to merging one bit set with another, the or instruc-
tion is also useful for forcing bits to 1 in a bit string. By setting various bits in 
a source operand to 1, you can force the corresponding bits in the destination 
operand to 1 by using the or instruction.

The xor instruction allows you to invert selected bits in a bit set. Although 
inverting bits isn’t as common as setting or clearing them, the xor instruction 
often appears in bit-manipulation programs. Of course, if you want to invert 
all the bits in some destination operand, the not instruction is probably more 
appropriate than the xor instruction; however, to invert selected bits while not 
affecting others, the xor is the way to go.

One interesting fact about xor’s operation is that it lets you manipulate 
known data in just about any way imaginable. For example, if you know that 
a field contains %1010, you can force that field to 0 by xoring it with %1010. 
Similarly, you can force it to %1111 by xoring it with %0101. Although this 
might seem like a waste, because you can easily force this 4-bit string to 0 or all 
ones using and/or, the xor instruction has two advantages: (1) You are not lim-
ited to forcing the field to all zeros or all ones; you can actually set these bits 
to any of the 16 valid combinations via xor; and (2) if you need to manipulate 
other bits in the destination operand at the same time, and/or may not be able 
to accommodate you. For example, suppose that you know that one field con-
tains %1010 that you want to force to 0 and another field contains %1000 and 
you wish to increment that field by 1 (i.e., set the field to %1001). You cannot 
accomplish both operations with a single and or or instruction, but you can do 
this with a single xor instruction; just xor the first field with %1010 and the 
second field with %0001. Remember, however, that this trick works only if you 
know the current value of a bit set within the destination operand. Of course, 
while you’re adjusting the values of bit fields containing known values, you 
can invert bits in other fields simultaneously.
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In addition to setting, clearing, and inverting bits in some destination 
operand, the and, or, and xor instructions also affect various condition codes in 
the flags register. These instructions affect the flags as follows:

These instructions always clear the carry and overflow flags.

These instructions set the sign flag if the result has a 1 in the H.O. bit; 
they clear it otherwise. That is, these instructions copy the H.O. bit of the 
result into the sign flag.

These instructions set/clear the zero flag if the result is 0.

These instructions set the parity flag if there is an even number of set 
bits in the L.O. byte of the destination operand; they clear the parity 
flag if there is an odd number of 1 bits in the L.O. byte of the destina-
tion operand.

The first thing to note is that these instructions always clear the carry and 
overflow flags. This means that you cannot expect the system to preserve the 
state of these two flags across the execution of these instructions. A very com-
mon mistake in many assembly language programs is the assumption that 
these instructions do not affect the carry flag. Many people will execute an 
instruction that sets/clears the carry flag, execute an and/or/xor instruction, 
and then attempt to test the state of the carry from the previous instruction. 
This simply will not work.

One of the more interesting aspects to these instructions is that they copy 
the H.O. bit of their result into the sign flag. This means that you can easily test 
the setting of the H.O. bit of the result by testing the sign flag (using sets/setns or 
js/jns instructions, or using the @s/@ns flags in a boolean expression). For this 
reason, many assembly language programmers will often place an important 
boolean variable in the H.O. bit of some operand so they can easily test the 
state of that bit using the sign flag after a logical operation.

We haven’t talked much about the parity flag in this text. We’re not going 
to get into a big discussion of this flag and what you use it for because the 
primary purpose for this flag has been taken over by hardware.1 However, 
because this is a chapter on bit manipulation, and parity computation is a bit-
manipulation operation, it seems only fitting to provide a brief discussion of 
the parity flag at this time.

Parity is a very simple error-detection scheme originally employed by tele-
graphs and other serial communication protocols. The idea was to count the 
number of set bits in a character and include an extra bit in the transmission 
to indicate whether that character contained an even or odd number of set 
bits. The receiving end of the transmission would also count the bits and verify 
that the extra “parity” bit indicated a successful transmission. We’re not going 
to explore the information-theory aspects of this error-checking scheme at 
this point other than to point out that the purpose of the parity flag is to help 
compute the value of this extra bit.

1 Serial communications chips and other communications hardware that use parity for error 
checking normally compute the parity in hardware; you don’t have to use software for this purpose.
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The 80x86 and, or, and xor instructions set the parity bit if the L.O. byte of 
their operand contains an even number of set bits. An important fact bears 
repeating here: The parity flag reflects only the number of set bits in the L.O. 
byte of the destination operand; it does not include the H.O. bytes in a word, 
double-word, or other-sized operand. The instruction set uses the L.O. byte 
only to compute the parity because communication programs that use parity 
are typically character-oriented transmission systems (there are better error-
checking schemes if you transmit more than 8 bits at a time).

The zero flag setting is one of the more important results the and/or/xor 
instructions produce. Indeed, programs reference this flag so often after the 
and instruction that Intel added a separate instruction, test, whose main pur-
pose is to logically and two results and set the flags without otherwise affecting 
either instruction operand.

There are three main uses of the zero flag after the execution of an and or 
test instruction: (1) checking to see if a particular bit in an operand is set, (2) 
checking to see if at least one of several bits in a bit set is 1, and (3) checking 
to see if an operand is 0. Using (1) is actually a special case of (2) in which the 
bit set contains only a single bit. We’ll explore each of these uses in the follow-
ing paragraphs.

A common use for the and instruction, and also the original reason for the 
inclusion of the test instruction in the 80x86 instruction set, is to test to see if 
a particular bit is set in a given operand. To perform this type of test, you 
would normally and/test a constant value containing a single set bit with the 
operand you wish to test. This clears all the other bits in the second operand, 
leaving a 0 in the bit position under test if the operand contains a 0 in that bit 
position. anding with a 1 leaves a 1 in that position if it originally contained a 
1. Because all of the other bits in the result are 0, the entire result will be 0 if 
that particular bit is 0; the entire result will be nonzero if that bit position con-
tains a 1. The 80x86 reflects this status in the zero flag (Z = 1 indicates a 0 bit; 
Z = 0 indicates a 1 bit). The following instruction sequence demonstrates how 
to test to see if bit 4 is set in EAX:

     test( %1_0000, eax ); // Check bit #4 to see if it is 0/1. 
     if( @nz ) then 

          << Do this if the bit is set. >> 

     else 

          << Do this if the bit is clear. >> 

     endif; 

You can also use the and/test instructions to see if any one of several bits 
is set. Simply supply a constant that has a 1 in all the positions you want to test 
(and zeros everywhere else). anding such a value with an unknown quantity 
will produce a nonzero value if one or more of the bits in the operand under 
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test contain a 1. The following example tests to see if the value in EAX con-
tains a 1 in bit positions 1, 2, 4, and 7:

     test( %1001_0110, eax ); 
     if( @nz ) then // At least one of the bits is set. 

          << Do whatever needs to be done if one of the bits is set. >> 

     endif; 

Note that you cannot use a single and or test instruction to see if all the 
corresponding bits in the bit set are equal to 1. To accomplish this, you must 
first mask out the bits that are not in the set and then compare the result 
against the mask itself. If the result is equal to the mask, then all the bits in the 
bit set contain ones. You must use the and instruction for this operation because 
the test instruction does not mask out any bits. The following example checks 
to see if all the bits in a bit set (bitMask) are equal to 1:

     and( bitMask, eax ); 
     cmp( eax, bitMask ); 
     if( @e ) then 

          // All the bit positions in eax corresponding to the set 
          // bits in bitMask are equal to 1 if we get here.

          << Do whatever needs to be done if the bits match. >> 

     endif; 

Of course, once we stick the cmp instruction in there, we don’t really have 
to check to see if all the bits in the bit set contain ones. We can check for any 
combination of values by specifying the appropriate value as the operand to 
the cmp instruction.

Note that the test/and instructions will set the zero flag in the above code 
sequences only if all the bits in EAX (or other destination operand) have zeros 
in the positions where ones appear in the constant operand. This suggests 
another way to check for all ones in the bit set: Invert the value in EAX prior 
to using the and or test instruction. Then if the zero flag is set, you know that 
there were all ones in the (original) bit set. For example:

not( eax ); 
 test( bitMask, eax ); 
 if( @z ) then 
   // At this point, eax contained all ones in the bit positions 
   // occupied by ones in the bitMask constant. 

   << Do whatever needs to be done at this point. >>

 endif; 
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The previous paragraphs all suggest that the bitMask (the source operand) 
is a constant. This was for purposes of example only. In fact, you can use a 
variable or other register here, if you prefer. Simply load that variable or 
register with the appropriate bit mask before you execute the test, and, or cmp 
instructions in the examples above.

Another set of instructions we’ve already seen that we can use to manipu-
late bits are the bit test instructions. These instructions include bt (bit test), 
bts (bit test and set), btc (bit test and complement), and btr (bit test and reset). 
We’ve used these instructions to manipulate bits in HLA character-set vari-
ables; we can also use them to manipulate bits in general. The btx instructions 
allow the following syntactical forms:

btx( BitNumber, BitsToTest ); 
btx( reg16, reg16 ); 
btx( reg32, reg32 ); 
btx( constant, reg16 ); 
btx( constant, reg32 ); 
btx( reg16, mem16 ); 
btx( reg32, mem32 ); 
btx( constant, mem16 ); 
btx( constant, mem32 ); 

The btx instruction’s first operand is a bit number that specifies which bit 
to check in the second operand. If the second operand is a register, then the 
first operand must contain a value between 0 and the size of the register (in bits) 
minus 1; because the 80x86’s largest registers are 32 bits, this value has the maxi-
mum value 31 (for 32-bit registers). If the second operand is a memory location, 
then the bit count is not limited to values in the range 0..31. If the first operand 
is a constant, it can be any 8-bit value in the range 0..255. If the first operand is 
a register, it has no limitation.

The bt instruction copies the specified bit from the second operand into 
the carry flag. For example, the bt( 8, eax ); instruction copies bit 8 of the 
EAX register into the carry flag. You can test the carry flag after this instruc-
tion to determine whether bit 8 was set or clear in EAX.

The bts, btc, and btr instructions manipulate the bit they test while they 
are testing it. These instructions may be slow (depending on the processor 
you’re using), and you should avoid them if performance is your primary con-
cern and you’re using an older CPU. If performance (versus convenience) is 
an issue, you should always try two different algorithms—one that uses these 
instructions, one that uses and/or instructions—and measure the performance 
difference; then choose the best of the two approaches.

The shift and rotate instructions are another group of instructions you 
can use to manipulate and test bits. These instructions move the H.O. (left 
shift/rotate) or L.O. (right shift/rotate) bits into the carry flag. Therefore, 
you can test the carry flag after you execute one of these instructions to deter-
mine the original setting of the operand’s H.O. or L.O. bit. The shift and 
rotate instructions are invaluable for aligning bit strings and packing and 
unpacking data. Chapter 2 has several examples of this, and some earlier 
examples in this chapter also use the shift instructions for this purpose.
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10.3 The Carry Flag as a Bit Accumulator

The btx, shift, and rotate instructions set or clear the carry flag depending on 
the operation and selected bit. Because these instructions place their “bit result” 
in the carry flag, it is often convenient to think of the carry flag as a 1-bit register 
or accumulator for bit operations. In this section we will explore some of the 
operations possible with this bit result in the carry flag.

Instructions that will be useful for manipulating bit results in the carry 
flag are those that use the carry flag as some sort of input value. The following 
is a sampling of such instructions:

adc, sbb

rcl, rcr

cmc (We’ll throw in clc and stc even though they don’t use the carry as 
input.)

jc, jnc

setc, setnc

The adc and sbb instructions add or subtract their operands along with 
the carry flag. So if you’ve computed some bit result into the carry flag, you 
can figure that result into an addition or subtraction using these instructions.

To merge a bit result into the carry flag, you most often use the rotate 
through carry instructions (rcl and rcr). These instructions move the carry flag 
into the L.O. or H.O. bits of their destination operand. These instructions are 
very useful for packing a set of bit results into a byte, word, or double-word value.

The cmc (complement carry) instruction lets you easily invert the result of 
some bit operation. You can also use the clc and stc instructions to initialize 
the carry flag prior to some string of bit operations involving the carry flag.

Instructions that test the carry flag are going to be very popular after a cal-
culation that leaves a bit result in the carry flag. The jc, jnc, setc, and setnc 
instructions are quite useful here. You can also use the HLA @c and @nc oper-
ands in a boolean expression to test the result in the carry flag. 

If you have a sequence of bit calculations and you would like to test to see 
if the calculations produce a specific set of 1-bit results, the easiest way to do 
this is to clear a register or memory location and use the rcl or rcr instruction 
to shift each result into that location. Once the bit operations are complete, 
then you can compare the register or memory location holding the result 
against a constant value. If you want to test a sequence of results involving 
conjunction and disjunction (that is, strings of results involving ands and ors), 
then you could use the setc and setnc instruction to set a register to 0 or 1 
and then use the and/or instructions to merge the results.

10.4 Packing and Unpacking Bit Strings

A common bit operation is inserting a bit string into an operand or extracting 
a bit string from an operand. Chapter 2 provided simple examples of packing 
and unpacking such data; now it is time to formally describe how to do this.
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For our purposes we will assume that we’re dealing with bit strings—that 
is, a contiguous sequence of bits. In Section 10.11 we’ll look at how to extract 
and insert bit sets. Another simplification we’ll make is that the bit string com-
pletely fits within a byte, word, or double-word operand. Large bit strings that 
cross object boundaries require additional processing; a discussion of bit strings 
that cross double-word boundaries appears later in this section.

A bit string has two attributes that we must consider when packing and 
unpacking that bit string: a starting bit position and a length. The starting bit 
position is the bit number of the L.O. bit of the string in the larger operand. 
The length is the number of bits in the operand. To insert (pack) data into a 
destination operand, you start with a bit string of the appropriate length that 
is right justified (that is, starts in bit position 0) and is zero extended to 8, 16, 
or 32 bits. The task is to insert this data at the appropriate starting position in 
some other operand that is 8-, 16-, or 32-bits wide. There is no guarantee that 
the destination bit positions contain any particular value.

The first two steps (which can occur in any order) are to clear out the cor-
responding bits in the destination operand and to shift (a copy of) the bit 
string so that the L.O. bit begins at the appropriate bit position. The third 
step is to or the shifted result with the destination operand. This inserts the bit 
string into the destination operand (see Figure 10-3).

Figure 10-3: Inserting a bit string into a destination operand 

XXXXXXX DDDD XXXX X

000000000000 Y YY Y

Destination:

Source:

Step 1: Insert YYYY into the positions occupied by DDDD in the destination operand.
Begin by shifting the source operand to the left five bits.

XXXXXXX DDDD XXXX X

000000000000 Y YY Y

Destination:

Source:

Step 2: Clear out the destination bits using the AND instruction.

000000000000 Y YY Y

Destination:

Source:

Step 3: OR the two values together.

XXXXXXX XXXX X0000

000000000000 Y YY Y

Destination:

Source:

Final result appears in the destination operand.

XXXXXXX XXXX XY YY Y
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It takes only three instructions to insert a bit string of known length into 
a destination operand. The following three instructions demonstrate how to 
handle the insertion operation in Figure 10-3. These instructions assume that 
the source operand is in BX and the destination operand is AX:

     shl( 5, bx ); 
     and( %111111000011111, ax ); 
     or( bx, ax ); 

If the length and the starting position aren’t known when you’re writing 
the program (that is, you have to calculate them at runtime), then bit-string 
insertion is a little more difficult. However, with the use of a lookup table it’s 
still an easy operation to accomplish. Let’s assume that we have two 8-bit values: a 
starting bit position for the field we’re inserting and a nonzero 8-bit length 
value. Also assume that the source operand is in EBX and the destination 
operand is in EAX. The code to insert one operand into another could take 
the following form:

readonly 
     // The index into the following table specifies the length 
     // of the bit string at each position: 

     MaskByLen: dword[ 33 ] := 
           [ 
               0,  $1,  $3,  $7, $f, $1f, $3f, $7f, 
               $ff, $1ff, $3ff, $7ff, $fff, $1fff, $3fff, $7fff, $ffff, 
               $1_ffff, $3_ffff, $7_ffff, $f_ffff, 
               $1f_ffff, $3f_ffff, $7f_ffff, $ff_ffff, 
               $1ff_ffff, $3ff_ffff, $7ff_ffff, $fff_ffff, 
               $1fff_ffff, $3fff_ffff, $7fff_ffff, $ffff_ffff
          ];
               .
               .
               .
     movzx( Length, edx );
     mov( MaskByLen[ edx*4 ], edx );
     mov( StartingPosition, cl );
     shl( cl, edx );
     not( edx );
     shl( cl, ebx );
     and( edx, eax ); 
     or( ebx, eax ); 

Each entry in the MaskByLen table contains the number of 1 bits specified 
by the index into the table. Using the Length value as an index into this 
table fetches a value that has as many 1 bits as the Length value. The code 
above fetches an appropriate mask, shifts it to the left so that the L.O. bit 
of this run of ones matches the starting position of the field into which we 
want to insert the data, and then inverts the mask and uses the inverted 
value to clear the appropriate bits in the destination operand.
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Extracting a bit string from a larger operand is just as easy as inserting a 
bit string into some larger operand. All you have to do is mask out the unwanted 
bits and then shift the result until the L.O. bit of the bit string is in bit 0 of the 
destination operand. For example, to extract the 4-bit field starting at bit posi-
tion 5 in EBX and leave the result in EAX, you could use the following code:

     mov( ebx, eax );            // Copy data to destination. 
     and( %1_1110_0000, eax );   // Strip unwanted bits. 
     shr( 5, eax );              // Right justify to bit position 0. 

If you do not know the bit string’s length and starting position when 
you’re writing the program, you can still extract the desired bit string. The 
code is very similar to insertion (though a little simpler). Assuming you have 
the Length and StartingPosition values we used when inserting a bit string, you 
can extract the corresponding bit string using the following code (assuming 
source = EBX and dest = EAX):

     movzx( Length, edx );
     mov( MaskByLen[ edx*4 ], edx );
     mov( StartingPosition, cl );
     mov( ebx, eax );
     shr( cl, eax );
     and( edx, eax );

The examples up to this point all assume that the bit string appears com-
pletely within a double-word (or smaller) object. This will always be the case if 
the bit string is less than or equal to 32 bits in length. However, if the length 
of the bit string plus its starting position (modulo 8) within an object is greater 
than 32, then the bit string will cross a double-word boundary within the object. 
Extracting such bit strings requires up to three operations: one operation to 
extract the start of the bit string (up to the first double-word boundary), an 
operation that copies whole double words (assuming the bit string is so long 
that it consumes several double words), and a final operation that copies 
leftover bits in the last double word at the end of the bit string. The actual 
implementation of this operation is left as an exercise for the reader.

10.5 Coalescing Bit Sets and Distributing Bit Strings

Inserting and extracting bit sets is little different than inserting and extract bit 
strings if the “shape” of the bit set you’re inserting (or resulting bit set you’re 
extracting) is the same as the bit set in the main object. The shape of a bit set 
is the distribution of the bits in the set, ignoring the starting bit position of 
the set. So a bit set that includes bits 0, 4, 5, 6, and 7 has the same shape as a 
bit set that includes bits 12, 16, 17, 18, and 19 because the distribution of the 
bits is the same. The code to insert or extract this bit set is nearly identical to 
that of the previous section; the only difference is the mask value you use. For 
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example, to insert this bit set starting at bit 0 in EAX into the corresponding 
bit set starting at position 12 in EBX, you could use the following code:

 and( !%1111_0001_0000_0000_0000, ebx );// Mask out destination bits. 
 shl( 12, eax );                        // Move source bits into position. 
 or( eax, ebx );                        // Merge the bit set into ebx. 

However, suppose you have 5 bits in bit positions 0 through 4 in EAX and 
you want to merge them into bits 12, 16, 17, 18, and 19 in EBX. Somehow you 
have to distribute the bits in EAX prior to logically oring the values into EBX. 
Given the fact that this particular bit set has only two runs of 1 bits, the pro-
cess is somewhat simplified. The following code achieves this in a somewhat 
sneaky fashion:

 and( !%1111_0001_0000_0000_0000, ebx );
 shl( 3, eax );   // Spread out the bits: 1-4 goes to 4-7 and 0 to 3.
 btr( 3, eax );   // Bit 3->carry and then clear bit 3.
 rcl( 12, eax );  // Shift in carry and put bits into final position.
 or( eax, ebx );  // Merge the bit set into ebx.

This trick with the btr (bit test and reset) instruction worked well because 
we had only 1 bit out of place in the original source operand. Alas, had the 
bits all been in the wrong location relative to one another, this scheme might 
not have worked quite as well. We’ll see a more general solution in just a 
moment.

Extracting this bit set and collecting (“coalescing”) the bits into a bit string 
is not quite as easy. However, there are still some sneaky tricks we can pull. 
Consider the following code that extracts the bit set from EBX and places the 
result into bits 0..4 of EAX:

 mov( ebx, eax ); 
 and( %1111_0001_0000_0000_0000, eax );  // Strip unwanted bits. 
 shr( 5, eax );                          // Put bit 12 into bit 7, etc. 
 shr( 3, ah );                           // Move bits 11..14 to 8..11. 
 shr( 7, eax );                          // Move down to bit 0. 

This code moves (original) bit 12 into bit position 7, the H.O. bit of AL. 
At the same time it moves bits 16..19 down to bits 11..14 (bits 3..6 of AH). Then 
the code shifts bits 3..6 in AH down to bit 0. This positions the H.O. bits of the 
bit set so that they are adjacent to the bit left in AL. Finally, the code shifts all 
the bits down to bit 0. Again, this is not a general solution, but it shows a clever 
way to attack this problem if you think about it carefully.

The problem with the coalescing and distribution algorithms above is 
that they are not general. They apply only to their specific bit sets. Usually 
specific solutions will provide the most efficient solution. A generalized solu-
tion (perhaps one that lets you specify a mask, and the code distributes or 
coalesces the bits accordingly) is going to be a bit more difficult. The following 
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code demonstrates how to distribute the bits in a bit string according to the 
values in a bit mask:

// eax- Originally contains some value into which we 
//        insert bits from ebx.
// ebx- L.O. bits contain the values to insert into eax.
// edx- Bitmap with ones indicating the bit positions in eax to insert.
// cl-  Scratchpad register.

          mov( 32, cl ); // Count number of bits we rotate. 
          jmp DistLoop; 

CopyToEAX:rcr( 1, ebx );   // Don't use SHR here, must preserve Z-flag. 
          rcr( 1, eax ); 
          jz  Done; 
DistLoop: dec( cl ); 
          shr( 1, edx ); 
          jc CopyToEAX; 
          ror( 1, eax );   // Keep current bit in eax. 
          jnz DistLoop; 

Done:     ror( cl, eax );  // Reposition remaining bits. 

In the code above, if we load EDX with %1100_1001, then this code will 
copy bits 0..3 to bits 0, 3, 6, and 7 in EAX. Notice the short-circuit test that 
checks to see if we’ve exhausted the values in EDX (by checking for a 0 in 
EDX). Note that the rotate instructions do not affect the zero flag but the 
shift instructions do. Hence the shr instruction above will set the zero flag 
when there are no more bits to distribute (when EDX becomes 0).

The general algorithm for coalescing bits is a tad more efficient than dis-
tribution. Here’s the code that will extract bits from EBX via the bit mask in 
EDX and leave the result in EAX:

// eax- Destination register.
// ebx- Source register.
// edx- Bitmap with ones representing bits to copy to eax.
// ebx and edx are not preserved.
     sub( eax, eax );  // Clear destination register. 
     jmp ShiftLoop; 

ShiftInEAX:  
     rcl( 1, ebx );   // Up here we need to copy a bit from 
     rcl( 1, eax );   // ebx to eax. 
ShiftLoop:   
     shl( 1, edx );   // Check mask to see if we need to copy a bit. 
     jc ShiftInEAX;   // If carry set, go copy the bit. 
     rcl( 1, ebx );   // Current bit is uninteresting, skip it.
     jnz ShiftLoop;   // Repeat as long as there are bits in edx. 

This sequence takes advantage of a sneaky trait of the shift and rotate instruc-
tions: the shift instructions affect the zero flag, whereas the rotate instructions do 
not. Therefore, the shl( 1, edx ); instruction sets the zero flag when EDX 
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becomes 0 (after the shift). If the carry flag was also set, the code will make 
one additional pass through the loop in order to shift a bit into EAX, but the 
next time the code shifts EDX 1 bit to the left, EDX is still 0 and so the carry 
will be clear. On this iteration, the code falls out of the loop.

Another way to coalesce bits is via table lookup. By grabbing a byte of data 
at a time (so your tables don’t get too large), you can use that byte’s value as 
an index into a lookup table that coalesces all the bits down to bit 0. Finally, you 
can merge the bits at the low end of each byte together. This might produce a 
more efficient coalescing algorithm in certain cases. The implementation is 
left to the reader.

10.6 Packed Arrays of Bit Strings

Although it is far more efficient to create arrays whose elements have an inte-
gral number of bytes, it is quite possible to create arrays of elements whose 
size is not a multiple of 8 bits. The drawback is that calculating the “address” 
of an array element and manipulating that array element involves a lot of 
extra work. In this section we’ll take a look at a few examples of packing and 
unpacking array elements in an array whose elements are an arbitrary number 
of bits long.

Before proceeding, it’s probably worthwhile to discuss why you would 
want to bother with arrays of bit objects. The answer is simple: space. If an 
object consumes only 3 bits, you can get 2.67 times as many elements into the 
same space if you pack the data rather than allocating a whole byte for each 
object. For very large arrays, this can be a substantial savings. Of course, the 
cost of this space savings is speed: You have to execute extra instructions to 
pack and unpack the data, thus slowing down access to the data.

The calculation for locating the bit offset of an array element in a large 
block of bits is almost identical to the standard array access; it is:

Element_Address_in_bits = 
        Base_address_in_bits + index * element_size_in_bits 

Once you calculate the element’s address in bits, you need to convert it to 
a byte address (because we have to use byte addresses when accessing mem-
ory) and extract the specified element. Because the base address of an array 
element (almost) always starts on a byte boundary, we can use the following 
equations to simplify this task:

Byte_of_1st_bit = 
    Base_Address + (index * element_size_in_bits )/8
 
Offset_to_1st_bit = 
    (index * element_size_in_bits) % 8 (note "%" = MOD) 
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For example, suppose we have an array of 200 3-bit objects that we declare 
as follows:

static
     AO3Bobjects: byte[ int32((200*3)/8 + 2) ];  // "+2" handles

// truncation.

The constant expression in the dimension above reserves space for enough 
bytes to hold 600 bits (200 elements, each 3 bits long). As the comment notes, 
the expression adds 2 extra bytes at the end to ensure we don’t lose any odd 
bits (that won’t happen in this example because 600 is evenly divisible by 8, 
but in general you can’t count on this; one extra byte usually won’t hurt things) 
and also to allow us to access 1 byte beyond the end of the array (when storing 
data to the array).

Now suppose you want to access the ith 3-bit element of this array. You 
can extract these bits by using the following code:

// Extract the ith group of 3 bits in AO3Bobjects 
// and leave this value in eax.
 
    sub( ecx, ecx );         // Put i/8 remainder here.
    mov( i, eax );           // Get the index into the array.
    lea( eax, [eax+eax*2] ); // eax := eax * 3 (3 bits/element).
    shrd( 3, eax, ecx );     // eax/8 -> eax and eax mod 8 -> ecx 
                             // (H.O. bits).
    shr( 3, eax );           // Remember, shrd doesn't modify eax.
    rol( 3, ecx );           // Put remainder into L.O. 3 
                             // bits of ecx.

    // Okay, fetch the word containing the 3 bits we want to 
    // extract. We have to fetch a word because the last bit or two 
    // could wind up crossing the byte boundary (i.e., bit offset 6 
    // and 7 in the byte).

mov( (type word AO3Bobjects[eax]), ax );
shr( cl, ax ); // Move bits down to bit 0.
and( %111, eax ); // Remove the other bits.

Inserting an element into the array is a bit more difficult. In addition to 
computing the base address and bit offset of the array element, you also have 
to create a mask to clear out the bits in the destination where you’re going to 
insert the new data. The following code inserts the L.O. 3 bits of EAX into the 
ith element of the AO3Bobjects array.

// Insert the L.O. 3 bits of ax into the ith element 
// of AO3Bobjects: 

readonly 
     Masks: 
        word[8] := 
        [ 
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            !%0111,             !%0011_1000,    
            !%0001_1100_0000,   !%1110,
            !%0111_0000,        !%0011_1000_0000,   
            !%0001_1100,        !%1110_0000  
        ];
                    .
                    .
                    .

        mov( i, ebx );              // Get the index into the array.
        mov( ebx, ecx );            // Use L.O. 3 bits as index
        and( %111, ecx );           // into Masks table.
        mov( Masks[ecx*2], dx );    // Get bit mask.
        
        // Convert index into the array into a bit index.
        // To do this, multiply the index by 3:
        
        lea( ebx, [ebx+ebx*2]);
        
        // Divide by 8 to get the byte index into ebx
        // and the bit index (the remainder) into ecx:
        
        shrd( 3,ebx, ecx );
        shr( 3, ebx );
        rol( 3, ecx );
     

// Grab the bits and clear those we're inserting.

and( (type word AO3Bobjects[ ebx ]), dx );  

// Put our 3 bits in their proper location.

shl( cl, ax );

// Merge bits into destination.
                      

or( ax, dx ); 

// Store back into memory.
 

mov( dx, (type word AO3Bobjects[ ebx ]) );   

Notice the use of a lookup table to generate the masks needed to clear 
out the appropriate position in the array. Each element of this array contains 
all ones except for three zeros in the position we need to clear for a given bit 
offset (note the use of the ! operator to invert the constants in the table).

