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Not chaos-like together crush’d and bruis’d,

But, as the world, harmoniously confus’d:

Where order in variety we see,

And where, though all things differ, all agree.
— Alexander Pope, 1713

Frontispiece: DNA from a bacterium that has been lysed (burst), for example by osmotic shock
(12200 x magnification). The bacterial genome that once occupied a small region in the center

of the figure now extends in a series of loops from the core structure (arrow). From (Wolfe,
1985).
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is free, apart from duplication costs. The bad news is that you have to help me write it. No,
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things I've wrongly assumed you already know, what questions are phrased ambiguously, and so
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viii TO THE STUDENT

To the student

This is a book for life-science students who are willing to use calculus. This is also a book for
physical-science and engineering students who are willing to think about cells. I believe that in the
future every student in either group will need to know the essential core of the others’ knowledge.

In the past few years I have attended many conferences and seminars. Increasingly I have
found myself surrounded not only by physicists, biologists, chemists, and engineers, but also by
physicians, mathematicians, and entrepreneurs. At these conferences nobody ever stands up and
says, “Hey, is this nanotechnology or biomathematics?” because nobody really cares. These people
come together to learn from each other, and the traditional academic distinctions between their
fields are becoming increasingly irrelevant to this exciting work. In this book I want to share some
of their excitement.

I began to wonder how this diverse group managed to overcome the Tower-of-Babel syndrome.
Slowly I began to realize that while each discipline carries its immense load of experimental and
theoretical machinery, still the headwaters of these rivers are manageable, and come from a common
spring, a handful of simple, general ideas. Armed with these few ideas, I found that one can
understand an enormous amount of front-line research. In this book I want to explore these first
common ideas, ruthlessly suppressing the more specialized ones for later.

I also realized that my own undergraduate education had postponed the introduction of many
of these ideas to the last year of my degree (or even later), and that many programs still have this
character: We meticulously build a sophisticated mathematical edifice before introducing many of
the Big Ideas. My colleagues and I became convinced that this approach did not serve the needs of
our students. Many of our undergraduate students get started on research in their very first year
and need the big picture early. Many others create interdisciplinary programs for themselves and
may never even get to our specialized, advanced courses. In this book I want to present some of the
big picture in a way accessible to any student who has taken first-year physics and calculus (plus a
smattering of high-school chemistry and biology), and who is willing to stretch. When you’re done
you should be in a position to read current work in Science and Nature. You won’t get every detail,
of course. But you will get the sweep.

When we began to offer this course, we were surprised to find that many of our graduate students
wanted to take it too. In part this reflected their own compartmentalized education: The physics
students wanted to read the biology part and see it integrated with their other knowledge, the
biology students wanted the reverse, and so on. To our amazement, we found that the course
became popular with students at all levels from sophomore to third-year graduate, with the latter
digging more deeply into the details. Accordingly, many sections in this book have “Track—2”

addenda addressing this more mathematically experienced group.

Physical science vs life science At the dawn of the twentieth century it was already clear
that, chemically speaking, you and I are not much different from cans of soup. And yet we can do
many complex and even fun things we do not usually see cans of soup doing. At that time people
had basically no correct ideas for how living organisms create order from food, do work, and even
compute things—just a lot of inappropriate metaphors drawn from the technology of the day.

By mid-century it began to be clear that the answers to many of these questions would be found
in the study of very big molecules. Now, as we begin the twenty-first century, ironically, the situation

is inverted: The problem is now that we have way too much information about those molecules!
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We are drowning in information; we need an armature, a framework, on which to organize all those
zillions of facts.

Some life scientists dismiss physics as ‘reductionist’, tending to strip away all the details which
make frogs different from, say, neutron stars. Others believe that right now some unifying frame-
work is essential to see the big picture. My own conviction is that the tension between the ‘de-
velopmental /historical /complex’ sciences and the ‘universal/ahistorical /reductionist’ ones has been
enormously fruitful, and that the future belongs to those who can switch fluidly between both kinds
of brain.

Setting aside philosophy, it’s a fact that the past decade or two has seen a revolution in physical
techniques to get inside the nanoworld of cells, tweak them in physical ways, and measure quanti-
tatively the results. At last, a lot of physical ideas lying behind the cartoons found in cell biology
books are getting the precise tests needed to confirm or reject them. At the same time, even some

mechanisms not necessarily used by Nature have proven to be of immense technological value.

Why all the math?

I said it in Hebrew, I said it in Dutch,
I said it in German and Greek;
But I wholly forgot (and it vexes me much)
That English is what you speak!
— Lewis Carroll, The Hunting of the Snark

Life-science students may wonder whether all the mathematical formulas in this book are really
needed. Physical scientists believe that the way to get conviction that a theory is correct is to
make quantitative predictions from a simplified model, then test them experimentally. This book
supplies many of the tools to do this. Ultimately I want you to be able to walk into a room with
an unfamiliar problem, pull out the right tool, and solve the problem. I realize this is not easy, at
first.

Actually it’s true that physicists sometimes overdo the mathematical analysis. In contrast,
the point of view in this book is that beautiful formulas are usually a means, not an end, in
understanding Nature. Usually only the simplest tools, like dimensional analysis, suffice to see
what’s going on. Only when you've been a very, very good scientist, do you get the reward of
carrying out some really elaborate mathematical calculation and seeing your predictions come to
life in an experiment. Your other physics and math courses will give you the background you’ll
need for that.

Features of this book I have tried to adhere to some principles while writing the book. Most

of these are boring and technical, but there are four that are worth pointing out here:

1. When possible, relate the ideas to everyday phenomena.

2. Say what’s going on. Instead of just giving a list of steps, I have tried to explain why we are
taking these steps, and how we might have guessed that a step would prove fruitful. This
exploratory (or discovery-style) approach involves more words than you may be used to in
physics texts (though fewer than in biology texts!). The goal is to help you to make the

difficult transition to choosing your own steps.

3. No black bores. The dreaded phrase “it can be shown” hardly ever appears in Track—1.
Almost all mathematical results mentioned are actually derived here, or taken to the point
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where you can get them yourself as homework problems. When I could not obtain a result in
a discussion at this level, I usually omitted it altogether.

4. No fake data. When you see an object that looks like a graph, almost always it really is a
graph. That is, the points are somebody’s actual laboratory data, usually with a citation. The
curves are some actual mathematical function, usually derived in the text (or in a homework
problem). Graphlike sketches are clearly labeled as such. In fact, every figure carries a
pedantic little tag giving its logical status, so you can tell which are actual data, which are

reconstructions, and which are artist’s impressions.

Real data are generally not as pretty as fake data. You need the real thing in order to develop your
critical skills. For one thing, some simple theories don’t work as well as you might believe just from
listening to lectures. On the other hand, some unimpressive-looking fits of theory to experiment
actually do support strong conclusions; you need practice looking for the relevant features.

Many chapters contain a section titled “Excursion.” These lie outside the main story line. Some
are short articles by leading experimentalists about experiments they did. Others are historical or
cultural essays. There are also two Appendices. Please take a moment now to check them. They
include a list of all the symbols used in the text to represent physical quantities, definitions of all
the units, and numerical values for many physical quantities, some of them useful in working the

homework problems.

Why the history? This is not a history book, and yet you will find many ancient results dis-
cussed. (Many people take “ancient” to mean “before Internet,” but in this book I use the more
classical definition “before television.”) The old stuff is not there just to give the patina of scholar-
ship. Rather, a recurring theme of the book is the way in which physical measurements have often
disclosed the existence and nature of molecular devices in cells long before traditional biochemical
assays nailed down their precise identities. The historical passages document case studies where
this has happened; in some cases the gap has been measured in decades!

Even today, with our immensely sophisticated armamentum of structural biology, the traditional
knock-out-the-gene-and-see-what-kind-of-mouse-you-get experimental strategy can be much slower
and more difficult to perform and interpret than a more direct, reach-in-and-grab-it approach. In
fact, the menu of ingenious new tools for applying physical stresses to functioning cells or their
constituents (all the way down to the single-molecule level) and quantitatively measuring their
responses has grown rapidly in the last decade, giving unprecedented opportunities for indirectly
deducing what must be happening at the molecular level. Scientists who can integrate the lessons
of both the biochemical and biophysical approaches will be the first ones to see the whole picture.

Knowing how it has worked in the past prepares you for your turn.

Learning this subject If your previous background in physical science is a first-year undergrad-
uate course in physics or chemistry, this book will have a very different feel from the texts you've
read so far. This subject is rapidly evolving; my presentation won’t have that authoritative, stone-
tablets feeling of a fixed, established subject, nor should it. Instead I offer you the excitement of a
field in flux, a field where you personally can make new contributions without first hacking through
a jungle of existing formalism for a decade.

If your previous background is in life sciences, you may be accustomed to a writing style in
which facts are delivered to you. But in this book many of the assertions, and most of the formulas,
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are supposed to follow from the previous ones, in ways you can and must check. In fact, you will
notice the words “we, us, our, let’s” throughout the text. Usually in scientific writing these are
just pompous ways of saying “I, me, my,” and “watch me,” but in this book they refer to a team
consisting of you and me. You need to figure out which statements are new information and which
are deductions, and work out the latter ones. Sometimes I have flagged especially important logical
steps as “Your Turn” questions. These are intended to be short enough that you can do them on
the spot before proceeding. It is essential to work these out yourself in order to get the skill you
need in constructing new physical arguments.

Each time the text introduces a formula, take a moment to look at it and think about its
reasonableness. If it says @ = yz/w, does it make sense that increasing w should decrease x? How
do the units work out? At first I'll walk you through these steps, but from then on you need to do
them automatically. When you find me using an unfamiliar mathematical idea, please talk to your
instructor as soon as possible instead of just bleeping over it. Another helpful resource is the book
by Shankar (Shankar, 1995).1

Beyond the questions in the text, you will find problems at the ends of the chapters. They are
not as straightforward as they were in first-year physics; often you will need some common sense,
some seat-of-the-pants qualitative judgment, even some advice from your instructor to get off to the
right start. Most students are uncomfortable with this approach at first—it’s not just you!—but in
the end this skill is going to be one of the most valuable ones you’ll ever learn, no matter what you
do later in life. It’s a high-technology world out there, and it will be your oyster when you develop
the agility to solve open-ended, quantitative problems.

The problems also get harder as you go on in the text, so do the early ones even if they seem

easy.

1:12 Some sections and problems are flagged with this symbol. These are For Mature Au-

diences Only. Of course I say it that way to make you want to read them, whether or not your
instructor assigns them.? These “Track-2” sections take the mathematical development a bit far-
ther. They forge links to what you are learning/will learn in other physics courses. They also
advertise some of the cited research literature. The main (“Track—1") text does not rely on these
sections; it is self-contained. Even Track—2 readers should skip the Track—2 sections on the first

reading.

Many students find this course to be a stiff challenge. The physics students have to digest a
lot of biological terminology; the biology students have to brush up on their math. It’s not easy,
but it’s worth the effort: Interdisciplinary subjects like this one are among the most exciting and
fertile. I've noticed that the happiest, most excited, students are the ones who team up to work
together with another student from a different background and do the problems together, teaching
each other things. Give it a try.

Last [[...]]

1See the Bibliography at the back of this book.
2In a similar vein, do not, under any circumstances, read “To the Instructor.”
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To the instructor

A few years ago my department asked their undergraduate students what they needed but were
not getting from us. One of the answers was, “a course on Biological Physics.” Our students could
not help noticing all the exciting articles in the New York Times, all the cover articles in Physics
Today, and so on; they wanted a piece of the action. This book emerged from their request.

Around the same time many of my friends at other universities were beginning to work in this
field, and were keenly interested in teaching a course, but felt uncomfortable with the existing texts.
Some were brilliant but decades old; none seemed to cover the beautiful new results in molecular
motors, self-assembly, and single-molecule manipulation and imaging that were revolutionizing the
field. My friends and I were also daunted by the vastness of the literature and our own limited
penetration of the field; we needed a synthesis. This book is my attempt to answer that need.

The book also serves to introduce much of the conceptual material underlying the young fields of
nanotechnology and soft materials. It’s not surprising—the molecular and supramolecular machines
in each of our cells are the inspiration for much of nanotechnology, and the polymers and membranes
from which they are constructed are the inspiration for much of soft-materials science.

This text was intended for use with a wildly diverse audience. It is based on a course I have
taught to a single class containing students majoring in physics, biology, biochemistry, biophysics,
materials science, and chemical, mechanical, and bio-engineering. I hope the book will prove useful
as a main or adjunct text for courses in any science or engineering department. My students also
vary widely in experience, from sophomores to third-year graduate students. You may not want
to try such a broad group, but it works at Penn. To reach them all, the course is divided into
two sections; the graduate section has harder and more mathematically sophisticated problems
and exams. The structure of the book reflects this division, with numerous “Track—2" sections

and problems covering the more advanced material. These sections are set in smaller type and

introduced with a special symbol: | T®|. The Track-2 sections are largely independent of each

other, so you can assign them a la carte. Note that I recommend that all students skip them on
the first reading.

The only prerequisites for the core, Track—1, material are first-year calculus and calculus-based
physics, and a distant memory of high-school chemistry and biology. The concepts of calculus are
used freely, but very little technique; only the very simplest differential equations need to be solved.
More importantly, the student needs to possess or acquire a fluency in throwing numbers around,
making estimates, keeping track of units, and carrying out short derivations. The Track—2 material
and problems should be appropriate for senior physics majors and first-year graduate students.

For a one-semester class of less experienced students you will probably want to skip one or both
of Chapters 9 and 10 (or possibly 11-12). For more experienced students, you can instead skim the
opening chapters quickly, then spend extra time on the advanced chapters.

When teaching this course, I also assign supplementary readings from one of the standard cell
biology texts. Cell biology inevitably contains a lot of nomenclature and iconography; both students
and instructor must make an investment in learning these. The payoff is clear and immediate: Not
only does this investment allow one to communicate with professionals doing exciting work in many
fields, it is also crucial in order to see what physical problems are of real, urgent, relevance to
biomedical research.

I have made a special effort to keep the terminology and notation unified, a difficult task when

spanning several disciplines. Appendix A summarizes all the notation in one place. Appendix B
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contains a lot of useful numerical values, many more than are used in the text. You may find these
useful in making new homework and exam problems.

More details about how to get from this book to a full course can be found in the Instructor’s
Guide, available from the publisher. The Guide also contains solutions to all the problems and
“Your Turn” questions, suggested class demonstrations, and the computer code used to generate
many of the graphs found in the text. You can use this code to create computer-based problems,

do class demos, and so on.

Why doesn’t my favorite topic appear?

A garden is finished when there is nothing left to remove. — Zen

aphorism

It’s probably one of my favorite topics, too. But the text reflects the relentless pursuit of a few

maxims:

e Keep it a course, not an encyclopedia. The book corresponds to what I actually manage to
cover (that is, what the students actually manage to learn) in a typical 42-hour semester, plus

about 20% more to allow flexibility.
e Keep a unified storyline.
e Keep it elementary, especially the math, yet honest.
e Maintain a balance between very recent results and the important classical topics.

e Restrict the discussion to topics actually useful for understanding recent articles in Science,
Nature, and the New York Times. Choose those topics which open the most doors into physics,

biology, chemistry, and engineering.

e Make practically no mention of quantum theory, which our students encounter only after this
course. Fortunately, a huge body of important biological physics (including the whole field of

soft biomaterials) makes no use of the deep quantum ideas.

e Restrict the discussion to concrete problems where the physical vision leads to falsifiable,
quantitative predictions and where laboratory data are available. Every chapter presents

some real experimental data.

e But choose problems that illuminate, and are illuminated by, the big ideas. Students want

that—that’s why they study science.

Underlying the above points is a determination to present physical ideas as beautiful and important
in their own right. Respect for these foundational ideas has kept me from relegating them to
the currently fashionable utilitarian status of a toolbag to help out with other disciplines. A few
apparently dilatory topics, which pursue the physics beyond the point (currently) needed to explain
biological phenomena, reflect this conviction.

I am aware that many subtle subjects are presented in this book with important details burnished
off. This was an inevitable result of my conviction that one must do whatever it takes to introduce
this material to this audience. Ars est celare artem.

Finally, I have tried to cover topics that I have found to be of greatest interest to students,
while respecting their often limited degree of mathematical experience. Certainly you will find
places where I could have done this better. I would be glad to have your feedback.
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Standard disclaimers This is a textbook, not a monograph. No attempt has been made to sort
out historical priority, except in those sections titled “history.” The experiments described here
were chosen simply because they fit some pedagogical imperative, and seemed to have particularly
direct interpretations. The citation of original works is haphazard, except for my own work, which
is systematically not cited. No claim is made that anything in this book is original, though at times

I just couldn’t stop myself.

Is this stuff really physics? Should it be taught in a physics department? If you’ve come this
far, probably you have made up your mind already. But I'll bet you have colleagues who ask this
question. The text attempts to show not only that many of the founders of molecular biology had
physics background, but conversely that historically the study of life has fed crucial insights back
into physics. It’s true at the pedagogical level as well. Many students find the ideas of statistical
physics to be most vivid in the life-science context. In fact some students take my course after
courses in statistical physics or physical chemistry; they tell me that Biological Physics puts the
pieces together for them in a new and helpful way.

More importantly, I have found a group of students who are keenly interested in studying physics,
but feel turned away when their physics departments offer no connections to the excitement in the
life sciences. It’s time to give them what they need.

At the same time, your life-sciences colleagues may ask, “Do our students need this much
physics?” The answer is, maybe not in the past, but certainly in the future. (Your colleagues may
enjoy two recent, eloquent articles on this subject: (Alberts, 1998; Hopfield, 2002).) The book tries
to show that there is a quantitative, physical-sciences approach to problems, and it’s versatile. It’s
not the only toolbox in the well-educated scientist’s mind, but it’s one of the powerful ones. We
need to teach it to everyone, not just to physical-science majors. I believe that the recent insularity
of physics is only a temporary aberration; both sides can only stand to prosper by renewing their
once-tight linkage.

Last I had the great good fortune to see statistical physics for the first time through the beautiful
lectures of Sam Treiman (1925-1999). Treiman was a great scientist and one of the spiritual leaders
of a great department for decades. From time to time I still go back to my notes from that course.

