
What is software
architecture?

What is the role of
a software architect?

How do you define
software architecture?

How do you share
software architecture?

How do you deliver
software architecture?

Software architecture for developers

A developer’s guide
to load testing

simon.brown@codingthearchitecture.com

@simonbrown on Twitter

Software Architecture for Developers (.com)

What is software
architecture?

What is the role of
a software architect?

How do you define
software architecture?

How do you share
software architecture?

How do you deliver
software architecture?

Who should doall of this?
It should be the architect

(somebody has to do it and that’s why

we get paid the big bucks)

Definition

Management of
non-functional
requirements

The role of a software architect

Delivery

Ownership of
the bigger picture

Leadership
Coaching and
mentoring

Quality assurance

Design, development
and testing

Technology selection

Architecture definition

Architecture
evaluation

Architecture
collaboration

This is what we

write about on our
website...

www.codingthearchitecture.com

A hands-on software
architect can be

invaluable for preventing

project failure

A hands-on
software architect

can be invaluable for driving

project success
Website

http://www.codingthearchitecture.com

London User Group

Monthly mix of presentation and discussion

Google Group

http://groups.google.com/codingthearchitecture

www.codingthearchitecture.com

Why Software Projects Fail

Simon Brown

Hands-on software

architect

Why software projects fail...

...architects are here

to help, not to hinder

Software projects fail

for a number of reasons

Iterative and agile techniques

solve some problems...

Definition

Management of
non-functional
requirements

The role of a software architect

Delivery

Ownership of
the bigger

picture
Leadership

Coaching and
mentoring

Quality
assurance

Design,
development
and testing

Technology
selection

Architecture
definition

Architecture
evaluation

Architecture
collaboration

Why is quality
important?

Reputation
of the business
(e.g. driven by customer satisfaction)

Service level agreements
& key performance indicators

(e.g. between suppliers, between systems,
non-functional requirements, etc...)

Reputation
of the development team

It’s important
that we know

what
we’re releasing

It’s important
that the

software we
release

“works”
That’s us!

What is
performance?

Performance is about how

fast something is

Response
time

Latency and

throughput

Applicab
le to w

eb apps
,

UIs, messagin
g syste

ms,

SOAs, etc.
..

What is
scalability?

Scalability is about

doing more
(more requests, more data,

more users, more messages, ...)

Scalabili
ty is in

herentl
y

about conc
urrency

Vertical
scalability

(scale-up)

Horizontal
scalability

(scale-out)

All com
ponent

s

scale d
ifferen

tly;

scale-
up is ea

sy

http://www.infoq.com/articles/scalability-principles

22/09/2009 22:26

InfoQ: Scalability Principles

Page 1 of 4

http://www.infoq.com/articles/scalability-principles

Article

Scalability Principles

Posted by Simon Brown on May 21, 2008

Community Architecture Topics Performance & Scalability Tags Concurrency

At the simplest level, scalability is about doing more of something. This could be responding to more user requests, executing more

work or handling more data. While designing software has its complexities, making that software capable of doing lots of work presents its own set

of problems. This article presents some principles and guidelines for building scalable software systems.

RelatedVendorContent

5 Ways to Ensure Application Performance

Comprehensive Threat Protection for REST, SOA, and Web 2.0 Applications

The Agile Project Manager

The Agile Checklist

Adobe® Flash® Platform Overview PDF

1. Decrease processing time

One way to increase the amount of work that an application does is to decrease the time taken for individual work units to complete. For example,

decreasing the amount of time required to process a user request means that you are able to handle more user requests in the same amount of time.

Here are some examples of where this principle is appropriate and some possible realisation strategies.

Collocation : reduce any overheads associated with fetching data required for a piece of work, by collocating the data and the code.

Caching : if the data and the code can't be collocated, cache the data to reduce the overhead of fetching it over and over again.

Pooling : reduce the overhead associated with using expensive resources by pooling them.

Parallelization : decrease the time taken to complete a unit of work by decomposing the problem and parallelizing the individual steps.

Partitioning : concentrate related processing as close together as possible, by partitioning the code and collocating related partitions.