10.7 Searching for a Bit

A very common bit operation is to locate the end of some run of bits. A special 
case of this operation is to locate the first (or last) set or clear bit in a 16- or 
32-bit value. In this section we’ll explore ways to accomplish this.
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Before describing how to search for the first or last bit of a given value, 
perhaps it’s wise to discuss exactly what the terms first and last mean in this 
context. The term first set bit means the first bit in a value, scanning from bit 0 
toward the high-order bit, which contains a 1. A similar definition exists for 
the first clear bit. The last set bit is the first bit in a value, scanning from the high-
order bit toward bit 0, which contains a 1. A similar definition exists for the 
last clear bit.

One obvious way to scan for the first or last bit is to use a shift instruction 
in a loop and count the number of iterations before you shift out a 1 (or 0) 
into the carry flag. The number of iterations specifies the position. Here’s 
some sample code that checks for the first set bit in EAX and returns that bit 
position in ECX:

          mov( -32, ecx );  // Count off the bit positions in ecx. 
TstLp:    shr( 1, eax );    // Check to see if current bit 
                            // position contains a 1.
          jc Done;          // Exit loop if it does. 
          inc( ecx );       // Bump up our bit counter by 1. 
          jnz TstLp;        // Exit if we execute this loop 32 times. 

Done:     add( 32, cl );    // Adjust loop counter so it holds 
                            // the bit position. 

// At this point, ecx contains the bit position of the first set bit. 
// ecx contains 32 if eax originally contained 0 (no set bits). 

The only thing tricky about this code is the fact that it runs the loop 
counter from −32 up to 0 rather than 32 down to 0. This makes it slightly 
easier to calculate the bit position once the loop terminates.

The drawback to this particular loop is that it’s expensive. This loop 
repeats as many as 32 times depending on the original value in EAX. If the 
values you’re checking often have lots of zeros in the L.O. bits of EAX, this 
code runs rather slowly.

Searching for the first (or last) set bit is such a common operation that 
Intel added a couple of instructions on the 80386 specifically to accelerate 
this process. These instructions are bsf (bit scan forward) and bsr (bit scan 
reverse). Their syntax is as follows:

          bsr( source, destReg ); 
          bsf( source, destReg ); 

The source and destinations operands must be the same size, and they 
must both be 16- or 32-bit objects. The destination operand has to be a regis-
ter. The source operand can be a register or a memory location.

The bsf instruction scans for the first set bit (starting from bit position 0) 
in the source operand. The bsr instruction scans for the last set bit in the 
source operand by scanning from the H.O. bit toward the L.O. bit. If these 
instructions find a bit that is set in the source operand, then they clear the 
zero flag and put the bit position into the destination register. If the source 
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register contains 0 (that is, there are no set bits), then these instructions set 
the zero flag and leave an indeterminate value in the destination register. 
Note that you should test the zero flag immediately after the execution of these 
instructions to validate the destination register’s value. Here’s an example:

      mov( SomeValue, ebx );  // Value whose bits we want to check. 
      bsf( ebx, eax );        // Put position of first set bit in eax. 
      jz NoBitsSet;           // Branch if SomeValue contains 0. 
      mov( eax, FirstBit );   // Save location of first set bit.
                .
                .
                . 

You use the bsr instruction in an identical fashion except that it computes 
the bit position of the last set bit in an operand (that is, the first set bit it finds 
when scanning from the H.O. bit toward the L.O. bit).

The 80x86 CPUs do not provide instructions to locate the first bit contain-
ing a 0. However, you can easily scan for a 0 bit by first inverting the source 
operand (or a copy of the source operand if you must preserve the source oper-
and’s value) and then search for the first 1 bit; this corresponds to the first 
0 bit in the original operand value.

The bsf and bsr instructions are very complex 80x86 instructions. There-
fore, these instructions may be slower than other instructions. Indeed, in some 
circumstances it may be faster to locate the first set bit using discrete instruc-
tions. However, because the execution time of these instructions varies widely 
from CPU to CPU, you should test the performance of these instructions 
prior to using them in time-critical code.

Note that the bsf and bsr instructions do not affect the source operand. 
A common operation is to extract the first (or last) set bit you find in some 
operand. That is, you might want to clear the bit once you find it. If the source 
operand is a register (or you can easily move it into a register), then you can 
use the btr (or btc) instruction to clear the bit once you’ve found it. Here’s 
some code that achieves this result:

          bsf( eax, ecx );       // Locate first set bit in eax. 
          if( @nz ) then         // If we found a bit, clear it. 

               btr( ecx, eax );  // Clear the bit we just found. 

          endif; 

At the end of this sequence, the zero flag indicates whether we found a bit 
(note that btr does not affect the zero flag). Alternately, you could add an else 
section to the if statement above that handles the case when the source oper-
and (EAX) contains 0 at the beginning of this instruction sequence.

Because the bsf and bsr instructions support only 16- and 32-bit operands, 
you will have to compute the first bit position of an 8-bit operand a little dif-
ferently. There are a couple of reasonable approaches. First, of course, you 
can usually zero extend an 8-bit operand to 16 or 32 bits and then use the bsf 
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or bsr instruction on this operand. Another alternative is to create a lookup 
table where each entry in the table contains the number of bits in the value 
you use as an index into the table; then you can use the xlat instruction to 
“compute” the first bit position in the value (note that you will have to handle 
the value 0 as a special case). Another solution is to use the shift algorithm 
appearing at the beginning of this section; for an 8-bit operand, this is not an 
entirely inefficient solution.

One interesting use of the bsf and bsr instructions is to fill in a character 
set with all the values from the lowest valued character in the set through the 
highest valued character. For example, suppose a character set contains the 
values {'A', 'M', 'a'..'n', 'z'}; if we filled in the gaps in this character set we 
would have the values {'A'..'z'}. To compute this new set we can use bsf to 
determine the ASCII code of the first character in the set and bsr to deter-
mine the ASCII code of the last character in the set. After doing this, we can 
feed those two ASCII codes to the HLA Standard Library cs.rangeChar func-
tion to compute the new set.

You can also use the bsf and bsr instructions to determine the size of a run 
of bits, assuming that you have a single run of bits in your operand. Simply 
locate the first and last bits in the run (as above) and then compute the dif-
ference (plus 1) of the two values. Of course, this scheme is valid only if there 
are no intervening zeros between the first and last set bits in the value.

10.8 Counting Bits

The last example in the previous section demonstrates a specific case of a very 
general problem: counting bits. Unfortunately, that example has a severe lim-
itation: It only counts a single run of 1 bits appearing in the source operand. 
This section discusses a more general solution to this problem.

Hardly a week goes by that someone doesn’t ask on one of the Internet 
newsgroups how to count the number of bits in a register operand. This is a 
common request, undoubtedly, because many assembly language course 
instructors assign this task as a project to their students as a way to teach them 
about the shift and rotate instructions. Undoubtedly, the solution these 
instructors expect is something like the following:

// BitCount1:
//
// Counts the bits in the eax register, returning the count in ebx.

          mov( 32, cl );   // Count the 32 bits in eax. 
          sub( ebx, ebx ); // Accumulate the count here. 
CntLoop:  shr( 1, eax );   // Shift next bit out of eax and into Carry. 
          adc( 0, bl );    // Add the carry into the ebx register. 
          dec( cl );       // Repeat 32 times. 
          jnz CntLoop; 

The “trick” worth noting here is that this code uses the adc instruction to 
add the value of the carry flag into the BL register. Because the count is going 
to be less than 32, the result will fit comfortably into BL.
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Tricky code or not, this instruction sequence is not particularly fast. As 
you can tell with just a small amount of analysis, the loop above always executes 
32 times, so this code sequence executes 130 instructions (4 instructions per 
iteration plus 2 extra instructions). You might ask if there is a more efficient 
solution; the answer is yes. The following code, taken from the AMD Athlon 
optimization guide, provides a faster solution (see the comments for a descrip-
tion of the algorithm):

     // bitCount
     //
     //  Counts the number of "1" bits in a dword value.
     //  This function returns the dword count value in eax.

     procedure bitCount( BitsToCnt:dword ); @nodisplay;

     const  
          EveryOtherBit        := $5555_5555;  
          EveryAlternatePair   := $3333_3333;  
          EvenNibbles          := $0f0f_0f0f;

     begin bitCount;

          push( edx );
          mov( BitsToCnt, eax );
          mov( eax, edx );

          // Compute sum of each pair of bits
          // in eax. The algorithm treats
          // each pair of bits in eax as a 
          // 2-bit number and calculates the
          // number of bits as follows (description
          // is for bits 0 and 1, it generalizes
          // to each pair):
          //
          // edx =   Bit1 Bit0
          // eax = 0 Bit1
          //
          // edx-eax =   00 if both bits were 0.
          // 01 if Bit0=1 and Bit1=0.
          // 01 if Bit0=0 and Bit1=1.
          // 10 if Bit0=1 and Bit1=1.
          //
          // Note that the result is left in edx.

          shr( 1, eax );
          and( EveryOtherBit, eax );
          sub( eax, edx );

          // Now sum up the groups of 2 bits to
          // produces sums of 4 bits. This works
          // as follows:
          //
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          // edx = bits 2,3, 6,7, 10,11, 14,15, ..., 30,31
          // in bit positions 0,1, 4,5, ..., 28,29 with
          // zeros in the other positions.
          //
          // eax = bits 0,1, 4,5, 8,9, ... 28,29 with zeros
          // in the other positions.
          //
          // edx+eax produces the sums of these pairs of bits.

          // The sums consume bits 0,1,2, 4,5,6, 8,9,10, ... 28,29,30
          // in eax with the remaining bits all containing 0.

          mov( edx, eax );
          shr( 2, edx );
          and( EveryAlternatePair, eax );
          and( EveryAlternatePair, edx );
          add( edx, eax );

          // Now compute the sums of the even and odd nibbles in the
          // number. Because bits 3, 7, 11, etc. in eax all contain
          // 0 from the above calculation, we don't need to AND
          // anything first, just shift and add the two values.
          // This computes the sum of the bits in the 4 bytes
          // as four separate values in eax (al contains number of
          // bits in original al, ah contains number of bits in
          // original ah, etc.)

          mov( eax, edx );
          shr( 4, eax );
          add( edx, eax );
          and( EvenNibbles, eax );

          // Now for the tricky part.
          // We want to compute the sum of the 4 bytes
          // and return the result in eax. The following
          // multiplication achieves this. It works
          // as follows:
          // (1) the $01 component leaves bits 24..31
          //     in bits 24..31.
          //
          // (2) the $100 component adds bits 17..23
          //     into bits 24..31.
          //
          // (3) the $1_0000 component adds bits 8..15
          //     into bits 24..31.
          //
          // (4) the $1000_0000 component adds bits 0..7
          //     into bits 24..31.
          //
          // Bits 0..23 are filled with garbage, but bits
          // 24..31 contain the actual sum of the bits
          // in eax's original value. The shr instruction
          // moves this value into bits 0..7 and zeros
          // out the H.O. bits of eax.
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          intmul( $0101_0101, eax );
          shr( 24, eax );

          pop( edx ); 

     end bitCount; 

10.9 Reversing a Bit String

Another common programming project instructors assign, and a useful func-
tion in its own right, is a program that reverses the bits in an operand. That is, 
it swaps the L.O. bit with the H.O. bit, bit 1 with the next-to-H.O. bit, and so 
on. The typical solution an instructor probably expects for this assignment is 
the following:

// Reverse the 32-bits in eax, leaving the result in ebx: 

               mov( 32, cl ); 
RvsLoop:       shr( 1, eax );  // Move current bit in eax to 
                               // the carry flag. 
               rcl( 1, ebx );  // Shift the bit back into 
                               // ebx, backwards. 
               dec( cl ); 
               jnz RvsLoop; 

As with the previous examples, this code suffers from the fact that it repeats 
the loop 32 times, for a grand total of 129 instructions. By unrolling the loop 
you can get it down to 64 instructions, but this is still somewhat expensive.

As usual, the best solution to an optimization problem is often a better 
algorithm rather than attempting to tweak your code by trying to choose 
faster instructions to speed up some code. However, a little intelligence goes 
a long way when manipulating bits. In the last section, for example, we were 
able to speed up counting the bits in a string by substituting a more complex 
algorithm for the simplistic “shift and count” algorithm. In the example 
above, we are once again faced with a very simple algorithm with a loop that 
repeats for 1 bit in each number. The question is “Can we discover an algo-
rithm that doesn’t execute 129 instructions to reverse the bits in a 32-bit 
register?” The answer is yes, and the trick is to do as much work as possible in 
parallel.

Suppose that all we wanted to do was swap the even and odd bits in a 32-bit 
value. We can easily swap the even and odd bits in EAX using the following code:

     mov( eax, edx );         // Make a copy of the odd bits. 
     shr( 1, eax );           // Move even bits to the odd positions. 
     and( $5555_5555, edx );  // Isolate the odd bits. 
     and( $5555_5555, eax );  // Isolate the even bits. 
     shl( 1, edx );           // Move odd bits to even positions. 
     or( edx, eax );          // Merge the bits and complete the swap. 
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Of course, swapping the even and odd bits, while somewhat interesting, 
does not solve our larger problem of reversing all the bits in the number. But 
it does take us part of the way there. For example, if after executing the pre-
ceding code sequence you swap adjacent pairs of bits, you’ve managed to 
swap the bits in all the nibbles in the 32-bit value. Swapping adjacent pairs of 
bits is done in a manner very similar to the above; the code is:

     mov( eax, edx );  // Make a copy of the odd-numbered bit pairs. 
     shr( 2, eax );    // Move the even bit pairs to the odd position. 
     and( $3333_3333, edx ); // Isolate the odd pairs. 
     and( $3333_3333, eax ); // Isolate the even pairs. 
     shl( 2, edx );    // Move the odd pairs to the even positions. 
     or( edx, eax );   // Merge the bits and complete the swap. 

After completing the preceding sequence, you swap the adjacent nibbles 
in the 32-bit register. Again, the only difference is the bit mask and the length 
of the shifts. Here’s the code:

     mov( eax, edx );  // Make a copy of the odd-numbered nibbles. 
     shr( 4, eax );    // Move the even nibbles to the odd position. 
     and( $0f0f_0f0f, edx );  // Isolate the odd nibbles. 
     and( $0f0f_0f0f, eax );  // Isolate the even nibbles. 
     shl( 4, edx );    // Move the odd pairs to the even positions. 
     or( edx, eax );   // Merge the bits and complete the swap. 

You can probably see the pattern developing and can figure out that in 
the next two steps you have to swap the bytes and then the words in this object. 
You can use code like the above, but there is a better way: Use the bswap instruc-
tion. The bswap (byte swap) instruction uses the following syntax:

               bswap( reg32 ); 

This instruction swaps bytes 0 and 3, and it swaps bytes 1 and 2 in the spec-
ified 32-bit register. The principle use of this instruction is to convert data 
between the so-called little-endian and big-endian data formats.2 Although 
you don’t specifically use this instruction for this purpose here, the bswap 
instruction does swap the bytes and words in a 32-bit object exactly the way 
you want them when reversing bits. Rather than sticking in another 12 instruc-
tions to swap the bytes and then the words, you can simply use a bswap( eax ); 
instruction to complete the job after the instructions above. The final code 
sequence is:

 mov( eax, edx );    // Make a copy of the odd bits in the data. 
 shr( 1, eax );      // Move the even bits to the odd positions. 
 and( $5555_5555, edx ); // Isolate the odd bits. 
 and( $5555_5555, eax ); // Isolate the even bits. 

2 In the little-endian system, which is the native 80x86 format, the L.O. byte of an object appears 
at the lowest address in memory. In the big-endian system, which various RISC processors use, 
the H.O. byte of an object appears at the lowest address in memory. The bswap instruction converts 
between these two data formats.
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 shl( 1, edx );      // Move the odd bits to the even positions. 
 or( edx, eax );     // Merge the bits and complete the swap. 

 mov( eax, edx );    // Make a copy of the odd numbered bit pairs.
 shr( 2, eax );      // Move the even bit pairs to the odd position.
 and( $3333_3333, edx ); // Isolate the odd pairs.
 and( $3333_3333, eax ); // Isolate the even pairs.
 shl( 2, edx );      // Move the odd pairs to the even positions.
 or( edx, eax );     // Merge the bits and complete the swap.

 mov( eax, edx );   // Make a copy of the odd numbered nibbles.
 shr( 4, eax );     // Move the even nibbles to the odd position.
 and( $0f0f_0f0f, edx ); // Isolate the odd nibbles.
 and( $0f0f_0f0f, eax ); // Isolate the even nibbles.
 shl( 4, edx );     // Move the odd pairs to the even positions.
 or( edx, eax );    // Merge the bits and complete the swap.

 bswap( eax );      // Swap the bytes and words.

This algorithm requires only 19 instructions, and it executes much faster 
than the bit-shifting loop appearing earlier. Of course, this sequence does 
consume a little more memory. If you’re trying to save memory rather than 
clock cycles, the loop is probably a better solution.

10.10 Merging Bit Strings

Another common bit string operation is producing a single bit string by merg-
ing, or interleaving, bits from two different sources. The following example 
code sequence creates a 32-bit string by merging alternate bits from two 16-bit 
strings:

// Merge two 16-bit strings into a single 32-bit string.
// ax - Source for even numbered bits.
// bx - Source for odd numbered bits.
// cl - Scratch register.
// edx- Destination register.

          mov( 16, cl ); 
MergeLp:  shrd( 1, eax, edx );     // Shift a bit from eax into edx. 
          shrd( 1, ebx, edx );     // Shift a bit from ebx into edx. 
          dec( cl ); 
          jne MergeLp; 

This particular example merged two 16-bit values together, alternating 
their bits in the result value. For a faster implementation of this code, unrolling 
the loop is probably your best bet because this eliminates half the instructions.

With a few slight modifications, we could also have merged four 8-bit val-
ues together, or we could have generated the result using other bit sequences. 
For example, the following code copies bits 0..5 from EAX, then bits 0..4 from 
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EBX, then bits 6..11 from EAX, then bits 5..15 from EBX, and finally bits 12..15 
from EAX:

          shrd( 6, eax, edx ); 
          shrd( 5, ebx, edx ); 
          shrd( 6, eax, edx ); 
          shrd( 11, ebx, edx ); 
          shrd( 4, eax, edx ); 

10.11 Extracting Bit Strings

Of course, we can easily accomplish the converse of merging two bit streams; 
that is, we can extract and distribute bits in a bit string among multiple desti-
nations. The following code takes the 32-bit value in EAX and distributes 
alternate bits among the BX and DX registers:

           mov( 16, cl );   // Count the loop iterations. 
ExtractLp: shr( 1, eax );   // Extract even bits to (e)bx. 
           rcr( 1, ebx ); 
           shr( 1, eax );   // Extract odd bits to (e)dx. 
           rcr( 1, edx ); 
           dec( cl );       // Repeat 16 times. 
           jnz ExtractLp; 
           shr( 16, ebx );  // Need to move the results from the H.O. 
           shr( 16, edx );  // bytes of ebx/edx to the L.O. bytes. 

This sequence executes 99 instructions. This isn’t terrible, but we can 
probably do a little better by using an algorithm that extracts bits in parallel. 
Employing the technique we used to reverse bits in a register, we can come up 
with the following algorithm that relocates all the even bits to the L.O. word 
of EAX and all the odd bits to the H.O. word of EAX.

// Swap bits at positions (1,2), (5,6), (9,10), (13,14), (17,18), 
// (21,22), (25,26), and (29, 30). 

     mov( eax, edx ); 
     and( $9999_9999, eax );  // Mask out the bits we'll keep for now. 
     mov( edx, ecx ); 
     shr( 1, edx );           // Move 1st bits in tuple above to the 
     and( $2222_2222, ecx );  // correct position and mask out the 
     and( $2222_2222, edx );  // unneeded bits. 
     shl( 1, ecx );           // Move 2nd bits in tuples above. 
     or( edx, ecx );          // Merge all the bits back together. 
     or( ecx, eax );  

// Swap bit pairs at positions ((2,3), (4,5)),  
// ((10,11), (12,13)), etc. 

     mov( eax, edx );
     and( $c3c3_c3c3, eax ); // The bits we'll leave alone.
     mov( edx, ecx );
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     shr( 2, edx );
     and( $0c0c_0c0c, ecx );
     and( $0c0c_0c0c, edx );
     shl( 2, ecx );
     or( edx, ecx );
     or( ecx, eax );

// Swap nibbles at nibble positions (1,2), (5,6), (9,10), etc. 

     mov( eax, edx );
     and( $f00f_f00f, eax );
     mov( edx, ecx );
     shr(4, edx );
     and( $0f0f_0f0f, ecx );
     and( $0f0f_0f0f, ecx );
     shl( 4, ecx );
     or( edx, ecx );
     or( ecx, eax );

// Swap bits at positions 1 and 2. 

     ror( 8, eax );
     xchg( al, ah );
     rol( 8, eax );

This sequence requires 30 instructions. At first blush it looks like a winner 
because the original loop executes 64 instructions. However, this code isn’t 
quite as good as it looks. After all, if we’re willing to write this much code, why 
not unroll the loop above 16 times? That sequence requires only 64 instruc-
tions. So the complexity of the previous algorithm may not gain much on 
instruction count. As to which sequence is faster, well, you’ll have to time 
them to figure this out. However, the shrd instructions are not particularly 
fast on all processors and neither are the instructions in the other sequence. 
This example appears here not to show you a better algorithm but rather to 
demonstrate that writing really tricky code doesn’t always provide a big per-
formance boost.

Extracting other bit combinations is left as an exercise for the reader.

10.12 Searching for a Bit Pattern

Another bit-related operation you may need is the ability to search for a par-
ticular bit pattern in a string of bits. For example, you might want to locate 
the bit index of the first occurrence of %1011 starting at some particular posi-
tion in a bit string. In this section we’ll explore some simple algorithms to 
accomplish this task.

To search for a particular bit pattern we’re going to need to know four 
things: (1) the pattern to search for (the pattern), (2) the length of the pat-
tern we’re searching for, (3) the bit string that we’re going to search through 
(the source), and (4) the length of the bit string to search through. The basic 
idea behind the search is to create a mask based on the length of the pattern 
and mask a copy of the source with this value. Then we can directly compare 
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the pattern with the masked source for equality. If they are equal, you’re fin-
ished; if they’re not equal, then increment a bit position counter, shift the 
source one position to the right, and try again. You repeat this operation 
length(source) - length(pattern) times. The algorithm fails if it does not 
detect the bit pattern after this many attempts (because we will have exhausted 
all the bits in the source operand that could match the pattern’s length). 
Here’s a simple algorithm that searches for a 4-bit pattern throughout the 
EBX register:

          mov( 28, cl );      // 28 attempts because 32-4 = 28
                              // (len(src) - len(pat)). 
          mov( %1111, ch );   // Mask for the comparison. 
          mov( pattern, al ); // Pattern to search for. 
          and( ch, al );      // Mask unnecessary bits in al. 
          mov( source, ebx ); // Get the source value. 
ScanLp:   mov( bl, dl );      // Copy the L.O. 4 bits of ebx 
          and( ch, dl );      // Mask unwanted bits. 
          cmp( dl, al );      // See if we match the pattern. 
          jz Matched; 
          dec( cl );         // Repeat the specified number of times.
          shl( 1, ebx ); 
          jnz ScanLp; 

// Do whatever needs to be done if we failed to match the bit string. 

          jmp Done; 

Matched: 

// If we get to this point, we matched the bit string. We can compute
// the position in the original source as 28-cl.

Done: 

Bit-string scanning is a special case of string matching. String matching is 
a well-studied problem in computer science, and many of the algorithms you 
can use for string matching are applicable to bit-string matching as well. Such 
algorithms are beyond the scope of this chapter, but to give you a preview of 
how this works, you compute some function (like xor or sub) between the pat-
tern and the current source bits and use the result as an index into a lookup 
table to determine how many bits you can skip. Such algorithms let you skip 
several bits rather than shifting only once for each iteration of the scanning 
loop (as is done by the previous algorithm).

10.13 The HLA Standard Library Bits Module

The HLA Standard Library provides the bits.hhf module that provides several 
bit-related functions, including built-in functions for many of the algorithms 
we’ve studied in this chapter. This section describes some of the functions 
available in the HLA Standard Library.
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procedure bits.cnt( b:dword ); @returns( "eax" ); 

This procedure returns the number of 1 bits present in the b parameter. 
It returns the count in the EAX register. To count the number of 0 bits in 
the parameter value, invert the value of the parameter before passing it to 
bits.cnt. If you want to count the number of bits in a 16-bit operand, simply 
zero extend it to 32 bits prior to calling this function. Here are a couple of 
examples:

// Compute the number of bits in a 16-bit register: 

     pushw( 0 ); 
     push( ax ); 
     call bits.cnt; 

// If you prefer to use a higher-level syntax, try the following: 

     bits.cnt( #{ pushw(0); push(ax); }# ); 

// Compute the number of bits in a 16-bit memory location: 

     pushw( 0 ); 
     push( mem16 ); 
     call bits.cnt; 

If you want to compute the number of bits in an 8-bit operand, it’s prob-
ably faster to write a simple loop that rotates all the bits in the source operand 
and adds the carry into the accumulating sum. Of course, if performance isn’t 
an issue, you can zero extend the byte to 32 bits and call the bits.cnt procedure.

procedure bits.distribute( source:dword; mask:dword; dest:dword );
     @returns( "eax" ); 

This function takes the L.O. n bits of source, where n is the number of 1 
bits in mask, and inserts these bits into dest at the bit positions specified by the 
1 bits in mask (that is, the same as the distribute algorithm appearing earlier in 
this chapter). This function does not change the bits in dest that correspond 
to the zeros in the mask value. This function does not affect the value of the 
actual dest parameter; it returns the new value in the EAX register.

procedure bits.coalesce( source:dword; mask:dword ); 
     @returns( "eax" ); 

This function is the converse of bits.distribute. It extracts all the bits in 
source whose corresponding positions in mask contain a 1. This function 
coalesces (right justifies) these bits in the L.O. bit positions of the result and 
returns the result in EAX.
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procedure bits.extract( var d:dword ); 
     @returns( "eax" ); // Really a macro. 

This function extracts the first set bit in d searching from bit 0 and returns 
the index of this bit in the EAX register; the function also returns the zero flag 
clear in this case. This function also clears that bit in the operand. If d con-
tains 0, then this function returns the zero flag set and EAX will contain −1.

Note that HLA actually implements this function as a macro, not a proce-
dure. This means that you can pass any double-word operand as a parameter 
(a memory or a register operand). However, the results are undefined if you 
pass EAX as the parameter (because this function computes the bit number 
in EAX).

procedure bits.reverse32( d:dword ); @returns( "eax" ); 
procedure bits.reverse16( w:word ); @returns( "ax" ); 
procedure bits.reverse8( b:byte ); @returns( "al" ); 

These three routines return their parameter value with its bits reversed in 
the accumulator register (AL/AX/EAX). Call the routine appropriate for 
your data size.

procedure bits.merge32( even:dword; odd:dword ); @returns( "edx:eax" ); 
procedure bits.merge16( even:word; odd:word ); @returns( "eax" ); 
procedure bits.merge8( even:byte; odd:byte ); @returns( "ax" ); 

These routines merge two streams of bits to produce a value whose 
size is the combination of the two parameters. The bits from the even param-
eter occupy the even bit positions in the result; the bits from the odd parameter 
occupy the odd bit positions in the result. Notice that these functions return 
16, 32, or 64 bits based on byte, word, and double-word parameter values.

procedure bits.nibbles32( d:dword ); @returns( "edx:eax" ); 
procedure bits.nibbles16( w:word ); @returns( "eax" ); 
procedure bits.nibbles8( b:byte ); @returns( "ax" ); 

These routines extract each nibble from the parameter and place those 
nibbles into individual bytes. The bits.nibbles8 function extracts the two nibbles 
from the b parameter and places the L.O. nibble in AL and the H.O. nibble 
in AH. The bits.nibbles16 function extracts the four nibbles in w and places 
them in each of the 4 bytes of EAX. You can use the bswap or rox instructions 
to gain access to the nibbles in the H.O. word of EAX. The bits.nibbles32 
function extracts the eight nibbles in EAX and distributes them through the 
8 bytes in EDX:EAX. Nibble 0 winds up in AL and nibble 7 winds up in the 
H.O. byte of EDX. Again, you can use bswap or the rotate instructions to access 
the upper bytes of EAX and EDX.
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10.14 For More Information

The electronic edition of The Art of Assembly Language at http://webster.cs.ucr.edu/ 
and http://www.artofasm.com/ contains some additional information you may 
find useful when developing bit-manipulation algorithms. In particular, the 
chapter on digital design discusses boolean algebra, a subject that you will 
find essential when working with bits. The HLA Standard Library reference 
manual contains more information about the HLA Standard Library bit-
manipulation routines. See that documentation on the website for more 
information about those functions. As noted in the section on bit counting, 
the AMD Athlon optimization guide contains some useful algorithms for bit-
based computations. Finally, to learn more about bit searching algorithms, 
you should pick up a textbook on data structures and algorithms and study 
the section on string-matching algorithms.
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11
T H E  S T R I N G  I N S T R U C T I O N S

A string is a collection of values stored in 
contiguous memory locations. Strings are 

usually arrays of bytes, words, or (on 80386 
and later processors) double words. The 80x86 

microprocessor family supports several instructions 
specifically designed to cope with strings. This chapter 
explores some of the uses of these string instructions.

The 80x86 CPUs can process three types of strings: byte strings, word 
strings, and double-word strings. They can move strings, compare strings, 
search for a specific value within a string, initialize a string to a fixed value, 
and do other primitive operations on strings. The 80x86’s string instructions 
are also useful for manipulating arrays, tables, and records. You can easily 
assign or compare such data structures using the string instructions. Using 
string instructions may speed up your array-manipulation code considerably.
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11.1 The 80x86 String Instructions

All members of the 80x86 family support five different string instructions: 
movsx, cmpsx, scasx, lodsx, and stosx.1 (x = b, w, or d for byte, word, or double 
word, respectively; this text will generally drop the x suffix when talking about 
these string instructions in a general sense.) They are the string primitives on 
which you can build most other string operations. How you use these five 
instructions is the topic of the sections that follow.