And there he is, just as before.
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Chapter 1

What the ancients knew

Although there is no direct connection between beer and the
First Law of thermodynamics, the influence of Joule’s profes-
sional expertise in brewing technology on his scientific work is
clearly discernible. — Hans Christian von Baeyer, Warmth dis-

perses and time passes

The modest goal of this book is to take you from the mid-nineteenth century, where first-year
physics courses often end, to the science headlines you read this morning. It’s a long road. To
get to our destination on time we’ll need to focus tightly on just a few core issues involving the
interplay between energy, information, and life.

We will eventually erect a framework, based on only a few principles, in which to begin addressing
these issues. It’s not enough simply to enunciate a handful of key ideas, of course. If it were, then
this book could have been published on a single wallet card. The pleasure, the depth, the craft
of our subject lie in the details of how living organisms work out the solutions to their challenges
within the framework of physical law. The aim of the book is to show you a few of these details,
to clothe the eternal, mathematical bones of physical law with the wet, contingent flesh of life.

Each chapter of this book opens with a biological question, and a terse slogan encapsulating a
physical idea relevant to the question. Think about these as you read the chapter.

Biological question: How can living organisms be so highly ordered?

Physical idea: The flow of energy can leave behind increased order.

1.1 Heat

Living organisms eat, grow, reproduce, and compute. They do these things in ways that appear
totally different from man-made machines. One key difference involves the role of temperature.
For example, if you chill your vacuum cleaner, or even your television, to a degree above freezing,
these appliances continue to work fine. But try this with a grasshopper, or even a bacterium, and
you find that life processes practically stop. (After all, that’s why you own a freezer in the first
place.) Understanding the interplay of heat and work will prove to be crucial to the fundamental

©2000 Philip C. Nelson
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processes of life and will become a central obsession of this book. This chapter will develop some
plausible but preliminary ideas about this interplay; Part II of the book will sharpen these into

precise, quantitative tools.

1.1.1 Heat is a form of energy

When a rock of mass m falls freely, its altitude z and velocity v change together in just such a
way as to ensure that the quantity £ = mgz + %mv2 stays constant, where g is the acceleration of

gravity at Earth’s surface. We say that “energy is conserved.”

Show this.
dFE

Example Solution: We need to show that the time derivative < equals zero. Taking v to be

the velocity in the upward direction z, we have v = %. Using the chain rule from

calculus then gives 92 = muv(g + 9%). But the acceleration, ¥, is always equal to

dE
dt

—g in free fall. Hence = 0 throughout the motion: The energy is a constant.

G. Leibnitz obtained this result in 1693. We call the first term of E (that is, mgz) the potential
energy of the rock, and the second term (%va) its kinetic energy. We’'ll call their sum the
mechanical energy of the rock.

Now suppose our rock lands in some mud at z = 0. The instant before it lands, its kinetic energy
is nonzero, and so E is nonzero too. An instant later, the rock is at rest in the mud and its total
mechanical energy is zero. Apparently mechanical energy is not conserved in the presence of mud!
Every first-year physics student learns why: A mysterious “frictional” effect in the mud drained off
the mechanical energy of the rock. The genius of Isaac Newton lay in part in his realizing that the
laws of motion were best studied in the context of the motions of cannonballs and planets, where
complications like frictional effects are tiny: Here the conservation of energy, so apparently false on
Earth, is most clearly seen. It took another two centuries before others would arrive at a precise
statement of the more subtle idea that

Friction converts mechanical energy into thermal form. When thermal energy

(1.1)

That is, the actual conserved quantity is not the mechanical energy, but the total energy, the sum

is properly accounted for, the energy accounts balance.

of the mechanical energy plus heat.

But what is friction? What is heat? On a practical level, if energy is conserved, if it cannot be
created or destroyed, then why must we be careful not to “waste” it? Indeed what could “waste”
mean? We'll need to look a bit more deeply before we really understand Idea 1.1.

Idea 1.1 says that friction is not a process of energy loss but rather of energy conversion, just as
the fall of a rock converts potential to kinetic energy. You may have seen an illustration of energy
conversion in a grammar school exercise exploring the pathways that could take energy from the
sun and convert it to useful work, for example a trip up a hill (Figure 1.1).

A point your schoolteacher may not have mentioned is that in principle all the energy conversions
in Figure 1.1 are two-way: Light from the sun can generate electricity using a solar cell, that energy
can be partially converted back to light using a light bulb, and so on. The key word here is partially.
We never get all the original energy back in this way: Some is “lost” as heat, both in the solar cell
and the light bulb. The word “lost” here implies not that energy isn’t conserved—it is—but that
some of it makes a one-way conversion to heat.

The same idea holds for the falling rock. We could let it down on a pulley, taking some of

its gravitational potential energy to run a lawnmower. But if we just let it plop into the mud,
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Figure 1.1: (Diagram.) Various ways to get up a hill. Each arrow represents an energy-conversion process.

its mechanical energy is lost. Nobody has ever seen a rock sitting in warm mud suddenly fly up
into space, leaving cold mud behind, even though such a process is perfectly compatible with the
conservation of energy!

So even though energy is strictly conserved, something has been wasted when we let the rock
plop. To make a scientific theory of this something, we’d like to find an independent, measurable
quantity describing the “quality” or “usefulness” of energy; then we could assert that sunlight, or
the potential energy of a rock, has high quality, whereas thermal energy (heat) has poor quality.
We could also try to argue that the quality of energy always degrades in any transaction, and in
this way explain why the conversions indicated by arrows in Figure 1.1 are so much easier than
those moving against the arrows. Before doing these things, though, it’s worthwhile to recall how

the ancients arrived at Idea 1.1.

1.1.2 Just a little history

Physicists like a tidy world with as few irreducible concepts as possible. If mechanical energy can
be converted to thermal energy, and (partially) reconverted back again, and the sum of these forms
of energy is always constant, then it’s attractive to suppose that in some sense these two forms
of energy are really the same thing. But we can’t build scientific theories on @sthetic, culturally
dependent judgements—Nature cares little for our prejudices, and other eras have had different
prejudices. Instead we must anchor Idea 1.1 on some firmer ground.

An example may help to underscore this point. We remember Benjamin Franklin as the great
scientist who developed a theory of electricity as an invisible fluid. Franklin proposed that a

positively charged body had “too much” of this fluid!, and a negative body “too little.” When such

1Franklin’s convention for the sign of charge was unfortunate. Today we know that the main carriers of charge—
electrons—each carry a negative quantity of charge in his convention. Thus it’s more accurate to say that a positively
charge body has too few electrons, and a negatively charged body too many.
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bodies were placed in contact the fluid flowed from one to the other, much like joining a cylinder of
compressed air to a balloon and opening the valve. What’s less well remembered is that Franklin,
and most of his contemporaries, had a similar vision of heat. In this view heat, too, was an invisible
fluid. Hot bodies had “too much,” cold bodies “too little,” and when one placed such bodies in
contact the fluid flowed until the fluid was under the same “pressure” in each, or in other words
until both were at the same temperature.

The fluid theory of heat made some superficial sense. A large body would need more heat
fluid to increase its temperature by one degree than would a small body, just as a large balloon
needs more air than does a small one to increase its internal pressure to, say, 1.1 times atmospheric
pressure. Nevertheless, today we believe that Franklin’s theory of electricity was exactly correct,
while the fluid theory of heat was dead wrong. How did this change in attitudes come about?

Franklin’s contemporary Benjamin Thompson was also intrigued by the problem of heat. After
leaving the American colonies in a hurry in 1775 (he was a spy for the British), Thompson eventually
became a major general in the court of the Duke of Bavaria. For his services he was later named
Count Rumford. In the course of his duties, Thompson arranged for the manufacture of weapons.
A curious phenomenon in the boring (drilling) of cannon barrels triggered his curiosity. Drilling
takes a lot of work, at that time supplied by horses. It also generates a lot of frictional heat. If heat
were a fluid, one might expect that rubbing could transfer some of it from one body to another,
just as brushing your cat leaves cat and brush with opposite electrical charges. But the drill bit
doesn’t grow cold while the cannon barrel becomes hot! Both become hot.

Moreover, the fluid theory of heat seems to imply that eventually the cannon barrel would
become depleted of heat fluid, and that no more heat could be generated by additional friction.
This is not what Thompson observed. One barrel could generate enough heat to boil a surrounding
bath of water. The bath could be replaced by cool water, which would also eventually boil, ad
infinitum. A fresh cannon barrel proved neither better nor worse at heating water than one that
had already boiled many liters. Thompson also weighed the metal chips cut out of the barrel and
found their mass plus that of the barrel to be equal to the original mass of the barrel: No material
substance had been lost.

What Thompson noticed instead was that heat production from friction ceases the moment we
stop doing mechanical work on the system. This was a suggestive observation. But later work,
presented independently in 1847 by James Joule and Hermann von Helmholtz, went much further.
Joule and Helmholtz upgraded Thompson’s qualitative observation to a quantitative law: The heat

produced by friction is a constant times the mechanical work done against that friction, or
(heat produced) = (mechanical energy input) x (0.24 cal/J). (1.2)

Let’s pause to sort out the shorthand in this formula. We measure heat in calories: One calorie
is roughly the amount of heat needed to warm a gram of water by one degree Celsius.? The
mechanical energy input, or work done, is the force applied (in Thompson’s case by the horse),
times the distance (walked by the horse); we measure it in joules just as in first-year physics.
Multiplying work by the constant 0.24 cal/J creates a number with units of calories. The formula
asserts that this number is the amount of heat created.

Equation 1.2 sharpens Idea 1.1 into a quantitative assertion. It also succinctly predicts the

2The modern definition of the calorie acknowledges the mechanical equivalent of heat: One calorie is now defined
as the quantity of thermal energy created by converting exactly 4.184 joules of mechanical work. (The “Calorie”
appearing on nutritional statements is actually one thousand of the physical scientist’s calories, or one kilocalorie.)
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outcomes of several different kinds of experiments: It says that the horse will boil twice as many
liters of water if it walks twice as far, or walks equally far while exerting twice the force, and so
on. It thus contains vastly more information than the precise but limited statement that heat
output stops when work input stops. Scientists like hypotheses that make such a sweeping web of
interlocking predictions, because the success of such a hypothesis is hard to brush aside as a mere
fluke. We say that such hypotheses are highly falsifiable, since any one of the many predictions
of Equation 1.2, if disproved experimentally, would kill the whole thing. The fluid theory of heat
made no comparably broad, correct predictions. Indeed, as we have seen, it does make some wrong
qualitative predictions. This was the logic that ultimately led to the demise of the fluid theory,
despite the strenuous efforts of its powerful adherents.

Suppose we are using a very dull drill bit, so that in one revolution we make little progress in
drilling; that is, the cannon barrel (and the drill itself) are not changed very much. Equation 1.2

says that the net work done on the system equals the net heat given off. More generally,

Suppose a system undergoes a process that leaves it in its original state (that
is, a cyclic process). Then the net of the mechanical work done on the system, (13)
and by the system, equals the net of the heat it gives off and takes in, once we '

convert the work into calories using Equation 1.2.

It doesn’t matter whether the mechanical work was done by a horse, or by a coiled spring, or even
by a flywheel that was initially spinning.

What about processes that do change the system under study? In this case we’ll need to
amend Idea 1.3 to account for the energy that was stored in (or released from) the system. For
example, the heat released when a match burns represents energy initially stored in chemical form.
A tremendous amount of nineteenth-century research by Joule and Helmholtz (among many others)
convinced scientists that when every form of energy is properly included, the accounts balance for all
the arrows in Figure 1.1, and for every other thermal/mechanical/chemcal process. This generalized

form of Idea 1.3 is now called the First Law of thermodynamics.

1.1.3 Preview: The concept of free energy

This subsection is just a preview of ideas to be made precise later. Don’t worry if these ideas don’t
seem firm yet. The goal is to build up some intuition, some expectations, about the interplay of
order and energy. Chapters 3—2 will give many concrete examples of this interplay, to get us ready
for the abstract formulation in Chapter 6.

The quantitative connection between heat and work lent strong support to an old idea (Newton
had discussed it in the seventeenth century) that heat really is nothing but a particular form of
mechanical energy, namely the kinetic energy of the individual molecules constituting a body. In
this view, a hot body has a lot of energy stored in an (imperceptible) jiggling of its (invisible)
molecules. Certainly we’ll have to work hard to justify claims about the imperceptible and the
invisible. But before doing this, we must deal with a more direct problem.

Equation 1.2 is sometimes called the “mechanical equivalent of heat.” The discussion in Sec-
tion 1.1.1 makes it clear, however, that this phrase is a slight misnomer: Heat is not fully equivalent
to mechanical work, since one cannot be fully converted to the other. Chapter 3 will explore the
view that slowly emerged in the late nineteenth century, which is that thermal energy is the por-
tion of the total energy attributable to random molecular motion (all molecules jiggling in random
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directions), and so is distinct from the organized kinetic energy of a falling rock (all molecules have
the same average velocity).

Thus the random character of thermal motion must be the key to its low quality. In other
words, we are proposing that the distinction between high- and low-quality energy is a matter of
organization. Everyone knows that an orderly system tends to degrade into a disorganized, random
mess. Sorting it back out again always seems to take work, both in the colloquial sense (sorting
a big pile of coins into pennies, nickels, and so on is a lot of work) and in the strict sense. Thus
for example, an air conditioner consumes electrical energy to suppress random molecular motion in
the air of your room (and hence it heats the outside world more than it cools your room).

The idea in the preceding paragraph may be interesting, but it hardly qualifies as a testable
physical hypothesis. We need a quantitative measure of the useful energy of a system, the part of
the total that can actually be harnessed to do useful work. A major goal of Chapter 6 will be to
find such a measure, which we will call “free energy” and denote by the symbol F. But we can
already see what to expect. The idea we are considering is that F' is less than the total energy E
by an amount related to the randomness, or disorder, of the system. More precisely, Chapter 6 will
show how to characterize this disorder using a quantity called “entropy” and denoted by the letter

S. The free energy will turn out to be given by the simple formula
F=FE-TS§, (1.4)

where T is the temperature of the system. We can now state the proposal that F' measures the

“useful” energy of a system a bit more clearly:

A system held at a fixed temperature T' can spontaneously drive a process if
the net effect of the process is to reduce the system’s free energy F'. Thus, if (1.5)
the system’s free energy is already at a minimum, no spontaneous change will )

occur.
According to Equation 1.4, a decrease in free energy can come about either by lowering the energy
E (rocks tend to fall) or by increasing the entropy S (disorder tends to increase).

We can also use Equation 1.4 to clarify our idea of the “quality” of energy: A system’s free
energy is always less than its mechanical energy. If the disorder is small, though, so that T'S is much
smaller than E, then F' ~ F; we then say that the system’s energy content is of “high quality.”
(More precisely still, we should discuss changes of energy and entropy; see Section 6.5.4.)

Again: Equation 1.4 and Idea 1.5 are provisional—we haven’t even defined the quantity S
yet. Nevertheless, they should at least seem reasonable. In particular, it makes sense that the
second term on the right side of Equation 1.4 should be multiplied by T, since hotter systems have
more thermal motion and so should be even more strongly influenced by the tendency to maximize
disorder than cold ones. Chapters 6-7 will make these ideas precise. Chapter 8 will extend the idea
of free energy to include chemical forms of energy; in general these are also of high quality.

1.2 How life generates order

1.2.1 The puzzle of biological order

The ideas of the previous section have a certain intuitive appeal. When we put a drop of ink in a
glass of water, the ink eventually mixes, a process we will study in great detail in Chapter 4. We

never see an ink-water mixture spontaneously unmix. Chapter 6 will make this intuition precise,
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formulating a principle called the “Second Law of thermodynamics.” Roughly speaking it says that
in an isolated system molecular disorder never decreases spontaneously.

But now we are in a bit of a bind. We have just concluded that a mixture of hydrogen, carbon,
oxygen, nitrogen, phosphorus, and traces of a few other elements, left alone and isolated in a beaker,
will never organize spontaneously to make a living organism. After all, even the lowliest bacterium
is full of exquisite structure (see Chapter 2), whereas physical systems tend relentlessly toward
greater disorder. And yet, the Earth is teeming with life, even though long ago it was barren. How
indeed does any organism manage to remain alive, let alone create progeny, and even evolve to
more sophisticated organisms? Stated bluntly, our puzzle is: Must we suppose that living organisms
somehow lie outside the jurisdiction of physical law?

At the end of the nineteenth century many respected scientists still answered “yes” to this
question. Their doctrine was called “vitalism.” Today vitalism has gone the way of the fluid theory
of heat, as answers to the paradox of how living things generate order have emerged. Sketching a
few of the details of these answers, along with their precise quantitative tests, is the goal of this
book. It will take some time to reach that goal. But we can already propose the outlines of an
answer in the language developed so far.

It’s encouraging to notice that living creatures obey at least some of the same physical laws as
inanimate matter, even those involving heat. For example, we can measure the heat given off by a
mouse, and add the work it does on its exercise wheel using the conversion formula (Equation 1.2).
Over the course of a few days, the mouse doesn’t change. The First Law of thermodynamics,
Idea 1.3, then says that the total energy output must be proportional to the food intake of the
mouse, and indeed it’s roughly true. (The bookkeeping can get a bit tricky—see Problem 1.7.)

Thus living organisms don’t manage to create energy from nothing. Still, though, when we
look around it seems obvious that life is constantly generating order from nothing (that is, from
disorder). To escape from vitalism, then, we must reconcile this commonplace observation with the
Second Law of thermodynamics.

Such a reconciliation is easier than it at first sounds. After all, a sealed jar full of dense water
vapor changes spontaneously into a jar with a puddle of water at the bottom and very little vapor.
After this transformation the inside of the jar is more organized than before, since most of the
water molecules are stuck in a very thin layer instead of moving freely throughout the interior of
the jar. But nobody would be tempted to believe that an unphysical, occult influence ordered the
water molecules!

To see what is happening, we must recall that the Second Law applies only to an isolated system.
Even though the jar with water vapor is sealed, it gave off heat to its surroundings as the water
condensed, so it’s not isolated. And there is nothing paradoxical about a subsystem of the world
spontaneously increasing its order. Indeed, Section 1.1.3 proposed that a system (in this case the
contents of the jar) will tend spontaneously to move toward lower free energy F', which is not
necessarily the same as moving toward higher disorder. According to our proposed formula for F'
(Equation 1.4) the subsystem’s entropy S can indeed decrease (the water can condense) without
raising F', so long as the internal energy E also decreases by a large enough amount (via heat loss).