Remoting : reduce the amount of time spent accessing remote services by, for example, making the interfaces more coarse-grained. It's also

worth remembering that remote vs local is an explicit design decision not a switch and to consider the first law of distributed computing - do

not distribute your objects.

As software developers, we tend to introduce abstractions and layers where they are often not required. Yes, these concepts are great tools for

decoupling software components, but they have a tendency to increase complexity and impact performance, particularly if you're converting between

data representations at each layer. Therefore, the other way in which processing time can be minimised is to ensure that the abstractions aren't too

abstract and that there's not too much layering. In addition, it's worth understanding the cost of runtime services that we take for granted because,

unless they have a specific service level agreement, it's possible that these could end up being the bottlenecks in our applications.

2. Partition

Decreasing the processing time associated with a particular work unit will get you so far, but ultimately you'll need to scale out your system when

you reach the limits of a single process deployment. In a typical web application, scaling out could be as easy as starting up additional web servers to

handle the user requests and load balancing between them. What you might find, however, is that parts of your overall architecture will start to

become points of contention because everything will get busy at the same time. A good example is a single database server sitting behind all those

web servers. When that starts to become the bottleneck, you have to change your approach and one way to do this is to adopt a partitioning strategy.

Put simply, this involves breaking up that single piece of the architecture into smaller more manageable chunks. Partitioning that single element into

smaller chunks allows you to scale them out and this is exactly the technique that large sites such as eBay use to ensure that their architectures

scale. Partitioning is a good solution, although you may find that you trade-off consistency.

As to how you partition your system, well that depends. Truly stateless components can simply be scaled out and the work load balanced between

them, ideally with all instances of the component running in an active manner. If, on the other hand, there is state that needs to be maintained, you

need to find a workload partitioning strategy that will allow you to have multiple instances of those stateful components, where each instance is

responsible for a distinct subset of the work and/or data.

3. Scalability is about concurrency

Scalability is inherently about concurrency; after all, it's about doing more work at the same time. Technologies such as the early versions of

Enterprise JavaBeans (EJB) attempted to provide a simplified programming model and encouraged us to write components that were single-threaded.

Unfortunately, these components typically had dependencies on other components and this led to concurrency problems. If concurrency isn't thought

about, you have systems where data can easily become corrupted. On the other hand, too many guards around concurrency lead to systems that are

essentially serial in nature and limited in the degree to which they can scale. Concurrent programming isn't that hard to do, but there are some

simple principles that can help when building scalable systems.

If you do need to hold locks (e.g. local objects, database objects, etc), try to hold them for as little time as possible.

Try to minimize contention of shared resources and try to take any contention off of the critical processing path (e.g. by scheduling work

asynchronously).

Any design for concurrency needs to be done up-front, so that it's well understood which resources can be shared safely and where potential

scalability bottlenecks will be.

4. Requirements must be known

In order to build a successful software system, you need to know what your goals are and what you're aiming for. While the functional requirements

are often well-known, it's the non-functional requirements (or system qualities) that are usually absent. If you do genuinely need to build a piece of

software that is highly scalable, then you need to understand the following types of things up-front for the critical components/workflows.

Target average and peak performance (i.e. response time, latency, etc).

Target average and peak load (i.e. concurrent users, message volumes, etc).

Acceptable limits for performance and scalability.

What do you
want to know?

(and why?)

Will these software systems
perform and scale acceptably?

You can on
ly guess by

looking
 at diag

rams or

source co
de

“ ”
This new system will work

because we have a

spreadsheet
showing performance figures

from a past project

Testing provides

confidence

Load testing is one way to

evaluate
your architecture

(if performance and/or scalability is important to you)

Load test early

You should have a

reason
for load testing

What do you want to

learn
about your system?

How fast i
s it?

How does i
t scale

?

Where do
es it b

reak?

What do you want to

prove
about your system?

Respons
e times are

X.

Throughput is Y.

Scales t
o Z users.

What is
load testing?