For MOVS: 
     movsb(); 
     movsw(); 
     movsd(); 

For CMPS: 
     cmpsb(); 
     cmpsw(); 
     cmpsd(); 

For SCAS: 
     scasb(); 
     scasw(); 
     scasd(); 

For STOS: 
     stosb(); 
     stosw(); 
     stosd(); 

For LODS: 
     lodsb(); 
     lodsw(); 
     lodsd(); 

11.1.1 How the String Instructions Operate

The string instructions operate on blocks (contiguous linear arrays) of memory. 
For example, the movs instruction moves a sequence of bytes from one mem-
ory location to another. The cmps instruction compares two blocks of memory. 
The scas instruction scans a block of memory for a particular value. These 
string instructions often require three operands: a destination block address, 
a source block address, and (optionally) an element count. For example, when 
using the movs instruction to copy a string, you need a source address, a desti-
nation address, and a count (the number of string elements to move).

1 The 80x86 processor support two additional string instructions, ins and outs, which input 
strings of data from an input port or output strings of data to an output port. We will not 
consider these instructions because they are privileged instructions, and you cannot execute 
them in a standard 32-bit OS application.
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Unlike other instructions, which operate on memory, the string instruc-
tions don’t have any explicit operands. The operands for the string instructions 
are as follows:

ESI (source index) register

EDI (destination index) register

ECX (count) register

AL/AX/EAX register

The direction flag in the FLAGS register

For example, one variant of the movs (move string) instruction copies 
ECX elements from the source address specified by ESI to the destination 
address specified by EDI. Likewise, the cmps instruction compares the string 
pointed at by ESI, of length ECX, to the string pointed at by EDI.

Not all string instructions have source and destination memory operands 
(only movs and cmps support them). For example, the scas instruction (scan a 
string) compares the value in the accumulator (AL, AX, or EAX) to values in 
memory.

11.1.2 The rep/repe/repz and repnz/repne Prefixes

The string instructions, by themselves, do not operate on strings of data. The 
movs instruction, for example, will only copy a single byte, word, or double 
word. When the movs instruction executes, it ignores the value in the ECX 
register. The repeat prefixes tell the 80x86 to do a multibyte string operation. 
The syntax for the repeat prefix is as follows:

For MOVS: 
     rep.movsb(); 
     rep.movsw(); 
     rep.movsd(); 

For CMPS: 
     repe.cmpsb();     // Note: repz is a synonym for repe. 
     repe.cmpsw(); 
     repe.cmpsd();   

     repne.cmpsb();    // Note: repnz is a synonym for repne.
     repne.cmpsw(); 
     repne.cmpsd(); 

For SCAS: 
     repe.scasb();     // Note: repz is a synonym for repe. 
     repe.scasw(); 
     repe.scasd(); 
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     repne.scasb();    // Note: repnz is a synonym for repne.
     repne.scasw();
     repne.scasd();

For STOS: 
     rep.stosb(); 
     rep.stosw(); 
     rep.stosd(); 

You don’t normally use the repeat prefixes with the lods instruction.
When specifying the repeat prefix before a string instruction, the string 

instruction repeats its operation ECX times.2 Without the repeat prefix, 
the instruction operates only on a single element (byte, word, or double word).

You can use repeat prefixes to process entire strings with a single instruc-
tion. You can use the string instructions, without the repeat prefix, as string 
primitive operations to synthesize more powerful string operations.

11.1.3 The Direction Flag

In addition to the ESI, EDI, ECX, and AL/AX/EAX registers, one other reg-
ister controls the operation of the 80x86’s string instructions—the EFLAGs 
register. Specifically, the direction flag in the flags register controls how the 
CPU processes strings.

If the direction flag is clear, the CPU increments ESI and EDI after oper-
ating on each string element. For example, executing movs will move the byte, 
word, or double word at ESI to EDI and will then increment ESI and EDI by 
1, 2, or 4. When specifying the rep prefix before this instruction, the CPU 
increments ESI and EDI for each element in the string (the count in ECX 
specifies the number of elements). At completion, the ESI and EDI registers 
will be pointing at the first item beyond the strings.

If the direction flag is set, the 80x86 decrements ESI and EDI after it 
processes each string element (again, ECX specifies the number of string 
elements). After a repeated string operation, the ESI and EDI registers will be 
pointing at the first byte, word, or double word before the strings if the 
direction flag was set.

You can change the direction flag’s value using the cld (clear direction 
flag) and std (set direction flag) instructions. When using these instructions 
inside a procedure, keep in mind that they modify the machine state. There-
fore, you may need to save the direction flag during the execution of that 
procedure. The following example exhibits the kinds of problems you might 
encounter.

2 Except for the cmps instruction, which repeats at most the number of times specified in the ECX 
register.
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procedure Str2; @nodisplay; 
begin Str2; 

          std(); 
     << Do some string operations. >>
          .
          .
          .
end Str2;
          .
          .
          .
          cld(); 
     << Do some operations. >>
          Str2(); 
     << Do some string operations requiring D=0. >> 

This code will not work properly. The calling code assumes that the direc-
tion flag is clear after Str2 returns. However, this isn’t true. Therefore, the 
string operations executed after the call to Str2 will not function properly.

There are a couple of ways to handle this problem. The first, and proba-
bly the most obvious, is always to insert the cld or std instructions immediately 
before executing a sequence of one or more string instructions. This ensures 
that the direction flag is always set properly for your code. The other alternative 
is to save and restore the direction flag using the pushfd and popfd instructions. 
Using these two techniques, the code above would look like the following 
examples.

Always issuing cld or std before a string instruction:

procedure Str2; @nodisplay; 
begin Str2; 

          std(); 
     << Do some string operations. >>
          .
          .
          .

end Str2; 
          . 
          . 
          . 
          cld(); 
     << Do some operations. >>
          Str2();
          cld();
     << Do some string operations requiring D=0. >>
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Saving and restoring the flags register:

procedure Str2; @nodisplay; 
begin Str2; 

          pushfd(); 
          std(); 
     << Do some string operations. >> 
          . 
          . 
          . 
          popfd(); 
end Str2; 
          . 
           
          . 
          cld(); 
     << Do some operations. >> 
          Str2(); 
     << Do some string operations requiring D=0. >> 

If you use the pushfd and popfd instructions to save and restore the flags 
register, keep in mind that you’re saving and restoring all the flags. This makes 
it somewhat difficult to return information in other flag bits. For example, it’s 
a bit of work to return an error condition in the carry flag if you use pushfd and 
popfd to preserve the direction flag in the procedure.

A third solution is to always ensure that the direction flag is clear except 
for the execution of a particular sequence that requires it to be set. For 
example, many library calls and some operating systems always assume that 
the direction flag is clear when you call them. Most standard C library functions 
work this way, for example. You can follow this convention by always assuming 
that the direction flag is clear, and then make sure you clear it immediately 
after a sequence that requires the use of std.

11.1.4 The movs Instruction

The movs instruction uses the following syntax:

     movsb() 
     movsw() 
     movsd() 
     rep.movsb() 
     rep.movsw() 
     rep.movsd() 
638 Chapte r  11



AAL2E_03.book  Page 639  Thursday, February 18, 2010  12:49 PM
The movsb (move string, bytes) instruction fetches the byte at address ESI, 
stores it at address EDI, and then increments or decrements the ESI and EDI 
registers by 1. If the rep prefix is present, the CPU checks ECX to see if it 
contains 0. If not, then it moves the byte from ESI to EDI and decrements the 
ECX register. This process repeats until ECX becomes 0. If ECX contains 0 
upon initial execution, the movs instruction will not copy any data bytes.

The movsw (move string, words) instruction fetches the word at address 
ESI, stores it at address EDI, and then increments or decrements ESI and EDI 
by 2. If there is a rep prefix, then the CPU repeats this procedure ECX times.

The movsd instruction operates in a similar fashion on double words. It 
increments or decrements ESI and EDI by 4 after each data movement.

When you use the rep prefix, the movsb instruction moves the number of 
bytes you specify in the ECX register. The following code segment copies 
384 bytes from CharArray1 to CharArray2:

     CharArray1: byte[ 384 ]; 
     CharArray2: byte[ 384 ]; 
          . 
          . 
          . 
          cld();
          lea( esi, CharArray1 );
          lea( edi, CharArray2 );
          mov( 384, ecx );
          rep.movsb();

If you substitute movsw for movsb, then the preceding code will move 384 words 
(768 bytes) rather than 384 bytes:

     WordArray1: word[ 384 ]; 
     WordArray2: word[ 384 ]; 
          . 
          . 
          . 
          cld();
          lea( esi, WordArray1 );
          lea( edi, WordArray2 );
          mov( 384, ecx );
          rep.movsw();

Remember, the ECX register contains the element count, not the byte 
count. When using the movsw instruction, the CPU moves the number of words 
specified in the ECX register. Similarly, movsd moves the number of double 
words you specify in the ECX register, not the number of bytes.
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If you’ve set the direction flag before executing a movsb/movsw/movsd 
instruction, the CPU decrements the ESI and EDI registers after moving each 
string element. This means that the ESI and EDI registers must point at the 
last element of their respective strings before executing a movsb, movsw, or movsd 
instruction. For example:

     CharArray1: byte[ 384 ]; 
     CharArray2: byte[ 384 ]; 
          . 
          . 
          . 
          cld();
          lea( esi, CharArray1[383] );
          lea( edi, CharArray2[383] );
          mov( 384, ecx );
          rep.movsb();

Although there are times when processing a string from tail to head is 
useful (see the cmps description in Section 11.1.5), generally you’ll process 
strings in the forward direction because that’s more straightforward. There 
is one class of string operations where being able to process strings in both 
directions is absolutely mandatory: moving strings when the source and desti-
nation blocks overlap. Consider what happens in the following code:

     CharArray1: byte; 
     CharArray2: byte[ 384 ]; 
          . 
          . 
          . 
          cld();
          lea( esi, CharArray1 );
          lea( edi, CharArray2 );
          mov( 384, ecx );
          rep.movsb();

This sequence of instructions treats CharArray1 and CharArray2 as a pair of 
384-byte strings. However, the last 383 bytes in the CharArray1 array overlap the 
first 383 bytes in the CharArray2 array. Let’s trace the operation of this code 
byte by byte.

When the CPU executes the movsb instruction, it copies the byte at ESI 
(CharArray1) to the byte pointed at by EDI (CharArray2). Then it increments 
ESI and EDI, decrements ECX by 1, and repeats this process. Now the ESI reg-
ister points at CharArray1+1 (which is the address of CharArray2), and the EDI 
register points at CharArray2+1. The movsb instruction copies the byte pointed at 
by ESI to the byte pointed at by EDI. However, this is the byte originally copied 
from location CharArray1. So the movsb instruction copies the value originally in 
location CharArray1 to both locations CharArray2 and CharArray2+1. Again, the CPU 
increments ESI and EDI, decrements ECX, and repeats this operation. Now the 
movsb instruction copies the byte from location CharArray1+2 (CharArray2+1) to 
location CharArray2+2. But once again, this is the value that originally appeared 
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in location CharArray1. Each repetition of the loop copies the next element in 
CharArray1[0] to the next available location in the CharArray2 array. Pictorially, 
it looks something like Figure 11-1.

The end result is that the movsb instruction replicates X throughout the 
string. The movsb instruction copies the source operand into the memory loca-
tion, which will become the source operand for the very next move operation, 
which causes the replication.

Figure 11-1: Copying data between two overlapping arrays 
(forward direction)

If you really want to move one array into another when they overlap like 
this, you should move each element of the source string to the destination 
string starting at the end of the two strings, as shown in Figure 11-2.

Setting the direction flag and pointing ESI and EDI at the end of the 
strings will allow you to (correctly) move one string to another when the 
two strings overlap and the source string begins at a lower address than the 
destination string. If the two strings overlap and the source string begins at 
a higher address than the destination string, then clear the direction flag 
and point ESI and EDI at the beginning of the two strings.

If the two strings do not overlap, then you can use either technique to 
move the strings around in memory. Generally, operating with the direction 
flag clear is the easiest, so that makes the most sense.

X A B C D E F G H I J K L

X X B C D E F G H I J K L

X X X C D E F G H I J K L

X X X X D E F G H I J K L

X X X X X X X X X X X X L

1st move operation:

2nd move operation:

3rd move operation:

4th move operation:

nth move operation:
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Figure 11-2: Using a backward copy to copy data in overlapping 
arrays

You shouldn’t use the movsx instruction to fill an array with a single byte, 
word, or double-word value. Another string instruction, stos, is much better 
for this purpose. However, for arrays whose elements are 1, 2, or 4 bytes, you 
can use the movs instruction to initialize the entire array to the content of the 
first element.

The movs instruction is sometimes more efficient when copying double 
words than it is copying bytes or words. On some systems, it typically takes the 
same amount of time to copy a byte using movsb as it does to copy a double 
word using movsd. Therefore, if you are moving a large number of bytes from 
one array to another, the copy operation will be faster if you can use the 
movsd instruction rather than the movsb instruction. If the number of bytes 
you wish to move is an even multiple of 4, this is a trivial change; just divide 
the number of bytes to copy by 4, load this value into ECX, and then use the 
movsb instruction. If the number of bytes is not evenly divisible by 4, then you 
can use the movsd instruction to copy all but the last 1, 2, or 3 bytes of the 
array (that is, the remainder after you divide the byte count by 4). For example, 
if you want to efficiently move 4,099 bytes, you can do so with the following 
instruction sequence.

1st move operation:

3rd move operation:

4th move operation:

nth move operation:

2nd move operation:

A B C D E F G H I J K LX

A B C D E F G H I J K KX

A B C D E F G H I J J KX

A B C D E F G H I I J KX

A A B C D E F G H I J KX
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     lea( esi, Source ); 
     lea( edi, Destination ); 
     mov( 1024, ecx );    // Copy 1024 dwords = 4096 bytes.
     rep.movsd(); 
     movsw();             // Copy bytes 4097 and 4098. 
     movsb();             // Copy the last byte. 

Using this technique to copy data never requires more than three movsx 
instructions because you can copy 1, 2, or 3 bytes with no more than two movsb 
and movsw instructions. The scheme above is most efficient if the two arrays are 
aligned on double-word boundaries. If not, you might want to move the movsb 
or movsw instruction (or both) before the movsd so that the movsd instruction 
works with double-word-aligned data.

If you do not know the size of the block you are copying until the program 
executes, you can still use code like the following to improve the performance 
of a block move of bytes:

     lea( esi, Source ); 
     lea( edi, Dest ); 
     mov( Length, ecx ); 
     shr( 2, ecx );     // Divide by 4.
     if( @nz ) then     // Only execute movsd if 4 or more bytes. 

          rep.movsd();  // Copy the dwords. 

     endif; 
     mov( Length, ecx ); 
     and( %11, ecx );   // Compute (Length mod 4).
     if( @nz ) then     // Only execute movsb if #bytes/4 <> 0. 

          rep.movsb();  // Copy the remaining 1, 2, or 3 bytes. 

     endif; 

On many computer systems, the movsd instruction provides about the fastest 
way to copy bulk data from one location to another. While there are, arguably, 
faster ways to copy the data on certain CPUs, ultimately the memory bus per-
formance is the limiting factor, and the CPUs are generally much faster than 
the memory bus. Therefore, unless you have a special system, writing fancy 
code to improve memory-to-memory transfers is probably a waste of time. 
Also note that Intel has improved the performance of the movsx instructions 
on later processors so that movsb operates almost as efficiently as movsw and 
movsd when copying the same number of bytes. Therefore, when working on a 
later 80x86 processor, it may be more efficient to simply use movsb to copy the 
specified number of bytes rather than go through all the complexity outlined 
above. The bottom line is this: If the speed of a block move matters to you, try 
it several different ways and pick the fastest (or the simplest, if they all run the 
same speed, which is likely).
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11.1.5 The cmps Instruction

The cmps instruction compares two strings. The CPU compares the string ref-
erenced by EDI to the string pointed at by ESI. ECX contains the length of 
the two strings (when using the repe or repne prefix). Like the movs instruction, 
HLA allows several different forms of this instruction:

     cmpsb(); 
     cmpsw(); 
     cmpsd(); 

     repe.cmpsb(); 
     repe.cmpsw(); 
     repe.cmpsd(); 

     repne.cmpsb(); 
     repne.cmpsw(); 
     repne.cmpsd(); 

As for the movs instruction, you specify the actual operand addresses in 
the ESI and EDI registers.

Without a repeat prefix, the cmps instruction subtracts the value at location 
EDI from the value at ESI and updates the flags. Other than updating the flags, 
the CPU doesn’t use the difference produced by this subtraction. After compar-
ing the two locations, cmps increments or decrements the ESI and EDI registers 
by 1, 2, or 4 (for cmpsb/cmpsw/cmpsd, respectively). cmps increments the ESI and 
EDI registers if the direction flag is clear and decrements them otherwise.

Of course, you will not tap the real power of the cmps instruction using it 
to compare single bytes, words, or double words in memory. This instruction 
shines when you use it to compare whole strings. With cmps, you can compare 
consecutive elements in a string until you find a match or until consecutive 
elements do not match.

To compare two strings to see if they are equal or not equal, you must 
compare corresponding elements in a string until they don’t match. Consider 
the following strings:

"String1" 
"String1" 

The only way to determine that these two strings are equal is to compare 
each character in the first string to the corresponding character in the second. 
After all, the second string could have been String2, which definitely is not 
equal to String1. Once you encounter a character in the destination string 
that does not equal the corresponding character in the source string, the 
comparison can stop. You needn’t compare any other characters in the two 
strings.

The repe prefix accomplishes this operation. It will compare successive 
elements in a string as long as they are equal and ECX is greater than 0. We 
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could compare the two strings above using the following 80x86 assembly 
language code:

     cld();
     mov( AdrsString1, esi );
     mov( AdrsString2, edi );
     mov( 7, ecx );
     repe.cmpsb();

After the execution of the cmpsb instruction, you can test the flags using 
the standard (unsigned) conditional jump instructions. This lets you check 
for equality, inequality, less than, greater than, and so on.

Character strings are usually compared using lexicographical ordering. In 
lexicographical ordering, the least significant element of a string carries the 
most weight. This is in direct contrast to standard integer comparisons, where 
the most significant portion of the number carries the most weight. Further-
more, the length of a string affects the comparison only if the two strings are 
identical up to the length of the shorter string. For example, Zebra is less than 
Zebras because it is the shorter of the two strings; however, Zebra is greater 
than AAAAAAAAAAH! even though Zebra is shorter. Lexicographical comparisons 
compare corresponding elements until encountering a character that doesn’t 
match or until encountering the end of the shorter string. If a pair of corre-
sponding characters do not match, then this algorithm compares the two 
strings based on that single character. If the two strings match up to the length 
of the shorter string, we must compare their length. The two strings are equal 
if and only if their lengths are equal and each corresponding pair of charac-
ters in the two strings are identical. Lexicographical ordering is the standard 
alphabetical ordering you’ve grown up with.

For character strings, use the cmps instruction in the following manner:

The direction flag must be cleared before comparing the strings.

Use the cmpsb instruction to compare the strings on a byte-by-byte basis. 
Even if the strings contain an even number of characters, you cannot use 
the cmpsw or cmpsd instructions. They do not compare strings in lexico-
graphical order.

You must load the ECX register with the length of the smaller string.

Use the repe prefix.

The ESI and EDI registers must point at the very first character in the 
two strings you want to compare.

After the execution of the cmps instruction, if the two strings were equal, 
their lengths must be compared in order to finish the comparison. The follow-
ing code compares a couple of character strings:

     mov( AdrsStr1, esi );
     mov( AdrsStr2, edi );
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     mov( LengthSrc, ecx );
     if( ecx > LengthDest ) then  // Put the length of the 
                                  // shorter string in ecx.
          mov( LengthDest, ecx ); 

     endif;
     repe.cmpsb();
     if( @z ) then  // If equal to the length of the 
                    // shorter string, cmp lengths.
          mov( LengthSrc, ecx ); 
          cmp( ecx, LengthDest ); 

     endif; 

If you’re using bytes to hold the string lengths, you should adjust this 
code appropriately (that is, use a movzx instruction to load the lengths into 
ECX). HLA strings use a double word to hold the current length value, so this 
isn’t an issue when using HLA strings.

You can also use the cmps instruction to compare multiword integer values 
(that is, extended-precision integer values). Because of the amount of setup 
required for a string comparison, this isn’t practical for integer values less 
than six or eight double words in length, but for large integer values, it’s an 
excellent way to compare such values. Unlike for character strings, we cannot 
compare integer strings using lexicographical ordering. When comparing 
strings, we compare the characters from the least significant byte to the most 
significant byte. When comparing integers, we must compare the values from 
the most significant byte (or word/double word) down to the least significant 
byte, word, or double word. So, to compare two 32-byte (256-bit) integer values, 
use the following code on the 80x86:

     std();
     lea( esi, SourceInteger[28] );
     lea( edi, DestInteger[28] );
     mov( 8, ecx );
     rep.cmpsd();

This code compares the integers from their most significant dword down 
to the least significant dword. The cmpsd instruction finishes when the two values 
are unequal or upon decrementing ECX to 0 (implying that the two values are 
equal). Once again, the flags provide the result of the comparison.

The repne prefix will instruct the cmps instruction to compare successive 
string elements as long as they do not match. The 80x86 flags are of little use 
after the execution of this instruction. Either the ECX register is 0 (in which 
case the two strings are totally different), or it contains the number of elements 
compared in the two strings until a match is found. While this form of the cmps 
instruction isn’t particularly useful for comparing strings, it is useful for locat-
ing the first pair of matching items in a couple of byte, word, or double-word 
arrays. In general, though, you’ll rarely use the repne prefix with cmps.

One last thing to keep in mind with using the cmps instruction: The value 
in the ECX register determines the number of elements to process, not the 
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number of bytes. Therefore, when using cmpsw, ECX specifies the number 
of words to compare. Likewise, for cmpsd, ECX contains the number of double 
words to process.

11.1.6 The scas Instruction

The cmps instruction compares two strings against each other. You do not use 
it to search for a particular element within a string. For example, you could 
not use the cmps instruction to quickly scan for a 0 throughout some other 
string. You can use the scas (scan string) instruction for this task.

Unlike the movs and cmps instructions, the scas instruction requires only a 
destination string (pointed at by EDI) rather than both a source and destina-
tion string. The source operand is the value in the AL (scasb), AX (scasw), or 
EAX (scasd) register. The scas instruction compares the value in the accumula-
tor (AL, AX, or EAX) against the value pointed at by EDI and then increments 
(or decrements) EDI by 1, 2, or 4. The CPU sets the flags according to the 
result of the comparison. While this might be useful on occasion, scas is a lot 
more useful when using the repe and repne prefixes.

With the repe prefix (repeat while equal), scas scans the string searching 
for an element that does not match the value in the accumulator. When 
using the repne prefix (repeat while not equal), scas scans the string, search-
ing for the first string element that is equal to the value in the accumulator.

You’re probably wondering, “Why do these prefixes do exactly the opposite 
of what they ought to do?” The preceding paragraphs haven’t quite phrased 
the operation of the scas instruction properly. When using the repe prefix 
with scas, the 80x86 scans through the string while the value in the accumulator 
is equal to the string operand. This is equivalent to searching through the 
string for the first element that does not match the value in the accumulator. 
The scas instruction with repne scans through the string while the accumula-
tor is not equal to the string operand. Of course, this form searches for the 
first value in the string that matches the value in the accumulator register. 
The scas instructions take the following forms:

     scasb() 
     scasw() 
     scasd() 

     repe.scasb() 
     repe.scasw() 
     repe.scasd() 

     repne.scasb() 
     repne.scasw() 
     repne.scasd() 

Like the cmps and movs instructions, the value in the ECX register specifies 
the number of elements, not bytes, to process when using a repeat prefix.
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11.1.7 The stos Instruction

The stos instruction stores the value in the accumulator at the location spec-
ified by EDI. After storing the value, the CPU increments or decrements EDI 
depending on the state of the direction flag. Although the stos instruction 
has many uses, its primary use is to initialize arrays and strings to a constant 
value. For example, if you have a 256-byte array you want to clear out with 
zeros, use the following code:

     cld();
     lea( edi, DestArray );
     mov( 64, ecx );          // 64 double words = 256 bytes. 
     xor( eax, eax );         // Zero out eax. 
     rep.stosd(); 

This code writes 64 double words rather than 256 bytes because a single 
stosd operation is faster than four stosb operations.

The stos instructions take six forms. They are:

     stosb(); 
     stosw(); 
     stosd(); 

     rep.stosb(); 
     rep.stosw(); 
     rep.stosd(); 

The stosb instruction stores the value in the AL register into the speci-
fied memory location(s), the stosw instruction stores the AX register into the 
specified memory location(s), and the stosd instruction stores EAX into 
the specified location(s).

Keep in mind that the stos instruction is useful only for initializing a byte, 
word, or double-word array to a constant value. If you need to initialize an array 
with elements that have different values, you cannot use the stos instruction.

11.1.8 The lods Instruction

The lods instruction is unique among the string instructions. You will probably 
never use a repeat prefix with this instruction. The lods instruction copies the 
byte, word, or double word pointed at by ESI into the AL, AX, or EAX register, 
after which it increments or decrements the ESI register by 1, 2, or 4. Repeat-
ing this instruction via the repeat prefix would serve almost no purpose 
whatsoever because the accumulator register will be overwritten each time 
the lods instruction repeats. At the end of the repeat operation, the accumu-
lator will contain the last value read from memory.

Instead, use the lods instruction to fetch bytes (lodsb), words (lodsw), or 
double words (lodsd) from memory for further processing. By using the lods 
and stos instructions, you can synthesize powerful string operations.
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Like the stos instruction, the lods instructions take six forms:

     lodsb(); 
     lodsw(); 
     lodsd(); 

     rep.lodsb(); 
     rep.lodsw(); 
     rep.lodsd(); 

As mentioned earlier, you’ll rarely, if ever, use the rep prefixes with these 
instructions.3 The 80x86 increments or decrements ESI by 1, 2, or 4 depend-
ing on the direction flag and whether you’re using the lodsb, lodsw, or lodsd 
instruction.

11.1.9 Building Complex String Functions from lods and stos

The 80x86 supports only five different string instructions: movs, cmps, scas, lods, 
and stos.4 These certainly aren’t the only string operations you’ll ever want 
to use. However, you can use the lods and stos instructions to easily generate 
any particular string operation you like. For example, suppose you wanted a 
string operation that converts all the uppercase characters in a string to lower-
case. You could use the following code:

     mov( StringAddress, esi );  // Load string address into esi. 
     mov( esi, edi );            // Also point edi here. 
     mov( (type str.strRec [esi]).length, ecx ); 

repeat 

          lodsb();        // Get the next character in the string. 
          if( al in 'A'..'Z' ) then 

               or( $20, al ); // Convert uppercase to lowercase. 

          endif; 
          stosb();           // Store converted char into string. 
          dec( ecx ); 

     until( @z );            // Zero flag is set when ecx is 0. 

Because the lods and stos instructions use the accumulator as an interme-
diary location, you can use any accumulator operation to quickly manipulate 
string elements.

3 They appear here simply because they are allowed. They’re not very useful, but they are allowed. 
About the only use for this form of the instruction is to “touch” items in the cache so they are 
preloaded into the cache. However, there are better ways to accomplish this. 

4 Not counting ins and outs, which we’re ignoring here. 
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11.2 Performance of the 80x86 String Instructions

In the early 80x86 processors, the string instructions provided the most effi-
cient way to manipulate strings and blocks of data. However, these instructions 
are not part of Intel’s RISC Core instruction set, and as such, they can be 
slower than doing the same operations using discrete instructions. Intel has 
optimized the movs instruction on later processors so that it operates about 
as rapidly as possible, but the other string instructions can be fairly slow. As 
always, it’s a good idea to implement performance-critical algorithms using 
different algorithms (with and without the string instructions) and compare 
their performance to determine which solution to use.

Keep in mind that the string instructions run at different speeds relative 
to other instructions depending on which processor you’re using. Therefore, 
it’s a good idea to try your experiments on the processors where you expect 
your code to run. Note that on most processors, the movs instruction is faster 
than the corresponding discrete instructions. Intel has worked hard to keep 
movs optimized because so much performance-critical code uses it.

Although the string instructions can be slower than discrete instructions, 
there is no question that the string instructions are generally more compact 
than the discrete code that achieves the same result.

11.3 For More Information

The HLA Standard Library contains hundreds of string and pattern-matching 
functions you may find useful. All of this appears in source form at http://
www.artofasm.com/ or http://webster.cs.ucr.edu/; you should check out some of 
that source code if you want to see some examples of string instructions in 
action. Note also that some of the HLA Standard Library routines use dis-
crete instructions to implement certain high-performance algorithms. You 
may want to look at that code as an example of such code. The 16-bit edition 
of this book (which appears on the website) discusses the implementation of 
several character-string functions using the 80x86 string instructions. Check 
out that edition for additional examples (those examples do not appear 
here because of the performance problems with the string instructions). 
Finally, for general information about string functions, check out the HLA 
Standard Library reference manual. It explains the operation of the string 
and pattern-matching functions found in the HLA Standard Library.
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12
C L A S S E S  A N D  O B J E C T S

Many modern high-level languages sup-
port the notion of classes and objects. C++ 

(an object-oriented version of C), Java, and 
Delphi (an object-oriented version of Pascal) are 

good examples. Of course, these high-level language 
compilers translate their source code into low-level 
machine code, so it should be pretty obvious that some 
mechanism exists in machine code for implementing 
classes and objects.