The Earth, like our jar, is not an isolated system. To see if the increase in the ordering of
molecules on Earth as life began to develop really contradicts the Second Law, then, we must look
globally at what flows into and out of the Earth. Figure 1.2a depicts the stream of solar energy
impinging on Earth. Since Earth’s temperature is roughly stable over the long term, all of this

energy must also leave the Earth (along with a bit of geothermal energy generated here). Some of
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Figure 1.2: (Diagram.) (a) Energy budget of Earth’s biosphere. Most of the incident high-quality energy gets
degraded to thermal energy and radiated into space, but some gets captured and used to create the order we see in
life. (b) What plants do with energy: High-quality solar energy is partly used to upgrade low-energy molecules to
high-energy molecules, and the ordered structures they form; the rest is released in thermal form. (c) What animals
do with energy: The high-quality energy in food molecules is partly used to do mechanical work and create ordered

structures; the rest is released in thermal form.

this energy is just reflected into space. The rest leaves when the Earth radiates it away as thermal
energy to the rest of the Universe. Thus Earth constantly accepts energy from the Sun, a very hot
body, and exports it as radiation at its own surface temperature. On a dead rock like the Moon,
this is the whole story. But, as depicted symbolically in Figure 1.2b,c, there is a more interesting
possibility.

Suppose that the incoming energy flux is of higher “quality” than the outgoing flux, and hence
represents a net flow of order into the Earth (Chapter 6 will sharpen this statement). Then we can
imagine some enterprising middleman inserting itself in the middle of this process and skimming
off some of the incoming flux of order, using it to create more and better middlemen! Looking only

at the middle layer, it would seem as though order were magically increasing. That is,
The flow of energy through a system can leave behind increased order. (1.6)

This is life’s big trick. The middle zone is our biosphere; we are the middlemen.? Green plants

ingest a high-quality form of energy (sunlight), passing it through their bodies to exit as thermal

3A second, largely independent, biosphere exists in hot ocean vents, fuelled not by the Sun but by high-energy
chemicals escaping from inside the Earth.
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energy (Figure 1.2b). The plant needs some of this energy just to resist the degrading tendency of
thermal disorder to turn its tissues into well-mixed chemical solutions. By processing even more
energy through its body than this minimum, the plant can grow and do some “useful work,” for
example upgrading some of its input matter from a low-energy form (carbon dioxide and water) to
a high-energy form (carbohydrate). Plants consume order, not energy.

Closer to home, each of us must constantly process about 100 joules per second (100 watts) of
high-quality energy through our bodies (for example by eating the carbohydrate molecules manu-
factured by plants), even at rest. If we eat more than that, we can generate some excess mechanical
(ordered) energy to build our homes and so on. As shown in Figure 1.2¢, the input energy again
leaves in a low-quality form (heat). Animals, too, consume order, not energy.

Again: life doesn’t really create order from nowhere. Life captures order, ultimately from the
Sun. This order then trickles through the biosphere through an intricate set of transformation
processes, which we will refer to generically as free energy transductions. Looking only at the

biosphere, it seems as though life has created order.

1.2.2 A paradigm for free energy transduction

Osmotic flow If the trick just described were unique to living organisms, then we might still
feel that they sat outside the physical world. But nonliving systems can transduce free energy too:
The drawing on page 1 shows a machine that processes solar energy and performs useful work.
Unfortunately, this sort of machine is not a very good analogy to the processes driving living cells.

Figure 1.3 sketches another sort of machine, more closely related to what we are looking for.
A sealed tank of water has two freely sliding pistons. When one piston moves to the left, so does
the other, since the water between them is practically incompressible (and unstretchable). Across
the middle of the chamber we place a membrane permeable to water, but not to dissolved sugar
molecules. The whole system is kept at room temperature: Any heat that must be added or removed
to hold it at this temperature comes from (or goes into) the surrounding room. Initially a lump of
sugar is uncovered on the right side. What happens?

At first nothing seems to happen at all. But as the sugar dissolves and spreads through the
right-hand chamber, a mysterious force begins to push the pistons to the right. This is an honest,
mechanical force; we could use it to lift a weight, as shown in Figure 1.3a. The process is called
osmotic flow.

Where did the energy to lift the weight come from? The only possible source of energy is
the outside world. Indeed, careful measurements show that the system absorbs heat from its
surroundings; somehow this thermal energy gets converted to mechanical work. Didn’t Section 1.1.3
argue that it is impossible to convert heat completely back into mechanical work? Yes, but we are
paying for this transaction; something is getting used up. That something is order. Initially the
sugar molecules are partially confined: Each one moves freely, and randomly, throughout the region
between the membrane and the right-hand piston. As water flows through the membrane, forcing
the pistons to the right, the sugar molecules lose some of their order (or gain some disorder), being
no longer confined to just one half of the total volume of water. When finally the left side has shrunk
to zero, the sugar molecules have free run of the entire volume of water between the pistons; their
disorder can’t increase any more. Our device then stops and will yield no more work, even though
there’s plenty of thermal energy left in the surrounding world. Osmotic flow sacrifices molecular

order, to organize random thermal motion into gross mechanical motion against a load.
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Figure 1.3: (Schematic.) A machine transducing free energy. A cylinder filled with water is separated into two
chambers by a semipermeable membrane (dashed line). The membrane is anchored to the cylinder. Two pistons
slide freely, allowing the volumes of the two chambers to change as water molecules (solid dots) cross the membrane.
The pistons must slide together, though, because the water between them is incompressible. Sugar molecules (open
circles) remain confined to the right-hand chamber. (a) Osmotic flow: As long as the weight is not too heavy, when
we release the pistons water crosses the membrane, forcing both pistons to the right, and lifting the weight. The
sugar molecules then spread out into the increased volume of water on the right. (b) Reverse osmosis: If we pull hard
enough, though, the pistons will move to the left, increasing the concentration of the sugar solution in the right-hand
chamber and generating heat.

We can rephrase the above argument in the language introduced in Section 1.1.3. Idea 1.5 on
page 7 intdroduced the idea that the osmotic machine will spontaneously move in the direction that
lowers its free energy F'. According to Equation 1.4, F' can decrease even if the potential energy of
the weight increases (and hence so does the mechanical energy F), as long as the entropy increases
by a compensating amount. But the previous paragraph argued that as the pistons move to the
right, the disorder (and hence the entropy) increases. So indeed Idea 1.5 predicts that the pistons
will move to the right, as long as the weight is not too heavy.

Now suppose we pull very hard on the left piston, as in Figure 1.3b. This time, a rightward
movement of the piston would increase the potential energy of the weight so much that F' increases,
despite the second term of Equation 1.4. Instead, the pistons will move to the left, the region of
concentrated solution will shrink and become more concentrated, and in short the system will gain
order.

This really works—it’s a common industrial process called reverse osmosis (or “ultrafiltration”).
You could use it to purify water before drinking it.

Reverse osmosis (Figure 1.3b) is just the sort of process we were looking for. An input of high-
quality energy (in this case mechanical work) suffices to upgrade the order of our system. The
energy input must go somewhere, according to the First Law (Idea 1.3), and indeed it does: The

system gives off heat in the process. We passed energy through our system, which degraded it from
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mechanical form to thermal form while increasing its own order. We could even make our machine
cyclic. After pulling the pistons all the way to the left, we dump out the contents of each side, move
the pistons all the way to the right (lifting the weight), refill the right side with sugar solution,
and repeat everything. Then our machine continuously accepts high-quality (mechanical) energy,
degrades it into thermal energy, and creates molecular order (by separating sugar solution into
sugar and pure water).

But that’s the same trick we ascribed to living organisms, as summarized in Figure 1.2! It’s not
precisely the same—in Earth’s biosphere the input stream of high-quality energy is sunlight, while
our reverse-osmosis machine runs on externally supplied mechanical work. Nevertheless, much of
this book will be devoted to showing that at a deep level these processes, one from the living and one
from the nonliving worlds, are essentially the same. In particular, Chapters 6, 7, and 10 will pick
up this story and parlay our understanding into a view of biomolecular machines. That the motors
found in living cells differ from our osmotic machine by being single molecules, or collections of a
few molecules. But we’ll argue that these “molecular motors” are again just free energy transducers,
essentially like Figure 1.3. They work better than simple machines because evolution has engineered

them to work better, not because of some fundamental exemption from physical law.

Preview: Disorder as information The osmotic machine illustrates another key idea, on which
Chapter 7 will build, namely the connection between disorder and information. To introduce this
concept, consider again the case of a small load (Figure 1.3a). Suppose we measure experimentally
the maximum work done by the piston, by integrating the maximum force the piston can exert over

the distance it travels. Doing this experiment at room temperature yields an empirical observation:
(maximum work) &~ N x (4.1 x 10721 J x ). (experimental observation) (1.7)

Here N is the number of dissolved sugar molecules. (v is a numerical constant whose value is not
important right now; you will find it in Your Turn 7b.)

In fact Equation 1.7 holds for any dilute solution at room temperature, not just sugar dissolved
in water, regardless of the details of the size or shape of the container and the number of molecules.
Such a universal law must have a deep meaning. To interpret it, we return to Equation 1.4. We get
the maximum work when we let the pistons move gradually, always applying the biggest possible
load. According to Idea 1.5, the largest load we can apply without stalling the machine is the one
for which the free energy F' hardly decreases at all. In this case Equation 1.4 claims that the change
in potential energy of the weight (that is, the mechanical work done) just equals the temperature
times the change of entropy. So Equation 1.7 is telling us something about the meaning of entropy,
namely that TAS ~ N x (4.1 x 10721 J x ).

We already have the expectation that entropy involves disorder, and indeed some order does
disappear when the pistons move all the way to the right: Initially each sugar molecule was confined
to half the total volume, whereas in the end they are not so confined. Thus what’s lost as the pistons
move is a knowledge of which half of the chamber each sugar molecule was in—a binary choice.
If there are N sugar molecules in all, we need to specify N binary digits (bits) of information to
specify where each one sits in the final state, to the same accuracy that we knew it originally.
Combining this remark with the result of the previous paragraph gives that

AS = constant x (number of bits lost).

Thus the entropy, which we have been thinking of qualitatively as a measure of disorder, turns out

to have a quantitative interpretation. If we find that biomolecular motors also obey some version
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of Equation 1.7, with the same numerical constant, then we will be on firm ground when we assert
that they really are free energy transduction devices, and can make a fair claim to have learned
something fundamental about how they work. Chapter 10 will develop this idea.

1.3 Excursion: Commercials, philosophy, pragmatics

And oftentimes, to winne us to our harme
The Instruments of Darkness tell us Truths
Winne us with honest trifles, to betray’s

In deepest consequence — Shakespeare, Macbeth

Cell and tissue, shell and bone, leaf and flower, are so many
portions of matter, and it is in obedience to the laws of physics
that their particles have been moved, moulded, and conformed.
— D’Arcy Thompson, 1917

Section 1.2 dove directly into the technical issues that we’ll wrestle with throughout this book. But
before we begin our exploration in earnest, a very few words are in order about the relation between
physical science and biology.

The quotes above were chosen to highlight a fruitful tension between the two cultures:

eThe physical scientist’s impulse is to look for the forest, not the trees, to see that which

is universal and simple in any system.

eTraditionally, life scientists have been more likely to emphasize that in the inherently
complex living world, frozen accidents of history often dominate what we see, not

universal laws. In such a world, often it’s the details that really matter most.

The views are complementary; one needs the agility to use whichever approach is appropriate at
any given moment, and a willingness to entertain the possibility that the other one is valuable too.

How can one synthesize these two approaches? Figure 1.4 shows the essential strategy. The first
step is to look around at the rich fabric of the phenomena around us. Next, we selectively ignore
nearly everything about these phenomena, snipping the fabric down to just a few threads. This
process involves (a) selecting a simplified but real model system for detailed study, and (b) rep-
resenting the simple system by an equally simple mathematical model, with as few independent
constructs and relations as possible. The steps (a) and (b) are not deductive; words like “mystery”
and “insight” apply to this process.

The last step is to (c) perform some analysis, deducing from the mathematical model some
nonobvious, quantitative, and experimentally testable predictions. If a model makes many such
successful predictions, we gain conviction that we have indeed found the few key ingredients in our
simplifying steps (a) and (b). Words like “hygiene” and “technique” apply to step (c). While this
step is deductive, however, here again imagination is needed to find those consequences of the model
that are both nontrivial and practical to test. The best, most striking, results are those where the
right side of the figure opens up to embrace phenomena that had previously seemed unrelated. We
have already foreshadowed an example of such a global linkage of ideas: The physics of osmotic

flow is linked to the biology of molecular machines.
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Figure 1.4: (Diagram.) What biological physicists try to do.

In the best case, the results of step (c) give the sense of getting something for nothing: The
model generates more structure than was present in its bare statement (the middle part of Fig-
ure 1.4), a structure moreover usually buried in the mass of raw phenomena we began with (left
end of Figure 1.4). In addition, we may in the process find that the most satisfactory physical
model involves some threads, or postulated physical entities (middle part of the figure), whose
very existence wasn’t obvious from the observed phenomena (left part), but can be substantiated
by making and testing quantitative predictions (right part). One famous example of this process is
Max Delbriick’s deduction of the existence of a hereditary molecule, to be discussed in Chapter 3.
We'll see another example in Chapters 11-12, namely the discovery of ion pumps and channels in
cells.

Physics students are heavily trained on the right end of the figure, the techniques for working
through the consequences of a mathematical model. But this is not enough. Uncritically accepting
someone’s model can easily lead to a large body of both theory and experiment culminating in
irrelevant results. Similarly, biology students are heavily trained in the left side, the amassing of
many details of a system. For them the risk is that of becoming an archivist who misses the big
picture. To avoid both of these fates, one must usually know all the details of a biological system,
then transcend them with an appropriate simple model.

Is the physicist’s insistence on simplicity, concreteness, and quantitative tests on model systems
just an immature craving for certainty in an uncertain world? Certainly, at times. But other times
this approach lets us perceive connections not visible “on the ground” by viewing the world “from
above.” When we find such universality we get a sense of having ezxplained something. We can also
get more pragmatic benefits:
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eOften when we forge such a link we find that powerful theoretical tools to solve one
problem have already been created in the context of another. An example will be

the mathematical solution of the helix-coil transition model in Chapter 9.

eSimilarly, we get to carry over powerful existing ezperimental techniques as well. For
example, the realization that DNA and proteins were molecules led Max Perutz,
Linus Pauling, Maurice Wilkins and others to study their structure using X-ray
diffraction, a technique invented to find the structure of simple, nonliving crystals

like quartz.

eFinally, perceiving a link between two circles of ideas can lead us to ask new questions
which later prove to be key. For example, even after Watson and Crick’s discovery
that the DNA molecule was a very long sentence written in an alphabet with four
letters (see Chapter 3), attention did not focus at once on the importance of finding
the dictionary, or code, relating sequences of those letters to the 20-letter alphabet of
amino acids constituting proteins. Thinking about the problem as one in information
transfer led George Gamow, a physicist interested in biology, to write an influential
paper in 1954 asking this question and suggesting that answering it might not be so
difficult as it at first seemed.

It may seem that we need no longer content ourselves with simple models. Can’t massive
computers now follow the fine details of any process? Yes and no. Many low-level processes can in
fact now be followed in molecular detail. But in practice, our ability to get a detailed picture of even
simple systems is surprisingly limited, in part by the rapid increase of computational complexity
when we study large numbers of particles. Surprisingly, though, many physical systems have simple
“emergent properties” not visible in the complex dynamics of their individual molecules. The
simple equations we’ll study seek to encapsulate these properties, and often manage to capture the
important features of the whole complex system. Examples in this book will include the powerful
property of hydrodynamic scale invariance to be explored in Chapter 5, the mean-field behavior
of ions in Chapter 7, and the simple elasticity theory of complex macromolecules in Chapter 9.
The need to exploit such simplicity and regularity in the collective behavior of many similar actors
becomes even more acute when we begin to study even larger systems than the ones discussed in
this book.

1.4 How to do better on exams (and discover new physical

laws)

Equation 1.2 and the discussion below it made use of some simple ideas involving units. Students
often see units, and the associated ideas of dimensional analysis, presented with a brush-your-teeth
attitude. This is regrettable. Dimensional analysis is more than just hygiene. It’s a shortcut to

insight.

1.4.1 Dimensions and units

Every physical quantity has abstract dimensions that tell us what kind of thing it is. Every kind

of dimension can be measured using a variety of different units. The choice of units is arbitrary.
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Once people used the size of the king’s foot. This book will instead use primarily the Systeéme
International, or SI units. In this system, lengths are measured in meters, masses in kilograms,
time in seconds, and electric charge in coulombs. To clarify the distinction between dimensions and

units, here are some examples:

1. Length has dimensions of L, by definition. In SI units we measure it in meters, abbreviated

in this book as m.

2. Mass has dimensions of M, by definition. In SI units we measure it in kilograms, abbreviated

as kg.

3. Time has dimensions of T, by definition. In SI units we measure it in seconds, abbreviated as
s.

4. Velocity has dimensions of LT™'. In SI units we measure it in ms™*

(pronounced “meters per
second”).

5. Acceleration has dimensions of LT 2. In SI units we measure it in ms™—2.

6. Force has dimensions of MILT 2. In SI units we measure it in kgms~2, which we also call

newtons and abbreviate as N.

7. Energy has dimensions of MIL*T 2. In SI units we measure it in kg m? s~2, which we also call

joules and abbreviate as J.

8. Electrical charge has dimensions of QQ, by definition. In SI units we measure it in units of
coulombs, abbreviated in this book as coul to avoid confusion with the symbol C. The flow
rate of charge, or electric current, then must have dimensions of QT . In SI units we measure

1

it in units of coulombs per second, or couls™, also called amperes, abbreviated as A.

9. (We defer a full discussion of temperature units to Section 6.3.2.)

Notice that in this book all units are set in a special typeface, to help you distinguish them from
named quantities (such as m for the mass of an object).