Load testing is asserting how the architecture
performs under load with a view to

monitoring the response times for key transactions

Stress testing is asserting what the upper
bounds are for the scalability of the architecture,

understanding how it reacts when stressed

Soak testing is asserting that the
performance of the architecture remains stable

over longer periods of time

Load testing client
simulating concurrent

user access
Website

Other systems, data
sources, etc

Simulate multiple users
with a

typical usage profile,
preferably with an environment as near

to production as possible

Internal
 or pu

blic

facing;
 .NET, Java,

PHP,

Ruby, SharePo
int, CRM, ...

Load testing client
generating messages

Messaging
System

Other systems, data
sources, etc

Generate
representative input
messages, preferably with an

environment as near
to production as possible

SOA, Windows Service,

BizTalk, ES
B, JMS, MQ,

market d
ata ada

pter, ..
.

Understand what you
want to learn/prove

Performance and scalability characteristics,
typical usage profiles, etc.

Step one

Use log
files, a

udit logs
 or

analytic
s to u

ndersta
nd

usage pa
tterns

Define the test script
Determine the actions to simulate from the test
script and implement with a load testing tool.

Step two

Don’t fo
rget to

 add

post-r
equest ass

ertions

Schedule and configure
environment

Book testing slots to minimise disruption
and configure/clear data for load testing.

Step three

Beware of
running

load te
sts on

production L
ANs!

Determine metrics to
record and monitor
Ensure that the test script captures the
appropriate statistics and determine the

system characteristics to monitor
(e.g. CPU, RAM, IO, etc).

Step four

Don’t fo
rget to

 monitor

the loa
d testi

ng clie
nt(s)

Execute pre-tests
Test the test scripts and monitor,

refining if necessary.

Step five

This is
where yo

u’ll

find re
liance

on data

or the
environ

ment

Execute tests
Clear down the environment, warm it up,

execute tests at varying levels of
concurrent usage.

Step six

Try to r
un the s

ame test

a number of
times

to ens
ure con

sistenc
y

Analyse results
Calculate useful statistics (average, maximum

and 95th percentile response times),
draw graphs and make conclusions.

Step seven

Post-p
rocess

ing the

raw results pro
vides

more fle
xibility

Analysing the
results

Post-process
the raw results

timeStamp,el
apsed,label,

responseCode
,threadName,

success,URL

12429210991
04,77,01. L

ogon page,2
00,Corporat

e user 1-1,
true,http:/

/ib4currenc
ydev/user/L

ogon.aspx

12429210993
18,684,02.

Enter usern
ame and pas

sword,200,C
orporate us

er 1-1,true
,http://ib4

currencydev
/user/Logon

.aspx

12429211001
01,1057,03.

 Enter memo
rable infor

mation,302,
Corporate u

ser 1-1,tru
e,http://ib

4currencyde
v/user/Logo

n.aspx

12429211011
70,10,04. P

ost-logon l
anding page

,200,Corpor
ate user 1-

1,true,http
://ib4curre

ncydev/user
/landing-pa

ge.aspx

12429211011
91,42,05. V

iew clients
,200,Corpor

ate user 1-
1,true,http

://ib4curre
ncydev/view

/relationsh
ip.aspx

12429211043
94,13,01. L

ogon page,2
00,Corporat

e user 1-2,
true,http:/

/ib4currenc
ydev/user/L

ogon.aspx

12429211044
20,788,02.

Enter usern
ame and pas

sword,200,C
orporate us

er 1-2,true
,http://ib4

currencydev
/user/Logon

.aspx

12429211052
32,872,03.

Enter memor
able inform

ation,302,C
orporate us

er 1-2,true
,http://ib4

currencydev
/user/Logon

.aspx

12429211061
20,9,04. Po

st-logon la
nding page,

200,Corpora
te user 1-2

,true,http:
//ib4curren

cydev/user/
landing-pag

e.aspx

12429211061
41,715,05.

View client
s,200,Corpo

rate user 1
-2,true,htt

p://ib4curr
encydev/vie

w/relations
hip.aspx

12429211096
00,166,01.

Logon page,
200,Corpora

te user 1-3
,true,http:

//ib4curren
cydev/user/

Logon.aspx

12429211097
75,582,02.