Although it has always been possible to implement classes and objects in 
machine code, most assemblers provide poor support for writing object-oriented 
assembly language programs. HLA does not suffer from this drawback because 
it provides good support for writing object-oriented assembly language pro-
grams. This chapter discusses the general principles behind object-oriented 
programming (OOP) and how HLA supports OOP.
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12.1 General Principles

Before discussing the mechanisms behind OOP, it is probably a good idea to 
take a step back and explore the benefits of using OOP (especially in assem-
bly language programs). Most texts that describe the benefits of OOP will use 
buzzwords like code reuse, abstract data types, improved development efficiency, and 
so on. While all of these features are nice and are good attributes for a pro-
gramming paradigm, a good software engineer would question the use of 
assembly language in an environment where “improved development effi-
ciency” is an important goal. After all, you can probably obtain far better 
efficiency by using a high-level language (even in a non-OOP fashion) than 
you can by using objects in assembly language. If the purported features of 
OOP don’t seem to apply to assembly language programming, then why 
bother using OOP in assembly? This section will explore some of those 
reasons.

The first thing you should realize is that the use of assembly language does 
not negate the aforementioned OOP benefits. OOP in assembly language 
does promote code reuse. It provides a good method for implementing 
abstract data types, and it can improve development efficiency in assembly 
language. In other words, if you’re dead set on using assembly language, there 
are benefits to using OOP.

To understand one of the principle benefits of OOP, consider the concept 
of a global variable. Most programming texts strongly recommend against the 
use of global variables in a program (as does this text). Interprocedural com-
munication through global variables is dangerous because it is difficult to 
keep track of all the possible places in a large program that modify a given 
global object. Worse, it is very easy when making enhancements to acciden-
tally reuse a global object for something other than its intended purpose; this 
tends to introduce defects into the system.

Despite the well-understood problems with global variables, the semantics 
of global objects (extended lifetimes and accessibility from different proce-
dures) are absolutely necessary in various situations. Objects solve this problem 
by letting the programmer determine the lifetime of an object1 as well as 
allowing access to data fields from different procedures. Objects have several 
advantages over simple global variables insofar as objects can control access to 
their data fields (making it difficult for procedures to accidentally access the 
data), and you can also create multiple instances of an object, allowing sepa-
rate sections of your program to use their own unique “global” object without 
interference from other sections.

Of course, objects have many other valuable attributes. One could write 
several volumes on the benefits of objects and OOP; this single chapter can-
not do the subject justice. This chapter presents objects with an eye toward 
using them in HLA/assembly programs. However, if you are new to OOP or 
wish more information about the object-oriented paradigm, you should 
consult other texts on this subject.

1 Lifetime means the time during which the system allocates memory for an object.
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An important use for classes and objects is to create abstract data types 
(ADTs). An abstract data type is a collection of data objects and the functions 
(which we’ll call methods) that operate on the data. In a pure abstract data 
type, the ADT’s methods are the only code that has access to the data fields of 
the ADT; external code may access the data only by using function calls to get 
or set data field values (these are the ADT’s accessor methods). In real life, for 
efficiency reasons, most languages that support ADTs allow at least limited 
access to the data fields of an ADT by external code.

Assembly language is not a language most people associate with ADTs. 
Nevertheless, HLA provides several features to allow the creation of rudimen-
tary ADTs. While some might argue that HLA’s facilities are not as complete 
as those in a language such as C++ or Java, keep in mind that these differences 
exist because HLA is an assembly language.

True ADTs should support information hiding. This means that the ADT 
does not allow the user of an ADT access to internal data structures and rou-
tines that manipulate those structures. In essence, information hiding restricts 
ADT access to the ADT’s accessor methods. Assembly language, of course, 
provides very few restrictions. If you are dead set on accessing an object directly, 
there is very little HLA can do to prevent you from doing this. However, HLA 
has some facilities that will provide a limited form of information hiding. 
Combining these with some care on your part, you will be able to enjoy many 
of the benefits of information hiding within your programs.

The primary facilities HLA provides to support information hiding are 
separate compilation, linkable modules, and the #include/#includeonce direc-
tives. For our purposes, an abstract data type definition will consist of two 
sections: an interface section and an implementation section.

The interface section contains the definitions that must be visible to the 
application program. In general, it should not contain any specific information 
that would allow the application program to violate the information-hiding 
principle, but this is often impossible given the nature of assembly language. 
Nevertheless, you should attempt to reveal only what is absolutely necessary 
within the interface section.

The implementation section contains the code, data structures, and so 
on to actually implement the ADT. While some of the methods and data types 
appearing in the implementation section may be public (by virtue of appear-
ance within the interface section), many of the subroutines, data items, and 
so on will be private to the implementation code. The implementation section 
is where you hide all the details from the application program.

If you wish to modify the abstract data type at some point in the future, 
you will only have to change the interface and implementation sections. 
Unless you delete some previously visible object that the applications use, 
there will be no need to modify the applications at all.
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Although you could place the interface and implementation sections 
directly in an application program, this would not promote information hiding 
or maintainability, especially if you have to include the code in several differ-
ent applications. The best approach is to place the implementation section 
in an include file that any interested application reads using the HLA #include 
directive and to place the implementation section in a separate module that 
you link with your applications.

The include file would contain external directives, any necessary macros, 
and other definitions you want made public. It generally would not contain 
80x86 code except, perhaps, in some macros. When an application wants to 
make use of an ADT, it would include this file.

The separate assembly file containing the implementation section would 
contain all the procedures, functions, data objects, and so on to actually 
implement the ADT. Those names that you want to be public should appear 
in the interface include file and have the external attribute. You should also 
include the interface include file in the implementation file so you do not 
have to maintain two sets of external directives.

One problem with using procedures for data access methods is the fact 
that many accessor methods are especially trivial (e.g., just a mov instruction), 
and the overhead of the call and return instructions is expensive for such trivial 
operations. For example, suppose you have an ADT whose data object is a 
structure, but you do not want to make the field names visible to the applica-
tion and you really do not want to allow the application to access the fields 
of the data structure directly (because the data structure may change in the 
future). The normal way to handle this is to supply a GetField method that 
returns the value of the desired field. However, as pointed out above, this can 
be very slow. An alternative for simple access methods is to use a macro to 
emit the code to access the desired field. Although code to directly access the 
data object appears in the application program (via macro expansion), a 
recompile will automatically update it if you ever change the macro in the 
interface section.

Although it is quite possible to create ADTs using nothing more than sep-
arate compilation and, perhaps, records, HLA does provide a better solution: 
the class. Read on to find out about HLA’s support for classes and objects as 
well as how to use these to create ADTs.

12.2 Classes in HLA

Fundamentally, a class is a record declaration that allows the definition of 
non-data fields (e.g., procedures, constants, and macros). The inclusion of 
other objects in the class definition dramatically expands the capabilities of 
a class. For example, with a class it is now possible to easily define an ADT 
because classes may include data and methods (procedures) that operate on 
that data.
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The principle way to create an abstract data type in HLA is to declare a 
class data type. Classes in HLA always appear in the type section and use the 
following syntax:

classname : class 

               << Class declaration section >> 

          endclass; 

The class declaration section is very similar to the local declaration section 
for a procedure insofar as it allows const, val, var, storage, readonly, static, and 
proc variable declaration sections. Classes also let you define macros and specify 
procedure, iterator,2 and method prototypes (method declarations are legal 
only in classes). Conspicuously absent from this list is the type declaration 
section. You cannot declare new types within a class.

A method is a special type of procedure that appears only within a class. 
A little later you will see the difference between procedures and methods; for 
now you can treat them as being the same. Other than a few subtle details 
regarding class initialization and the use of pointers to classes, their semantics 
are identical.3 Generally, if you don’t know whether to use a procedure or 
method in a class, the safest bet is to use a method.

You do not place procedure/iterator/method code within a class. Instead 
you simply supply prototypes for these routines. A routine prototype consists of 
the procedure, iterator, or method reserved word, the routine name, any param-
eters, and a couple of optional procedure attributes (@use, @returns, and 
external). The actual routine definition (the body of the routine and any 
local declarations it needs) appears outside the class.

The following example demonstrates a typical class declaration appear-
ing in the type section:

TYPE  
     TypicalClass:  class

          Const
               TCconst := 5;

          Val
               TCval := 6;

          var 
               TCvar : uns32; // Private field used only by TCproc.

2 This text does not discuss iterators. See the HLA reference manual for details on this type of 
function.
3 Note, however, that the difference between procedures and methods makes all the difference 
in the world to the object-oriented programming paradigm, hence the inclusion of methods in 
HLA’s class definitions.
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          static
               TCstatic : int32;

          procedure TCproc( u:uns32 ); @returns( "eax" );
          iterator TCiter( i:int32 ); external;

          method TCmethod( c:char );  

     endclass; 

As you can see, classes are very similar to records in HLA. Indeed, you can 
think of a record as being a class that allows only var declarations. HLA imple-
ments classes in a fashion quite similar to records insofar as it allocates sequential 
data fields in sequential memory locations. In fact, with only one minor excep-
tion, there is almost no difference between a record declaration and a class 
declaration that has only a var declaration section. Later you’ll see exactly 
how HLA implements classes, but for now you can assume that HLA imple-
ments them the same as it does records, and you won’t be too far off the mark.

You can access the TCvar and TCstatic fields (in the class above) just like 
a record’s fields. You access the const and val fields in a similar manner. If a 
variable of type TypicalClass has the name obj, you can access the fields of obj 
as follows:

    mov ( obj.TCconst, eax );
    mov( obj.TCval, ebx );
    add( obj.TCvar, eax );
    add( obj.TCstatic, ebx );
    obj.TCproc( 20 );  // Calls the TCproc procedure in TypicalClass.
    etc.

If an application program includes the class declaration above, it can 
create variables using the TypicalClass type and perform operations using the 
mentioned methods. Unfortunately, the application program can also access 
the fields of the ADT with impunity. For example, if a program created a vari-
able MyClass of type TypicalClass, then it could easily execute instructions like 
mov( MyClass.TCvar, eax ); even though this field might be private to the imple-
mentation section. Unfortunately, if you are going to allow an application to 
declare a variable of type TypicalClass, the field names will have to be visible. 
While there are some tricks we could play with HLA’s class definitions to help 
hide the private fields, the best solution is to thoroughly comment the private 
fields and then exercise some restraint when accessing the fields of that class. 
Specifically, this means that ADTs you create using HLA’s classes cannot be 
“pure” ADTs because HLA allows direct access to the data fields. However, 
with a little discipline, you can simulate a pure ADT by simply electing not to 
access such fields outside the class’s methods, procedures, and iterators.

Prototypes appearing in a class are effectively forward declarations. Like 
normal forward declarations, all procedures, iterators, and methods you define 
in a class must have an actual implementation later in the code. Alternately, 
you may attach the external option to the end of a procedure, iterator, or 
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method declaration within a class to inform HLA that the actual code appears 
in a separate module. As a general rule, class declarations appear in header 
files and represent the interface section of an ADT. The procedure, iterator, 
and method bodies appear in the implementation section, which is usually a 
separate source file that you compile separately and link with the modules 
that use the class.

The following is an example of a sample class procedure implementation:

procedure TypicalClass.TCproc( u:uns32 ); @nodisplay;  
     << Local declarations for this procedure >> 
begin TCproc;

     << Code to implement whatever this procedure does >> 

end TCProc; 

There are several differences between a standard procedure declaration 
and a class procedure declaration. First, and most obvious, the procedure 
name includes the class name (e.g., TypicalClass.TCproc). This differentiates 
this class procedure definition from a regular procedure that just happens to 
have the name TCproc. Note, however, that you do not have to repeat the class 
name before the procedure name in the begin and end clauses of the proce-
dure (this is similar to procedures you define in HLA namespaces).

A second difference between class procedures and nonclass procedures 
is not obvious. Some procedure attributes (@use, external, @returns, @cdecl, 
@pascal, and @stdcall) are legal only in the prototype declaration appearing 
within the class, while other attributes (@noframe, @nodisplay, @noalignstack, and 
@align) are legal only within the procedure definition and not within the class. 
Fortunately, HLA provides helpful error messages if you stick the option in 
the wrong place, so you don’t have to memorize this rule.

If a class routine’s prototype does not have the external option, the com-
pilation unit (that is, the program or unit) containing the class declaration 
must also contain the routine’s definition or HLA will generate an error at 
the end of the compilation. For small, local classes (that is, when you’re 
embedding the class declaration and routine definitions in the same compi-
lation unit) the convention is to place the class’s procedure, iterator, and 
method definitions in the source file shortly after the class declaration. For 
larger systems (that is, when separately compiling a class’s routines), the 
convention is to place the class declaration in a header file by itself and place 
all the procedure, iterator, and method definitions in a separate HLA unit 
and compile them by themselves.

12.3 Objects

Remember, a class definition is just a type. Therefore, when you declare a 
class type you haven’t created a variable whose fields you can manipulate. An 
object is an instance of a class; that is, an object is a variable whose type is some 
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class. You declare objects (i.e., class variables) the same way you declare other 
variables: in a var, static, or storage section.4 Here is a pair of sample object 
declarations:

var  
     T1: TypicalClass;  
     T2: TypicalClass; 

For a given class object, HLA allocates storage for each variable appear-
ing in the var section of the class declaration. If you have two objects, T1 and 
T2, of type TypicalClass, then T1.TCvar is unique, as is T2.TCvar. This is the intu-
itive result (similar to record declarations); most data fields you define in a class 
will appear in the var declaration section of the class.

Static data objects (for example, those you declare in the static or storage 
sections of a class declaration) are not unique among the objects of that class; 
that is, HLA allocates only a single static variable that all variables of that class 
share. For example, consider the following (partial) class declaration and 
object declarations:

type
     sc: class

          var 
               i:int32;

          static 
               s:int32; 
               . 
               . 
               .
     endclass; 

var  
     s1: sc;  
     s2: sc; 

In this example, s1.i and s2.i are different variables. However, s1.s 
and s2.s are aliases of one another. Therefore, an instruction like mov(5, s1.s); 
also stores 5 into s2.s. Generally you use static class variables to maintain 
information about the whole class, while you use class var objects to main-
tain information about the specific object. Because keeping track of class 
information is relatively rare, you will probably declare most class data fields 
in a var section.

You can also create dynamic instances of a class and refer to those dynamic 
objects via pointers. In fact, this is probably the most common form of object 

4 Technically, you could also declare an object in a readonly section, but HLA does not allow you 
to define class constants, so there is little utility in declaring class objects in the readonly section. 
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storage and access. The following code shows how to create pointers to objects 
and how you can dynamically allocate storage for an object:

var
     pSC: pointer to sc; 
          . 
          . 
          .
     mem.alloc( @size( sc ) );  
     mov( eax, pSC ); 
          .
          .
          .
     mov( pSC, ebx );
     mov( (type sc [ebx]).i, eax ); 

Note the use of type coercion to cast the pointer in EBX as type sc.

12.4 Inheritance

Inheritance is one of the most fundamental ideas behind object-oriented pro-
gramming. The basic idea is that a class inherits, or copies, all the fields from 
some class and then possibly expands the number of fields in the new data 
type. For example, suppose you created a data type point that describes a 
point in the planar (two-dimensional) space. The class for this point might 
look like the following:

type
     point: class

          var 
               x:int32; 
               y:int32;

          method distance;

     endclass; 

Suppose you want to create a point in 3D space rather than 2D space. You 
can easily build such a data type as follows: 

type
     point3D: class inherits( point ) 

          var
               z:int32;

     endclass;
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The inherits option on the class declaration tells HLA to insert the fields 
of point at the beginning of the class. In this case, point3D inherits the fields of 
point. HLA always places the inherited fields at the beginning of a class object. 
The reason for this will become clear a little later. If you have an instance of 
point3D, which you call P3, then the following 80x86 instructions are all legal: 

     mov( P3.x, eax ); 
     add( P3.y, eax ); 
     mov( eax, P3.z ); 
     P3.distance(); 

Note that the p3.distance method invocation in this example calls the 
point.distance method. You do not have to write a separate distance method 
for the point3D class unless you really want to do so (see the next section for 
details). Just like the x and y fields, point3D objects inherit point’s methods.

12.5 Overriding 

Overriding is the process of replacing an existing method in an inherited 
class with one more suitable for the new class. In the point and point3D exam-
ples appearing in the previous section, the distance method (presumably) 
computes the distance from the origin to the specified point. For a point on 
a two-dimensional plane, you can compute the distance using the following 
function:

However, the distance for a point in 3D space is given by this equation:

Clearly, if you call the distance function for point for a point3D object, you 
will get an incorrect answer. In the previous section, however, you saw that the 
P3 object calls the distance function inherited from the point class. Therefore, 
this would produce an incorrect result.

In this situation the point3D data type must override the distance method 
with one that computes the correct value. You cannot simply redefine the 
point3D class by adding a distance method prototype:

type
     point3D:     class inherits( point ) 

          var 
               z:int32;  
          method distance; // This doesn't work!  
     endclass; 

d x2 y2
+=

d x2 y2 z2
+ +=
660 Chapte r  12



AAL2E_03.book  Page 661  Thursday, February 18, 2010  12:49 PM
The problem with the distance method declaration above is that point3D 
already has a distance method—the one that it inherits from the point class. 
HLA will complain because it doesn’t like two methods with the same name in 
a single class.

To solve this problem, we need some mechanism by which we can over-
ride the declaration of point.distance and replace it with a declaration for 
point3D.distance. To do this, you use the override keyword before the method 
declaration:

type
     point3D: class inherits( point )

          var
               z:int32; 

          override method distance; // This will work!  

     endclass; 

The override prefix tells HLA to ignore the fact that point3D inherits a method 
named distance from the point class. Now, any call to the distance method via 
a point3D object will call the point3D.distance method rather than point.distance. 
Of course, once you override a method using the override prefix, you must 
supply the method in the implementation section of your code. For example:

method point3D.distance; @nodisplay;

     << Local declarations for the distance function >> 

begin distance;

     << Code to implement the distance function >> 

end distance; 

12.6 Virtual Methods vs. Static Procedures

A little earlier, this chapter suggested that you could treat class methods and 
class procedures the same. There are, in fact, some major differences between 
the two (after all, why have methods if they’re the same as procedures?). As it 
turns out, the differences between methods and procedures are crucial if you 
want to develop object-oriented programs. Methods provide the second feature 
necessary to support true polymorphism: virtual procedure calls.5 A virtual 
procedure call is just a fancy name for an indirect procedure call (using a 

5 Polymorphism literally means “many-faced.” In the context of object-oriented programming, 
polymorphism means that the same method name, for example, distance, refers to one of 
several different methods.
Classes and Objec t s 661



AAL2E_03.book  Page 662  Thursday, February 18, 2010  12:49 PM
pointer associated with the object). The key benefit of virtual procedures is 
that the system automatically calls the right method when using pointers to 
generic objects.

Consider the following declarations using the point class from the previ-
ous sections:

var  
     P2: point;
     P: pointer to point; 

Given the declarations above, the following assembly statements are all 
legal:

     mov( P2.x, eax );
     mov( P2.y, ecx );
     P2.distance();       // Calls point3D.distance.

     lea( ebx, P2 );      // Store address of P2 into P.
     mov( ebx, P );
     P.distance();        // Calls point.distance. 

Note that HLA lets you call a method via a pointer to an object rather 
than directly via an object variable. This is a crucial feature of objects in HLA 
and a key to implementing virtual method calls.

The magic behind polymorphism and inheritance is that object pointers 
are generic. In general, when your program references data indirectly through 
a pointer, the value of the pointer should be the address of some value of the 
underlying data type associated with that pointer. For example, if you have a 
pointer to a 16-bit unsigned integer, you wouldn’t normally use that pointer 
to access a 32-bit signed integer value. Similarly, if you have a pointer to some 
record, you would not normally cast that pointer to some other record type 
and access the fields of that other type.6 With pointers to class objects, how-
ever, we can lift this restriction a little. Pointers to objects may legally contain 
the address of the object’s type or the address of any object that inherits the fields of 
that type. Consider the following declarations that use the point and point3D 
types from the previous examples:

var
     P2: point;
     P3: point3D;
     p: pointer to point;
          .
          .
          .

6 Of course, assembly language programmers break rules like this all the time. For now, let’s 
assume we’re playing by the rules and access the data using only the data type associated with 
the pointer.
662 Chapte r  12



AAL2E_03.book  Page 663  Thursday, February 18, 2010  12:49 PM
     lea( ebx, P2 );  
     mov( ebx, p );
     p.distance();         // Calls the point.distance method. 
          . 
          . 
          .
     lea( ebx, P3 );
     mov( ebx, p );        // Yes, this is semantically legal.
     p.distance();         // Surprise, this calls point3D.distance.

Because p is a pointer to a point object, it might seem intuitive for p.distance 
to call the point.distance method. However, methods are polymorphic. If you 
have a pointer to an object and you call a method associated with that object, 
the system will call the actual (overridden) method associated with the object, 
not the method specifically associated with the pointer’s class type.

Class procedures behave differently than methods with respect to over-
ridden procedures. When you call a class procedure indirectly through an 
object pointer, the system will always call the procedure associated with the 
underlying class. So had distance been a procedure rather than a method in the 
previous examples, the p.distance(); invocation would always call point.distance, 
even if p were pointing at a point3D object. Section 12.9 explains why methods 
and procedures are different.

12.7 Writing Class Methods and Procedures

For each class procedure and method prototype appearing in a class defini-
tion, there must be a corresponding procedure or method appearing within 
the program (for the sake of brevity, this section will use the term routine to 
mean procedure or method from this point forward). If the prototype does 
not contain the external option, then the code must appear in the same com-
pilation unit as the class declaration. If the external option does follow the 
prototype, then the code may appear in the same compilation unit or a differ-
ent compilation unit (as long as you link the resulting object file with the 
code containing the class declaration). Like external (non-class) procedures, 
if you fail to provide the code, the linker will complain when you attempt to 
create an executable file. To reduce the size of the following examples, they 
will all define their routines in the same source file as the class declaration.

HLA class routines must always follow the class declaration in a compila-
tion unit. If you are compiling your routines in a separate unit, the class 
declarations must still precede the implementation of the routines from the 
class (usually via an #include file). If you haven’t defined the class by the time 
you define a routine like point.distance, HLA doesn’t know that point is a class 
and, therefore, doesn’t know how to handle the routine’s definition.
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Consider the following declarations for a point2D class:

type
     point2D: class 
         const
              UnitDistance: real32 := 1.0;

         var 
              x: real32; 
              y: real32;

         static
              LastDistance: real32;

         method distance
         ( 
             fromX: real32;  
             fromY: real32 
         ); @returns( "st0" ); 
         procedure InitLastDistance;

     endclass; 

The distance function for this class should compute the distance from 
the object’s point to (fromX,fromY). The following formula describes this 
computation:

A first pass at writing the distance method might produce the following code:

method point2D.distance( fromX:real32; fromY:real32 ); @nodisplay; 
begin distance;

     fld( x );       // Note: this doesn't work! 
     fld( fromX );   // Compute (x-fromX)
     fsubp();  
     fld( st0 );    // Duplicate value on TOS.
     fmulp();        // Compute square of difference.

     fld( y );      // This doesn't work either.
     fld( fromY );  // Compute (y-fromY)
     fsubp();  
     fld( st0 );    // Compute the square of the difference.
     fmulp();
     faddp();
     fsqrt(); 

end distance; 

d x fromX–( )2 y fromY–( )2
+=
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This code probably looks like it should work to someone who is familiar 
with an object-oriented programming language like C++ or Delphi. However, 
as the comments indicate, the instructions that push the x and y variables 
onto the FPU stack don’t work; HLA doesn’t automatically define the symbols 
associated with the data fields of a class within that class’s routines.

To learn how to access the data fields of a class within that class’s routines, 
we need to back up a moment and discuss some very important implementa-
tion details concerning HLA’s classes. To do this, consider the following 
variable declarations:

var  
     Origin:    point2D;  
     PtInSpace: point2D; 

Remember, whenever you create two objects like Origin and PtInSpace, 
HLA reserves storage for the x and y data fields for both of these objects. 
However, there is only one copy of the point2D.distance method in memory. 
Therefore, were you to call Origin.distance and PtInSpace.distance, the system 
would call the same routine for both method invocations. Once inside that 
method, one has to wonder what an instruction like fld( x ); would do. How 
does it associate x with Origin.x or PtInSpace.x? Worse still, how would this 
code differentiate between the data field x and a global object x? In HLA, the 
answer is, it doesn’t. You do not specify the data field names within a class rou-
tine by simply using their names as though they were common variables.

To differentiate Origin.x from PtInSpace.x within class routines, HLA auto-
matically passes a pointer to an object’s data fields whenever you call a class 
routine. Therefore, you can reference the data fields indirectly off this pointer. 
HLA passes this object pointer in the ESI register. This is one of the few places 
where HLA-generated code will modify one of the 80x86 registers behind 
your back: Anytime you call a class routine, HLA automatically loads the ESI register 
with the object’s address. Obviously, you cannot count on ESI’s value being pre-
served across class routine calls, nor can you pass parameters to the class 
routine in the ESI register (though it is perfectly reasonable to specify @use 
esi; to allow HLA to use the ESI register when setting up other parameters). 
For class methods (but not procedures), HLA will also load the EDI register 
with the address of the classes’ virtual method table. While the virtual method 
table address isn’t as interesting as the object address, keep in mind that HLA-
generated code will overwrite any value in the EDI register when you call a class method 
or an iterator. Again, “EDI” is a good choice for the @use operand for methods 
because HLA will wipe out the value in EDI anyway.

Upon entry into a class routine, ESI contains a pointer to the (nonstatic) 
data fields associated with the class. Therefore, to access fields like x and y (in 
our point2D example), you could use an address expression like the following:

                    (type point2D [esi]).x 
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Because you use ESI as the base address of the object’s data fields, it’s a 
good idea not to disturb ESI’s value within the class routines (or, at least, 
preserve ESI’s value across the code where you must use ESI for some other 
purpose). Note that within a method you do not have to preserve EDI (unless, 
for some reason, you need access to the virtual method table, which is unlikely).

Accessing the fields of a data object within a class’s routines is such a com-
mon operation that HLA provides a shorthand notation for casting ESI as a 
pointer to the class object: this. Within a class in HLA, the reserved word this 
automatically expands to a string of the form (type classname [esi]), substitut-
ing, of course, the appropriate class name for classname. Using the this keyword, 
we can (correctly) rewrite the previous distance method as follows:

method point2D.distance( fromX:real32; fromY:real32 ); @nodisplay; 
begin distance;

          fld( this.x );
          fld( fromX );     // Compute (x-fromX).
          fsubp();
          fld( st0 );       // Duplicate value on TOS.
          fmulp();          // Compute square of difference.

          fld( this.y );
          fld( fromY );     // Compute (y-fromY).
          fsubp();
          fld( st0 );       // Compute the square of the difference.
          fmulp();
          faddp();
          fsqrt(); 

end distance; 

Don’t forget that calling a class routine wipes out the value in the ESI 
register. This isn’t obvious from the syntax of the routine’s invocation. It is 
especially easy to forget this when calling some class routine from inside some 
other class routine; remember that if you do this, the internal call wipes out 
the value in ESI and on return from that call ESI no longer points at the orig-
inal object. Always push and pop ESI (or otherwise preserve ESI’s value) in 
this situation. For example:

      .
      .
      .
      fld( this.x );         // esi points at current object.
      .
      .
      .
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      push( esi );           // Preserve esi across this method call.
      SomeObject.SomeMethod();
      pop( esi );
      .
      .
      .
      lea( ebx, this.x );    // esi points at original object here. 

The this keyword provides access to the class variables you declare in the 
var section of a class. You can also use this to call other class routines associ-
ated with the current object. For example:

this.distance( 5.0, 6.0 ); 

To access class constants and static data fields, you generally do not use 
the this pointer. HLA associates constant and static data fields with the whole 
class, not a specific object ( just like static fields in a class). To access these 
class members, use the class name in place of the object name. For example, 
to access the UnitDistance constant in the point2d class you could use a state-
ment like the following:

fld( point2D.UnitDistance ); 

As another example, if you wanted to update the LastDistance field in 
the point2D class each time you computed a distance, you could rewrite the 
point2D.distance method as follows:

method point2D.distance( fromX:real32; fromY:real32 ); @nodisplay; 
begin distance;

      fld( this.x );
      fld( fromX );        // Compute (x-fromX).
      fsubp();
      fld( st0 );          // Duplicate value on TOS.
      fmulp();             // Compute square of difference.

      fld( this.y );
      fld( fromY );        // Compute (y-fromY).
      fsubp();
      fld( st0 );          // Compute the square of the difference.
      fmulp();
      faddp();
      fsqrt();

      fst( point2D.LastDistance ); // Update shared (STATIC) field. 

end distance; 
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The next section will explain why you use the class name when referring 
to constants and static objects but you use this to access var objects.

Class procedures are also static objects, so it is possible to call a class proce-
dure by specifying the class name rather than an object name in the procedure 
invocation; for example, both of the following are legal:

      Origin.InitLastDistance();  
      point2D.InitLastDistance(); 

There is, however, a subtle difference between these two class procedure 
calls. The first call above loads ESI with the address of the origin object prior 
to actually calling the InitLastDistance procedure. The second call, however, is 
a direct call to the class procedure without referencing an object; therefore, 
HLA doesn’t know what object address to load into the ESI register. In this 
case, HLA loads NULL (0) into ESI prior to calling the InitLastDistance pro-
cedure. Because you can call class procedures in this manner, it’s always a 
good idea to check the value in ESI within your class procedures to verify that 
HLA contains a valid object address. Checking the value in ESI is a good way 
to determine which calling mechanism is in use. Section 12.9 discusses con-
structors and object initialization; then you will see a good use for static 
procedures and calling those procedures directly (rather than through the 
use of an object).