We also create related units by attaching prefixes giga (=107, or billion), mega (=10°, or million),
kilo (=103, or thousand), milli (=103, or thousandth), micro (=10~°, or millionth), nano (=107,
or billionth), pico (=107'2). In writing, we abbreviate these prefixes to G, M, K, m, y, n, and p,
respectively. Thus 1 Gy is a billion years, 1 pN is a piconewton, and so on. Forces in cells are
usually in the pN range.

A few non-SI units, like cm and kcal, are so traditional that we’ll occasionally use them as
well. You will constantly find these units in the research literature, so you might as well get good
at interconverting them now. See Appendix A for a list of all the units in this book; Appendix B
presents the hierarchy of length, time, and energy scales of interest to cell biology, and pulls together
the numerical values of many useful constants.

In any quantitative problem, it is absolutely crucial to keep units in mind at all times. Students
sometimes don’t take dimensional analysis too seriously since it seems trivial, but it’s a very powerful
method for catching algebraic errors. Much more importantly, it gives a way to organize and classify
numbers and situations, and even to guess new physical laws, as we’ll see below. Working scientists
eventually realize that when faced with an unfamiliar situation, dimensional analysis is always step
one.

Most constants of Nature have dimensions. Ounly a few are dimensionless quantities (also called

“pure numbers”). For example, a geometric angle is dimensionless; it expresses the circumference of
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a part of a circle divided by the circle’s radius. Nevertheless we sometimes use dimensionless units
to describe them. A dimensionless unit is just an abbreviation for some pure number. Thus the
degree of angle, represented by the symbol °, denotes the number 27/360. From this point of view
the “radian” is nothing but the pure number 1, and may be dropped from formulas; we sometimes
retain it just to emphasize that a particular quantity is an angle.

A quantity with dimensions is sometimes called dimensional. It’s important to understand that
the units are an integral part of such a quantity. Thus when we use a named variable for a physical
quantity, the units are part of what the name represents. For example, we don’t say “A force equal
to f newtons” but rather “A force equal to f” where, say, f = 5N.

In fact, a dimensional quantity should be thought of as the product of a “numerical part” times
some units; this makes it clear that the numerical part depends on the units chosen. For example,
the quantity 1 m is equal to the quantity 1000 mm. To convert from one unit to another we take
any such equivalence between units, for example 1in = 2.54 cm, and reexpress it as

lin
254cm

Then we take any expression and multiply or divide by one, cancelling the undesired units. For
example, we can convert the acceleration of gravity to ins~2 by writing

100 lin in

gzg_gﬁ._qﬁ. — 386—.

s2 548 2.54 ¢ s2

Finally, no dimensional quantity can be called “large” in any absolute sense. Thus a speed of
1

lcms™ may seem slow to you, but it’s impossibly fast to a bacterium. In contrast, dimensionless
quantities do have an absolute meaning: when we say that they are “large” or “small,” we implicitly
mean “compared to 1.” Finding relevant dimensionless combinations of parameters is often a key
step to classfying the qualitative properties of a system. Section 5.2 of this book will ilustrate this

idea, defining the “Reynolds number” to classify fluid flows.

1.4.2 Using dimensional analysis to catch errors and recall definitions

Isn’t this a lot of pedantic fuss over something trivial? Not really. Things can get complicated
pretty quickly, for example on an exam. Training yourself to carry all the units explicitly, through
every calculation, can save you from many errors.

Suppose you need to compute a force. You write down a formula made out of various quantities.
To check your work, write down the dimensions of each of the quantities in your answer, cancel
whatever cancels, and make sure the result is MLT 2. If it’s not, you probably forgot to copy
something from one step to the next. It’s easy, and it’s amazing how many errors you can find in
this way. (You can also catch your instructors’ errors.)

When you multiply two quantities the dimensions just pile up: force (MILT?) times length (L)
has dimensions of energy (MLZT_2). On the other hand you can never add or subtract terms with
different dimensions in a valid equation, any more than you can add dollars to kilograms. You can
add dollars to rubles, with the appropriate conversion factor, and similarly meters to miles. Meters
and miles are different units that both have the same dimensions.

Another useful rule of thumb involving dimensions is that you can only take the exponential of
a dimensionless number. The same thing holds for other familiar functions, like sin, cos, In, ....

One way to understand this rule is to notice that e* = 1+z+ %xQ +---. According to the previous
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paragraph, this sum makes no sense unless z is dimensionless. (Recall also that the sine function’s
argument is an angle, and angles are dimensionless.)
Suppose you run into a new constant in a formula. For example the force between two charged

objects in vacuum is
1 qig
dreg r2

(1.8)

What are the dimensions of the constant €37 Just compare:
MLT 2 = [go] 'Q’L 2.

In this formula the notation [g¢] means “the dimensions of €4”; it’s some combination of L, M, T, Q
that we want to find. Remember that numbers like 47 have no dimensions. (After all, 7 is
the ratio of two lengths, the circumference and the diameter of a circle.) So right away we find
[e0] = Q*T?L—3M !, which you can then use to check formulas containing &g.

Finally, dimensional analysis helps you remember things. Suppose you're faced with an obscure
ST unit, like “farad” (abbreviated F). You don’t remember its definition. You know it measures
capacitance, and you have some formula involving it, say E = %q2 /C where E is the stored electrical
energy, ¢ is the stored charge, and C' is the capacitance. Knowing the units of energy and charge
gives that the dimensions of C are [C] = T?Q*M 'L ™2. Substituting the SI units second, coulomb,
kilogram, and meter, we find that the natural SI unit for capacitance is 52c0u|2kg71m’2). That’s

what a farad really is.

Example Appendix B lists the units of the permittivity of empty space gy as F/m. Check
this.
Solution: You could use Equation 1.8, but here’s another way. The electric potential

V(r) a distance r away from a point charge ¢ is

_ q
Amegr’

Vir) (1.9)
The potential energy of another charge ¢ sitting at r equals ¢V (r). Since we know
the dimensions of energy, charge, and distance, we work out [gg] = T2Q°M 'L 73,
as already found above. Comparing what we just found for the dimensions of ca-
pacitance gives that [g9] = [C]/L, so the SI units for gy are the same as those for

capacitance per length, or Fm™!.

1.4.3 Using dimensional analysis to formulate hypotheses

Dimensional analysis has other uses. Let us see how it actually lets us guess new physical laws.

Chapter 4 will discuss the “viscous friction coefficient” ( for an object immersed in a fluid. This
is the force applied to the object, divided by its resulting speed, so its dimensions are M/T. We will
also discuss another quantity, the “diffusion constant” D of the same object, which has dimensions
L2 /T. Both ¢ and D depend in very complicated ways on the temperature, the shape and size of
the object, and the nature of the fluid.

Suppose now that someone tells you that in spite of this great complexity, the product (D is
very simple: This product depends only on the temperature, not on the nature of the object nor

even on the kind of fluid it’s in. What could the relation be? You work out the dimensions of the
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product to be MIL? /T2, That’s an energy. What sort of energy scales are relevant to our problem?
It occurs to you that the energy of thermal motion, Eipermal (to be discussed in Chapter 3), is
relevant to the physics of friction, since friction makes heat. So you could guess that if there is any

fundamental relation, it must have the form
?
CD = Ethermal- (110)

You win. You have just guessed a true law of Nature, one that we will derive in Chapter 4. In
this case Albert Einstein got there ahead of you, but maybe next time you’ll have priority. As we’ll
see, Einstein had a specific goal: By measuring both ¢ and D experimentally, he realized, one could
find Fihermal- We'll see how this gave Einstein a way to measure how big atoms are, without ever
needing to manipulate them individually. And... Atoms really are that size!

What did we really accomplish here? This isn’t the end, it’s the beginning: We didn’t find any
explanation of frictional drag, nor of diffusion, yet. But we know a lot about how that theory should
work. It has to give a relation that looks like Equation 1.10. This helps in figuring out the real
theory.

1.4.4 Some notational conventions involving flux and density

To illustrate how units help us disentangle related concepts, consider a family of related quantities
that will be used throughout the book. (See Appendix A for a complete list of symbols used in the
book.)

eWe will often use the symbols N to denote the number of discrete things (a dimen-
sionless integer), V to denote volume (with SI units m?), and ¢ to denote a quantity
of electric charge (with dimensions coul).

eThe rates of change of these quantities will generally be written dN/dt (with units
s71), Q (the “volume flow rate,” with units m3s™1), and I (the electric current,
with units couls™).

oIf we have five balls in a room of volume 1000 m3, we say that the number density (or

“concentration”) of balls in the room is ¢ = 0.005m~3.

Densities of dimensional
quantities are traditionally denoted by the symbol p; a subscript will indicate what
sort of quantity. Thus mass density is p,, (units kgm~3), while charge density is
pq (units coulm=3).

eSimilarly, if we have five checkers on a 1 m? checkerboard, the surface number density”
is 5m~2. Similarly, the surface charge density” o, has units coulm—2.

eSuppose we pour sugar down a funnel, and 40000 grains fall each second through an
opening of area 1cm?. We say that the number flux (or simply “flux”) of sugar
grains through the opening is j = (40000s™1)/(1072m)? = 4-108 m~2s~!. Similarly,
the fluxes of dimensional quantities are again indicated using subscripts; thus jq is
the charge flux (with units coulm~2s7!)) and so on.

If you accidentally use number density in a formula requiring mass density, you’ll notice that your
answer’s units are missing a factor of kg; this is your signal to go back and introduce the mass of
each object, converting ¢ to pp,.
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1.5 Other key ideas from physics and chemistry

Our story will rest on a number of other points known to the ancients.

1.5.1 Molecules are small

Ordinary molecules, like water, must be very small—we never perceive any grainy quality to water.
But how small, exactly, are they? Once again we turn to Benjamin Franklin.

Around 1773, Franklin’s attention turned to, of all things, oil slicks. What intrigued him was
the fact that a certain quantity of oil could spread only so far on water. Attempting to spread it
farther caused the film to break up into patches. Franklin noticed that a given quantity of olive oil
always covered about the same area of water; specifically, he found that a teaspoon of oil (=~ 5cm?)
covered half an acre of pond (&~ 2000m?). Franklin reasoned that if the oil were composed of
tiny irreducible particles, then it could only spread until these particles formed a single layer, or
“monolayer,” on the surface of the water. It’s easy to go one step farther than Franklin and find
the thickness of the layer, and hence the size scale of a single molecule. Dividing the volume of
oil by the area of the layer, we find the size of one oil molecule to be about 2.5 nm. Remarkably,
Franklin’s eighteenth-century experiment gives a reasonable estimate of the molecular size scale!

Since molecules are so tiny, we find ourselves discussing inconveniently big numbers when we
talk about, say, a gram of water. Conversely we also find ourselves discussing inconveniently small
numbers when we try to express the energy of one molecule in human-size units like joules—see for
example the constant in Equation 1.7. Chemists have found it easier to define, once and for all, one
huge number expressing the smallness of molecules, and then relate everything to this one number.
That number is Avogadro’s number N, defined as the number of carbon atoms needed to make
up twelve grams of (ordinary) carbon. Thus Ny,ele is also roughly the number of hydrogen atoms in
one gram of hydrogen, since a carbon atom has a mass about 12 times that of hydrogen. Similarly,
there are roughly Npo1e 0xygen molecules, Os, in 32 g of oxygen, since each oxygen atom’s mass is
about 16 times as great as a hydrogen atom’s, and each molecule consists of two of them.

Note that Npole is dimensionless.* Any collection of Ny molecules is called a mole of that
type of molecule. In our formulas the word “mole” will simply be a synonym for the number Nye,
just as the word “million” can be thought of as a synonym for the dimensionless number 10°.

Returning to Franklin’s estimate, suppose water molecules are similar to oil molecules, roughly

tiny cubes 2.5 nm on a side.® Let’s see what we can deduce from this observation.

Example Find an estimate for Avogadro’s number starting from this size.

Solution: We won’t get lost if we carry all the dimensions along throughout the

calculation. 1 m3 of water contains
1y

6410
(2.5-10-9 )3

molecules. That same cubic meter of water has a mass of a thousand kilograms,

4 T2 See Section 1.5.4’ on page 26 for more about notational conventions.
5

Really they’re more like slender rods. The cube of the length of such a rod is an overestimate of its volume, so

our estimate here is rough.
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3

since the density of water is 1gecm™ and

s (100cm\® 1g lkg
Lot X( 1ot ) T 1000g

We want to know how many molecules of water make up a mole. Since each water

= 1000 kg.

molecule consists of one oxygen and two hydrogen atoms, its total mass is about
16+14+1=18 times as great as that of a single hydrogen atom. So we must ask, if
6.4 - 10%> molecules have mass 1000 kg, then how many molecules does it take to
make 18 g, or 0.018 kg?

6.4 -10%°

Noote = 0.018 kg x =~
: K€ X 000 kg

=0.011-10%.  (estimate)

The estimate for Avogadro’s number just found is not very accurate (the modern value is
Nuole = 6.0 - 1023). But it’s amazingly good, considering that the data on which it is based were
taken nearly a quarter of a millennium ago. Improving on this estimate, and hence nailing down
the precise dimensions of atoms, proved surprisingly difficult. Chapter 4 will then show how the
dogged pursuit of this quarry led Albert Einstein to a key advance in our understanding of the
nature of heat.

Your Turn 1la
Using the modern value of Avogadro’s number, turn the above calculation around and find the

volume occupied by a single water molecule.

1.5.2 Molecules are particular spatial arrangements of atoms

There are only about a hundred kinds of atoms. Every atom of a given kind is exactly like every
other: Atoms have no individual personalities. For example, every atom of (ordinary) hydrogen
has the same mass as every other one. One way to express an atom’s mass is simply to give it in
grams, but usually it’s more convenient to quote the mass of Ny, atoms (the molar mass).

Similarly, every molecule of a given chemical type has a fixed, definite composition, a rule we
attribute to J. Dalton and J. Gay-Lussac. For example, carbon dioxide always consists of exactly
two oxygen atoms and one of carbon, in a fixed spatial relationship. Every COy molecule is like
every other, for example equally ready or unwilling to undergo a given chemical change.

There may be more than one allowed arrangement for a given set of atoms, yielding two chem-
ically distinct molecules called isomers. Some molecules flip back and forth rapidly between their
isomeric states: They are “labile.” Others do so very rarely: They are rigid. For example, Louis
Pasteur discovered in 1857 that two sugars containing the same atoms, but in mirror-image ar-
rangements, are chemically different and essentially never spontaneously interconvert (Figure 1.5).
A molecule whose mirror image is an inequivalent stereoisomer is called “chiral”; such molecules
will play a key role in Chapter 9.

@Section 1.5.2" on page 26 discusses the division of elements into isotopes.
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X’ Chiral Achiral
_ Mirror +—— molecule: Mirror molecule:
image of Rotated image of Rotated
original molecule original molecule
molecule cannot be molecule can be
superimposed superimposed
on its mirror on its mirror
N image image
Original Original
molecule molecule

Figure 1.5: (Molecular structure sketches.) (a) The original molecule shown is chiral; it cannot be rotated into
any orientation that makes it identical to its mirror image. The original and its mirror (or “enantiomeric”) form are
chemically different, even though they have the same atoms, the same bonds, and the same bond angles. (b) This
molecule, in contrast, is nonchiral: The original molecule can be rotated until it coincides with its mirror image.
[Copyrighted figure; permission pending.]

1.5.3 Molecules have definite internal energies

Section 1.1.2 briefly alluded to the chemical energy stored in a match. Indeed the atoms making
up a molecule carry a definite amount of stored energy, which is said to reside in “chemical bonds”
between the atoms. The chemical bond energy drives toward lower values just as any other form of
stored energy (for example the potential energy of the weight in Figure 1.3). Indeed the chemical
bond energy is just another contribution to the quantity £ appearing in Equation 1.4 on page 7.
Molecules generally prefer to indulge in heat-liberating (exothermic) reactions over heat-accepting
(endothermic) ones, but we can nevertheless get them to adopt higher-energy states by adding
energy from outside. For example, we can split (or hydrolyze) water by passing electrical current
through it. More precisely, Chapter 8 will show that chemical reactions proceed in the direction
that tends to lower the free energy, just as in the osmotic machine.

Even an unstable molecule may not spontaneously split up until a large “activation energy” is
supplied; this is how explosives store their energy until they are detonated. The activation energy
can be delivered to a molecule mechanically, by collision with a neighbor. But this is not the only
possibility. In one of his five historic papers written in 1905, Albert Einstein showed that light, too,
comes in packets of definite energy, called photons. A molecule can absorb such a packet and then
hop over its activation energy barrier, perhaps even ending in a higher-energy state than initially.

The explanations for all of the familiar facts in this subsection and the previous one come from
a branch of physics called “quantum mechanics.” Quantum mechanics also explains the numerical
values of the typical atomic sizes and bond energies in terms of a fundamental physical constant,
the Planck constant A. In this book we will take all these values as just experimentally determined
facts, sidestepping their quantum origins altogether.

How can there be a “typical” bond energy? Don’t some reactions (say, in a stick of dynamite)
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liberate a lot more energy than others (burning a match)? No, the dynamite just liberates its energy

much faster; the energy liberated per chemical bond is roughly comparable to any other reaction.

Example One important chemical reaction is the one happening inside the batteries in your
channel-changer. Estimate the chemical energy released in this reaction.

Solution: Printed on the battery we find that its terminals differ in potential by
AV = 1.5volt. This means that the battery imparts an energy of roughly eAV =
1.6 - 10719 coul x 1.5volt = 2.4 - 10719 J to each electron passing through it. (The
value of the fundamental charge e used above is listed in Appendix B.) If we suppose
that each electron passing across the battery enables the chemical reaction inside
to take one step, then the energy just calculated is the change in chemical bond

energies (minus any thermal energy given off).

In contrast to chemical reactions, the radioactive decay of plutonium liberates about a million
times more energy per atom than a typical chemical reaction. Historically this was the first solid
clue that something very different from chemistry was going on in radioactive decay.