Enter usern
ame and pas

sword,200,C
orporate us

er 1-3,true
,http://ib4

currencydev
/user/Logon

.aspx

12429211103
77,835,03.

Enter memor
able inform

ation,302,C
orporate us

er 1-3,true
,http://ib4

currencydev
/user/Logon

.aspx

12429211112
21,9,04. Po

st-logon la
nding page,

200,Corpora
te user 1-3

,true,http:
//ib4curren

cydev/user/
landing-pag

e.aspx

12429211012
54,10312,06

. View clie
nt details,

200,Corpora
te user 1-1

,true,http:
//ib4curren

cydev/view/
account-lis

t.aspx

12429211112
39,925,05.

View client
s,200,Corpo

rate user 1
-3,true,htt

p://ib4curr
encydev/vie

w/relations
hip.aspx

12429211115
84,1612,07.

 Recipients
 landing pa

ge,200,Corp
orate user

1-1,true,ht
tp://ib4cur

rencydev/re
cipients/De

fault.aspx

12429211132
08,51,08. C

reate recip
ient,200,Co

rporate use
r 1-1,true,

http://ib4c
urrencydev/

recipients/
Create.aspx

12429211132
74,268,09.

Create reci
pient - cho

ose payment
 type,200,C

orporate us
er 1-1,true

,http://ib4
currencydev

/recipients
/Create.asp

x

12429211135
58,1613,10.

 Create rec
ipient - en

ter recipie
nt details,

200,Corpora
te user 1-1

,true,http:
//ib4curren

cydev/recip
ients/Creat

e.aspx

12429211147
09,480,01.

Logon page,
200,Corpora

te user 1-4
,true,http:

//ib4curren
cydev/user/

Logon.aspx

12429211151
97,626,02.

Enter usern
ame and pas

sword,200,C
orporate us

er 1-4,true
,http://ib4

currencydev
/user/Logon

.aspx

12429211158
57,957,03.

Enter memor
able inform

ation,302,C
orporate us

er 1-4,true
,http://ib4

currencydev
/user/Logon

.aspx

12429211168
23,11,04. P

ost-logon l
anding page

,200,Corpor
ate user 1-

4,true,http
://ib4curre

ncydev/user
/landing-pa

ge.aspx

12429211168
42,37,05. V

iew clients
,200,Corpor

ate user 1-
4,true,http

://ib4curre
ncydev/view

/relationsh
ip.aspx

Microso
ft Exc

el is a

useful tool
for

chartin
g resu

lts

Draw this s
ort of

 graph

if you need t
o

understa
nd sca

lability

This shows poor
scalability because
response times have
started to increase

exponentiallyNumber of users

Re
sp

on
se

 t
im

e

This shows good
scalability because

response times increase
in a predictable way Number of users

Re
sp

on
se

 t
im

e

Diagnosing
problems

What happens if you find

performance
problems?

Look at your monitoring data

and log files,

run profilers,
etc...

Maybe the environment

needs tuning
[Memory | Connection pools | Worker thread pools |

Database indexes & hints | etc]

The big picture and

the detail
are equally as important

My Java application has

intermittent
poor performance

Repeat t
he tes

t with

garbage
 collec

tion

logging
 enable

d

My application is slow, but it’s

not using any CPU

Repeat t
he tes

t and

monitor
IO

(network and
 disk)

My application is

slow
Find th

e bottl
eneck b

y

profilin
g your applic

ation

Gotchas

Clock granularity
can vary by platform

16 milliseconds on
Windows

What’s the

time?

Are you sure?

How much does
this all cost?

1-2 days
for a simple load testing script,

a few simple test runs and
some data analysis

1-2 weeks
for a realistic load testing script, some

representative test runs,
some data analysis and diagnostics

Let’s wrap up

Few
software teams do any

sort of load testing

Even a little testing can increase

confidence,

particularly if done

early

simon.brown@codingthearchitecture.com

@simonbrown on Twitter

http://www.codingthearchitecture.com

Software architecture for developers

Thanks
for lis

tening.

Any questions
?