12.8 Object Implementation

In a high-level object-oriented language like C++ or Delphi, it is quite possible 
to master the use of objects without really understanding how the machine 
implements them. One of the reasons for learning assembly language pro-
gramming is to fully comprehend low-level implementation details so you can 
make educated decisions concerning the use of programming constructs like 
objects. Further, because assembly language allows you to poke around with 
data structures at a very low level, knowing how HLA implements objects 
can help you create certain algorithms that would not be possible without a 
detailed knowledge of object implementation. Therefore, this section and its 
corresponding subsections explain the low-level implementation details you 
will need to know in order to write object-oriented HLA programs.

HLA implements objects in a manner quite similar to records. In particu-
lar, HLA allocates storage for all var objects in a class in a sequential fashion, 
just like records. Indeed, if a class consists of only var data fields, the memory 
representation of that class is nearly identical to that of a corresponding 
record declaration. Consider the student record declaration taken from 
Chapter 4 and the corresponding class (see Figures 12-1 and 12-2, respectively).
668 Chapte r  12



AAL2E_03.book  Page 669  Thursday, February 18, 2010  12:49 PM
type
     student: record 
          Name:     char[65]; 
          Major:    int16; 
          SSN:      char[12]; 
          Midterm1: int16; 
          Midterm2: int16; 
          Final:    int16; 
          Homework: int16; 
          Projects: int16;  
     endrecord; 
     student2: class 
          var 
               Name:     char[65]; 
               Major:    int16; 
               SSN:      char[12]; 
               Midterm1: int16; 
               Midterm2: int16; 
               Final:    int16; 
               Homework: int16; 
               Projects: int16;
     endclass; 

Figure 12-1: student record implementation in memory

Figure 12-2: student class implementation in memory

If you look carefully at Figures 12-1 and 12-2, you’ll discover that the only 
difference between the class and the record implementations is the inclusion 
of the VMT (virtual method table) pointer field at the beginning of the class 
object. This field, which is always present in a class, contains the address of the 
class’s virtual method table that, in turn, contains the addresses of all the class’s 
methods and iterators. The VMT field, by the way, is present even if a class 
doesn’t contain any methods or iterators.

Name
(65 bytes)

SSN
(12 bytes)

Midterm2
(2 bytes)

Homework
(2 bytes)

Major
(2 bytes)

Midterm1
(2 bytes)

Final
(2 bytes)

Projects
(2 bytes)

John

Name
(65 bytes)

SSN
(12 bytes)

Midterm2
(2 bytes)

Homework
(2 bytes)

Major
(2 bytes)

Midterm1
(2 bytes)

Final
(2 bytes)

Projects
(2 bytes)

John

VMT
(4 bytes)
Classes and Objec t s 669



AAL2E_03.book  Page 670  Thursday, February 18, 2010  12:49 PM
As pointed out in previous sections, HLA does not allocate storage for 
static objects within the object. Instead, HLA allocates a single instance of 
each static data field that all objects share. As an example, consider the fol-
lowing class and object declarations:

type
     tHasStatic: class

          var
               i:int32; 
               j:int32; 
               r:real32;

          static 
               c:char[2]; 
               b:byte;

     endclass; 

var  
     hs1: tHasStatic;  
     hs2: tHasStatic; 

Figure 12-3 shows the storage allocation for these two objects in memory.

Figure 12-3: Object allocation with static data fields

Of course, const, val, and #macro objects do not have any runtime memory 
requirements associated with them, so HLA does not allocate any storage for 
these fields. Like the static data fields, you may access const, val, and #macro 
fields using the class name as well as an object name. Hence, even if tHasStatic 
has these types of fields, the memory organization for tHasStatic objects would 
still be the same as shown in Figure 12-3.

Other than the presence of the virtual method table (VMT) pointer, the 
presence of methods and procedures has no impact on the storage allocation 
of an object. Of course, the machine instructions associated with these routines 
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do appear somewhere in memory. So in a sense the code for the routines is 
quite similar to static data fields insofar as all the objects share a single 
instance of the routine.

12.8.1 Virtual Method Tables

When HLA calls a class procedure, it directly calls that procedure using a call 
instruction, just like any normal procedure call. Methods are another story 
altogether. Each object in the system carries a pointer to a virtual method 
table, which is an array of pointers to all the methods and iterators appearing 
within the object’s class (see Figure 12-4).

Figure 12-4: Virtual method table organization

Each iterator or method you declare in a class has a corresponding entry 
in the virtual method table. That double-word entry contains the address of 
the first instruction of that iterator or method. Calling a class method or 
iterator is a bit more work than calling a class procedure (it requires one addi-
tional instruction plus the use of the EDI register). Here is a typical calling 
sequence for a method:

mov( ObjectAdrs, ESI );       // All class routines do this.
mov( [esi], edi );            // Get the address of the VMT into edi
call( (type dword [edi+n]));  // "n" is the offset of the method's 

// entry in the VMT. 

For a given class there is only one copy of the virtual method table in 
memory. This is a static object, so all objects of a given class type share the 
same virtual method table. This is reasonable because all objects of the same 
class type have exactly the same methods and iterators (see Figure 12-5).

Although HLA builds the VMT record structure as it encounters methods 
and iterators within a class, HLA does not automatically create the virtual 
method table for you. You must explicitly declare this table in your program. 
To do this, you include a statement like the following in a static or readonly 
declaration section of your program. For example:

readonly  
     VMT( classname ); 

SomeObject

VMT

field1

field2

...

fieldn

Method/Iterator #1

Method/Iterator #2

Method/Iterator #n

...
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Figure 12-5: All objects that are the same class 
type share the same VMT.

Because the addresses in a virtual method table should never change dur-
ing program execution, the readonly section is probably the best choice for 
declaring virtual method tables. It should go without saying that changing the 
pointers in a virtual method table is, in general, a really bad idea. So putting 
VMTs in a static section is usually not a good idea.

A declaration like the one above defines the variable classname._VMT_. In 
Section 12.9, you will see that you need this name when initializing object 
variables. The class declaration automatically defines the classname._VMT_ sym-
bol as an external static variable. The declaration above just provides the 
actual definition for this external symbol.

The declaration of a VMT uses a somewhat strange syntax because you 
aren’t actually declaring a new symbol with this declaration; you’re simply 
supplying the data for a symbol that you previously declared implicitly by 
defining a class. That is, the class declaration defines the static table variable 
classname._VMT_; all you’re doing with the VMT declaration is telling HLA to emit 
the actual data for the table. If, for some reason, you would like to refer to this 
table using a name other than classname._VMT_, HLA does allow you to prefix 
the declaration above with a variable name. For example:

readonly
     myVMT: VMT( classname );

In this declaration, myVMT is an alias of classname._VMT_. As a general rule, 
you should avoid using aliases in a program because they make the program 
more difficult to read and understand. Therefore, it is unlikely that you would 
ever need to use this type of declaration.

Object1

Object2

Object3

VMT

Note: Objects are all the same class type.
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As with any other global static variable, there should be only one instance 
of a virtual method table for a given class in a program. The best place to put 
the VMT declaration is in the same source file as the class’s method, iterator, 
and procedure code (assuming they all appear in a single file). This way you 
will automatically link in the virtual method table whenever you link in the 
routines for a given class.

12.8.2 Object Representation with Inheritance

Up to this point, the discussion of the implementation of class objects has 
ignored the possibility of inheritance. Inheritance affects the memory repre-
sentation of an object only by adding fields that are not explicitly stated in the 
class declaration.

Adding inherited fields from a base class to another class must be done 
carefully. Remember, an important attribute of a class that inherits fields 
from a base class is that you can use a pointer to the base class to access the 
inherited fields from that base class, even if the pointer contains the address 
of some other class (that inherits the fields from the base class). As an example, 
consider the following classes:

type  
     tBaseClass: class
          var
               i:uns32;
               j:uns32;
               r:real32;

          method mBase;
     endclass;

     tChildClassA: class inherits( tBaseClass )
          var
               c:char;
               b:boolean;
               w:word;

          method mA;
     endclass;

     tChildClassB: class inherits( tBaseClass )
          var
               d:dword;
               c:char;
               a:byte[3];

     endclass; 

Because both tChildClassA and tChildClassB inherit the fields of tBaseClass, 
these two child classes include the i, j, and r fields as well as their own specific 
fields. Furthermore, whenever you have a pointer variable whose base type 
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is tBaseClass, it is legal to load this pointer with the address of any child class 
of tBaseClass; therefore, it is perfectly reasonable to load such a pointer with 
the address of a tChildClassA or tChildClassB variable. For example:

var  
     B1:  tBaseClass;  
     CA:  tChildClassA;  
     CB:  tChildClassB;  
     ptr: pointer to tBaseClass;
          .
          .
          .
     lea( ebx, B1 );
     mov( ebx, ptr );
     << Use ptr >>
          .
          .
          .
     lea( eax, CA );
     mov( ebx, ptr );
     << Use ptr >>
          .
          .
          .
     lea( eax, CB );
     mov( eax, ptr );
     << Use ptr >>

Because ptr points at an object of type tBaseClass, you may legally (from a 
semantic sense) access the i, j, and r fields of the object where ptr is pointing. 
It is not legal to access the c, b, w, or d field of the tChildClassA or tChildClassB 
objects because at any one given moment the program may not know exactly 
what object type ptr references.

In order for inheritance to work properly, the i, j, and r fields must appear 
at the same offsets in all child classes as they do in tBaseClass. This way, an 
instruction of the form mov((type tBaseClass [ebx]).i, eax); will correctly 
access the i field even if EBX points at an object of type tChildClassA or 
tChildClassB. Figure 12-6 shows the layout of the child and base classes.

Note that the new fields in the two child classes bear no relation to one 
another, even if they have the same name (for example, the c fields in the two 
child classes do not lie at the same offset). Although the two child classes 
share the fields they inherit from their common base class, any new fields they 
add are unique and separate. Two fields in different classes share the same 
offset only by coincidence if those fields are not inherited from a common 
base class.
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Figure 12-6: Layout of base and child class objects in memory

All classes (even those that aren’t related to one another) place the 
pointer to the virtual method table at offset 0 within the object. There is a 
single virtual method table associated with each class in a program; even 
classes that inherit fields from some base class have a virtual method table 
that is (generally) different than the base class’s table. Figure 12-7 shows how 
objects of type tBaseClass, tChildClassA, and tChildClassB point at their specific 
virtual method tables.

Figure 12-7: Virtual method table references from objects 
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Derived (child) classes locate their inherited fields at the same offsets as those
fields in the base class.

var
 B1:   tBaseClass;
 CA:   tChildClassA;
 CB:   tChildClassB;
 CB2:  tChildClassB;
 CA2:  tChildClassA;
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tChildClassB:VMT
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Classes and Objec t s 675



AAL2E_03.book  Page 676  Thursday, February 18, 2010  12:49 PM
A virtual method table is nothing more than an array of pointers to the 
methods and iterators associated with a class. The address of the first method 
or iterator that appears in a class is at offset 0, the address of the second 
appears at offset 4, and so on. You can determine the offset value for a given 
iterator or method by using the @offset function. If you want to call a method 
directly (using 80x86 syntax rather than HLA’s high-level syntax), you could 
use code like the following:

var
     sc: tBaseClass;
          .
          .
          .
     lea( esi, sc );     // Get the address of the object (& VMT).  
     mov( [esi], edi );  // Put address of VMT into edi.  
     call( (type dword [edi+@offset( tBaseClass.mBase )] ); 

Of course, if the method has any parameters, you must push them onto 
the stack before executing the code above. Don’t forget when making direct 
calls to a method, you must load ESI with the address of the object. Any field 
references within the method will probably depend on ESI containing this 
address. The choice of EDI to contain the VMT address is nearly arbitrary. Unless 
you’re doing something tricky (like using EDI to obtain runtime type infor-
mation), you could use any register you please here. As a general rule, you 
should use EDI when simulating class method calls because this is the conven-
tion that HLA employs, and most programmers will expect this usage.

Whenever a child class inherits fields from some base class, the child 
class’s virtual method table also inherits entries from the base class’s table. 
For example, the virtual method table for class tBaseClass contains only a single 
entry—a pointer to method tBaseClass.mBase. The virtual method table for 
class tChildClassA contains two entries: a pointer to tBaseClass.mBase and 
tChildClassA.mA. Because tChildClassB doesn’t define any new methods or itera-
tors, tChildClassB’s virtual method table contains only a single entry, a pointer 
to the tBaseClass.mBase method. Note that tChildClassB’s virtual method table 
is identical to tBaseclass’s table. Nevertheless, HLA produces two distinct vir-
tual method tables. This is a critical fact that we will make use of a little later. 
Figure 12-8 shows the relationship between these virtual method tables.

Figure 12-8: Virtual method tables for inherited classes 
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Although the virtual method table pointer always appears at offset 0 in an 
object (and, therefore, you can access the pointer using the address expression 
[ESI] if ESI points at an object), HLA actually inserts a symbol into the symbol 
table so you may refer to the virtual method table pointer symbolically. The 
symbol _pVMT_ (pointer to virtual method table) provides this capability. So a 
more readable way to access the pointer (as in the previous code example) is:

     lea( esi, sc );
     mov( (type tBaseClass [esi])._pVMT_, edi );
     call( (type dword [edi+@offset( tBaseClass.mBase )] );

If you need to access the virtual method table directly, there are a couple 
of ways to do this. Whenever you declare a class object, HLA automatically 
includes a field named _VMT_ as part of that class. _VMT_ is a static array of 
double-word objects. Therefore, you may refer to the virtual method table 
using an identifier of the form classname._VMT_. Generally, you shouldn’t 
access the virtual method table directly, but as you’ll see shortly, there are 
some good reasons why you need to know the address of this object in 
memory.

12.9 Constructors and Object Initialization 

If you’ve tried to get a little ahead of the game and write a program that uses 
objects prior to this point, you’ve probably discovered that the program inex-
plicably crashes whenever you attempt to run it. We’ve covered a lot of material 
in this chapter thus far, but you are still missing one crucial piece of informa-
tion—how to properly initialize objects prior to use. This section will put the 
final piece into the puzzle and allow you to begin writing programs that use 
classes.

Consider the following object declaration and code fragment:

var
     bc: tBaseClass; 
          .
          .
          .
     bc.mBase(); 

Remember that variables you declare in the var section are uninitialized 
at runtime. Therefore, when the program containing these statements gets 
around to executing bc.mBase, it executes the three-statement sequence you’ve 
seen several times already:

     lea( esi, bc);
     mov( [esi], edi );
     call( (type dword [edi+@offset( tBaseClass.mBase )] );
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The problem with this sequence is that it loads EDI with an undefined 
value assuming you haven’t previously initialized the bc object. Because 
EDI contains a garbage value, attempting to call a subroutine at address 
[EDI+@offset(tBaseClass.mBase)] will likely crash the system. Therefore, 
before using an object, you must initialize the _pVMT_ field with the address 
of that object’s virtual method table. One easy way to do this is with the 
following statement:

mov( &tBaseClass._VMT_, bc._pVMT_ ); 

Always remember, before using an object, be sure to initialize the virtual 
method table pointer for that object.

Although you must initialize the virtual method table pointer for all objects 
you use, this may not be the only field you need to initialize in those objects. 
Each specific class may have its own application-specific initialization. Although 
the initialization may vary by class, you need to perform the same initializa-
tion on each object of a specific class that you use. If you ever create more 
than a single object from a given class, it is probably a good idea to create a pro-
cedure to do this initialization for you. This is such a common operation that 
object-oriented programmers have given these initialization procedures a 
special name: constructors.

Some object-oriented languages (e.g., C++) use a special syntax to declare 
a constructor. Others (e.g., Delphi) simply use existing procedure declara-
tions to define a constructor. One advantage to employing a special syntax is 
that the language knows when you define a constructor and can automatically 
generate code to call that constructor for you (whenever you declare an 
object). Languages like Delphi require that you explicitly call the constructor; 
this can be a minor inconvenience and a source of defects in your programs. 
HLA does not use a special syntax to declare constructors: you define construc-
tors using standard class procedures. Thus, you will need to explicitly call the 
constructors in your program; however, you’ll see an easy method for auto-
mating this in Section 12.11.

Perhaps the most important fact you must remember is that constructors 
must be class procedures. You must not define constructors as methods. The 
reason is quite simple: one of the tasks of the constructor is to initialize the 
pointer to the virtual method table, and you cannot call a class method or iter-
ator until after you’ve initialized the VMT pointer. Because class procedures 
don’t use the virtual method table, you can call a class procedure prior to ini-
tializing the VMT pointer for an object.

By convention, HLA programmers use the name create for the class con-
structor. There is no requirement that you use this name, but by doing so you 
will make your programs easier to read and follow by other programmers.

As you may recall, you can call a class procedure via an object reference 
or a class reference. For example, if clsProc is a class procedure of class tClass 
and Obj is an object of type tClass, then the following two class procedure 
invocations are both legal.
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     tClass.clsProc();  
     Obj.clsProc(); 

There is a big difference between these two calls. The first one calls clsProc 
with ESI containing 0 (NULL), while the second invocation loads the address 
of Obj into ESI before the call. We can use this fact to determine within a 
method the particular calling mechanism.

12.9.1 Dynamic Object Allocation Within the Constructor

As it turns out, most programs allocate objects dynamically using mem.alloc 
and refer to those objects indirectly using pointers. This adds one more step 
to the initialization process—allocating storage for the object. The construc-
tor is the perfect place to allocate this storage. Because you probably won’t 
need to allocate all objects dynamically, you’ll need two types of constructors: 
one that allocates storage and then initializes the object, and another that 
simply initializes an object that already has storage.

Another constructor convention is to merge these two constructors into a 
single constructor and differentiate the type of constructor call by the value in 
ESI. On entry into the class’s create procedure, the program checks the value 
in ESI to see if it contains NULL (0). If so, the constructor calls mem.alloc to 
allocate storage for the object and returns a pointer to the object in ESI. If ESI 
does not contain NULL upon entry into the procedure, then the constructor 
assumes that ESI points at a valid object and skips over the memory allocation 
statements. At the very least, a constructor initializes the pointer to the virtual 
method table; therefore, the minimalist constructor will look like the following:

procedure tBaseClass.create; @nodisplay; 
begin create;

  if( ESI = 0 ) then 

      push( eax );   // mem.alloc returns its result here, so save it. 
      mem.alloc( @size( tBaseClass )); 
      mov( eax, esi );  // Put pointer into esi. 
      pop( eax );

  endif;

  // Initialize the pointer to the VMT:
  // Remember, "this" is shorthand for "(type tBaseClass [esi])".

  mov( &tBaseClass._VMT_, this._pVMT_ );

  // Other class initialization would go here.

end create; 
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After you write a constructor like the preceding, you choose an appropriate 
calling mechanism based on whether your object’s storage is already allocated. 
For preallocated objects (such as those you’ve declared in var, static, or storage 
sections7 or those you’ve previously allocated storage for via mem.alloc), you 
simply load the address of the object into ESI and call the constructor. For 
those objects you declare as a variable, this is very easy; just call the appropri-
ate create constructor:

var  
     bc0: tBaseClass;  
     bcp: pointer to tBaseClass;
          .
          .
          .
     bc0.create();  // Initializes preallocated bc0 object.
          .
          .
          .
     // Allocate storage for bcp object.

     mem.alloc( @size( tBaseClass ));  
     mov( eax, bcp );
          .
          .
          .
     bcp.create();  // Initializes preallocated bcp object. 

Note that although bcp is a pointer to a tBaseClass object, the create method 
does not automatically allocate storage for this object. The program already 
allocated the storage earlier. Therefore, when the program calls bcp.create, it 
loads ESI with the address contained within bcp; because this is not NULL, the 
tBaseClass.create procedure does not allocate storage for a new object. By the 
way, the call to bcp.create emits the following sequence of machine instructions:

     mov( bcp, esi );  
     call tBaseClass.create; 

Until now, the code examples for a class procedure call always began with 
an lea instruction. This is because all the examples to this point have used 
object variables rather than pointers to object variables. Remember, a class 
procedure (method) call passes the address of the object in the ESI register. 
For object variables HLA emits an lea instruction to obtain this address. For 
pointers to objects, however, the actual object address is the value of the pointer 
variable; therefore, to load the address of the object into ESI, HLA emits a mov 
instruction that copies the value of the pointer into the ESI register.

In the preceding example, the program preallocates the storage for an 
object prior to calling the object constructor. While there are several reasons 
for preallocating object storage (for example, you’re creating a dynamic array 

7 You generally do not declare objects in readonly sections because you cannot initialize them.
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of objects), you can achieve most simple object allocations like the one above 
by calling a standard create procedure (such as one that allocates storage for 
an object if ESI contains NULL). The following example demonstrates this:

var
     bcp2: pointer to tBaseClass; 
          . 
          . 
          . 
   tBaseClass.create(); // Calls create with esi=NULL.
   mov( esi, bcp2 );    // Save pointer to new class object in bcp2.

Remember, a call to a tBaseClass.create constructor returns a pointer to 
the new object in the ESI register. It is the caller’s responsibility to save the 
pointer this function returns into the appropriate pointer variable; the con-
structor does not automatically do this for you. Likewise, it is the caller’s 
responsibility to free the storage associated with this object when the appli-
cation has finished using the object (see the discussion of destructors in 
Section 12.10).

12.9.2 Constructors and Inheritance 

Constructors for derived (child) classes that inherit fields from a base class 
represent a special case. Each class must have its own constructor but needs 
the ability to call the base class constructor. This section explains the reasons 
for this and how to do it.

A derived class inherits the create procedure from its base class. However, 
you must override this procedure in a derived class because the derived 
class probably requires more storage than the base class, and therefore you 
will probably need to use a different call to mem.alloc to allocate storage for a 
dynamic object. Hence, it is very unusual for a derived class not to override 
the definition of the create procedure.

However, overriding a base class’s create procedure has problems of its 
own. When you override the base class’s create procedure, you take the full 
responsibility of initializing the (entire) object, including all the initialization 
required by the base class. At the very least, this involves putting duplicate 
code in the overridden procedure to handle the initialization usually done by 
the base class constructor. In addition to making your program larger (by 
duplicating code already present in the base class constructor), this also vio-
lates information-hiding principles because the derived class must be aware 
of all the fields in the base class (including those that are logically private to 
the base class). What we need here is the ability to call a base class’s constructor 
from within the derived class’s constructor and let that call do the lower-level 
initialization of the base class’s fields. Fortunately, this is an easy thing to do 
in HLA.
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Consider the following class declarations (which do things the hard way):

type
     tBase: class 
          var 
               i:uns32; 
               j:int32;

          procedure create(); @returns( "esi" );  
     endclass;

     tDerived: class inherits( tBase ); 
          var
               r: real64; 
          override procedure create(); @returns( "esi" );
     endclass;

     procedure tBase.create; @nodisplay;
     begin create;

          if( esi = 0 ) then

               push( eax );
               mov( mem.alloc( @size( tBase )), esi );
               pop( eax );

          endif;
          mov( &tBase._VMT_, this._pVMT_ );
          mov( 0, this.i );
          mov( -1, this.j );  

     end create;  

     procedure tDerived.create; @nodisplay;
     begin create; 

          if( esi = 0 ) then 

               push( eax ); 
               mov( mem.alloc( @size( tDerived )), esi ); 
               pop( eax ); 

          endif; 

          // Initialize the VMT pointer for this object: 

          mov( &tDerived._VMT_, this._pVMT_ ); 

          // Initialize the "r" field of this particular object: 

     fldz();
     fstp( this.r );
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     // Duplicate the initialization required by tBase.create:

     mov( 0, this.i );
     mov( -1, this.j );  

     end create; 

Let’s take a closer look at the tDerived.create procedure above. Like a 
conventional constructor, it begins by checking ESI and allocates storage 
for a new object if ESI contains NULL. Note that the size of a tDerived object 
includes the size required by the inherited fields, so this properly allocates the 
necessary storage for all fields in a tDerived object.

Next, the tDerived.create procedure initializes the VMT pointer field of the 
object. Remember, each class has its own virtual method table and, specifically, 
derived classes do not use the virtual method table of their base class. There-
fore, this constructor must initialize the _pVMT_ field with the address of the 
tDerived virtual method table.

After initializing the virtual method table pointer, the tDerived constructor 
initializes the value of the r field to 0.0 (remember, fldz loads 0 onto the FPU 
stack). This concludes the tDerived-specific initialization.

The remaining instructions in tDerived.create are the problem. These 
statements duplicate some of the code appearing in the tBase.create proce-
dure. The problem with code duplication becomes apparent when you decide 
to modify the initial values of these fields; if you’ve duplicated the initializa-
tion code in derived classes, you will need to change the initialization code in 
more than one create procedure. More often than not, however, this results 
in defects in the derived class create procedures, especially if those derived 
classes appear in different source files than the base class.

Another problem with burying base class initialization in derived class 
constructors is the violation of the information-hiding principle. Some fields 
of the base class may be logically private. Although HLA does not explicitly 
support the concept of public and private fields in a class (as, say, C++ does), 
well-disciplined programmers will still partition the fields as private or public 
and then use the private fields only in class routines belonging to that class. 
Initializing these private fields in derived classes is not acceptable to such pro-
grammers. Doing so will make it very difficult to change the definition and 
implementation of some base class at a later date.

Fortunately, HLA provides an easy mechanism for calling the inherited 
constructor within a derived class’s constructor. All you have to do is call the 
base constructor using the class name syntax; for example, you could call 
tBase.create directly from within tDerived.create. By calling the base class con-
structor, your derived class constructors can initialize the base class fields 
without worrying about the exact implementation (or initial values) of the 
base class.

Unfortunately, there are two types of initialization that every (conventional) 
constructor does that will affect the way you call a base class constructor: All 
conventional constructors allocate memory for the class if ESI contains 0, and 
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all conventional constructors initialize the VMT pointer. Fortunately, it is very 
easy to deal with these two problems.

The memory required by an object of some base class is usually less than 
the memory required for an object of a class you derive from that base class 
(because the derived classes usually add more fields). Therefore, you cannot 
allow the base class constructor to allocate the storage when you call it from 
inside the derived class’s constructor. You can easily solve this problem by 
checking ESI within the derived class constructor and allocating any neces-
sary storage for the object before calling the base class constructor.

The second problem is the initialization of the VMT pointer. When you call 
the base class’s constructor, it will initialize the VMT pointer with the address 
of the base class’s virtual method table. A derived class object’s _pVMT_ field, 
however, must point at the virtual method table for the derived class. Calling 
the base class constructor will always initialize the _pVMT_ field with the wrong 
pointer. To properly initialize the _pVMT_ field with the appropriate value, the 
derived class constructor must store the address of the derived class’s virtual 
method table into the _pVMT_ field after the call to the base class constructor 
(so that it overwrites the value written by the base class constructor).

The tDerived.create constructor, rewritten to call the tBase.create construc-
tors, follows:

     procedure tDerived.create; @nodisplay;  
     begin create;

        if( esi = 0 ) then 

             push( eax );
             mov( mem.alloc( @size( tDerived )), esi );
             pop( eax );

        endif;

        // Call the base class constructor to do any initialization 
        // needed by the base class. Note that this call must follow 
        // the object allocation code above (so esi will always contain 
        // a pointer to an object at this point and tBase.create will 
        // never allocate storage).

        (type tBase [esi]).create();

        // Initialize the VMT pointer for this object. This code 
        // must always follow the call to the base class constructor 
        // because the base class constructor also initializes this 
        // field and we don't want the initial value supplied by 
        // tBase.create.

        mov( &tDerived._VMT_, this._pVMT_ );

        // Initialize the "r" field of this particular object:
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        fldz();
        fstp( this.r );

     end create; 

This solution solves all the above concerns with derived class construc-
tors. Note that the call to the base constructor uses the syntax (type tBase 
[esi]).create(); rather than tBase.create();. The problem with calling 
tBase.create directly is that it will load NULL into ESI and overwrite the pointer 
to the storage allocated in tDerived.create. The scheme above uses the exist-
ing value in ESI when calling tBase.create.

12.9.3 Constructor Parameters and Procedure Overloading

None of the constructor examples to this point have had any parameters. 
However, there is nothing special about constructors that prevents the use 
of parameters. Constructors are procedures; therefore, you can specify any 
number and any type of parameters you choose. You can use these parameter 
values to initialize certain fields or control how the constructor initializes the 
fields. Of course, you may use constructor parameters for any purpose you’d 
use parameters for in any other procedure. In fact, about the only issue you 
need concern yourself with is the use of parameters whenever you have a 
derived class. This section deals with those issues.

The first, and probably most important, problem with parameters in 
derived class constructors actually applies to all overridden procedures and 
methods: The parameter list of an overridden routine must exactly match the 
parameter list of the corresponding routine in the base class. In fact, HLA 
doesn’t even give you the chance to violate this rule because override routine 
prototypes don’t allow parameter list declarations: They automatically inherit 
the parameter list of the base routine. Therefore, you cannot use a special 
parameter list in the constructor prototype for one class and a different param-
eter list for the constructors appearing in base or derived classes. Sometimes 
it would be nice if this weren’t the case, but there are some sound and logical 
reasons why HLA does not support this.8

HLA supports a special overloads declaration that lets you call one of sev-
eral different procedures, methods, or iterators using a single identifier (with 
the number of types of parameters specifying which function to call).  This 
would allow you, for example, to create multiple constructors for a given class 
(or derived class) and invoke the desired constructor using a matching 
parameter list for that constructor.  Interested readers should consult the 
chapter on procedures in the HLA documentation for more details concern-
ing the overloads declaration.