1.5.4 Low-density gases obey a universal law

The founders of chemistry arrived at the idea that atoms combine in definite proportions by noticing
that gases combine in simple, fixed ratios of volume. Eventually it became clear that this obser-
vation reflects the fact that the number of gas molecules in a box at atmospheric pressure is just
proportional to its volume. More precisely, one finds experimentally that the pressure p, volume
V', number of molecules N, and temperature T of any gas (at low enough density) are related in a
simple way called the ideal gas law:

pV = NkgT. (1.11)

Here the temperature 7' is understood to be measured starting from a special point called absolute
zero; other equations in this book, such as Equation 1.4, also use T measured from this point.
In contrast, the Celsius scale assigns zero to the freezing point of water, which turns out to be
273°C above absolute zero. Thus room temperature 7T, corresponds to about 295 degrees above
absolute zero (we will define temperature more carefully in Chapter 3). The quantity kg appearing
in Equation 1.11 is called the Boltzmann constant; it turns out to be about 1.38 - 10723 joules per
degree Celsius. Thus the numerical value of kgT at room temperature is kg7, = 4.1-10721J. A
less cumbersome way of quoting this value, and an easier way to memorize it, is to express it in

units relevant to cellular physics (piconewtons and nanometers):

kgT, ~ 4.1pN - nm. most important formula in this book (1.12)

Take a minute to think about the reasonableness of Equation 1.11: If we pump in more gas (N
increases), the pressure goes up. Similarly if we squeeze the box (V decreases), or heat it up (T
increases), p again increases. It’s all quite reasonable, but the formula makes it very precise.

The form of Equation 1.11 may look unfamiliar. Chemistry texts generally write it as pV = nRT,
where n is the “amount of substance” (number of moles) and RT' is about 2500 joules per mole at

room temperature. Dividing 2500 J by Nyl indeed gives the quantity kgT; in Equation 1.12.
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The remarkable thing about Equation 1.11 is that it holds universally: Any gas, from hydrogen
to vaporized steel, obeys it (at low enough density). All gases (and even mixtures of gases) have
the same numerical value of the constant kg (and all agree about the value of absolute zero). In
fact, even the osmotic work formula, Equation 1.7, involves this same quantity! Physical scientists
sit up and take notice when a law or a constant of Nature proves to be universal (Section 1.3).
Accordingly, our first order of business in Part IT of this book will be to tease out the deep meaning
of Equation 1.11, and its constant kg.

Section 1.5.4'" on page 26 makes more precise this book’s use of the unit “mole,” and relates it

to other books’ usage.

The big picture

Let’s return to this chapter’s Focus Question. Section 1.2 discussed the idea that the flow of energy,
together with its degradation from mechanical to thermal energy, could create order. We saw this
principle at work in a humble process (reverse osmosis, Section 1.2.2 on page 10), then claimed
that life, too, exploits this loophole in the Second Law of thermodynamics to create—or rather,
capture—order. Our job in the following chapters will be to work out the details of how this
works. For example, Chapter 5 will describe how tiny organisms, even single bacteria, carry out
purposeful motion in search of food, enhancing their survival, despite the randomizing effect of
their surroundings. We will need to expand and formalize our ideas in Chapters 6 and 8. Then
we’ll be ready to understand the self-assembly of complicated structures in Chapter 8. Finally,
Chapters 10-12 will see how two paragons of orderly behavior, namely the motion of molecular
machines and nerve impulses, emerge from the disorderly world of single-molecule dynamics.
Before attempting any of these tasks, however, we should pause to appreciate the sheer immen-
sity of the biological order puzzle. Accordingly, the next chapter will give a tour of some of the
extraordinarily ordered structures and processes present even in single cells. Along the way we will

meet many of the devices and interactions to be discussed in later chapters.

Key formulas

Each chapter of Parts IT-11I of this book ends with a summary of the key formulas appearing in that
chapter. The list below is slightly different; it focuses mainly on formulas from first-year physics,
which will be used throughout the book. You may want to review these using an introductory
physics text.

1. First-year physics: Make sure you recall these formulee from first-year physics, and what all
their symbols mean. Most of these have not been used yet, but they will appear in the coming
chapters.
momentum = (mass) X (velocity).
centripetal acceleration in uniform circular motion = rw?.
force = rate of transfer of momentum.
torque = (moment arm)x (force).
work = transferred mechanical energy = (force)x (distance) = (torque)x (angle).
pressure = (force)/(area).

kinetic energy = %mv?



]. . 5 . FURTHER READING [[STUDENT VERSION, DECEMBER 8, 2002]] 25

force and potential energy of a spring, f = kz, E = %Im‘Q.

potential energy in Earth’s gravity =(mass)-g-(height).

potential energy of a charged object in an electrostatic potential field =q¢V .
electric field, £ = —dV/dz.

force on a charged body, f = ¢€.

electric potential created by a single point charge ¢ in an infinite, uniform, insulating medium,
V(r) = q/(4me|r]), where € is the permittivity of the medium.

The electrostatic self-energy of a charged sphere of radius a is ¢?/(87ea).
Ohm’s law, V = IR; power loss from a resistor, I°R.

electric potential drop across a capacitor, V = ¢/C.

electrical potential energy stored in a capacitor £ = %qQ /C.

capacitance of a parallel-plate capacitor of area A and thickness D, C' = Ae/D.

2. Mechanical equivalent of heat: One joule of mechanical energy, when completely converted
to heat, can raise the temperature of 1g of water by about 0.24°C (Equation 1.2).

3. Ideal gas: The pressure, volume, number of molecules, and temperature of a confined ideal
gas are related by pV = NkgT (Equation 1.11). At room temperature T}, the quantity
kgT, ~ 4.1 pNnm (Equation 1.12).

Further reading

Semipopular:

Heat: (von Baeyer, 1999; Segre, 2002)
The Second Law: (Atkins, 1994)
Franklin’s oil experiment: (Tanford, 1989)

Intermediate:
General physics with biological applications: (Benedek & Villars, 2000c; Benedek & Villars, 2000a;
Benedek & Villars, 2000b; Hobbie, 1997)

Technical:
Biophysical Society’s On-Line Textbook: http://www.biophysics.org/btol/
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TQ Track 2

1.5.2° There is an important elaboration of the rule that atoms of a given species are all identical.
Atoms that behave identically chemically may nevertheless subdivide into a few distinct classes
of slightly different mass, the “isotopes” of that chemical element. Thus we specified ordinary
hydrogen above, to acknowledge the existence of two other, heavier forms (deuterium and tritium).
Despite this complication, however, there are only a handful of different stable isotopes of each
element, so the number of distinct species is still small, a few hundred. The main thing is that the

distinction between them is discrete, not continuous.

1.5.4" Physics textbooks generally use molecular quantities, while chemistry textbooks generally
use the corresponding molar versions. Like most artificial barriers to friendship, this one is easily
overcome. The SI gives “amount of substance” its own dimension, with a corresponding fundamental
unit called mol. This book will not use any quantities containing this unit. Thus we will not measure
amounts using the quantity n, with units mol, nor will we use the quantities RT, = 2470 Jmol
or F = 96000 coul mol™!; instead we use respectively the number of molecules N, the molecular
thermal energy, kgT;, and the charge on one proton, e. Similarly, we do not use the quantity
Ny =6.0- 1023mo|71; our Npole is the dimensionless number 6.0 - 10%3. And we don’t use the unit
dalton, defined as 1 gmol™!; instead we measure masses in kilograms.

A more serious notational problem is that different books use the same symbol p (the “chemical
potential” defined in Chapter 8) to mean two slightly different things: either the derivative of the
free energy with respect to n (with units J mol '), or the derivative with respect to N (with units J).
This book always uses the second convention (see Chapter 8). We choose this convention because
we will frequently want to study single molecules, not mole-sized batches.”

To avoid this confusion, recall that in this book the word “mole” in formulas is just an abbrevia-
tion for the number Nyo.. When convenient, we can express our molecular energies as multiples of
mole': then the numerical part of our quantities just equals the numerical part of the corresponding
molar quantities. For example, we can write

6.0-1023
kT, = 4.1-107%' J x ————— = 2500 J/mole,
mole

whose numerical part agrees with that of RT;.

6Similar remarks apply to the standard free energy change AG.
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Problems

1.1 Dorm-room-dynamics

a. An air conditioner cools down your room, removing thermal energy. And yet it consumes elec-
trical energy. Is there a contradiction with the First Law?

b. Could you design a high-tech device that sits in your window, continuously converting the un-
wanted thermal energy in your room to electricity, which you then sell to the power company?

Explain.

1.2 Thompson’s experiment

Long ago people did not use SI units.

a. Benjamin Thompson actually said that his cannon-boring apparatus could bring 25.5 pounds of
cold water to the boiling point in 2.5 hours. Supposing that “cold” water is at 20 °C, find the power
input into the system by his horses, in watts. [Hint: A kilogram of water weighs 2.2 pounds. That
is, Earth’s gravity pulls it with a force of 1kg x g = 2.2 pound.]

b. James Joule actually found that 1 pound of water increases in temperature by one degree Fahren-
heit (or 0.56 °C) after he input 770 foot pounds of work. How close was he to the modern value of

the mechanical equivalent of heat?

1.3 Metabolism
Metabolism is a generic term for all of the chemical reactions that break down and “burn” food,

releasing energy. Here are some data for metabolism and gas exchange in humans.

Food kcal/g liters Og/g liters COs/g
Carbohydrate 4.1 0.81 0.81
Fat 9.3 1.96 1.39
Protein 4.0 0.94 0.75
Alcohol 7.1 1.46 0.97

The table gives the energy released, the oxygen consumed, and the carbon dioxide released upon
metabolizing the given food, per gram of food.

a. Calculate the energy yield per liter of oxygen consumed for each food type, and note that it is
roughly constant. Thus we can determine a person’s metabolic rate simply by measuring her rate of
oxygen consumption. In contrast, the COs /O ratios are different for the different food groups; this
circumstance allows us to estimate what is actually being used as the energy source, by comparing
oxygen intake to carbon dioxide output.

b. An average adult at rest uses about 16 liters of O per hour. The corresponding heat release is
called the “basal metabolic rate” (BMR). Find it, in kcal/hour and in kcal/day.

c. What power output does this correspond to in watts?

d. Typically, the CO5 output rate might be 13.4 liters/hour. What, if anything, can you say about
the type of food materials being consumed?

e. During exercise, the metabolic rate increases. Someone performing hard labor for 10 hours a day
might need about 3500 kcal of food per day. Suppose the person does mechanical work at a steady
rate of 50W over 10 hours. We can define the body’s efficiency as the ratio of mechanical work
done to excess energy intake (beyond the BMR calculated in (b)). Find this efficiency.

1.4 Earth’s temperature
The Sun emits energy at a rate of about 3.9 - 1026 W. At Earth this gives an incident energy flux
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I. of about 1.4kW/m?2. In this problem we’ll investigate whether any other planets in our solar
system could support the sort of water-based life we find on Earth.

Consider a planet orbiting at distance d from the Sun (and let d. be Earth’s distance). At this
distance the Sun’s energy flux is I = I.(d./d)?, since it falls off as the inverse square of distance.
Let’s call the planet’s radius R and suppose that it absorbs a fraction « of the incident sunlight,
reflecting the rest back into space. The planet intercepts a disk of sunlight of area 7 R2, so it absorbs
a total power of mR%2al. Earth’s radius is about 6400 km.

The Sun has been shining for a long time, but Earth’s temperature is roughly stable: The planet
is in a steady state. For this to happen, the absorbed solar energy must get reradiated back to space
as fast as it arrives (see Figure 1.2). Since the rate at which a body radiates heat depends on its

temperature, we can find the expected mean temperature of the planet, using the formula
radiated heat flux = aocT?.

In this formula o denotes the number 5.7- 1078 W/m?2 K* (the “Stefan-Boltzmann constant”). The
formula gives the rate of energy loss per unit area of the radiating body (here the Earth). You
needn’t understand the derivation of this formula, but make sure you do understand how the units
work.

a. Based on this formula work out the average temperature at the Earth’s surface and compare to
the actual value of 289 K.

b. Based on the formula work out how far from the Sun a planet the size of Earth may be, as a
multiple of d., and still have a mean temperature greater than freezing.

c. Based on the formula work out how close to the Sun a planet the size of Earth may be, as a
multiple of de, and still have a mean temperature below boiling.

d. Optional: If you happen to know the planets’ orbits, which ones are then candidates for water-

based life, using this rather oversimplified criterion?

1.5 Franklin’s estimate

One reason why our estimate of Avogadro’s number in Section 1.5.1 came out too small was because
we used the molar mass of water, not of oil. We can look up the molar mass and mass density of
some sort of oil available in the eighteenth century in the Handbook of Chemistry and Physics (Lide,
2001). The Handbook tells us that the principal component of olive oil is oleic acid, and gives the
molar mass of oleic acid (also known as 9-octadecenoic acid or CH3(CHy)7CH:CH(CHz);COOH)
as 282 g/mole. We'll see in Chapter 2 that oils and other fats are triglycerides, made up of three
fatty-acid chains, so we estimate the molar mass of olive oil as a bit more than three times the
above value. The Handbook also gives its density as 0.9 g/cm?.

Make an improved estimate of Nyl from these facts and Franklin’s original observation.

1.6 Atomic sizes, again

In 1858 J. Waterston found a clever way to estimate molecular sizes from macroscopic properties
of a liquid, by comparing its surface tension and heat of vaporization.

The surface tension of water, 3, is the work per unit area needed to create more free surface.
To define it, imagine breaking a brick in half. The two pieces have two new surfaces. Let ¥ be the
work needed to create these new surfaces, divided by their total area. The analogous quantity for
liquid water is the surface tension.

The heat of vaporization of water, Qap, is the energy per unit volume we must add to liquid
water (just below its boiling point) to convert it completely to steam (just above its boiling point).
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That is, the heat of vaporization is the energy needed to separate every molecule from every other
one.

Picture a liquid as a cubic array with N molecules per centimeter in each of three directions.
Each molecule has weak attractive forces to its six nearest neighbors. Suppose it takes energy € to
break one of these bonds. Then the complete vaporization of 1 cm? of liquid requires that we break
all the bonds. The corresponding energy cost is Qvap x (1cm?).

Next consider a molecule on the surface of the fluid. It has only five bonds—the nearest neighbor
on the top is missing (suppose this is a fluid—vacuum interface). Draw a picture to help you visualize
this situation. Thus to create more surface area requires that we break some bonds. The energy
needed to do that, divided by the new area created, is X.

a. For water, Quap = 2.3 - 10° J/m?, while ¥ = 0.072J/m?. Estimate N.
b. Assuming the molecules are closely packed, estimate the approximate molecule diameter.

c¢. What estimate for Avogadro’s number do you get?

1.7 Tour de France

A bicycle rider in the Tour de France eats a lot. If his total daily food intake were burned it would
liberate about 8000 kcal of heat. Over the three or four weeks of the race his weight change is
negligible, less than 1%. Thus his energy input and output must balance.

Let’s first look at the mechanical work done by the racer. A bicycle is incredibly efficient. The
energy lost to internal friction, even including the tires, is negligible. The expenditure against air
drag is however significant, amounting to 10 MJ per day. Each day the rider races for 6 hours.

a. Compare the 8000 kcal input to the 10 MJ of work done. Something’s missing! Could the missing
energy be accounted for by the altitude change in a hard day’s racing?

Regardless of how you answered (a), next suppose that on one particular day of racing there’s
no net altitude change, so that we must look elsewhere to see where the missing energy went. We
have so far neglected another part of the energy equation: the rider gives off heat. Some of this
is radiated. Some goes to warm up the air he breathes in. But by far the greatest share goes
somewhere else.

The rider drinks a lot of water. He doesn’t need this water for his metabolism—he is actually
creating water when he burns food. Instead, nearly of all that liquid water leaves his body as water
vapor. The thermal energy needed to vaporize water appeared in Problem 1.6 above.

b. How much water would the rider have to drink in order for the energy budget to balance? Is this
reasonable?

Next let’s go back to the 10 MJ of mechanical work done by the rider each day.

c. The wind drag for a situation like this is a backward force of magnitude f = Bv?, were B is
some constant. We measure B in a wind-tunnel to be 1.5 kg/m. If we simplify by supposing a day’s

racing to be at constant speed, what is that speed? Is your answer reasonable?



Chapter 2

What’s inside cells

Architecture is the scientific, correct, and magnificent play of

volumes assembled under the light. — Le Corbusier

Chapter 1 exposed an apparent incompatibility between physical law and the living world (the
apparently spontaneous generation of order by living things), and proposed the outline of a reconcil-
iation (living things ingest high-quality energy and give off low-quality energy). With this physical
backdrop, we’re now ready to look a bit more closely into the organization of a living cell, where
the same ideas play out over and over. This chapter sketches the context for the various phenomena

that will concern us in the rest of the book:

eEach device we will study is a physical object; its spatial context involves its location
in the cell relative to the other objects.

eEach device also participates in some processes; its logical context involves its role in

these processes relative to other devices.

Certainly this introductory chapter can only scratch the surface of this vast topic.! But it is useful
to collect some visual images of the main characters in our story, so that you can flip back to them
as they appear in later chapters.

This chapter has a very different flavor from the others. For one thing, there will be no formulas
at all. Most of the assertions will appear with no attempt to justify them. Most of the figures have
detailed captions, whose meaning may not be clear to you until we study them in detail in a later
chapter. Don’t worry about this. Right now your goal should be to finish this chapter knowing a
lot of the vocabulary we will use later. You should also come away with a general feeling for the
hierarchy of scales in a cell, and a sense of how the governing principles at each scale emerge from,
but have a character different from, those at the next deeper scale.

Finally, the exquisite structures on the following pages practically beg us to ask: How can a

cell keep track of everything, when there’s nobody in there running the factory? This question has

(©2000 Philip C. Nelson
1If you’re not familiar with the vocabulary of this chapter, you will probably want to supplement it by reading

the opening chapters of any cell biology book; see for example the list at the end of this chapter.
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white blood
flea protozoan cell E. coli T2 phage DNA atoms in DNA
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Figure 2.1: (Icons.) Dramatis persone. Approximate relative sizes of some of the actors in our story. T2 phage
is a virus that infects bacteria, for example Escherichia coli. Much of this book will be occupied with phenomena

relevant at length scales from the protozoan down to the DNA helix. [Copyrighted figure; permission pending.]

Figure 2.2: (Drawing, based on light microscopy.) Relative sizes (1000x magnification). (a) Five Escherichia coli
bacteria cells (enlarged in Figure 2.3). (b) Two cells of baker’s yeast. (c) Human red blood cell. (d) Human white
blood cell (lymphocyte). (e) Human sperm cell. (f) Human epidermal (skin) cell. (g) Human striated muscle cell
(myofibril). (h) Human nerve cell. [From (Goodsell, 1993).] [Copyrighted figure; permission pending.]

a very long answer, of course. Among the many physical ideas relevant to this question, however,
three will dominate this chapter and the rest of the book:
Biological question: How do cells organize their myriad ongoing chemical processes and reactants?