8 Calling virtual methods and iterators would be a real problem because you don’t really know 
which routine a pointer references. Therefore, you couldn’t know the proper parameter list. 
While the problems with procedures aren’t quite as drastic, there are some subtle problems that 
could creep into your code if base or derived classes allowed overridden procedures with different 
parameter lists.
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12.10 Destructors

A destructor is a class routine that cleans up an object once a program finishes 
using that object. As for constructors, HLA does not provide a special syntax 
for creating destructors, nor does HLA automatically call a destructor. Unlike 
constructors, a destructor is usually a method rather than a procedure (because 
virtual destructors make a lot of sense, whereas virtual constructors do not).

A typical destructor might close any files opened by the object, free the 
memory allocated during the use of the object, and, finally, free the object 
itself if it was created dynamically. The destructor also handles any other 
cleanup chores the object may require before it ceases to exist.

By convention, most HLA programmers name their destructors destroy. 
About the only code that most destructors have in common is the code to free 
the storage associated with the object. The following destructor demonstrates 
how to do this:

procedure tBase.destroy; @nodisplay; 
begin destroy;

     push( eax );   // isInHeap uses this.

     // Place any other cleanup code here.
     // The code to free dynamic objects should always appear last
     // in the destructor.

          /*************/  

     // The following code assumes that esi still contains the address  
     // of the object.  

     if( mem.isInHeap( esi )) then 

          free( esi);  

     endif;  
     pop( eax ); 

end destroy; 

The HLA Standard Library routine mem.isInHeap returns true if its param-
eter is an address that mem.alloc returned. Therefore, this code automatically 
frees the storage associated with the object if the program originally allocated 
storage for the object by calling mem.alloc. Obviously, on return from this 
method call, ESI will no longer point at a legal object in memory if you allo-
cated it dynamically. Note that this code will not affect the value in ESI nor 
will it modify the object if the object wasn’t one you’ve previously allocated via 
a call to mem.alloc.
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12.11 HLA’s _initialize_ and _finalize_ Strings

Although HLA does not automatically call constructors and destructors asso-
ciated with your classes, HLA does provide a mechanism whereby you can 
force HLA to automatically emit these calls: by using the _initialize_ and 
_finalize_ compile-time string variables (i.e., val constants) that HLA auto-
matically declares in every procedure.

Whenever you write a procedure, iterator, or method, HLA automatically 
declares several local symbols in that routine. Two such symbols are _initialize_ 
and _finalize_. HLA declares these symbols as follows:

val  
     _initialize_: string := ""; 
     _finalize_: string := ""; 

HLA emits the _initialize_ string as text at the very beginning of the 
routine’s body, that is, immediately after the routine’s begin clause.9 Similarly, 
HLA emits the _finalize_ string at the very end of the routine’s body, just 
before the end clause. This is comparable to the following:

procedure SomeProc;  
     << declarations >> 
begin SomeProc;  

     @text( _initialize_ ); 

          << Procedure body >>  

     @text( _finalize_ ); 

end SomeProc; 

Because _initialize_ and _finalize_ initially contain the empty string, 
these expansions have no effect on the code that HLA generates unless you 
explicitly modify the value of _initialize_ prior to the begin clause or you 
modify _finalize_ prior to the end clause of the procedure. So if you modify 
either of these string objects to contain a machine instruction, HLA will com-
pile that instruction at the beginning or end of the procedure. The following 
example demonstrates how to use this technique:

procedure SomeProc;  
     ?_initialize_ := "mov( 0, eax );";  
     ?_finalize_ := "stdout.put( eax );"; 
begin SomeProc;

     // HLA emits "mov( 0, eax );" here in response to the _initialize_
     // string constant.

9 If the routine automatically emits code to construct the activation record, HLA emits 
_initialize_’s text after the code that builds the activation record. 
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     add( 5, eax );

     // HLA emits "stdout.put( eax );" here. 

end SomeProc; 

Of course, these examples don’t save you much. It would be easier to type 
the actual statements at the beginning and end of the procedure than to 
assign a string containing these statements to the _initialize_ and _finalize_ 
compile-time variables. However, if we could automate the assignment of 
some string to these variables, so that we don’t have to explicitly assign them 
in each procedure, then this feature might be useful. In a moment, you’ll see 
how we can automate the assignment of values to the _initialize_ and _finalize_ 
strings. For the time being, consider the case where we load the name of a 
constructor into the _initialize_ string and we load the name of a destructor 
in to the _finalize_ string. By doing this, the routine will “automatically” call 
the constructor and destructor for that particular object.

The previous example has a minor problem. If we can automate the 
assignment of some value to _initialize_ or _finalize_, what happens if these 
variables already contain some value? For example, suppose we have two objects 
we use in a routine, and the first one loads the name of its constructor into the 
_initialize_ string; what happens when the second object attempts to do the 
same thing? The solution is simple: Don’t directly assign any string to the 
_initialize_ or _finalize_ compile-time variables; instead, always concatenate 
your strings to the end of the existing string in these variables. The follow-
ing is a modification to the above example that demonstrates how to do this:

procedure SomeProc;  
     ?_initialize_ := _initialize_  + "mov( 0, eax );";  
     ?_finalize_ := _finalize_ + "stdout.put( eax );"; 
begin SomeProc;

     // HLA emits "mov( 0, eax );" here in response to the _initialize_  
     // string constant.

     add( 5, eax );

     // HLA emits "stdout.put( eax );" here. 

end SomeProc; 

When you assign values to the _initialize_ and _finalize_ strings, HLA 
guarantees that the _initialize_ sequence will execute upon entry into the 
routine. Sadly, the same is not true for the _finalize_ string upon exit. HLA 
simply emits the code for the _finalize_ string at the end of the routine, 
immediately before the code that cleans up the activation record and returns. 
Unfortunately, “falling off the end of the routine” is not the only way that you 
could return from that routine. You could explicitly return from somewhere 
in the middle of the code by executing a ret instruction. Because HLA emits 
the _finalize_ string only at the very end of the routine, returning from that 
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routine in this manner bypasses the _finalize_ code. Unfortunately, other 
than manually emitting the _finalize_ code, there is nothing you can do 
about this.10 Fortunately, this mechanism for exiting a routine is completely 
under your control. If you never exit a routine except by “falling off the end,” 
then you won’t have to worry about this problem (note that you can use the 
exit control structure to transfer control to the end of a routine if you really 
want to return from that routine from somewhere in the middle of the code).

Another way to prematurely exit a routine, over which, unfortunately, 
you don’t have any control, is by raising an exception. Your routine could call 
some other routine (e.g., a Standard Library routine) that raises an exception 
and then transfers control immediately to whomever called your routine. For-
tunately, you can easily trap and handle exceptions by putting a try..endtry 
block in your procedure. Here is an example that demonstrates this:

procedure SomeProc;  
     << Declarations that modify _initialize_ and _finalize_ >> 
begin SomeProc;  

     << HLA emits the code for the _initialize_ string here. >>  

     try   // Catch any exceptions that occur: 

          << Procedure body goes here. >> 

     anyexception 

          push( eax );             // Save the exception #.
          @text( _finalize_ );     // Execute the _finalize_ code here.
          pop( eax );              // Restore the exception #.
          raise( eax );            // Reraise the exception.

     endtry;

     << HLA automatically emits the _finalize_ code here. >>

end SomeProc; 

Although the previous code handles some problems that exist with 
_finalize_, by no means does it handle every possible case. Always be on the 
lookout for ways your program could inadvertently exit a routine without exe-
cuting the code found in the _finalize_ string. You should explicitly expand 
_finalize_ if you encounter such a situation.

There is one important place you can get into trouble with respect to 
exceptions: within the code the routine emits for the _initialize_ string. If 
you modify the _initialize_ string so that it contains a constructor call and the 
execution of that constructor raises an exception, this will probably force an 
exit from that routine without executing the corresponding _finalize_ code. 
You could bury the try..endtry statement directly into the _initialize_ and 

10 Note that you can manually emit the _finalize_ code using the statement @text( _finalize_ );.
Classes and Objec t s 689



AAL2E_03.book  Page 690  Thursday, February 18, 2010  12:49 PM
_finalize_ strings, but this approach has several problems, not the least of which 
is the fact that one of the first constructors you call might raise an exception 
that transfers control to the exception handler that calls the destructors for 
all objects in that routine (including those objects whose constructors you 
have yet to call). Although no single solution that handles all problems exists, 
probably the best approach is to put a try..endtry block within each construc-
tor call if it is possible for that constructor to raise some exception that is 
possible to handle (that is, doesn’t require the immediate termination of 
the program).

Thus far this discussion of _initialize_ and _finalize_ has failed to address 
one important point: Why use this feature to implement the “automatic” call-
ing of constructors and destructors, because it apparently involves more work 
than simply calling the constructors and destructors directly? Clearly there 
must be a way to automate the assignment of the _initialize_ and _finalize_ 
strings or this section wouldn’t exist. The way to accomplish this is by using a 
macro to define the class type. So now it’s time to take a look at another HLA 
feature that makes it possible to automate this activity: the forward keyword.

You’ve seen how to use the forward reserved word to create procedure 
prototypes (see the discussion in Section 5.9); it turns out that you can declare 
forward const, val, type, and variable declarations as well. The syntax for such 
declarations takes the following form:

     ForwardSymbolName: forward( undefinedID ); 

This declaration is completely equivalent to the following:

     ?undefinedID: text := "ForwardSymbolName"; 

Especially note that this expansion does not actually define the symbol 
ForwardSymbolName. It just converts this symbol to a string and assigns this string 
to the specified text object undefinedID.

Now you’re probably wondering how something like the above is equiva-
lent to a forward declaration. The truth is, it isn’t. However, forward declarations 
let you create macros that simulate type names by allowing you to defer the 
actual declaration of an object’s type until some later point in the code. 
Consider the following example:

type  
     myClass: class 
          var 
               i:int32;

          procedure create; @returns( "esi" ); 
               procedure destroy;
          endclass;
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#macro _myClass: varID;  
     forward( varID );  
     ?_initialize_ := _initialize_ + @string:varID + ".create(); ";  
     ?_finalize_ := _finalize_ + @string:varID + ".destroy(); ";  
     varID: myClass 
#endmacro; 

Note, and this is very important, that a semicolon does not follow the 
varID: myClass declaration at the end of this macro. You’ll find out why this 
semicolon is missing in a little while.

If you have the above class and macro declarations in your program, you 
can now declare variables of type _myClass that automatically invoke the con-
structor and destructor upon entry and exit of the routine containing the 
variable declarations. To see how, take a look at the following procedure shell:

procedure HasmyClassObject; 
var  
     mco: _myClass; 
begin HasmyClassObject;

     << Do stuff with mco here. >> 

end HasmyClassObject; 

Because _myClass is a macro, the procedure above expands to the follow-
ing text during compilation:

procedure HasmyClassObject; 
var  
     mco:                 // Expansion of the _myClass macro: 
       forward( _0103_ ); // _0103_ symbol is an HLA-supplied text 
                          // symbol that expands to "mco".

     ?_initialize_ := _initialize_ + "mco" + ".create(); ";
     ?_finalize_ := _finalize_ + "mco" + ".destroy(); ";
     mco: myClass;

begin HasmyClassObject;

     mco.create();  // Expansion of the _initialize_ string.

     << Do stuff with mco here. >>

     mco.destroy(); // Expansion of the _finalize_ string. 

end HasmyClassObject; 
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You might notice that a semicolon appears after the mco: myClass declara-
tion in the example above. This semicolon is not actually a part of the macro; 
instead it is the semicolon that follows the mco: _myClass; declaration in the 
original code.

If you want to create an array of objects, you could legally declare that 
array as follows:

var
     mcoArray: _myClass[10]; 

Because the last statement in the _myClass macro doesn’t end with a semi-
colon, the declaration above will expand to something like the following 
(almost correct) code:

     mcoArray:              // Expansion of the _myClass macro: 
         forward( _0103_ ); // _0103_ symbol is an HLA-supplied text 
                            // symbol that expands to "mcoArray".

     ?_initialize_ := _initialize_ + "mcoArray" + ".create(); ";  
     ?_finalize_ := _finalize_ + "mcoArray" + ".Destroy(); ";  
     mcoArray: myClass[10]; 

The only problem with this expansion is that it calls the constructor only 
for the first object of the array. There are several ways to solve this problem; 
one is to append a macro name to the end of _initialize_ and _finalize_ rather 
than the constructor name. That macro would check the object’s name 
(mcoArray in this example) to determine if it is an array. If so, that macro could 
expand to a loop that calls the constructor for each element of the array.

Another solution to this problem is to use a macro parameter to specify the 
dimensions for arrays of myClass. This scheme is easier to implement than the 
one above, but it does have the drawback of requiring a different syntax for 
declaring object arrays (you have to use parentheses rather than square 
brackets around the array dimension).

The forward directive is quite powerful and lets you achieve all kinds of 
tricks. However, there are a few problems of which you should be aware. First, 
because HLA emits the _initialize_ and _finalize_ code transparently, you 
can be easily confused if there are any errors in the code appearing within 
these strings. If you start getting error messages associated with the begin or 
end statements in a routine, you might want to take a look at the _initialize_ 
and _finalize_ strings within that routine. The best defense here is to always 
append very simple statements to these strings so that you reduce the likeli-
hood of an error.

Fundamentally, HLA doesn’t support automatic constructor and destruc-
tor calls. This section has presented several tricks to attempt to automate the 
calls to these routines. However, the automation isn’t perfect and, indeed, the 
aforementioned problems with the _finalize_ strings limit the applicability of 
this approach. The mechanism this section presents is probably fine for simple 
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classes and simple programs. One piece of advice is probably worth following: 
If your code is complex or correctness is critical, it’s probably a good idea to 
explicitly call the constructors and destructors manually.

12.12 Abstract Methods

An abstract base class is one that exists solely to supply a set of common fields to 
its derived classes. You never declare variables whose type is an abstract base 
class; you always use one of the derived classes. The purpose of an abstract 
base class is to provide a template for creating other classes, nothing more. As 
it turns out, the only difference in syntax between a standard base class and an 
abstract base class is the presence of at least one abstract method declaration. 
An abstract method is a special method that does not have an actual imple-
mentation in the abstract base class. Any attempt to call that method will raise 
an exception. If you’re wondering what possible good an abstract method 
could be, keep on reading.

Suppose you want to create a set of classes to hold numeric values. One 
class could represent unsigned integers, another class could represent signed 
integers, a third could implement BCD values, and a fourth could support 
real64 values. While you could create four separate classes that function inde-
pendently of one another, doing so passes up an opportunity to make this set 
of classes more convenient to use. To understand why, consider the following 
possible class declarations:

type  
     uint: class 
          var 
               TheValue: dword;

          method put; 
          << Other methods for this class >>  
     endclass;

     sint: class
          var
               TheValue: dword;

          method put; 
          << Other methods for this class >>  
     endclass;

     r64: class
          var
               TheValue: real64;

          method put; 
          << Other methods for this class >>  
     endclass; 
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The implementation of these classes is not unreasonable. They have fields 
for the data and they have a put method (which, presumably, writes the data 
to the standard output device). They probably have other methods and pro-
cedures to implement various operations on the data. There are, however, 
two problems with these classes, one minor and one major, both occurring 
because these classes do not inherit any fields from a common base class.

The first problem, which is relatively minor, is that you have to repeat the 
declaration of several common fields in these classes. For example, the put 
method declaration appears in each of these classes.11 This duplication of 
effort results in a harder-to-maintain program because it doesn’t encourage 
you to use a common name for a common function since it’s easy to use a dif-
ferent name in each of the classes.

A bigger problem with this approach is that it is not generic. That is, you 
can’t create a generic pointer to a “numeric” object and perform operations 
like addition, subtraction, and output on that value (regardless of the under-
lying numeric representation).

We can easily solve these two problems by turning the previous class dec-
larations into a set of derived classes. The following code demonstrates an 
easy way to do this:

type
     numeric: class
          method put;
          << Other common methods shared by all the classes >>
     endclass;

     uint: class inherits( numeric )
          var
               TheValue: dword;

          override method put;
          << Other methods for this class >>
     endclass;

     sint: class inherits( numeric )
          var
               TheValue: dword;

          override method put;
          << Other methods for this class >>
     endclass;

     r64: class inherits( numeric )
          var
               TheValue: real64;

11 Note, by the way, that TheValue is not a common field because this field has a different type in 
the r64 class.
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          override method put;
          << Other methods for this class >>  
endclass; 

This scheme solves both the problems. First, by inheriting the put method 
from numeric, this code encourages the derived classes to always use the name 
put, thereby making the program easier to maintain. Second, because this 
example uses derived classes, it’s possible to create a pointer to the numeric 
type and load this pointer with the address of a uint, sint, or r64 object. That 
pointer can invoke the methods found in the numeric class to do functions like 
addition, subtraction, or numeric output. Therefore, the application that uses 
this pointer doesn’t need to know the exact data type; it deals with numeric 
values only in a generic fashion.

One problem with this scheme is that it’s possible to declare and use vari-
ables of type numeric. Unfortunately, such numeric variables don’t have the 
ability to represent any type of number (notice that the data storage for the 
numeric fields actually appears in the derived classes). Worse, because you’ve 
declared the put method in the numeric class, you actually have to write some 
code to implement that method even though you should never really call it; 
the actual implementation should occur only in the derived classes. While 
you could write a dummy method that prints an error message (or, better yet, 
raises an exception), there shouldn’t be any need to write “dummy” procedures 
like this. Fortunately, there is no reason to do so—if you use abstract methods.

The abstract keyword, when it follows a method declaration, tells HLA 
that you are not going to provide an implementation of the method for this 
class. Instead, it is the responsibility of all derived classes to provide a concrete 
implementation for the abstract method. HLA will raise an exception if you 
attempt to call an abstract method directly. The following is the modification 
to the numeric class to convert put to an abstract method:

type
     numeric: class
          method put; abstract;
          << Other common methods shared by all the classes >>
     endclass; 

An abstract base class is a class that has at least one abstract method. Note 
that you don’t have to make all methods abstract in an abstract base class; it is 
perfectly legal to declare some standard methods (and, of course, provide 
their implementation) within the abstract base class.

Abstract method declarations provide a mechanism by which a base class 
can specify some generic methods that the derived classes must implement. 
In theory, all derived classes must provide concrete implementations of all 
abstract methods, or those derived classes are themselves abstract base classes. 
In practice, it’s possible to bend the rules a little and use abstract methods for 
a slightly different purpose.
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A little earlier, you read that you should never create variables whose type 
is an abstract base class. If you attempt to execute an abstract method, the 
program would immediately raise an exception to complain about this illegal 
method call. In practice, you actually can declare variables of an abstract base 
type and get away with this as long as you don’t call any abstract methods in 
that class.

12.13 Runtime Type Information
When working with an object variable (as opposed to a pointer to an object), 
the type of that object is obvious: It’s the variable’s declared type. Therefore, 
at both compile time and runtime the program knows the type of the object. 
When working with pointers to objects you cannot, in the general case, deter-
mine the type of an object a pointer references. However, at runtime it is 
possible to determine the object’s actual type. This section discusses how to 
detect the underlying object’s type and how to use this information.

If you have a pointer to an object and that pointer’s type is some base 
class, at runtime the pointer could point at an object of the base class or any 
derived type. At compile time it is not possible to determine the exact type of 
an object at any instant. To see why, consider the following short example:

     ReturnSomeObject(); // Returns a pointer to some class in esi.  
     mov( esi, ptrToObject ); 

The routine ReturnSomeObject returns a pointer to an object in ESI. This 
could be the address of some base class object or a derived class object. At 
compile time there is no way for the program to know what type of object this 
function returns. For example, ReturnSomeObject could ask the user what value 
to return so the exact type could not be determined until the program actu-
ally runs and the user makes a selection.

In a perfectly designed program, there probably is no need to know a 
generic object’s actual type. After all, the whole purpose of object-oriented 
programming and inheritance is to produce general programs that work with 
lots of different objects without having to make substantial changes to the 
program. In the real world, however, programs may not have a perfect design, 
and sometimes it’s nice to know the exact object type a pointer references. 
Runtime type information, or RTTI, gives you the capability of determining 
an object’s type at runtime, even if you are referencing that object using a 
pointer to some base class of that object.

Perhaps the most fundamental RTTI operation you need is the ability to 
ask if a pointer contains the address of some specific object type. Many object-
oriented languages (e.g., Delphi) provide an is operator that provides this 
functionality. is is a boolean operator that returns true if its left operand (a 
pointer) points at an object whose type matches the right operand (which 
must be a type identifier). The typical syntax is generally the following:

ObjectPointerOrVar is ClassType 
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This operator returns true if the variable is of the specified class; it 
returns false otherwise. Here is a typical use of this operator (in the Delphi 
language):

     if( ptrToNumeric is uint ) then begin 
     . 
     . 
     .
     end; 

It’s actually quite simple to implement this functionality in HLA. As you 
may recall, each class is given its own virtual method table. Whenever you create 
an object, you must initialize the pointer to the virtual method table with the 
address of that class’s virtual method table. Therefore, the VMT pointer field of 
all objects of a given class type contains the same pointer value, and this pointer 
value is different from the VMT pointer field of all other classes. We can use this 
fact to see if an object is some specific type. The following code demonstrates 
how to implement the Delphi statement above in HLA:

     mov( ptrToNumeric, esi );
     if( (type uint [esi])._pVMT_ = &uint._VMT_  ) then 
          . 
          . 
          .
     endif; 

This if statement simply compares the object’s _pVMT_ field (the pointer 
to the virtual method table) against the address of the desired classes’ virtual 
method table. If they are equal, then the ptrToNumeric variable points at an 
object of type uint.

Within the body of a class method or iterator, there is a slightly easier way 
to see if the object is a certain class. Remember, upon entry into a method or 
an iterator, the EDI register contains the address of the virtual method table. 
Therefore, assuming you haven’t modified EDI’s value, you can easily test to 
see if the method or iterator is a specific class type using an if statement like 
the following:

     if( edi = &uint._VMT_  ) then 
          . 
          . 
          .
     endif; 

Remember, however, that EDI will contain a pointer to the virtual method 
table only when you call a class method. This is not the case when calling a 
class procedure.
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12.14 Calling Base Class Methods

In the section on constructors you saw that it is possible to call an ancestor 
class’s procedure within the derived class’s overridden procedure. To do this, 
all you need to do is to invoke the procedure using the call (type classname 
[esi]).procedureName( parameters );. On occasion you may want to do this same 
operation with a class’s methods as well as its procedures (that is, have an 
overridden method call the corresponding base class method in order to do 
some computation you’d rather not repeat in the derived class’s method). 
Unfortunately, HLA does not let you directly call methods as it does proce-
dures. You will need to use an indirect mechanism to achieve this; specifically, 
you will have to call the method using the address in the base class’s virtual 
method table. This section describes how to do this.

Whenever your program calls a method it does so indirectly, using the 
address found in the virtual method table for the method’s class. The virtual 
method table is nothing more than an array of 32-bit pointers, with each entry 
containing the address of one of that class’s methods. So to call a method, all 
you need is the index into this array (or, more properly, the offset into the 
array) of the address of the method you wish to call. The HLA compile-time 
function @offset comes to the rescue: It will return the offset into the virtual 
method table of the method whose name you supply as a parameter. Com-
bined with the call instruction, you can easily call any method associated with 
a class. Here’s an example of how you would do this:

type
     myCls: class 
          . 
          . 
          . 
          method m; 
          . 
          . 
          .
     endclass; 
          . 
          . 
          .
     call( myCls._VMT_[ @offset( myCls.m )]); 

The call instruction above calls the method whose address appears at the 
specified entry in the virtual method table for myCls. The @offset function call 
returns the offset (i.e., index times 4) of the address of myCls.m within the virtual 
method table. Hence, this code indirectly calls the m method by using the vir-
tual method table entry for m.
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There is one major drawback to calling methods using this scheme: You 
don’t get to use the high-level syntax for procedure/method calls. Instead, 
you must use the low-level call instruction. In the example above, this isn’t 
much of an issue because the m procedure doesn’t have any parameters. If it 
did have parameters, you would have to manually push those parameters onto 
the stack yourself. Fortunately, you’ll rarely need to call ancestor class methods 
from a derived class, so this won’t be much of an issue in real-world programs.

12.15 For More Information

The HLA reference manual at http://webster.cs.ucr.edu/ or http://www.artofasm.com/ 
contains additional information about HLA’s class implementation. Check 
out this document for additional low-level implementation features. This 
chapter hasn’t really attempted to teach the object-oriented programming 
paradigm. See a generic text on object-oriented design for more details about 
this subject.
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A S C I I  C H A R A C T E R  S E T

Binary Hex Decimal Character

0000_0000 00 0 NUL

0000_0001 01 1 CTRL A

0000_0010 02 2 CTRL B

0000_0011 03 3 CTRL C

0000_0100 04 4 CTRL D

0000_0101 05 5 CTRL E

0000_0110 06 6 CTRL F

0000_0111 07 7 bell

0000_1000 08 8 backspace

0000_1001 09 9 TAB

0000_1010 0A 10 line feed

0000_1011 0B 11 CTRL K

0000_1100 0C 12 form feed

0000_1101 0D 13 RETURN

0000_1110 0E 14 CTRL N

0000_1111 0F 15 CTRL O

0001_0000 10 16 CTRL P

0001_0001 11 17 CTRL Q

0001_0010 12 18 CTRL R

0001_0011 13 19 CTRL S

0001_0100 14 20 CTRL T
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0001_0101 15 21 CTRL U

0001_0110 16 22 CTRL V

0001_0111 17 23 CTRL W

0001_1000 18 24 CTRL X

0001_1001 19 25 CTRL Y

0001_1010 1A 26 CTRL Z

0001_1011 1B 27 CTRL [

0001_1100 1C 28 CTRL \

0001_1101 1D 29 ESC

0001_1110 1E 30 CTRL ^

0001_1111 1F 31 CTRL _

0010_0000 20 32 space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41 )

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

Binary Hex Decimal Character
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0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

0101_1011 5B 91 [

0101_1100 5C 92 \

0101_1101 5D 93 ]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

Binary Hex Decimal Character
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0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127

Binary Hex Decimal Character
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I N D E X

Numbers
2 to the x minus 1, 402
8-bit excess-127 exponent, 93
8-bit registers, 9
16-bit registers, 9
80x86 memory addressing 

modes, 111
96-bit rcl and rcr operations, 508
128-bit by 32-bit division, 494
128-bit comparisons, 488
8087 FPU, 93, 381

Symbols
&& operator, 22–23
@a, 360
@abs compile-time function, 561
@ae, 360
@align procedure option, 657
@b, 360
@be, 361
@c, 18, 360
@cdecl procedure option, 657
@ceil compile-time function, 561
@cos compile-time function, 561
@defined compile-time function, 

562, 568
@delete compile-time function, 562
@e, 361
@elements compile-time 

function, 562
@elementSize compile-time 

function, 562
@exp compile-time function, 561
@floor compile-time function, 561
@g, 361

@ge, 361
@global operator (in 

namespaces), 250
@index compile-time function, 562
@insert compile-time function, 562
@isAlpha compile-time function, 561
@isAlphanum compile-time 

function, 561
@isDigit compile-time function, 561
@isLower compile-time function, 561
@isSpace compile-time function, 561
@isUpper compile-time function, 561
@isxDigit compile-time 

function, 561
@l, 361
@le, 361
@length compile-time function, 562
@lineNumber compile-time 

function, 563
@log compile-time function, 561
@log10 compile-time function, 561
@lowercase compile-time 

function, 562
@max compile-time function, 561
@min compile-time function, 561
@na, 360
@nae, 360
@nb, 360
@nbe, 361
@nc, 18, 360
@ne, 361
@ng, 361
@nge, 361
@nl, 361
@nle, 361
@no, 18, 360
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@noalignstack option, 288, 297, 657
@nodisplay procedure option, 

288, 657
@noframe procedure option, 288, 

291, 657
@nostorage variable option, 124, 186
@ns, 18, 360
@nz, 18, 360
@o, 18, 360
@odd compile-time function, 563
@pascal procedure option, 657
@random compile-time function, 561
@randomize compile-time 

function, 561
@real32 compile-time function, 560
@returns procedure option, 280, 657
@rindex compile-time function, 562
@s, 18, 360
@sin compile-time function, 561
@size compile-time function, 148, 

245, 562
@sqrt compile-time function, 561
@stdcall procedure option, 657
@strbrk compile-time function, 562
@string compile-time function, 564
@strset compile-time function, 562
@strspan compile-time function, 562
@substr compile-time function, 562
@tan compile-time function, 561
@text compile-time function, 563
@tokenize compile-time 

function, 562
@toString: compile-time 

function, 564
@trim compile-time function, 562
@typename compile-time function, 

562, 588
@uppercase compile-time 

function, 562
@use procedure option, 317, 

324, 657
@z, 18, 360
:= (CTL assignment operator), 555
!register, 429
# (numeric character constant 

prefix), 105
#{ (hybrid parameter passing 

syntax), 327

#{ and }# operators, 474
#else compile-time statement, 566
#elseif compile-time statement, 566
#endfor compile-time statement, 

570, 572, 596
#endif compile-time statement, 566
#endwhile compile-time 

statement, 570
#error CTL statement, 553–554
#for..#endfor compile-time 

statement, 570, 572, 596
#if compile-time statement, 565
#include, 3

declarations, 344
directive, 598, 654

#includeonce directive, 338
#macro declaration, 574
#print CTL statement, 553
#while..#endwhile compile-time 

statement, 570
|| operator, 23
_finalize_ strings in a 

procedure, 687
_initialize_ strings in a 

procedure, 687
_pVMT_ field in an object, 678
_vars_ constant, 300
_VMT_ field in a class, 672

A
aaa instruction, 535
aad instruction, 535
aam instruction, 535
aas instruction, 535
ABI (application binary 

interface), 302
Absolute value (floating point), 399
Abstract

base class, 693
data types, 653
keyword, 695
methods, 693

Accessing
characters within a string, 194
data on the stack, 146
data via a pointer, 177
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an element of a single-
dimensional array, 219

elements of 3- and 4-dimensional 
arrays, 226

elements of an array, 221
elements of multidimensional 

arrays, 231
fields of a union, 244
local variables, 299
names outside a namespace, 249
reference parameters, 318
value parameters, 310

Accessor methods, 653
Accumulated errors in a floating-

point calculation, 90
Activation record

construction at runtime, 294
definition, 293

Actual parameters, 324
adc instruction, 482, 609
add instruction, 15
Adding 1 to a register or memory 

location, 152
Adding an integer to a floating-

point value, 405
Addition (extended precision), 480
Address expressions, 131
Addresses in a virtual method 

table, 672
Addressing modes, 112
Address-of operator, 115, 152, 414
Aggregate data types, 185
ah, 9

copying ah to flags register, 
88–89, 400

al, 9
al/ax/eax register usage in string 

instructions, 635
Aliases, 198, 245, 275, 344
align directive, 130
Aligning

bit strings, 602
fields within a record, 241

Alignment
data, 128
variable alignment, 131
within a record, 241

Alloc memory function, 148
Allocating storage for arrays, 229. 