Physical idea: (a) Bilayer membranes self-assemble from their component molecules; the cell uses
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Figure 2.3: (Drawing, based on electron microscopy.) Relative sizes (10° x magnification). (a) Some molecules and
macromolecules (enlarged in Figure 2.4). (b) A bacterial cell (see Figures 2.1, 2.2a and 2.5). Visible structures include
flagella (trailing to the right), the nucleoid (white region in center), and the thick, rigid cell wall. The flagella propel
the bacterium by a mechanism discussed in Chapter 5; they are in turn driven by motors discussed in Chapter 11.
(¢) Human immunodeficiency virus. (d) A bacterial virus, or “phage.” [From (Goodsell, 1993).] [Copyrighted figure;

permission pending.]

them to partition itself into separate compartments. (b) Cells use active transport to bring synthe-
sized materials to particular destinations. (c) Biochemical processes are highly specific: Most are

mediated by enzymes, which select one particular target molecule and leave the rest alone.

2.1 Cell physiology

Roadmap We will begin our story by recalling some of the characteristic activities of living cells,
then turn to their overall structural features. The physical aspects of cell function and structure
are sometimes called “cell physiology.” Section 2.2 will turn to the ultimate molecular constituents
of cells, progressively building from the smallest to the largest. This approach is generally called
“molecular cell biology.” By this point we will have a beautiful, but static, picture of the cell as a
collection of architectural elements. To close the circle of logic, we’ll need to understand something
about how these elements get constructed, and more generally how the cell’s other activities come
about. Thus, Section 2.3 will introduce the world of “molecular devices.” This third aspect of
cells is the primary focus of this book, though along the way we will touch on the others, and even

occasionally go beyond cells to organisms.
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Figure 2.4: (Drawing, based on structural data.) Relative sizes of the objects shown in panel (a) of Figure 2.3
(108 x magnification). (a) Single carbon atom. (b) Glucose, a simple sugar molecule. (c) ATP, a nucleotide.
(d) Chlorophyll molecule. (e) Transfer RNA, or “tRNA.” (f) An antibody, a protein used by the immune system.
(g) The ribosome, a large protein machine. (h) The virus responsible for polio. (i) Myosin, a molecular machine
discussed in Chapter 10. (j) DNA, a nucleic acid. Chapter 9 will discuss the mechanical properties of long molecules
like this one. (k) F-actin, a cytoskeletal element. (l) Ten enzymes (protein machines) involved in glycolysis, a
series of coupled chemical reactions that produce ATP, the energy currency molecule, from glucose. Chapter 11 will
discuss ATP production. (m) Pyruvate dehydrogenase, a large enzyme complex also discussed in Chapter 11. [From
(Goodsell, 1993).] [Copyrighted figure; permission pending.]

Cells are the fundamental functional units of life. Whether alone or integrated into communities
(organisms), individual cells perform a common set of activities. More precisely, while a particular
cell may not do everything on the following list—there are a couple hundred distinct, specialized
cell types in our bodies, for example—still there is enough overlap between all cells to make it clear

that all are basically similar.

eLike entire organisms, individual cells take in chemical or solar energy. As discussed in
Chapter 1, most of this energy gets discarded as heat, but a fraction turns into useful
mechanical activity or the synthesis of other energy-storing molecules, via a set of
processes collectively called “metabolism.” Chapter 11 will examine one aspect of

this remarkably efficient free energy transduction process.

eln particular, each cell manufactures more of its own internal structure, in order to
grow. Much of this structure consists of a versatile class of macromolecules called
“proteins.” Our bodies contain about 100000 different kinds of protein. We will
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return many times to the interactions responsible for protein structure and function.

eMost cells can reproduce by mitosis, a process of duplicating their contents and splitting

in two. (A few types instead create germ cells by meiosis; see Section 3.3.2.)

e All cells must maintain a particular internal composition, sometimes in spite of widely
varying external conditions. Cells generally must also maintain a fixed interior vol-

ume (see Chapter 7).

eBy maintaining concentration differences of electrically charged atoms and molecules
(generically called “ions”), most cells also maintain a resting electrical potential
difference between their interiors and the outside world (see Chapter 11) Nerve and

muscle cells use this resting potential for their signaling needs (see Chapter 12).

eMany cells move about, for example by crawling or swimming. Chapter 5 discusses

the physics of such motions.

oCells sense environmental conditions for a variety of purposes:

1. Sensing the environment can be one step in a feedback loop that regulates the
cell’s interior composition.

2. Cells can alter their behavior in response to opportunities (such as a nearby
food supply) or hardships (such as drought).

3. Single cells can even engage in attack, self-defense, and evasive maneuvers upon
detecting other cells.

4. The highly specialized nerve and muscle cells obtain input from neighboring
nerve cells by sensing the local concentration of particular small molecules, the
neurotransmitters, secreted by those neighbors. Chapter 12 will discuss this

process.

o(Cells can also sense their own internal conditions as part of feedback and control loops.
Thus for example an abundant supply of a particular product effectively shuts down
further production of that product. One way feedback is implemented is by the
physical distortion of a molecular machine when it binds a messenger molecule, a

phenomenon called “allosteric control” (see Chapter 9).

eAs an extreme form of feedback, a cell can even destroy itself. This “apoptosis” is a
normal part of the development of higher organisms, for example removing unneeded

neurons in the developing brain.

2.1.1 Internal gross anatomy

Paralleling the large degree of overlap between the functions of all cells, we find a correspondingly
large overlap between their gross internal architecture: Most cells share a common set of quasiper-
manent structures, many of them visible in optical microscopes. To see some of the fine substructure
below, however, we need to use the electron microscope, an instrument that gives better resolution

but requires killing the cell.
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Figure 2.5: (Electron micrograph.) A prokaryotic cell, E. coli. Cw, cell wall; N, nucleoid; R, ribosomes. The
plasma membrane lies just under the cell wall. [From (Wolfe, 1985).] [Copyrighted figure; permission pending.]

Membrane-bounded structures The simplest and most ancient type of cells are the prokary-

otes, including the familiar bacteria (Figures 2.3b and 2.5).2

Typically about one micrometer in
length, the gross anatomy of a bacterium consists mainly of a thick, rigid cell wall, creating a
single interior compartment. The wall may be studded with a variety of structures, such as one or
several flagella, long appendages used for swimming (Chapter 5). Just inside the wall lies a thin
plasma membrane. The material inside the plasma membrane sometimes shows a poorly defined
division into an interior “nucleoid” and the rest, but this region has no sharp edge and indeed has
no bounding membrane.

Plants, fungi, and animals are collectively called eukaryotes; they consist of “eukaryotic cells.”
Bakers’ yeast, or Saccharomyces cerevisie, is a simple example of a eukaryotic cell (Figure 2.6).
Eukaryotic cells are bigger than prokaryotes, typically 10 um or more in diameter. They too are
bounded by a plasma membrane, though the cell wall may either be absent (in animal cells) or
present (in plants and fungi). They contain various well-defined internal compartments (examples
of organelles), each bounded by one or more membranes roughly similar to the plasma membrane.?
In particular, eukaryotic cells are defined by the presence of a nucleus. The nucleus contains the
material that condenses into visible chromosomes during cell division (Section 3.3.2); the rest of
the cell’s contents is collectively called the cytoplasm. During this process the nucleus itself may
lose its definition, then re-form after the division is complete.

In addition to a nucleus, eukaryotic cells contain mitochondria, sausage-shaped organelles about
1 um wide (Figure 2.7). The mitochondria carry out the final stages of the metabolism of food and
the conversion of its chemical energy into molecules of ATP, the internal energy currency of the cell

2Since prokaryotes were originally defined only by the absence of a well-defined nucleus, it took some time to
realize that they actually consist of two distinct kingdoms, the “bacteria” (including the familiar human pathogens)
and the “archeea” (including many of those found in environments with extreme acidity, salt, or high temperature).

30ne definition of organelle is a discrete structure or subcompartment of a cell specialized to carry out a particular
function.
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Figure 2.6: (Electron micrograph.) Budding yeast cell, a simple eukaryote (14000x magnification). The nucleus
(n) is in the process of dividing. Pores in the nuclear surface are clearly visible. Also shown is a vacuole (v) and several
mitochondria (m, lower left). The sample was prepared by flash-freezing, cleaving the frozen block, then heating
gently in a vacuum chamber to remove outer layers of ice. A replica in carbon-platinum mixture was then made
from the surface thus revealed, and finally examined in the electron microscope. [From (Dodge, 1968)] [Copyrighted
figure; permission pending.]

(see Chapter 11). Mitochondria divide independently of the surrounding cell; when the cell divides,
each daughter cell gets some of the parent’s intact mitochondria.

Eukaryotic cells also contain several other classes of organelles (Figures 2.6-2.8):

eThe “endoplasmic reticulum” is a labyrinthine structure attached to the nucleus. It
serves as the main factory for the synthesis of the cell’s membrane structures, as well
as most of the products destined for export outside the cell.

eProducts from the endoplasmic reticulum in turn get sent to the “Golgi apparatus”
for further processing, modification, sorting, and packaging.

eGreen plants contain “chloroplasts.” Like mitochondria, chloroplasts manufacture the
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Figure 2.7: (Schematic; scanning electron micrograph.) (a) Locations of various internal structures in the mito-
chondrion. The ATP synthase particles are molecular machines where ATP production takes place (see Chapter 11).
They are studded into the mitochondrion’s inner membrane, a partition between an interior compartment (the ma-
trix) and an intermembrane space. (b) Interior of a mitochondrion. The sample has been flash-frozen, fractured,
and etched to show the internal matrix enclosed by the folds of the inner membrane. [From K. Tanaka, Int. Rev.
Cytol. 68(1980)111.] [Copyrighted figure; permission pending.]
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Figure 2.8: (Sketch; electron micrograph.) Gross anatomy of a white blood cell. A single plasma membrane
surrounds the cell. Other organelles are visible, most of them small compartments defined by membranes. Other
examples of secretory vesicles include the synaptic vesicles in neurons, shown in Figure 2.9 and discussed in Chap-
ter 12. Chapters 10 and 11 will discuss the osmotic regulation mechanism that keeps the cell’s interior full of fluid.
[Copyrighted figure; permission pending.]

internal energy-carrying molecule ATP. Instead of metabolizing food, however, they
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Figure 2.9: (Transmission electron micrograph.) Fusion of synaptic vesicles with the nerve cell membrane (upper
solid line) at the junction, or synapse, between a neuron (above) and a muscle fiber (below). A vesicle at the left has
arrived but not yet fused; two in the center are in the process of fusion, releasing their contents; one on the right is
almost completely incorporated into the cell membrane. Vesicle fusion is the key event in the transmission of nerve
impulses from one neuron to the next; see Chapter 12. [Digital image kindly supplied by J. Heuser.] [Copyrighted
figure; permission pending.]

obtain high-quality energy by capturing sunlight.
eThe cells of fungi such as yeast, as well as those of plants, also contain internal storage
areas called vacuoles (Figure 2.6). Like the cell itself, vacuoles also maintain electrical

potential drops across their bounding membranes (see Problem 11.3).

The part of the cytoplasm not contained in any membrane-bounded organelle is collectively called
the cell’s cytosol.

In addition, cells create a variety of vesicles (small bags). Vesicles can form by “endocytosis,”
as a part of the cell’s outer membrane engulfs some exterior object or fluid, then pinches off to
form an internal compartment. The resulting vesicle then fuses with internal vesicles containing
digestive enzymes, which break down its contents. Another class of vesicles are the “secretory
vesicles,” bags containing products destined for delivery outside the cell. A particularly important
class of secretory vesicles are the synaptic vesicles, which hold neurotransmitters at the ends of
nerve cells. When triggered by an arriving electrical impulse, the synaptic vesicles fuse with the
outer membrane of the nerve cell (Figure 2.9), release their contents, and thus stimulate the next

cell in a neural pathway (see Chapter 12).

Other elements In addition to the membrane-bounded structures listed above, cells construct
various other structures visible with the light microscope. For example, during mitosis the chro-
mosomes condense into individual objects, each with a characteristic shape and size (Figure 2.10).

Another class of structures, the cytoskeletal elements, will appear in Section 2.2.4.

2.1.2 External gross anatomy

Though many cells have simple spherical or brick-shaped forms, still others can have a much richer
external anatomy. For example, the fantastically complex, branched form of nerve cells (Figure 2.22

on page 51) allows them to connect to their neighbors in a correspondingly complex way. Each
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Figure 2.10: (Schematic; electron micrograph.) One of the 46 chromosomes of a somatic (ordinary, non-germ)
human cell. Just prior to mitosis, every chromosome consists of two identical “chromatids,” each consisting of tightly
folded “chromatin fibers.” Each chromatin fiber consists of a long DNA molecule wrapped around histone proteins
to form a series of “nucleosome particles.” [After WM Becker and DW Deamer The world of the cell, 2d edition, fig
13-20 (Benjamin—Cummings, 1991).] [Copyrighted figure; permission pending.]

Figure 2.11: (Scanning electron micrograph.) Cell crawling. At the front of this fibroblast cell (left), filopo-
dia, lamellipodia, and ruffles project from the plasma membrane. The arrow indicates the direction of movement.

[Copyrighted figure; permission pending.]

nerve cell, or neuron, has a central cell body (the soma) with a branching array of projections
(or processes). The processes on a neuron are subdivided into many “input lines,” the dendrites,
and one “output line,” the axon. The entire branched structure has a single interior compartment
filled with cytoplasm. Each axon terminates with one or more axon terminals (or “boutons”),
containing synaptic vesicles. A narrow gap, or synapse, separates the axon terminal from one of
the next neuron’s dendrites. Chapter 12 will discuss the transmission of information along the axon,
and from one neuron to the next.

Still other elements of the external anatomy of a cell are transient. For example, consider the cell
shown in Figure 2.11. This cell is a “fibroblast”; its job is to crawl between other cells, laying down
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Figure 2.12: (Scanning electron micrograph.) The ciliate Didinium (2285x magnification), a single-cell animal
found in still fresh water. Didinium’s “mouth” is at the end of a small projection, surrounded by a ring of cilia.
Chapter 5 will discuss how cilia drive fluid flow. [From (Shih & Kessel, 1982).] [Copyrighted figure; permission
pending.]

a trail of protein which then forms connective tissue. Other crawling cells include the “osteoblasts,”
which lay down mineral material to make bones, and the “Schwann cells” and “oligodendroglia,”
which wrap themselves around nerve axons, creating layers of electrical insulation.

The fibroblast shown in the figure has many protrusions on its leading edge. Some of these
protrusions, called “filopodia,” are fingerlike, about 0.1 um in diameter and several micrometers
long. Others, the “lamellipodia,” are sheetlike. Other sorts of cells, such as amceba, push out
thicker protrusions called “pseudopodia.” All of these protrusions form and retract rapidly, for
example searching for other cells with appropriate signaling molecules on their surfaces. When
such a surface is found, the crawling cell adheres to it, pulling the rest of its body along. In this
way, cell crawling can lead to the construction of complex multicellular tissues: Each cell searches
for a proper neighbor, then sticks to it.

Other specialized cells, such as the ones lining the intestine, may have hundreds of tiny fingerlike
projections, called “microvilli,” to increase their surface area for fast absorption of food. Other cells
have similarly shaped projections (cilia and eukaryotic flagella) that actively beat back and forth
(Figure 2.12). For example, the protozoan Paramecium has cilia that propel it through fluid;
conversely, the stationary cells lining your lungs wash themselves by constantly transporting a layer
of mucus upward. Chapter 5 will discuss this process. Figure 2.12 shows yet another use for cilia:
These ones bring food particles to the mouth of a single-celled animal.

Another class of small anatomical features includes the fine structure of the dendrite on a neuron.
The actual synapse frequently involves not the main body of the dendrite, but a tiny dendritic spine
projecting from it (fine bumps in Figure 2.22).
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2.2 The molecular parts list

Proceeding with our program (Roadmap, page 32), we now take a brief tour of the chemical world,
from which all the beautiful biological structures shown earlier arise. In this book we will not
be particularly concerned with the details of the chemical structures shown here. Nevertheless, a

certain minimum of terminology is needed to make the ideas we will study concrete.

2.2.1 Small molecules

Of the hundred or so distinct kinds of atoms, our bodies consist mostly of just six: carbon, hydrogen,
nitrogen, oxygen, phosphorus, and sulfur. Other atoms (such as sodium and chlorine) are present
in smaller amounts. A subtle change in spelling communicates a key property of many of these
single-atom chemicals: In water, neutral chlorine atoms (abbreviated Cl) take on an extra electron
from their surroundings, becoming “chloride ions” (Cl7). Other neutral atoms lose one or more
electrons in water, such as sodium atoms (abbreviated Na), which become “sodium ions” (Na™).

Of the small molecules made by joining these atoms, the most important one in cells is water,
which constitutes 70% of our body mass. We will explore some of the remarkable properties of water
in Chapter 7. Another important inorganic (that is, non-carbon-containing) molecule is phosphoric
acid (H3POy); in water this molecule separates into the negatively charged inorganic phosphate
(HPO3 ™, also called P;) and two positively charged hydrogen ions (also called “protons”). (You'll
look more carefully at the dissociation of phosphate in Problem 8.6.)

An important group of organic (carbon containing) molecules have atoms bonded into rings:

e Simple sugars include glucose and ribose, with one ring, and sucrose (cane sugar), with two.

e The four “bases” of DNA (see Section 2.2.3) also have a ring structure. One class (the
pyrimidines: cytosine, thymine) has one ring; the other (the purines: guanine and adenine)
has two. See Figure 2.13.

o A slightly different set of four bases is used to construct RNA: here thymine is replaced by

the similar one-ring molecule uracil.

The ring structures of these molecules give them a fixed, rigid shape. In particular, the bases
are flat (or “planar”) rings (in contrast, the sugars are “puckered”). Joining a base to a simple
sugar (ribose or deoxyribose) and one or more phosphates yields a nucleotide. Thus for example,
the nucleotide formed from the base adenine, the sugar ribose, and a single phosphate is called
“adenosine monophosphate,” or AMP. The corresponding molecules with two or three phosphate
groups in a row are called “adenosine diphosphate” (ADP) or “adenosine triphosphate” (ATP)
respectively (Figure 2.14). The nucleotide triphosphates are sometimes referred to generically as
“NTPs.”