See also Arrays
Alphabetic character, 101
and instruction, 70, 376, 601, 

605–606
and operation, 67
Anonymous

memory objects, 304
unions, 246
variable type coercion, 149
variables, 115

anyexception (try..endtry), 48
Application binary interface 

(ABI), 302
Arc tangent, 403
arg (HLA stdlib module)

arg.c, 346
arg.v, 346

Arithmetic
expressions, 351, 365–369
idioms, 377
logical systems, 377
operators within a constant 

expression, 169
shift right, 82–83

Arity, 252
Array variables, 219
Arrays

arrays of arrays, 227
arrays of records, 236
definition, 218
multidimensional arrays, 

224, 227
structure fields, 237

ASCII
character set, 61, 101
codes for numeric digits, 104
groups, 104

Assigning
constant to a variable, 366
one variable to another, 366

Assignment by reference, 197
Assignments, 366
Associativity, 369–370

in compile-time expressions, 557
Automatic (local) variables, 125, 299
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Automatic storage allocation, 267
Avoiding branches by using 

calculations, 441
ax, 9

B
Backspace, 34
Base address (of an array), 219
Base class methods, 698
Base classes, 673
BCD

arithmetic, 532
numbers, 59
representation, 532

Bell character, 34
Benefits of object-oriented 

programming, 652
bh, 9
Biased (excess) exponents, 94
Binary

data types, 58
digits, 55
formats, 55
fractions, 93
numbering system, 53–54
point (binary fractions), 93

Binary-coded decimal
arithmetic, 532
instructions, 477
numbers, 59

Bit, 55, 58
complement, 601
counting, 620
data, 600
extraction, 601
fields, 85
inversion, 69, 70, 601, 604
manipulation, 599–601
mask, 600
offset, 600
packed data, 85
pattern search, 627
runs, 600
sets, 600
string

alignment, 602
arrays, 615
coalescing, 612

distribution, 612
extraction, 626
HLA strings, 70, 600–601
merging, 625
reversal, 623
testing for 1 bits, 607
testing for set bits, 607

testing, 601
Bit-by-bit operations, 70, 170
bits (HLA stdlib module), 628

bits.cnt, 629
bits.coalesce, 629
bits.distribute, 629
bits.extract, 630
bits.merge8, bits.merge16, and 

bits.merge32, 630
bits.nibbles8, bits.nibbles16, and 

bits.nibbles32, 630
bits.reverse8, bits.reverse16, and 

bits.reverse32, 630
Bitwise operations, 70, 170
bl, 9
Block copy performance, 642
Boolean

evaluation
complete, 432
short-circuit, 433

expressions, 18, 375
logical systems, 377
values, 59
variables in an if statement, 429

boolean compile-time function, 559
bound instruction, 156, 157
bp, 9
Bracketing characters in macro 

parameters, 578
Branch avoidance using 

calculations, 441
Branch out of range, 420
break statement, 27, 461
breakif statement, 27
bsf instruction, 618
bsr instruction, 618
bt instruction, 608
btc instruction, 211, 608
btr instruction, 211, 608
bts instruction, 211, 608
Busy bit (FPU), 387
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bx, 9
Byte, 60
byte compile-time function, 559
Byte strings, 633
Bytes, 58

C
C integer types, 478
C programming language, 478
C/C++ switch statement, 451
Cache, 12
Call indirect, 329
call instruction, 255–256, 288
Callee/caller register 

preservation, 259
Calling base class methods, 698
Carriage return character, 34
Carry flag, 10, 358, 418

and, or, and xor instruction 
effect, 605

as a bit accumulator, 609
Case

insensitive comparison, 207
labels (noncontiguous), 450
neutral identifiers, 2

case statement, 423, 442
cbw instruction, 77
cdq instruction, 77
Central processing unit (CPU), 8
ch, 9
Change sign (floating point), 399
Changing the value of a val 

object, 173
char

compile-time function, 559
data type, 106

Character
classification compile-time 

functions, 561
constants, 165
data type, 101
literal constants, 105, 165
strings, 185

Character sets, 209
expressions, 212
implementation, 210
operators, 213

Choosing an alignment value for 
variables, 131

cl (register), 9
in rotate operations, 84
in shl instruction, 81

Classes
class implementation in 

HLA, 654
classes and objects, 651
information hiding, 683
procedures vs. methods, 663

clc instruction, 88, 609
cld instruction, 88
cli instruction, 88
Clipping (saturation), 80
cmc instruction, 88, 609
cmp instruction, 357
cmps string instruction, 644
cmpsb instruction, 634
cmpsd instruction, 634
cmpsw instruction, 634
Coalescing bit strings, 612
Code sections, 120
Coercion, 111, 133
Column-major ordering, 225, 228
Command-line compiler, 5
Comments, 7
Commutative operators, 374–375
Comparing

bits, 601
dates, 88
floating-point numbers, 92
a register to zero, 365
registers with signed integer 

values, 136
strings, 206–207, 633, 645

Comparison operators in a con-
stant expression, 169

Comparisons
dates, 88
floating point, 92, 386
unsigned, 363

Compile-time
conversion of text objects, 564
decisions, 565
expressions and operators, 555
functions, 148, 558. See also 

Compile-time functions
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Compile-time, continued
language, 551

debugging, 554
loops, 570
operators, 556
procedures, 573, 585
programs, 592
string functions, 561
symbol information, 562

Compile-time functions
@abs, 561
boolean, 559
byte, 559
@ceil, 561
char, 559
character classification, 561
@cos, 561
cset, 559
@defined, 562, 568
@delete, 562
dword, 559
@elements, 562
@elementSize, 562
@exp, 561
@floor, 561
@index, 562
@insert, 562
int8, 559
int16, 559
int32, 559
int64, 559
int128, 559
@isAlpha, 561
@isAlphanum, 561
@isDigit, 561
@isLower, 561
@isSpace, 561
@isUpper, 561
@isxDigit, 561
@length, 562
@lineNumber, 563
@log, 561
@log10, 561
@lowercase, 562
lword, 559
@max, 561
@min, 561
numeric CTL functions, 561

@odd, 563
qword, 559
@random, 561
@randomize, 561
@real32, 560
real32, 559
real64, 559
real80, 559
@sin, 561
@size, 148, 245, 562
@sqrt, 561
@strbrk, 562
@string, 564
string, 559–560
@strset, 562
@strspan, 562
@substr, 562
@tan, 561
@text, 563
text, 559
@tokenize, 562
@toString:, 564
@trim, 562
type conversion, 559
@typename, 562, 588
uns8, 559
uns16, 559
uns32, 559
uns64, 559
uns128, 559
@uppercase, 562
word, 559

Compile-time statements
#else, 566
#elseif, 566
#endfor, 570, 572, 596
#endif, 566
#endwhile, 570
#error, 553, 554
#for, 570, 572, 596
#if, 565
#print, 553
#while, 570

Complete boolean evaluation, 432
Complex arithmetic 

expressions, 369
Complex string functions, 649
Composite data types, 185
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Concatenating two string 
literals, 165

Concatenation, 203
Condition codes

@a, 360
@ae, 360
@b, 360
@be, 361
@c, 18, 360
@e, 361
@g, 361
@ge, 361
@l, 361
@le, 361
@na, 360
@nae, 360
@nb, 360
@nbe, 361
@nc, 18, 360
@ne, 361
@ng, 361
@nge, 361
@nl, 361
@nle, 361
@no, 18, 360
@ns, 18, 360
@nz, 18, 360
@o, 18, 360
@s, 18, 360
@z, 18, 360
flags, 10
FPU condition codes, 385
settings after cmp instruction, 359

Conditional
compilation, 565

as a debugging tool, 569
jmp aliases, 420
jmp instructions, 418–420
statements, 423

Conditional jumps
ja, 419
jae, 419
jb, 419
jbe, 419
jc, 419, 609
je, 419
jf, 421

jg, 419
jge, 419
jl, 419
jle, 419
jna, 419
jnae, 419
jnb, 419
jnbe, 419
jnc, 419, 609
jne, 419
jng, 419
jnge, 419
jnl, 419
jnle, 419
jno, 419
jnp, 419
jns, 419
jnz, 419
jo, 419
jp, 419
jpe, 419
jpo, 419
js, 419
jt, 421
jz, 419

Configuring software for several dif-
ferent environments, 567

Console application, 3
const

declarations, 160
fields in a class, 656
sections in an HLA 

program, 171
Constant

0.0 (FPU load instruction), 402
expressions, 132, 169
expressions in CTL 

statements, 555
log base 2 of e, 402
log base 2 of 10, 402
log base e of 2, 402
log base 10 of 2, 402
nl (newline), 33, 168
pi, 402

Constructing data tables at compile 
time, 592

Construction of an activation 
record, 294
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Constructors, 678
definition, 677
inheritance with, 681
object initialization, 677
parameters, 685

Container object (for bits), 600
continue statement, 461
Control characters, 103

within string constants, 167
Control word, 384, 404
conv (HLA stdlib module)

conv.getDelimiters function, 517
conv.setDelimiters function, 517

Conversions (floating-point 
instructions), 391

Converting
arithmetic expressions to postfix 

notation, 407
BCD to floating point, 393
binary to hex, 57
break statements to pure 

assembly language, 461
complex expressions to assembly 

language, 369
continue statements to pure 

assembly language, 462
floating-point expressions to 

assembly language, 406
for loops to pure 

assembly, 460–461
forever loops to pure 

assembly, 456, 460
hex to binary, 57
if statement to pure assembly 

language, 422–424
integer to floating point, 392
noncommutative arithmetic 

operators to assembly 
language, 372

postfix notation to assembly 
language, 409

repeat..until loops to pure 
assembly, 458

simple expressions to assembly 
language, 366

while loops to pure 
assembly, 457

Copying
arbitrary number of bytes using 

the movsd instruction, 642
overlapping arrays using the movs 

string instructions, 641
by reference, 198
strings, 201, 346

Cosine, 403
Counting bits, 620

in a 16-bit operand, 629
CPU registers, 9
Creating lookup tables, 545
cs (HLA stdlib module)

cs.charToCset function, 213–214
cs.cpy function, 213–214
cs.empty function, 213
cs.eq function, 216
cs.extract function, 217
cs.IsEmpty function, 215
cs.member function, 216, 276
cs.ne function, 216
cs.psubset function, 216
cs.psuperset function, 216
cs.rangeChar, 213–214
cs.removeChar function, 213–214
cs.strToCset function, 213, 215
cs.subset function, 216
cs.superset function, 216
cs.unionChar function, 213–214
cs.unionStr function, 213, 215

cset compile-time function, 559
CTL (compile-time language), 551
CTL assignment statement, 555
Current string length, 187
cwd instruction, 77
cwde instruction, 77
cx, 9

D
daa instruction, 534–535
Dangling pointers, 182
das instruction, 534–535
Data alignment, 128
Data representation, 155
Data tables, constructing at 

compile time, 592
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Data type coercion, 111
Date comparison, 88
Debugging CTL programs, 554
Debugging with conditional 

compilation, 569
dec instruction, 152
Decimal arithmetic, 100, 477, 532
Decimal input, unsigned (extended 

precision), 525
Decimal output, unsigned 

(extended precision), 510
Decimal numbering system, 54
Decisions in HLA, 17, 422–424
Declarations

readonly, 123
static, 122
storage, 123
type, 173
val, 172
var, 125
VMT, 672

Declaring local symbols in a 
macro, 584

default clause in an HLA switch 
statement, 448

delete memory deallocation 
operator (C++), 147

Delimiters character set, 516
Delimiting macro parameters, 578
Denormalized

exception (FPU), 383
floating-point values, 388
values, 96

Destructors, 686
Destructured code, 439
dh, 9
di, 9
Different-sized operands, 530
Direct addressing mode, 113
Direct jump instructions, 416
Direction flag, 635–637
Directives

align, 130
external, 338
forward, 286, 692
#include, 336

Disadvantages of macros 
(vs. procedures), 575

Displacement-only addressing 
mode, 112–113

Display (in an activation 
record), 289

dispose memory deallocation 
operator (Pascal), 147

Distributing bit strings, 612
div (within a constant 

expression), 169
div and idiv instructions, 355, 492
Divide-by-zero exception 

(FPU), 384
Division, unsigned, 355–356
Division without div or idiv, 379
dl, 9
Domain conditioning, 544
Domain of a function, 541
Dope vector, 252
Dot operator, 234
Double-precision floating-point 

format, 95
Double words, 58, 62
Double-word strings, 633
dup operator, 221
Duplicate symbol errors in macro 

expansions, 583
dword compile-time function, 559
dwords, 58
dx, 9
Dyadic operations, 67
Dynamic

arrays, 251
memory allocation, 112, 

147, 180
nesting of control structures, 44
string length, 187
type systems, 247

Dynamically nesting try..endtry 
statements, 43

E
eax, 9
ebp, 9
ebx, 9
ecx, 9
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ecx register usage in string 
instructions, 635

edi, 9
edi register usage in string 

instructions, 635
edx, 9
Effective address, 116, 153, 322
eflags register, 10, 89, 144
else statement, 17, 424
elseif statement, 17
Embedding control characters in 

string constants, 167
End of line, 108
endfor statement, 25
endif statement, 17
endwhile statement, 17, 24
enum declaration, 175
Enumerated data types, 174
Errors in a floating-point 

calculation, 90
Errors when using pointers, 150
Escape character sequences, 166
esi, 9
esi register usage in string 

instructions, 635
esp, 9
Exception

flags (FPU), 385
FPU exception bits, 405
handling, 28
masks (FPU), 383
overflow (FPU), 384

Exception codes
ex.AccessDenied, 30
ex.AccessViolation, 31
ex.ArrayBounds, 31
ex.ArrayShapeViolation, 30
ex.AssertionFailed, 31
ex.AttemptToDerefNULL, 30
ex.AttemptToFreeNULL, 30
ex.BadFileHandle, 30
ex.BadObjPtr, 29
ex.BlockAlreadyFree, 30
ex.BoundInstr, 31, 157
ex.Breakpoint, 31
ex.BufferOverflow, 30
ex.BufferUnderflow, 30

ex.CannotCreateDir, 30
ex.CannotFreeMemory, 30
ex.CannotRemoveDir, 30
ex.CannotRemoveFile, 30
ex.CannotRenameFile, 30
ex.CDFailed, 30
ex.ControlC, 31
ex.ConversionError, 30, 46, 

516–517
ex.DiskFullError, 30
ex.DivideError, 31, 493
ex.DivisionError, 356, 501
ex.EndOfFile, 30
ex.ExecutedAbstract, 31
ex.fDenormal, 31, 383
ex.fDivByZero, 31
ex.FileCloseError, 30
ex.FileNotFound, 30
ex.FileOpenFailure, 30
ex.FileReadError, 30
ex.FileSeekError, 30
ex.FileWriteError, 30
ex.fInexactResult, 31
ex.fInvalidOperation, 31, 383
ex.fOverflow, 31
ex.FractionTooBig, 30
ex.fStackCheck, 31
ex.fUnderflow, 31
ex.IllegalChar, 29, 517
ex.IllegalInstr, 31
ex.IllegalSize, 30
ex.IllegalStringOperation, 29
ex.InPageError, 31
ex.IntoInstr, 31, 159, 356
ex.InvalidAlignment, 30
ex.InvalidArgument, 30
ex.InvalidDate, 31
ex.InvalidDateFormat, 31
ex.InvalidHandle, 31
ex.InvalidTime, 31
ex.InvalidTimeFormat, 31
ex.MemoryAllocationCorruption, 30
ex.MemoryAllocationFailure, 

30, 149
ex.MemoryFreeFailure, 30
ex.NoMemory, 31
ex.PointerNotInHeap, 30
ex.PrivInstr, 31
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ex.SingleStep, 31
ex.SocketError, 31
ex.StringAlignment, 29
ex.StringIndexError, 29, 196
ex.StringMetaData, 29
ex.StringOverflow, 29, 191, 

203, 205
ex.StringOverlap, 29
ex.StringUnderflow, 29
ex.ThreadError, 31
ex.TimeOverflow, 31
ex.TooManyCmdLnParms, 29
ex.ValueOutOfRange, 29, 46, 529
ex.WidthTooBig, 30

exception statement, 28
Exceptions, divide by zero 

(FPU), 384
Excess (biased) exponents, 94
Exclusive-or operation, 67, 69
Executing a loop backwards, 469
exit statement, 262
exitif statement, 262
Exponent, 90
Expressions, 369

and temporary values, 374
Extended Base Pointer register, 295
Extended-precision

addition, 480
and, 503
arithmetic, 477
comparisons, 485
division, 492
floating-point format, 95
formatted I/O, 515
I/O, 509
input routines, 516
multiplication, 488
neg, 501
not, 504
operations, 478
or, 503
rotates, 508
shifts, 504
shifts and their effect on the 

flags, 506
xor, 504

External declaration 
limitations, 343

external directive, 338
external option in a class 

declaration, 657
Extracting

bit strings, 626
bits, 601

F
f2xm1 instruction, 402
fabs instruction, 399
fadd instruction, 394
faddp instruction, 394
false 

boolean constant, 7, 375
label, 475

fbld instruction, 393, 537–538
fbstp instruction, 393, 537–538
fchs instruction, 399
fclex instruction, 405
fcom instruction, 386, 399–400
fcomi instruction, 400–401
fcomip instruction, 400–401, 567
fcomp instruction, 386, 399–400
fcompp instruction, 386, 399–400
fcos instruction, 403
fdiv instruction, 396
fdivp instruction, 396
fdivr instruction, 396
fdivrp instruction, 396
fiadd instruction, 405
ficom instruction, 386, 405
ficomp instruction, 386, 405
fidiv instruction, 405
fidivr instruction, 405
Field alignment within a 

record, 241
Field width, 35
fild instruction, 392
fimul instruction, 405
finit instruction, 404
First clear bit, 600, 618
First set bit, 600, 618
fist instruction, 392
fistp instruction, 392
fisub instruction, 405
fisubr instruction, 405
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Flags, 10
and instruction, 605
carry, 10, 358, 418
cmp instruction affect on 

flags, 358
copying ah register to flags, 

88–89, 400
direction, 635–637
lahf instruction, 89
or instruction, 605
overflow, 156–159, 358, 418
register, 89
sign, 358, 418
xor instruction, 605
zero, 358, 418

fld instruction, 389
fld1 instruction, 402
fldcw instruction, 384, 404
fldl2e instruction, 402
fldl2t instruction, 402
fldlg2 instruction, 402
fldln2 instruction, 402
fldpi instruction, 402
fldz instruction, 402
Floating-point

adding an integer to a floating-
point value, 405

arithmetic, 380
calculations, 380
comparisons, 92, 386, 

399–400, 405
control word, 384, 404
data registers, 380
data types, 387
division, 396, 405
exchange registers, 391
FPU, 380
integer conversion, 392
integer division, 405
integer multiplication, 405
integer subtraction, 405
multiplication, 396
negation, 399
overflow, 92
overflow exception, 384
partial remainder, 398
pushing a value onto the FPU 

stack, 389

pushing the constant 1.0 onto 
the FPU stack, 402

remainder, 398
reverse division, 405
subtraction, 395
test for zero, 386, 402
underflow, 92
values, 62

Floating-point unit, 380
fmul instruction, 396
fmulp instruction, 396
fnclex instruction, 405
fninit instruction, 404
fnstsw instruction, 405
for loops, 25, 460
Forcing

a 0 result, 68
bits to one, 70
bits to zero, 70

forever loop, 27, 456
Formal parameters, 270, 324
FORTRAN programming 

language, 452
forward directive, 286, 692
Forward procedure 

declarations, 286
fpatan instruction, 403
fprem instruction, 398
fprem1 instruction, 398
fptan instruction, 403
FPU

busy bit, 387
condition code bits, 385
control register, 381
control word, 384, 404
data movement instructions, 389
data registers, 381
data types, 387
exception bits, 405
exception flags, 385
exception masks, 383
floating-point unit, 380
initialization, 404
popping the FPU stack, 390
registers, 380
stack fault flag, 385
status register, 385, 405
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status word, 385, 399–400, 405
top of stack pointer, 387

Free memory function, 148
frndint instruction, 399
fsin instruction, 403
fsincos instruction, 403
fsqrt instruction, 391, 397
fst instruction, 390
fstcw instruction, 384, 404
fstp instruction, 390
fstsw instruction, 385, 399–400, 405
fsub instruction, 395
fsubp instruction, 395
fsubr instruction, 395
fsubrp instruction, 395
ftst instruction, 386, 402
fucom instruction, 386
fucomp instruction, 386
fucompp instruction, 386
Function

computation via table 
lookup, 539

overloading using macros, 586
results, 275

fxam instruction, 386
fxch instruction, 391
fyl2x instruction, 404
fyl2xp1 instruction, 404

G
General protection fault, 120
General purpose registers, 9
GenerateSines program, 546
Generating sine data at compile 

time, 592
Generic object pointers, 662
Global variables, 263, 267, 652
Guard digits/bits, 90

H
Hash mark (#) operator, 105
Header files, 344
Heap, 148
Hello, world!

compile-time program, 553
HLA program, 2

Hexadecimal, 53
calculators, 64
hex to decimal conversion, 66
input (extended precision), 520
numbering system, 56
numbers, 59
output (extended 

precision), 509
string-to-numeric 

conversion, 520
High order

bit, 56, 60
byte, 61
nibble, 60
word, 62

High-level assembly language vs. 
low-level assembly 
language, 50

High-level control structures, 17
HLA

pointers, 177
Standard Library, 32
strings, 188
support for ASCII 

characters, 105
HLA v2.0 procedure 

declarations, 287
H.O., 56. See also High order
Hybrid

boolean expressions, 474
control structures, 413, 473
parameter passing facilities, 327

I
i128Size routine, 515
Icon programming language, 539
Identifiers, 2
Idioms (machine 

idiosyncrasies), 377
idiv instruction, 355, 492
IEEE (754 and 853) floating-point 

format, 93, 381, 383, 537
if statement, 17, 20, 422–424
imod instruction, 439
imul instruction, 352, 488
in (clause in a #for..#endfor 

compile-time loop), 573
INDEX 717



AAL2E_03.book  Page 718  Thursday, February 18, 2010  12:49 PM
in operator, 19
inc instruction, 152
#include directive, 336
Include files, 3
Inclusive-or operation, 69
Indexed addressing mode, 116
Indexed and scaled-indexed 

addressing modes, 111
Indirect

calls, 329
jumps, 416, 423, 452–456

Induction variables, 472–473
Infinite loops, 27, 456
Infinite precision arithmetic, 89
Infix notation, 406
Information hiding, 653
Inheritance 

in HLA classes, 659
implementation, 674

inherits keyword in classes, 660
Initializing the FPU, 404
Initializing the virtual method table 

pointer in an object, 678
Input conditioning, 544
Input/output, 8
Inputting values in an HLA 

program, 7
Instance of a class, 657
Instruction composition

definition, 277
effect on program 

readability, 279
Instructions

aaa, 535
aad, 535
aam, 535
aas, 535
adc, 482, 609
add, 15
and, 70, 376, 601, 605
binary-coded decimal, 477
bound, 156
bsf, 618
bsr, 618
bt, 608
btc, 211, 608
btr, 211, 608
bts, 608

call, 255–256, 288
cbw, 77
cdq, 77
clc, 88, 609
cld, 88
cli, 88
cmc, 88, 609
cmp, 357
cmps, 644
cmpsb, 634
cmpsd, 634
cmpsw, 634
cwd, 77
cwde, 77
daa, 534–535
das, 534–535
dec, 152
div, 355, 492
f2xm1, 402
fabs, 399
fadd, 394
faddp, 394
fbld, 393, 537–538
fbstp, 393, 537–538
fchs, 399
fclex, 405
fcom, 386, 399–400
fcomi, 400–401
fcomip, 400–401, 567
fcomp, 386, 399–400
fcompp, 386, 399–400
fcos, 403
fdiv, 396
fdivp, 396
fdivr, 396
fdivrp, 396
fiadd, 405
ficom, 386, 405
ficomp, 386, 405
fidiv, 405
fidivr, 405
fild, 392
fimul, 405
finit, 404
fist, 392
fistp, 392
fisub, 405
fisubr, 405
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fld, 389
fld1, 402
fld2e, 402
fldcw, 384, 404
fldl2t, 402
fldlg2, 402
fldln2, 402
fldpi, 402
fldz, 402
floating-point comparisons, 399
floating-point conversions, 391
fmul, 396
fmulp, 396
fnclex, 405
fninit, 404
fnstsw, 405
fpatan, 403
fprem, 398
fprem1, 398
fptan, 403
FPU data movement, 389
frndint, 399
fsin, 403
fsincos, 403
fsqrt, 391, 397
fst, 390
fstcw, 384, 404
fstp, 390
fstsw, 385, 399–400, 405
fsub, 395
fsubp, 395
fsubr, 395
fsubrp, 395
ftst, 386, 402
fucom, 386
fucomp, 386
fxam, 386
fxch, 391
fyl2x, 404
fyl2xp1, 404
idiv, 355, 492
imod, 439
imul, 352, 488
inc, 152
indirect jumps, 416
intmul, 156, 354
into, 156, 159
ja, 419

jae, 419
jb, 419
jbe, 419
jc, 419, 609
je, 419
jf, 421
jg, 419
jge, 419
jl, 419
jle, 419
jmp, 416
jna, 419
jnae, 419
jnb, 419
jnbe, 419
jnc, 419, 609
jne, 419
jng, 419
jnge, 419
jnl, 419
jnle, 419
jno, 419
jnp, 419
jns, 419
jnz, 419
jo, 419
jp, 419
jpe, 419
jpo, 419
js, 419
jt, 421
jz, 419
lahf, 89
lea, 153, 322, 414
lodbs, 634
lods, 648
lodsd, 634
lodsw, 634
mov, 14, 112
movs, 638
movsb, 634, 638
movsd, 634, 638
movsw, 634, 638
mul, 352, 488
neg, 74, 501
not, 70, 376, 601
or, 70, 376, 601, 605
pop, 138, 259
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Instructions, continued
popa, 144
popad, 144
popf, 144
popfd, 144
push, 137, 259
pusha, 143
pushad, 143
pushd, 138
pushf, 144
pushfd, 144
pushw, 138
rcl, 84, 609
rcr, 84, 609
rep.movsb, 635
rep.movsd, 635
rep.movsw, 635
rep.stosb, 636
rep.stosd, 636
rep.stosw, 636
repe.cmpsb, 635
repe.cmpsd, 635
repe.cmpsw, 635
repe.scasb, 635
repe.scasd, 635
repe.scasw, 635
repne.cmpsb, 635
repne.cmpsd, 635
repne.cmpsw, 635
repne.scasb, 635
repne.scasd, 635
repne.scasw, 635
rol, 83
ror, 83
sahf, 88–89, 400
sar, 83, 379
sbb, 484, 501, 609
scas, 647
scasb, 634
scasd, 634
scasw, 634
seta, 363
setae, 363
setb, 363
setbe, 363
setc, 362, 609
sete, 363
setg, 363

setge, 363
setl, 363
setna, 363
setnae, 363
setnb, 363
setnbe, 363
setnc, 362, 609
setne, 363
setng, 363
setnge, 363
setnl, 363
setnle, 363
setno, 362
setnp, 362
setns, 362
setnz, 362, 364
seto, 362
setp, 362
setpe, 362
setpo, 362
sets, 362
setz, 362, 364
shl, 80, 378
shld, 506
shr, 81, 379
shrd, 506
stc, 609
std, 88
sti, 88
stos, 648
stosb, 634
stosd, 634
stosw, 634
sub, 15
test, 364, 601, 606
xlat, 540
xor, 70, 376, 601, 604–605

int8, 5
int8, int16, int32, int64, and 

int128 compile-time 
functions, 559

int16, 5
int32, 5
Integer

integer portion of a floating-
point number, 399

integer to floating point 
conversion, 392
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integer to floating point 
comparisons, 405

signed remainder/modulo, 439
subtraction from floating 

point, 405
Integer types in C, 478
Integer/floating-point division, 405
Intel ABI, 302
intmul instruction, 156, 354
into instruction, 156, 159
Invalid operation exception 