Nucleotide triphosphates such as ATP carry a lot of stored energy, due in part to the self-
repulsion of a large electric charge (equivalent to four electrons), held in close proximity by the
chemical bonds of the molecule. (We will begin to study the idea of stored chemical energy, and its
utilization, in Chapter 8.) In fact, cells use ATP as a nearly universal internal energy currency; they

maintain high interior concentrations of ATP for use by all their molecular machines as needed.*

4To a lesser extent cells also use guanosine triphosphate (GTP), and a handful of other small molecules, for similar
purposes. Nucleotides also serve as internal signaling molecules in the cell. A modified form of AMP, called “cyclic
AMP” or cAMP, is particularly important in this regard.
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Figure 2.13: (Molecular structure.) J. Watson and F. Crick demonstrate the complementarity of DNA base pairs.
The dotted lines denote hydrogen bonds (see Chapter 7). The shapes and chemical structure of the bases allow
hydrogen bonds to form optimally only between adenine (A) and thymine (T) and between guanine (G) and cytosine
(C); in these pairings, atoms that are able to form hydrogen bonds can be brought close together without distorting
the bases’ geometries. [Cartoon by Larry Gonick, from (Gonick & Wheelis, 1991).] [Copyrighted figure; permission
pending.]

Two more classes of small molecules will be of special interest to us. The first of these, the
“fatty acids,” have a simple structure: They consist of a chain of carbon atoms (for example, 15
for palmitic acid, derived from palm oil), with a carboxyl group (-COOH) at the end. Fatty acids
are partly important as building blocks of the phospholipids to be discussed in the next subsection.
Finally, the amino acids are a group of about twenty building blocks from which all proteins are
constructed (Figure 2.15). As shown in the figure, each amino acid has a common central element,
with a “plug” at one end (the carboxyl group, -COOH) and a “socket” at the other (the amino
group, -NH,). Attached to the side of the central carbon atom (the “a-carbon”) is one of about
twenty different side groups (or “residues,” generically denoted by R in Figure 2.15a) determining
the identity of the amino acid; for example, alanine is the amino acid whose side group is ~CHs.
Protein synthesis consists of successively attaching the socket of the next amino acid to the plug of
the previous one by the “condensation reaction” shown, creating a polymer called a polypeptide.
The C-N bond formed in this process is called the peptide bond. Section 2.2.3 and Chapter 9 will

sketch how polypeptides turn into functioning proteins.

2.2.2 Medium-size molecules

A huge number of medium-sized molecules can be formed from the handful of atoms used by living
organisms. Remarkably, only a tiny subset of these are actually used by living organisms. Indeed,
the list of possible compounds with mass under 25000 times that of water probably runs into the
billions, and yet fewer than a hundred of these (and their polymers) account for most of the weight

of any given cell (see Table 2.1).
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Figure 2.14: (Molecular structure diagrams.) Adenosine triphosphate is hydrolyzed as part of many biochemical
processes. An ATP and a water molecule are both split, yielding ADP, inorganic phosphate (P;), and a proton (H7).
A similar reaction yielding about the same amount of free energy splits ATP into adenosine monophosphate (AMP),
a compound with one phosphate group, and pyrophosphate, or PP;. Chapter 8 will discuss chemical energy storage;
Chapter 10 will discuss molecular motors fueled by ATP. [Copyrighted figure; permission pending.]
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Figure 2.15: (Molecular structure diagrams.) (a) Formation of a polypeptide from amino acids by the condensation
reaction, essentially the reverse of the hydrolysis reaction shown in Figure 2.14. The four atoms in each gray
box constitute the “peptide bond.” (b) A short segment of a polypeptide chain, showing three residues (amino
acid monomers) joined by two peptide bonds. The residues shown are respectively histidine, cysteine, and valine.
Chapters 7-8 will discuss the interactions between the residues that determine the protein’s structure; Chapter 9 will
briefly discuss the resulting complex arrangement of protein substates. [Copyrighted figure; permission pending.]

C-terminus



44 CHAPTER 2 WHAT,S INSIDE CELLS [[STUDENT VERSION, DECEMBER 8, 2002]]

Table 2.1: Composition of bacterial cells, by weight. [From (Alberts et al., 1997)]

Small molecules (74%):

Tons, other inorganic small molecules 1.2%
Sugars 1%
Fatty acids 1%
Individual amino acids 0.4%
Individual nucleotides 0.4%
Water 70%
Medium and big molecules (26%):
Protein 15%
RNA 6%
DNA 1%
Lipids 2%
Polysaccharides 2%

Figure 2.16: (Structure.) Space-filling model of DPPC (dipalmitoyl phosphatidylcholine), a common phospholipid
molecule. Two “tails” (hydrocarbon chains, right) join to a “head” group (left) via phosphate and glycerol groups
(middle). Molecules like this one self-assemble into bilayer membranes (Figures 2.24 and 2.25), which in turn form
the partitions between cell compartments. Chapter 8 will discuss self-assembly. [Copyrighted figure; permission

pending.]

Figure 2.16 shows a typical phospholipid molecule. Phospholipids are formed by joining one or
two fatty acid chains (“tails”), via a glycerol molecule, to a phosphate and thence to a “head group.”
As described in Section 2.3.1 and Chapter 8, phospholipids self-assemble into thin membranes,
including the one surrounding every cell. Phospholipid molecules have long but informative names;
thus for example dipalmitoylphosphatidylcholine (or DPPC) consists of two (“di”) palmitic acid
chains joined by a phosphate to a choline headgroup. Similarly, most fats consist of three fatty
acid chains joined together by chemically bonding them to the three carbon atoms in a glycerol
molecule, to form a “triglyceride.” The joining is accomplished by a condensation reaction similar

to the one shown in Figure 2.15.
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Figure 2.17: (Structure rendered from atomic coordinates.) Stereo image of the DNA double helix. To view this
image, begin with your nose a few centimeters from the page (if you’re nearsighted, remove your glasses). Imagine
staring through the page at a distant object. If necessary, rotate the page a few degrees, so that the two dots near
the centers of each panel are aligned horizontally. Wait until the dots fuse. Concentrate on holding the dots fused
as you slowly move the page away from your nose. When the page is far enough away for your eyes to focus on it,
the three-dimensional image will jump off the page at you. The structure is about 2 nm wide. The portion shown
consists of twelve base pairs in a vertical stack. Each base pair is roughly a flat, horizontal plate about 0.34 nm thick.
The stack twists through slightly more than one full revolution from top to bottom. [From (Dickerson et al., 1982).]
[Copyrighted figure; permission pending.]

2.2.3 Big molecules

Just as amino acids can be joined into polypeptide chains, so, chains of nucleotide bases can also
be strung together to form polynucleotides. A polynucleotide formed from nucleotides containing
ribose is called a “ribonucleic acid,” or RNA; the analogous chain with deoxyribose is called a
molecule of “deoxyribonucleic acid,” or DNA. Watson and Crick’s insight (Section 3.3.3) was that
the flat, planar bases of DNA not only fit each other precisely, like jigsaw puzzle pieces (Figure 2.13);
they also can nest neatly in a helical stack (Figure 2.17), with the bases pointing inward and the
sugar and phosphate groups forming two “backbones” on the outside. Cells do not manufacture
RNA strands in complementary pairs, but a single RNA can have short tracts that complement
others along the chain, giving rise to a partially folded structure (Figure 2.18).

Each of your cells contains a total of about one meter of DNA, consisting of forty-six pieces.
Keeping track of such long threads, without their turning into a useless tangle, is not easy. Part of

the solution is a hierarchical packaging scheme: The DNA is wound onto protein “spools,” to form
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Figure 2.18: (Schematic molecular structure.) RNA is generally single-stranded, but it can contain local regions of
short complementary sequences, which can pair via hydrogen bonding as in DNA. The pairing between such regions
can fold the RNA up into a specific three-dimensional shape, as shown. Section 6.7 will discuss how the folding and
unfolding of RNA can be controlled by external forces. [Copyrighted figure; permission pending.]

“nucleosomes.” The nucleosomes in turn wind into higher-order structures, and so on up to the
level of entire condensed chromosomes (Figure 2.10).5

Section 2.2.1 mentioned the formation of polypeptides. The genetic message in DNA encodes
only the polypeptide’s primary structure, or linear sequence of amino acids. After the polypeptide
has been synthesized, though, it folds into an elaborate three-dimensional structure—a protein—
such as those seen in Figure 2.4g h,ik,l,m. The key to understanding this process is to note that
unlike DNA, whose large, uniform negative charge makes it repel itself, individual amino acid
residues on a protein may attract or repel each other (see Chapter 8). Thus the primary structure
determines the protein’s final, three-dimensional folded structure.

The lowest level of folding (the secondary structure) involves interactions between residues near
each other along the polypeptide chain. An example that will interest us in Chapter 9 is the alpha
helix, shown in Figure 2.19. At the next higher level, the secondary structures (along with other,
disordered regions) assemble to give the protein’s tertiary structure, the overall shape visible in the
examples of Figure 2.4. A simple protein consists of a single chain of 30-400 amino acids, folded
into a tertiary structure which is dense, roughly spherical, and a few nanometers in diameter (a
“globular” protein).

More complex proteins consist of multiple polypeptide chain subunits, usually arranged in a sym-
metrical array—the quaternary structure. A famous example is hemoglobin, the carrier of oxygen
in your blood (Chapter 9), which has four subunits. Many membrane channels (see Section 2.3.1
below) also consist of four subunits.

Polysaccharides form a third class of biopolymers (after nucleic acids and proteins). These are
long chains of sugar molecules. Some, like glycogen, are used for long-term energy storage. Others

help cells to identify themselves to each other.

2.2.4 Macromolecular assemblies

The previous subsection mentioned that individual protein chains can form confederations with def-
inite shapes, the quaternary structure of a protein assembly. Another possibility is the construction

of a linear array of polypeptide subunits, extending for an arbitrarily long distance. Such arrays

5Simpler forms of DNA packaging have also been found recently in prokaryotic cells.
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Figure 2.19: (Artist’s sketches of molecular structure.) The alpha helix structure. An oxygen atom in each amino
acid forms a hydrogen bond with a hydrogen located four units farther down the chain, helping to stabilize the
ordered structure against thermal motion. Chapter 9 will discuss the formation and loss of ordered structures like
this one under changes in environmental conditions. The structure shown is “right-handed” in the following sense:
Choose either direction along the helix axis, for example upward in the figure. Point your right thumb along this
direction. Then as you proceed in the direction of your thumb, the ribbon in (b) rotates around the axis in the same
direction as your fingers point (and oppositely to the direction you’d have gotten using your left hand). [Copyrighted
figure; permission pending.]

can be thought of as polymers made up of monomers which are themselves proteins. Two examples
will be of particular interest in Chapter 10: microtubles and F-actin.

The organelles mentioned in Section 2.1.1 are suspended within the eukaryotic cell’s cytosol. The
cytosol is far from being a structureless, fluid soup. Instead, a host of structural elements pervade
it, both anchoring the organelles in place and conferring mechanical integrity upon the cell itself.
These elements are all long, polymeric structures; collectively they are called the cytoskeleton.

The most rigid of the cytoskeletal elements are the microtubules (Figure 2.20). Microtubules
are 25 nm in diameter and can grow to be as long as the entire cell. They form an interior network of
girders, helping the cell to resist overall deformation (Figure 2.23). Another function of microtubules
is to serve as highways for the transport of cell products from one place to another (see Figure 2.21
and Section 2.3.2).
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Figure 2.20: (Electron micrographs; sketch.) Microtubules and their structure. (a) The main figure shows several
microtubules (130000 magnification). The arrangement of the wall subunits into parallel rows is clearly visible
(brackets). The inset shows a single microtubule in cross-section (830000x magnification). Each microtubule is
constructed from a circle of 13 protofilaments surrounding a central channel (C). (b) The sketch shows how the
subunits line up to form the microtubule wall. Tubulin monomers, called « and S, first link in a3 pairs to form the
dumbbell-shaped subunits shown in the diagram; the dumbbells then line end-to-end to form the microtubule. The
dashed lines are separated by 8 nm, the distance between adjacent 3 subunits. [From (Wolfe, 1985).] [Copyrighted

figure; permission pending.]

Actin filaments (also called “filamentous” actin, or F-actin) form a second class of cytoskeletal
elements. F-actin fibers are only 7nm in diameter; they can be several micrometers long (Fig-
ure 2.4k). A thin meshwork of these filaments underlies the surface of the cell, forming the cell’s
actin cortex. Filopodia, lamellipodia, and microvilli are all full of actin fibers, which cross-link
to each other, forming stiff bundles that help to push these projections out of the cell. Finally,
actin filaments furnish the “tracks” along which single-molecule motors walk to generate muscle
contraction (Chapter 10).

Examples of even more elaborate protein assemblies include the shells surrounding viruses, and

the whiplike bacterial flagellum (see Figure 2.3 on page 32).

2.3 Bridging the gap: Molecular devices

As projected (Roadmap, page 32), we now have a catalog of beautiful structures in cells, but little
has been said about how they form from the molecules in Section 2.2, nor indeed about how cells
carry out the many other activities characteristic of life. To begin bridging this gap, this section will
sketch a few of the molecular devices cells use. The unity of living things becomes very apparent
when we study molecular devices: While all cells are somewhat similar at the level of physiology,
they are very similar at the molecular level. Today’s routine use of bacteria as factories for the

expression of human genes testifies to this unity. The discovery of the function of human genes by
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Figure 2.21: (Schematic; electron micrograph.) (a) Model for how kinesin drags an organelle along a microtubule.
Chaper 10 will discuss the action of this single-molecule motor. (b) Micrograph appearing to show the situation
sketched in (a). The microtubule is labeled “MT” (lower left). Arrows show the attachment points. Neurons from
rat spinal cord were flash-frozen and deep-etched to create the sample. [Image kindly supplied by N. Hirokawa; see
(Hirokawa et al., 1989).] [Copyrighted figure; permission pending.]

studying their analogs in fruitflies gives another good example.

2.3.1 The plasma membrane

In order to maintain its identity (for example, to control its composition), every cell must be
surrounded by some sort of envelope. Similarly, every organelle and vesicle, too, must somehow be
packaged. Remarkably, all cells have met all of these challenges with a single molecular construction:
the “bilayer membrane” (Figure 2.24). Thus for example the plasma membrane of any cell looks
like a double layer under the electron microscope; all have roughly similar chemical composition,
electrical capacitance, and so on.

As its name implies, the bilayer membrane consists of two layers of molecules, primarily the
phospholipids shown in Figure 2.24. It’s only about 4 nm thick, and yet covers the entire exterior
of a cell, often a billion or more square nanometers! To be effective, this fragile-looking structure
must not rip, and yet it must also be fluid enough to let the cell crawl, endocytose, divide, and
so on. We will study the remarkable properties of phospholipid molecules which reconcile these
constraints in Chapter 8.

We get another surprise when we mix phospholipid molecules with water: Even without of any
cellular machinery, bilayer membranes self-assemble spontaneously. Chapter 8 will show that this
phenomenon is driven by the same interactions that cause salad dressing to separate spontaneously
into oil and water. Similarly, microtubules and F-actin can self-assemble from their subunits,
without the intervention of any special machinery (see Figure 10.4 on page 356).

Bilayer membranes do far more than just partition cells. The outer cell membrane is also studded
with a rich variety of other devices (Figure 2.25):

e “Integral membrane proteins” span the membrane, projecting on both the inner and outer
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sides. Some examples include the channels, which allow the passage of specified molecules
under specified conditions, “receptors,” which sense exterior conditions, and “pumps, which

actively pull material across the membrane (see Figure 2.30).

e Receptors can in turn connect to “peripheral membrane proteins,” which communicate infor-

mation to the interior of the cell.

e Still other integral membrane proteins anchor the cell’s membrane to its underlying actin cor-
tex, helping the cell to maintain its optimal shape. A related example concerns the membrane
of the human red blood cell. A network of elastic protein strands (in this case spectrin) is
anchored to the membrane by integral membrane proteins. This network deforms as the red
cell squeezes through the body’s capillaries, then pops the cell back to its normal shape after

its passage.

2.3.2 Molecular motors

As mentioned earlier, actin filaments form the “tracks” along which tiny motors walk, generating
muscle contraction (Chapter 10). Many other examples of walking motors are known in cells.
Figure 2.21 shows a vesicle being dragged along a microtubule to its destination at an axon terminal.
This “axonal transport” brings needed proteins to the axon terminal, as well as the ingredients from
which synaptic vesicles will be built. A family of single-molecule motors called “kinesins” supply
the motive force for this and other motions, for example the dragging of chromosomes to the two
halves of a dividing cell. Indeed, selectively staining both the microtubules and the kinesin (by
attaching fluorescent markers to each) shows that they are generally found together in the cell
(Figure 2.26). It is even possible to follow the progress of individual kinesin molecules as they walk
along individual microtubules (Figure 2.27). In such experiments, the kinesin molecules begin to
walk as soon as a supply of ATP molecules is added; they stop when the ATP is used up or washed
away.

The cilia mentioned in Section 2.1.2 are also powered by walking motors. Each cilium contains
a bundle of microtubules. A motor molecule called dynein attaches to one microtubule and walks
along its neighbor, inducing a relative motion. Coordinated waves of dynein activity create traveling
waves of bending in the cilium, making it beat rhythmically.