(FPU), 383
Invariant computations, 470
I/O, 8
Iterator entries in a virtual method 

table, 671

J
ja instruction, 419
jae instruction, 419
jb instruction, 419
jbe instruction, 419
jc instruction, 419, 609
je instruction, 419
jf medium-level instruction, 421
jg instruction, 419
jge instruction, 419
jl instruction, 419
jle instruction, 419
jmp instruction, 416
jna instruction, 419
jnae instruction, 419
jnb instruction, 419
jnbe instruction, 419
jnc instruction, 419, 609
jne instruction, 419
jng instruction, 419
jnge instruction, 419
jnl instruction, 419
jnle instruction, 419
jno instruction, 419
jnp instruction, 419
jns instruction, 419
jnz instruction, 419
jo instruction, 419
jp instruction, 419

jpe instruction, 419
jpo instruction, 419
js instruction, 419
jt medium-level instruction, 421
Jump indirect, 456
Jump instructions, 416
jz instruction, 419

K
KCS Floating-Point Standard, 93

L
Labels, 414
lahf instruction, 88, 89
Large parameter objects, 319
Large programs, 335
Last clear bit, 600, 618
Last set bit, 618
Last-in, first-out data structures, 140
lea instruction, 153, 322, 414
Least significant bit, 56, 60
Left-associative operators, 370
Left rotates, 80
Left shifts, 80
Legal boolean expressions in HLA 

high-level language 
statements, 19

Length (field of an HLA 
string), 190

Length-prefixed strings, 187
Lexical scope, 263
Lexicographical ordering, 207, 645
Lifetime (of a variable), 125, 

263, 267
LIFO, 140
Linefeed character, 34
Linker, 335
Literal quotes in string 

constants, 166
Literal record constants, 235
L.O., 56. See also Low order
Load effective address (lea) 

instruction, 153, 322, 414
Loading the flags register 

from ah, 89
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Loading the FPU control word, 404
Local

macro symbols, 582–583
variables, accessing, 262, 299

Location counter, 127
lods instruction, 648
lodsb instruction, 634
lodsd instruction, 634
lodsw instruction, 634
Log base 2 of e, 402
Log base 2 of x, 404
Log base 2 of x plus 1, 404
Logical

and operation, 67, 376
exclusive-or (xor) operation, 

67, 69
not operation, 67, 69
operations on binary 

numbers, 70
operations on bits, 67
operators within a constant 

expression, 170
or operation, 67, 68, 376
shift left, 80
shift right, 82
xor operation, 67, 376

Lookup table creation, 545
Loops, 24–25, 27, 456–457, 460

control variables, 457
invariant computations, 470
performance improvement, 

466, 469
register usage, 465
termination test, 457, 466
unraveling/unrolling, 471

Low order
bit, 56, 60
byte, 61
nibble, 60
word, 62

Low-level control structures, 414
Low-level parameter 

implementation, 301
lword, 58

compile-time function, 559
data declarations, 63

M
Machine idioms, 377
Machine state, saving, 258
Macros, 573

parameters, 576, 578, 579
vs. procedures, 574
in several different source 

files, 598
Managing large programs, 335
Manifest constants, 161, 164
Manipulating bits in memory, 599
Mantissa, 90, 93
Mask (bits), 600
Masking, 70
math (HLA stdlib module)

math.acos, 411
math.acot, 411
math.acsc, 411
math.addl, 479, 482
math.addq, 479, 482
math.andl, 479
math.andq, 479
math.asec, 411
math.asin, 411
math.cot, 411
math.csc, 411
math.divl, 479
math.divq, 479
math.exp, 411
math.idivl, 479
math.imodl, 479
math.imulq, 479
math.ln, 411
math.log, 411
math.modl, 479
math.modq, 479
math.mull, 479
math.mulq, 479
math.negl, 480
math.negq, 480
math.notl, 480
math.notq, 480
math.orl, 479
math.orq, 479
math.sec, 411
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math.shll, 480
math.shlq, 480
math.shrl, 480
math.shrq, 480
math.subl, 479
math.subq, 479
math.tentox, 411
math.twotox, 411
math.xorl, 479
math.xorq, 479
math.ytox, 411

Maximum string length, 188
maxlen, 190
Medium-level control 

structures, 421
mem (HLA stdlib module), 148

mem.alloc, 148, 180, 191, 251, 686
mem.free, 148, 182
mem.isInHeap, 686

Memory, 8
access violation exception, 181
addressing modes, 111, 113
allocation, 111, 148
anonymous memory objects, 304
indirect jump through 

memory, 418
leaks, 183
organization, 111
read operation, 12
subsystem, 11
write operation, 12

Merging source files during 
assembly, 336

Methods, 653, 655
accessor methods, 653
calling mechanism, 671
definition, 653
entries in a virtual method 

table, 671
methods vs. class 

procedures, 663
Minimal procedures, 289
Minimum field width, 35
Misaligned data and the system 

cache, 131
Mixed-size operands, 530

mod (within a constant 
expression), 169

Modulo
floating-point remainder, 398
integer remainder, 439

Modulo-n counters, 380
Monadic operations, 69
Most significant bit, 56, 60
mov instruction, 14, 112

operands, 15
Moving string data, 633
movs instruction, 638

performance, 642
movsb instruction, 634, 638
movsd instruction, 634, 638
movsw instruction, 634, 638
movsx instruction, 78
movzx instruction, 78
mul instruction, 352, 488
Multiplication, 156, 352, 354, 488

floating-point, 396
integer and floating-point 

numbers, 405
by a reciprocal to simulate 

division, 379
register value by 10, 378
unsigned, 352–353, 488
without mul, imul, or intmul, 378

Multiprecision
addition, 480
arithmetic, 477
comparisons, 485
operations, 478
subtraction, 483

N
N/No N rule, 420
Namespace

declarations, 346
definition, 248
pollution, 248, 345

neg instruction, 74, 501
neg64 (macro), 574
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Negation
of boolean variables in an if 

statement, 429
floating-point, 399
of large values, 502

Negative numbers, 72
Nested array constants, 231
Nesting record definitions, 239
Nesting try..endtry statements, 43
new memory allocation operator 

(C++ or Pascal), 147
New style procedure 

declarations, 287
Newline constant, 33
newln, 35
Nibbles, 58, 59
nl (newline) constant, 3, 33, 168
Noncommutative binary 

operators, 375
Normalized floating-point numbers, 

95, 388
not in operator, 19
not instruction, 70, 376, 601
not operation, 67, 69
NUL character, 187, 306, 518
NULL, 120
Numbering systems, 54
Numbers, unsigned, 72
Numeric

compile-time functions, 561
output field width, 35
representation, 65

O
Object

constructors, 677
in HLA, 657
implementation, 668
initialization, 677
memory allocation, 679
pointers (generic objects), 662
representation with 

inheritance, 673
Object-oriented programming, 651

benefits, 652
general principles, 652

One’s complement numbering 
system, 73

Operands, mixed size, 530
Operations

and, 605
on binary numbers, 70
not, 67, 69
or, 67, 68, 376, 605
rotation, 80
shift arithmetic right, 83
shifts, 80
xor, 67, 69, 376, 605

Operator precedence, 23, 370
in compile-time expressions, 557

Operators
in, 19
logical, 170
not in, 19
type, 134

Opposite condition jump, 420
Options

@align, 657
@cdecl, 657
@noalignstack, 288, 297, 657
@nodisplay, 288, 657
@noframe, 288, 291, 657
@nostorage, 124, 186
@pascal, 657
@returns, 280, 657
@stdcall, 657
@use, 317, 324, 657

Optional parameters in a macro 
expansion, 581

or instruction, 70, 376, 601, 605
or operation, 67, 68
Output field width, 35
Outputting values in HLA, 3, 137
Overflow exception (FPU), 384
Overflow flag, 10, 156, 159, 358, 418

and the and, or, and xor 
instructions, 605

testing, 156, 159

P
Packed

arrays of bit strings, 615
data, 85
decimal arithmetic, 537

Packing and unpacking bit 
strings, 609
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Padding
parameter data, 313
records, 242

Parameters. See Procedures, 
parameters

Partial remainder, 398
Pascal programming language, 539
Passing. See also Procedures

ah, bh, ch, or dh on the stack as a 
procedure parameter, 314

a byte parameter to a 
procedure, 314

large objects as parameters, 319
large objects passed by value on 

the stack, 316
parameters as parameters, 324
parameters by reference, 323
parameters in registers, 301
parameters in the code 

stream, 304
parameters on the stack, 307
reference parameters, 273, 275, 

321, 323
value parameters, 269, 311
word parameters on the 

stack, 316
Performance improvements for 

loops, 466
Performance of the string 

instructions, 650
pi (FPU load instruction), 402
Placement of the VMT, 672
point class, 659
pointer to type declaration, 178
Pointers, 175

and code readability, 456
constants and pointer constant 

expressions, 179
dangling, 182
problems, 180
to records, 242

pop instruction, 138, 259
popa instruction, 144
popad instruction, 144
popf instruction, 144
popfd instruction, 144
Popping the FPU stack, 390
Postfix notation, 406

Precedence
of arithmetic operators, 370
rules, 370

Precision
control bits (FPU), 383
exception (FPU), 384

Preserving
the direction flag, 637
machine state, 258
registers, 140, 258
registers in loops, 465

Printing
boolean values, 8
character values, 8
values with HLA, 3

Private declarations, 340
Problems with macro parameter 

expansion, 579
proc keyword in HLA, 287
Procedures, 255

call syntax, 257
compared to macros, 574
effect on the stack, 290
invocation, 255
overloading, 685
options

@align, 657
@cdecl, 657
@noalignstack, 288, 297, 657
@nodisplay, 288, 657
@noframe, 288, 291, 657
@pascal, 657
@returns, 280, 657
@stdcall, 657
@use, 317, 324, 657

parameters
ah, bh, ch, or dh as 

parameters, 314
byte parameters on the 

stack, 314
large objects as 

parameters, 319
large objects passed by 

value, 316
parameters as 

parameters, 324
parameters in registers, 301
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Procedures, continued
parameters, continued

parameters in the code 
stream, 304

parameters on the stack, 307
pass by reference, 273, 

321, 323
pass by value, 269, 311
procedural parameters, 333
required vs. optional in a 

macro, 581
variable length, 306
word parameters on the 

stack, 316
pointers, 329

Programming in the large, 335
Programming languages

C, 478
FORTRAN, 452
Icon, 539
Pascal, 539
SNOBOL4, 539

Protected block in a try 
statement, 28

Protected statements in a 
try..endtry statement, 43

Prototypes, 286
Prototypes for class methods, 655
Pseudo-opcode, 121
Public declarations, 340
push instruction, 137, 259
pusha instruction, 143
pushad instruction, 143
pushd instruction, 138
pushf instruction, 144
pushfd instruction, 144
Pushing a value onto the floating-

point stack, 389
Pushing the constant 1.0 onto the 

FPU stack, 402
pushw instruction, 138
puth128, 509
puti (overloaded function), 586
puti128, 514
puti128Size, 515
putu128, 514

Q
Quicksort, 283
qword compile-time function, 559
qwords, 58

data declarations, 63

R
Radix, 56
raise statement, 42, 196
Range of a function, 542
rcl instruction, 84, 609
rcr instruction, 84, 609
Reading

integer values from the standard 
input device, 39

from memory, 12
values into an HLA program, 7

readonly

declaration section, 123
variables as constants, 161

real32, real64, and real80 compile-
time functions, 559

Rearranging expressions
in if statements to improve 

performance, 438
to make them more 

efficient, 438
Reassigning text objects, 564
Records, 233

constants, 235
declarations, 233
field alignment, 241
pointers, 242
as record fields, 237

Recursion, 282
Reference parameters, 273, 

318, 321
Register

addressing modes, 112
comparison to zero, 365
indirect addressing mode, 114
indirect jump instruction, 416
output, 137
preservation, 258

callee/caller, 259
in a try..endtry statement, 48
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as procedure parameters, 301
as a signed integer value, 136
type coercion, 136
usage in loops, 465
usage in string instructions, 635

Registers, 9
8-bit, 16-bit, 32-bit, 9
al, ah, bl, bh, cl, ch, dl, dh, 9
ax, bx, cx, dx, bp, sp, si, di, 9
eax, ebx, ecx, edx, ebp, esp, esi, 

edi, 9
FPU, 380, 381
preservation, 140, 258, 465

Relational operators, 19
Remainder

floating point, 398
signed integer, 439

Removing unwanted data from the 
stack, 144

rep.movsb instruction, 635
rep.movsd instruction, 635
rep.movsw instruction, 635
rep.stosb instruction, 636
rep.stosd instruction, 636
rep.stosw instruction, 636
rep/repe/repz and repnz/repne string 

instruction prefixes, 635
repe.cmpsb instruction, 635
repe.cmpsd instruction, 635
repe.cmpsw instruction, 635
repe.scasb instruction, 635
repe.scasd instruction, 635
repe.scasw instruction, 635
repeat..until loops, 17, 26, 456, 458
Repetitive compilation, 570
repne.cmpsb instruction, 635
repne.cmpsd instruction, 635
repne.cmpsw instruction, 635
repne.scasb instruction, 635
repne.scasd instruction, 635
repne.scasw instruction, 635
Required vs. optional macro 

parameters, 581
Restrictions in simple switch state-

ment implementations, 
446

ret instruction, 255, 288
Return address, 288

Reverse division (floating 
point), 396

Reverse Polish notation (RPN), 406
Reverse subtraction (floating 

point), 395
Reversing bits in a bit string, 623
Right-associative operators, 371
Right shifts, 80–82
rol instruction, 83
ror instruction, 83
Rotate

left, 83
operations, 80
right, 83

Rounding
control (FPU), 382
floating-point numbers, 399
floating-point value to an 

integer, 399
Row-major ordering, 225
RPN (Reverse Polish notation), 406
RTTI (runtime type 

information), 696
Run of zero bits, 600
Runtime

language, 551
memory organization, 119
type information (RTTI), 696

S
sahf instruction, 88–89, 400
sar instruction, 83, 379
Saturation, 76, 80
Saving the machine state, 258
sbb instruction, 484, 501, 609
Scaled-indexed addressing 

mode, 118
scas instruction, 647
scasb instruction, 634
scasd instruction, 634
scasw instruction, 634
Scope (of a name), 263
Searching

for a bit, 617
for a bit pattern, 627
for the first (or last) set bit, 618

Self-modifying programs, 121
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Separate compilation, 335
Set on condition instructions, 362
seta instruction, 363
setae instruction, 363
setb instruction, 363
setbe instruction, 363
setc instruction, 362, 609
setcc instructions, 362
sete instruction, 363
setg instruction, 363
setge instruction, 363
setl instruction, 363
setna instruction, 363
setnae instruction, 363
setnb instruction, 363
setnbe instruction, 363
setnc instruction, 362, 609
setne instruction, 363
setng instruction, 363
setnge instruction, 363
setnl instruction, 363
setnle instruction, 363
setno instruction, 362
setnp instruction, 362
setns instruction, 362
setnz instruction, 362, 364
seto instruction, 362
setp instruction, 362
setpe instruction, 362
setpo instruction, 362
sets instruction, 362
Setting bits, 601
setz instruction, 362, 364
Shift

arithmetic right operation, 83
left operation, 80
operations, 80
right operation, 82
rotate instructions, 601, 608

shl instruction, 80, 378
shld instruction, 506
Short-circuit boolean 

evaluation, 433
vs. complete boolean 

evaluation, 435
shr instruction, 81, 379
shrd instruction, 506
si, 9

Side effects, 435
Sign

bit, 72
contraction, 76, 79
extension, 76, 356
extension prior to division, 372
zero flag settings after mul and 

imul instructions, 353
Sign flag, 10, 358, 418

and the and, or, and xor 
instructions, 605

Signed
comparison flag settings, 359
comparisons, 363
decimal input (extended 

precision), 529
decimal output (extended 

precision), 514
division, 356
integer output, 35
integer remainder/modulo, 439
multiplication, 156, 352, 

354, 488
numbers, 72

Significant digits, 90
Simple assignments (conversion to 

assembly language), 366
Simulating div, 379
Sine, 403
Sine data table generation, 592
Single precision floating point 

format, 93
Size of a data type (compile-time 

function), 148
SNOBOL4 programming 

language, 539
Software configuration

via conditional compilation, 568
for different environments, 567

Source file merging during 
assembly, 336

sp, 9
Spaghetti code, 455
Square root, 391, 397
st0, 381
st1, 381
Stack fault flag (FPU), 385
Stack frame, 293
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Stack manipulation by procedure 
calls, 290

Stack operations
pop, 138, 259
popa, 144
popad, 144
popf, 144
popfd, 144
push, 137, 259
pusha, 143
pushad, 143
pushd, 138
pushf, 144
pushfd, 144
pushw, 138

Stack segment, 137
Standard entry sequence (to a 

procedure), 296
Standard exit sequence (from a 

procedure), 298
Standard input, 34
Standard library (HLA), 32
Standard macro parameter 

expansion, 576
Standard macros, 574
Standard Output, 34
State machine, 416, 452
State variable, 452
Statement labels, 414
Statements

break, 27, 461
breakif, 27
case, 423, 442
conditional, 423
continue, 461
else, 17, 424
elseif, 17
endfor, 25
endif, 17
endwhile, 17, 24
exception, 28
exit, 262
exitif, 262
for, 25, 460
forever, 27, 456
if, 17, 20, 422, 424
jf, 421
raise, 42, 196

repeat..until, 17, 26, 456, 458
then, 17
try..endtry, 28, 42
until, 17
while, 17, 24, 456, 457

static

declaration section, 6, 122
procedures in a class, 661
variable section, 5

Status register (FPU), 385, 405
Status word, 399, 400, 405
stc instruction, 609
std instruction, 88
stdin (HLA stdlib module)

stdin.a_gets, 193
stdin.eoln, 108
stdin.flushInput, 40, 108
stdin.get, 7, 41, 67, 99, 107, 516
stdin.getc, 38, 519
stdin.getf, 99, 411
stdin.geth8, 67
stdin.geth16, 67
stdin.geth32, 67
stdin.geth64, 67
stdin.geth128, 67
stdin.geti32, 75
stdin.gets, 191, 193
stdin.getu8, 76
stdin.getu16, 76
stdin.getu32, 76
stdin.getu64, 76
stdin.getu128, 76
stdin.peekc, 519
stdin.readLn, 40

stdio (HLA stdlib module)
stdio.bell, 34
stdio.bs, 34
stdio.cr, 34
stdio.lf, 34
stdio.tab, 34

stdlib.hhf, 3
stdout (HLA stdlib module)

stdout.newln, 35, 256
stdout.put, 3, 7, 37, 67, 107, 307
stdout.putc, 106
stdout.putcSize, 106
stdout.puth8, 67
stdout.puth16, 67
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stdout (HLA stdlib module), 
continued

stdout.puth32, 67, 509
stdout.puth64, 67
stdout.puth128, 67
stdout.puti8, 35, 75
stdout.puti8Size, 35
stdout.puti16, 35
stdout.puti16Size, 35
stdout.puti32, 35, 276, 590
stdout.puti32Size, 35, 590
stdout.puti128, 515
stdout.putiXSize, 35
stdout.putr32, 97
stdout.putr64, 97
stdout.putr80, 97
stdout.putu8, 75
stdout.putu8Size, 76
stdout.putu16, 75
stdout.putu16Size, 76
stdout.putu32, 75
stdout.putu32Size, 76
stdout.putu64, 75
stdout.putu64Size, 76
stdout.putu128, 75, 515
stdout.putu128Size, 76

sti instruction, 88
storage declaration section, 123
Storing ah register into flags, 

88–89, 400
Storing the FPU control word, 384
Storing the FPU status word, 385, 

399–400, 405
stos instruction, 648
stosb instruction, 634
stosd instruction, 634
stosw instruction, 634
str (HLA stdlib module)

str.a_cat, 203
str.a_cpy, 201
str.a_delete, 205
str.a_insert, 204
str.a_substr, 205
str.alloc, 191
str.cat, 203
str.cpy, 199, 346

str.delete, 205
str.eq, 206
str.free, 192
str.ge, 206
str.gt, 206
str.ieq, 207
str.ige, 207
str.igt, 207
str.ile, 207
str.ilt, 207
str.index, 208
str.ine, 207
str.insert, 204
str.le, 206
str.length, 203
str.lt, 206
str.ne, 206
str.put, 208
str.strRec data type, 190
str.substr, 205

strfill procedure, 302, 307
string compile-time function, 

559–560
Strings, 185

assignment by reference, 197
comparisons, 206, 633, 645
concatenation, 165, 203
constant initializers in the const 

section, 167
constants, 165
constants containing control 

characters, 167
instruction operation, 634
instruction performance, 650
instructions, 633–634, 648
operators within a constant 

expression, 170
pointers, 188

Structures as structure fields, 237
sub instruction, 15
Substring operation, 205
Subtract with borrow, 484, 501, 609
Subtraction, floating point, 395
Swapping registers on the FPU 

stack, 391
switch statement, 442
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Synthesizing in assembly language
break statements, 461
continue statements, 462
for statements, 461
forever..endfor loops, 460
repeat..until loops, 458
while loops, 457

T
Tab character, 34
Tables, 539
Tag field, 247
Taking the address of a statement 

label, 414
Tangent, 403
tbyte values (BCD), 538
Temporary values in an 

expression, 374
Termination test (while loops), 457
Test for zero (floating point), 402
test instruction, 364, 601, 606
Testing a floating-point operand for 

zero, 386, 402
Testing bits, 601
Testing for set bits in a bit 

string, 607
Testing the overflow flag, 156, 159
Text

constants, 167, 243
object assignment, 564
type, 564

text compile-time function, 559
then statement, 17
Top of stack pointer (FPU), 387
Transcendental function 

instructions, 402
Translating arithmetic 

expressions into 
assembly language, 351

Treating registers as signed integer 
values, 136

Tricky programming, 377
true 

boolean constant, 7, 375
label, 475

Truth table, 68

try..endtry

effect on the stack, 46
protected statements, 28, 43
statement, 28, 42

Two’s complement
numbering system, 62
numeric representation, 72
operation, 73

Type checking
coercion, 133–134, 243
procedure pointer 

invocations, 332
type declaration section, 173
Type operator, 134
Type-conversion compile-time 

functions, 559

U
u128Size, 515
Unary operator (conversion to 

assembly language), 368
Underflow exception (FPU), 384
Unicode, 62, 109
Uninitialized pointers, 180
Unions, 243

accessing fields of a union, 244
anonymous, 246
definition, 243
syntax (declaration), 243

Units, 339
Unpacking bit strings, 609
Unprotected (try..endtry), 45
Unraveling/unrolling loops, 

471, 596
uns8, 75
uns8 compile-time function, 559
uns16, 75
uns16 compile-time function, 559
uns32, 75
uns32 compile-time function, 559
uns128 compile-time function, 559
Unsigned comparisons, 363
Unsigned decimal input (extended 

precision), 525
Unsigned decimal output 

(extended precision), 510
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Unsigned division, 355–356
Unsigned multiplication, 

352–353, 488
Unsigned numbers, 72
Unsigned variable declarations, 75
Unstructured code, 441
until statement, 17
Untyped reference parameters, 334

V
val

declarations, 160
fields in a class, 656
section, 172
val object modificiation, 173
value parameter 

specification, 272
Value parameters, 269, 310
Values, inputting in an HLA 

program, 7
var

declarations, 125
pass-by-reference 

parameters, 273
Variable alignment, 131
Variable declarations, 75
Variable number of parameters in a 

macro, 579
Variable option, @nostorage, 124, 186
Variable-length parameters, 306
Variant types, 247
Vars (_vars_) constant in a 

procedure, 300
Virtual method table pointer 

initialization, 678
Virtual method tables, 671. See 

also VMT
Virtual methods in a class, 661

VMT
declaration, 672
initialization, 678
record structure, 671
virtual method tables, 671

Von Neumann Architecture, 8

W
while statement, 17, 24, 456, 457
word compile-time function, 559
Word strings, 633
Words, 58, 61
Writing compile-time 

programs, 592

X
xlat instruction, 540
xor instruction, 70, 376, 601, 

604, 605
xor operation, 67, 69

Y
Y2K, 87

Z
Zero divide exception (FPU), 384
Zero extension, 356
Zero flag, 10, 358, 418, 606

setting after a multiprecision or, 
503

settings after mul and imul 
instructions, 353

Zero-terminating byte (in HLA 
strings), 188

Zero-terminated strings, 186
zstring data type, 186
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The Electronic Frontier Foundation (EFF) is the leading 
organization defending civil liberties in the digital world. We defend 
free speech on the Internet, fight illegal surveillance, promote the 
rights of innovators to develop new digital technologies, and work to 
ensure that the rights and freedoms we enjoy are enhanced — 
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the 
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security 
researchers to publish their findings without fear of legal challenges. 
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten 
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and 
use over-the-air television broadcasts any way you choose.  eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools 
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech, 
privacy or digital consumer rights. eff.org/global
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More no-nonsense books from

THE ART OF DEBUGGING WITH GDB, DDD, AND 
ECLIPSE
by NORMAN MATLOFF and PETER JAY SALZMAN

The Art of Debugging with GDB, DDD, and Eclipse illustrates the use of three of 
the most popular debugging tools on Linux/Unix platforms: GDB, DDD, 
and Eclipse. In addition to offering specific advice for debugging with each 
tool, authors Norm Matloff and Pete Salzman cover general strategies for 
improving the process of finding and fixing coding errors, including how to 
inspect variables and data structures, understand segmentation faults and 
core dumps, and figure out why your program crashes or throws exceptions. 
You’ll also learn how to use features like catchpoints, convenience variables, 
and artificial arrays and become familiar with ways to avoid common debug-
ging pitfalls.
SEPTEMBER 2008, 280 PP., $39.95
ISBN 978-1-59327-174-9

HACKING, 2ND EDITION
The Art of Exploitation
by JON ERICKSON

While many security books merely show how to run existing exploits, Hack-
ing: The Art of Exploitation was the first book to explain how exploits actually 
work—and how readers can develop and implement their own. In this all 
new second edition, author Jon Erickson uses practical examples to illustrate 
the fundamentals of serious hacking. You’ll learn about key concepts under-
lying common exploits, such as programming errors, assembly language, net-
working, shellcode, cryptography, and more. And the bundled Linux LiveCD 
provides an easy-to-use, hands-on learning environment. This edition has 
been extensively updated and expanded, including a new introduction to the 
complex, low-level workings of computers.
FEBRUARY 2008, 488 PP. W/CD, $49.95
ISBN 978-1-59327-144-2

GRAY HAT PYTHON
Python Programming for Hackers and Reverse Engineers
by JUSTIN SEITZ

Gray Hat Python explains how to complete various hacking tasks with Python, 
which is fast becoming the programming language of choice for hackers, 
reverse engineers, and software testers. Author Justin Seitz explains the con-
cepts behind hacking tools like debuggers, Trojans, fuzzers, and emulators. 
He then goes on to explain how to harness existing Python-based security 
tools, and build new ones when the pre-built ones just won’t cut it. The book 
teaches readers how to automate tedious reversing and security tasks, sniff 
secure traffic out of an encrypted web browser session, use PyDBG, Immunity 
Debugger, Sulley, IDAPython, PyEMU, and more.
APRIL 2009, 216 PP., $39.95
ISBN 978-1-59347-192-3
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THE IDA PRO BOOK
The Unofficial Guide to the World’s Most Popular Disassembler
by CHRIS EAGLE

Hailed by the creator of IDA Pro as the “long-awaited” and “information-
packed” guide to IDA, The IDA Pro Book covers everything from the very first 
steps with IDA to advanced automation techniques. You’ll learn to identify 
known library routines and how to extend IDA to support new processors 
and filetypes, making disassembly possible for new or obscure architectures. 
The book also covers the popular plug-ins that make writing IDA scripts 
easier.
AUGUST 2008, 640 PP., $59.95
ISBN 978-1-59327-178-7

AUTOTOOLS
A Practioner’s Guide to GNU Autoconf, Automake, and Libtool
by JOHN CALCOTE

Autotools is the first book to offer programmers a tutorial-based guide to 
the Autotools, a group of utilities that lets developers easily create software 
that is portable across many Unix-based operating systems. Beginning with a 
discussion of high-level concepts, author John Calcote first gives readers an 
overview of many different use-cases and examples, then moves into more 
advanced details, like using the M4 Macro Processor with Autoconf, extend-
ing the framework provided by Automake, building Java and C# sources, and 
more. The book teaches readers how to structure and organize open source 
software, master the Autotools framework and functional project configura-
tion scripts, use extensions to Autoconf, convert an existing open source 
project from a custom build system to an Autotools build system, and write 
your own Autotools macros. 
384 PP., $44.95
ISBN 978-1-59327-206-7
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800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)
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U P D A T E S

Visit http://www.nostarch.com/assembly2.htm for updates, errata, and other 
information.
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Assembly is a low-level programming language that’s 
one step above a computer’s native machine language. 
Although assembly language is commonly used for 
writing device drivers, emulators, and video games, 
many programmers find its somewhat unfriendly syntax 
intimidating to learn and use.

Since 1996, Randall Hyde’s The Art of Assembly 
Language has provided a comprehensive, plain-English, 
and patient introduction to 32-bit x86 assembly for non-
assembly programmers. Hyde’s primary teaching tool, 
High Level Assembler (or HLA), incorporates many of the 
features found in high-level languages (like C, C++, and 
Java) to help you quickly grasp basic assembly concepts. 
HLA lets you write true low-level code while enjoying the 
benefits of high-level language programming.

As you read The Art of Assembly Language, you’ll learn 
the low-level theory fundamental to computer science 
and turn that understanding into real, functional code. 

You’ll learn how to:

• Edit, compile, and run HLA programs

• Declare and use constants, scalar variables, pointers, 
arrays, structures, unions, and namespaces

• Translate arithmetic expressions (integer and
floating point)

• Convert high-level control structures

This much anticipated second edition of The Art of 
Assembly Language has been updated to reflect recent 
changes to HLA and to support Linux, Mac OS X, and 
FreeBSD. Whether you’re new to programming or you 
have experience with high-level languages, The Art of 
Assembly Language, 2nd Edition is your essential guide 
to learning this complex, low-level language.
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