Other motors generate rotary motion. Examples include the motor that drives the bacterial
flagellum (Figure 2.3b; see Chapters 5 and 11), and the one that drives the synthesis of ATP in
mitochondria (Chapter 11). Rather than being driven directly by ATP, both of these motors use
as their “fuel” a chemical imbalance between the sides of the membrane they span. Ultimately the

imbalance comes from the cell’s metabolic activity.
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Figure 2.22: (Two-photon laser scanning micrograph.) Purkinje neuron of the brain. The neuron shown is alive
and surrounded by a dense network of other neurons; a fluorescent dye has been injected into the cell soma from the
micropipette at lower left to visualize only the one cell of interest. The dendritic tree of this neuron (shown) receives
over 100000 synaptic inputs on dendritic spines. The spines are visible as tiny bumps on the dendrites. Chapter 12
will discuss the transmission of impulses in neurons. [Digital image kindly supplied by K. Svoboda; see also (Svoboda
et al., 1996).]
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Figure 2.23: (Fluorescence micrograph.) Newt lung cell in which the DNA is stained blue and microtubules in
the cytoplasm are stained green. This network of rigid filaments helps the cell maintain its proper shape, as well as
supplying the tracks along which kinesin and other motors walk. Chapter 10 will discuss these motors. [Copyrighted

figure; permission pending.]
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Figure 2.24: (Drawing, based on molecular-dynamics simulations.) Space-filling model of an artificial bilayer
membrane. Imagine repeating the arrangement of molecules upward and downward on the page, and into and out
of the page, to form a double layer. The phospholipid molecules are free to move about in each layer, but remain
oriented with their polar head groups facing outward, toward the surrounding water. Chapter 8 will discuss the self-
assembly of structures like these. As with any molecular structure, keep in mind when looking at this picture that
things are not really static: The molecules are in constant, riotous, thermal motion. [Copyrighted figure; permission

pending.]
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Figure 2.25: (Sketch.) Plasma membrane of a eukaryotic cell. The membrane consists mainly of proteins inserted

into, or attached to, a bilayer of phospholipid molecules. Integral membrane proteins are embedded in the membrane,
usually via short hydrophobic stretches. Some transmembrane proteins span the membrane only once; others have
multiple membrane-spanning regions. Other proteins are anchored to the membrane by phospholipids that are
chemically attached to the protein. Still other proteins can be anchored to the outer face of the plasma membrane
by glycolipids (lipids chemically attached to sugar chains) and to the inner face by fatty acids. Peripheral membrane
proteins are not inserted in the membrane, but rather are indirectly attached, for example by attaching to an integral

membrane protein as shown. [Copyrighted figure; permission pending.]
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Figure 2.26: (Fluorescence optical micrograph.) Experimental demonstration that kinesin and microtubules are
found in the same places within cells. This cell has been doubly labeled with fluorescent antibodies labeling both
kinesin (yellow) and tubulin (green). The kinesin, attached to transport vesicles, is mostly associated with the
microtubule network, as seen from the orange color where fluorescence from the two kinds of antibodies overlap.
[Digital image kindly supplied by S. T. Brady; see (Brady & Pfister, 1991).] [Copyrighted figure; permission pending.]
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Figure 2.27: (Video photomicrograph frames.) Motility assay of the fluorescently labeled molecular motor C351, a
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single-headed member of the kinesin family. A solution of C351 with concentration between 1-10 pm was washed over
a set of microtubules fixed to a glass slide. The microtubules were also fluorescently labeled; one of them is shown
here (green). The motors (red) attached to the microtubule, moved along it for several seconds, then detached and
wandered away. Two individual motors have been chosen for study; their succesive locations are marked by triangles
and arrows respectively. Generally the motors moved strictly in one direction, but backward stepping was also
observed (triangles), in contrast to ordinary, two-headed kinesin. [From (Okada & Hirokawa, 1999).] [Copyrighted
figure; permission pending.]
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Figure 2.28: (Structure rendered from atomic coordinates.) Phosphoglycerate kinase. This enzyme performs one
of the steps in the glycolysis reaction; see Section 10.4. In this figure and Figure 2.29, hydrophobic carbon atoms are
white, mildly hydrophilic atoms are pastel (light blue for nitrogen and pink for oxygen), and strongly hydrophilic
atoms carrying a full electrical charge are brightly colored (blue for nitrogen and red for oxygen). The concept
of hydrophobicity, and the behavior of electrostatic charges in solution, are discussed in Chapter 7. Sulfur and
phosphate atoms are colored yellow. Hydrogen atoms are colored according to the atom to which they are bonded.
The enzyme manufactures one ATP molecule (green object) with each cycle of its action. [From (Goodsell, 1993)]

[Copyrighted figure; permission pending.]

Figure 2.29: (Composite of structures rendered from atomic coordinates.) A DNA-binding protein (107 x magni-
fication). The color scheme is the same as Figure 2.28. Repressor proteins like this one bind directly to the DNA
double helix, physically blocking the polymerase that makes messenger RNA. They recognize a specific sequence of
DNA, generally blocking a region of 10—20 basepairs. The binding does not involve the formation of chemical bonds,
but rather uses the weaker interactions discussed in Chapter 7. Repressors form a molecular switch, turning off the
synthesis of a given protein until it is needed. [From (Goodsell, 1993).] [Copyrighted figure; permission pending.]
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2.3.3 Enzymes and regulatory proteins

Enzymes are molecular devices whose job is to bind particular molecules, under particular condi-
tions, and promote particular chemical changes. The enzyme molecule itself is not modified or used
up in this process—it is a catalyst, or assistant, for a process that could in principle happen on its
own. Enzymes may break down large molecules, as in digestion, or build small molecules into big
ones. One feature of enzymes immediately apparent from their structures is their complicated and
well-defined shape (Figure 2.28). Chapter 7 will begin a discussion of the role of shape in conferring
specificity to enzymes; Chapter 9 will look more deeply into how the shapes actually arise, and how
an enzyme maintains them despite random thermal motion.

Another context where binding specificity is crucial concerns control and feedback. Nearly every
cell in your body contains the same collection of chromosomes,® and yet only pancreas cells secrete
insulin; only hair cells grow hairs, and so on. Each cell type has a characteristic arrangement of
genes that are active (“switched on”) and inactive (“switched off”). Moreover, individual cells
can modulate their gene activities based on external circumstances: If we deny a bacterium its
favorite food molecule, but supply an alternative food, the cell will suddenly start synthesizing
the chemicals needed to metabolize what’s available. The secret to gene switching is a class of
“regulatory proteins,” which recognize and bind specifically to the beginning of the genes they
control (Figure 2.29). One class, the “repressors,” can physically block the start of their gene,
preventing transcription. Others help with the assembly of the transcriptional apparatus and have
the opposite effect. Eukaryotic cells have a more elaborate implementation of the same general
idea.

Finally, the pumps and channels embedded in cell membranes are also quite specific. For
example, a remarkable pump to be studied in Chapter 11 has an operating cycle in which it binds
only sodium ions, ferries them to the other side of the membrane, then binds only potassium ions
and ferries them in the other direction! As shown in Figure 2.30c, this pump also consumes ATP,
in part because the sodium ions are being pulled from a region of negative electrical potential (the
cell’s interior) to a positive region, increasing their potential energy. According to the First Law
(Section 1.1.2 on page 4), such a transaction requires a source of energy. (The Example on page 419
will explore the energy budget of this pump in greater detail.)

2.3.4 The overall flow of information in cells

Section 2.3.3 hinted that the cell’s genome should not be regarded as a blueprint, or literal repre-
sentation, of the cell, but rather as specifying an algorithm, or set of instructions, for creating and
maintaining the entire organism containing the cell. Gene regulatory proteins supply some of the
switches turning parts of the algorithm on and off.

We can now describe a simplified version of the flow of information in cells (Figure 2.31).7

1. The DNA in the cell nucleus contains the master copy of the software, in duplicate. Under
ordinary circumstances this copy is not modified, but only duplicated during cell division. A
molecular machine called DNA polymerase accomplishes the duplication. Like the machines
mentioned in Section 2.3.2, DNA polymerase is made from proteins. The DNA contains

genes, consisting of regulatory regions along with code specifying the amino acid sequences

6Exceptions include germ cells (genome not present in duplicate) and human red blood cells (no nucleus at all).
7"Some authors refer to this scheme as the “central dogma” of molecular biology, an unfortunate phrase due to
F. Crick, who proposed it in 1958. Several amendments to this scheme are discussed in Section 2.3.4’ on page 61.
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Figure 2.30: (Schematic.) (a) , (b) Passive ion channels, leading to the Ohmic part of membrane conductances

(see Chapter 11). When open, the individual ion channels for sodium and potassium have similar conductances,

but the latter are about 25 times more plentiful in living cells. (c) Schematic of the sodium—potassium pump, also

discussed in Chapter 11. The sketch has been simplified; actually the pump is believed to bind three Nat ions and

a phosphate before its main conformational change, which expels the Nat’s. Then it binds two K¥ ions, releases

ADP and phosphate, pulls the KT’s in and releases them. At this point the pump is ready to begin its cycle anew.

[Copyrighted figure; permission pending.]

of various needed proteins. A higher organism may have tens of thousands of distinct genes,
while E. coli has fewer than 5000. (The simplest known organism, Mycoplasma genitalium,
has fewer than 500!) In addition to the genes, the DNA contains a rich array of regulatory
sequences for the binding of regulatory proteins, along with immense stretches with no known

function.

. Another molecular machine called RNA polymerase reads the master copy in a process called

transcription (Figure 2.32). RNA polymerase is a combination of walking motor and enzyme;
it attaches to the DNA near the start of a gene, then pulls the polymer chain through a
slot, simultaneously adding successive monomers to a growing “transcript” made of RNA
(Section 2.2.3). The transcript is also called messenger RNA or “mRNA.” In eukaryotic cells
it leaves the nucleus through pores in its bounding membrane (see Figure 2.6), thus entering
the cytosol. The energy needed to drive RNA polymerase comes from the added nucleotides
themselves, which arrive in the high-energy NTP form (Section 2.2.1); the polymerase clips off
two of the three phosphate groups from each nucleotide as it incorporates it into the growing
transcript (Figure 2.14).

In the cytosol, a complex of devices collectively called the ribosome binds the transcript and
again walks along it, successively building up a polypeptide, based on instructions encoded
in the transcript. The ribosome accomplishes this translation by orchestrating the sequential
attachment of transfer RNA (or “tRNA”) molecules, each binding to a particular triplet
of monomers in the transcript and each carrying the corresponding amino acid monomer
(residue) to be added to the growing polypeptide chain (Figure 2.33).

The polypeptide may spontaneously fold into a functioning protein, or may so fold with the
help of other auxiliary devices picturesquely called chaperones. Additional chemical bonds

(“disulfide bonds” between residues containing sulfur atoms) can form to cross-link monomers
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Figure 2.31: (Schematic.) The flow of information in a cell. Sometimes the product of translation is a regulatory

protein, which interacts with the cell’s genome, creating a feedback loop. [Copyrighted figure; permission pending.]

/RNA polymerase

Figure 2.32: (Drawing, based on structural data.) Transcription of DNA to messenger RNA by RNA polymerase,
a walking motor. The polymerase reads the DNA as it walks along it, synthesizing its mRNA transcript as it moves.
[From (Goodsell, 1993).] [Copyrighted figure; permission pending.]

distant from each other along the chain, or even in another chain.

5. The folded protein may then form part of the cell’s architecture. It may become a function-
ing device, for example one of the ones shown in Figure 2.33. Or it may be a regulatory
protein, helping close a feedback loop. This last option gives a mechanism orchestrating the

development of the cell (or indeed of its surrounding organism).

Section 2.3.4" on page 61 mentions some modifications to the simplified scheme given above.

The big picture

Returning to the Focus Question, we see that we have a lot of work to do: The following chapters
will need to shed physical light on the key phenomenon of specificity, self-assembly, and active
transport. As mentioned throughout the chapter, specific structures and processes from this chapter
to be discussed later include flagellar propulsion, RNA folding, the material properties of bilayer

membranes and of individual DNA and protein molecules, the structure and function of hemoglobin,
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Figure 2.33: (Drawing, based on structural data.) The information in messenger RNA is translated into a sequence
of amino acids making up a new protein by the combined action of over fifty molecular machines. In particular, amino
acyl-tRNA synthetases supply transfer RNAs loaded with amino acid residues to the ribosomes, which construct
the new protein as they read the messenger RNA. Not shown are some smaller auxiliary proteins, the “initiation,
elongation, and transcription factors,” that help the ribosomes do their job. [From (Goodsell, 1993).] [Copyrighted
figure; permission pending.]

the operation of the kinesin motor, the synthesis of ATP in mitochondria, and the transmission of
nerve impulses.

It should be clear that the complete answers to these questions will occupy whole shelves full
of books, at some future date when the complete answers are known! The purpose of this book is
not to give the complete answers, but rather to address the more elementary question: Faced with
all these miraculous processes, we only ask, “How could anything like that happen at all?” Here
indeed we will find that simple physical ideas do help.

Further reading

Semipopular:
Structure and function in cells: (Goodsell, 1993); (Hoagland & Dodson, 1995)

Intermediate:
General reference: (Lackie & Dow, 1999; Smith et al., 1997)
Texts: (Cooper, 2000; Alberts et al., 1997; Karp, 2002; Pollard & Earnshaw, 2002)

Technical:
Texts: (Alberts et al., 2002), (Lodish et al., 2000)
Proteins: (Branden & Tooze, 1999)
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2.3.4" Since its enunciation in the 1950’s, several amendments to the above simplified picture of

information flow have been found. (Others were known even at the time.) Just a few examples

include:

1.

It is an overstatement to claim that all of the cell’s heritable characteristics are determined by
its DNA sequence. A cell’s entire state, including all the proteins and other macromolecules
in its cytoplasm, can potentially affect its descendants. The study of such effects has come
to be called “epigenetics.” Omne example is cell differentiation: Once a liver cell forms, its
descendants will be liver cells. A cell can also give its daughters misfolded proteins, or
“prions,” transmitting a pathology in this way. Even multiple clones of the same animal are
generally not identical.®

Moreover, the cell’s DNA can itself be modified, either permanently or temporarily. Examples
of permanent modification include random point mutations (Chapter 3), random duplication,
deletion, and rearrangement of large stretches of the genome from errors in crossing-over
(Chapter 3), and insertion of foreign DNA by retroviruses such as HIV. Temporary, reversible

changes include chemical modification, for example methylation.

2'. Other operations, such as “RNA editing,” may intervene between mRNA synthesis and trans-
lation.
3’. A polypeptide can be modified after translation: Additional chemical groups may need to be
added, and so on, before the finished protein is functional.
4'. Besides chaperones, eukaryotic cells also have special enzymes to destroy polypeptides that
have improperly folded.
Problems

2.1 All Greek to me

Now’s the time to learn the Greek alphabet. Here are the letters most often used by scientists. The

following list gives both lower and upper case (but omits the upper case when it looks just like a

Roman letter):

a? 57 7/F7 5/A7 67 C7 777 9/@7 ,{/7 A/“/\“7 /'1’7 1/7 6/57 /n-/Hﬂ p7 0/27 T? U/Tﬂ ¢/¢7 X’ /IZ}/\IJ7 u}/(2

When reading aloud we call them alpha, beta, gamma, delta, epsilon, zeta, eta, theta, kappa,

lambda, mu, nu, xi (pronounced “k’see”), pi, rho, sigma, tau, upsilon, phi, chi (pronounced “ky”),

[y

psi (pronounced “p’sy”), omega. Don’t call them all “squiggle.”

Practice by examining the quote given in Chapter 1 from D’Arcy Thompson, which in its entirety

reads: “Cell and tissue, shell and bone, leaf and flower, are so many portions of matter, and it is

in obedience to the laws of physics that their particles have been moved, moulded, and conformed.

They are no exception to the rule that ©cos ael yewperper.” From the sounds made by each letter,

can you guess what Thompson was trying to say? [Hint: ¢ is an alternate form of o.]

81dentical twins are more similar, but they share more than DNA—they come from a common egg and thus share

its cytoplasm.
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2.2 Do-it-yourself proteins
This book contains some molecular structure pictures, but you can easily make your own. Down-
load RasMol from http://www.umass.edu/microbio/rasmol/index.html (or get some other free
molecular viewing application?). Now go to the Protein Data Bank,'? http://www.rcsb.org/pdb/.
On the main page, try searching for and viewing molecules (see also the “molecule of the month”
department, from which the examples below were taken). Once you get the molecule’s main entry,
click “explore” on the right, then “view” and download in RasMol format. Play with the many
RasMol options. Alternatively you can just click “quickpdb” for a viewer that requires no separate
application. Here are some examples; several are discussed in this chapter elsewhere in this book:
a. Thrombin, a blood-clotting protein (code 1ppb).
b. Insulin, a hormone (code 4ins).
c. Transfer RNA (code 4tna).
d. Myosin, a molecular motor (code 1b7t).
e. The actin-myosin complex (code 1alm). This entry shows a model of one myosin motor bound
to a short actin filament formed of five molecules, based on data from electron microscopy. The
file contains only alpha carbon positions for the proteins, so you’ll need to use backbone diagrams
when you look at it.
f. Rhinovirus, responsible for the common cold (code 4rhv).
g. Myoglobin, an oxygen-storing molecule found in muscles (code imbn). Myoglobin was the first
protein structure ever determined.
h. DNA polymerase (code 1tau).
i. the nucleosome (code 1aoi).

Use your mouse to rotate the pictures. Use the measurement feature of RasMol to find the
physical size of each object. Selectively color only the hydrophobic residues. Try the “stereo”

option. Print the ones you like.

2.3 Do-it-yourself nucleic acids

Go to the Nucleic Acid Database, http://ndbserver.rutgers.edu/. Download coordinates and
view using RasMol or another software:

a. The B-form of DNA (code bd0001). Choose the space-filling representation and rotate the
molecule to see its helical structure.

b. Transfer RNA (code trnal2).

¢. RNA hammerhead enzyme, a ribozyme (code urx067).

d. The complex of integration host factor bound to DNA (code pdt040). Try the “cartoon” display

option.

2.4 Do-it-yourself small molecules
Go to http://molbio.info.nih.gov/cgi-bin/pdb and search for some small molecule mentioned
in this chapter. You’ll probably find PDB files for larger molecules binding the one you chose. Look

around.

2.5 Do-it-yourself micelles and bilayers

9RasMol was written by Roger Sayle and others. Protein Explorer, available at the same site, was written by
Eric Martz and others; it requires installation of additional software. Yet another popular package is VMD; see

http://www.ks.uiuc.edu/Research/vmd/.
10The PDB is operated by the Research Collaboratory for Structural Bioinformatics (RCSB). You can also find

RasMol there under “software.”
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Go to http://moose.bio.ucalgary.ca/, http://persweb.wabash.edu/facstaff/fellers/,
http://www.umass.edu/microbio/rasmol/bilayers.htm, or some other database with lipid
structures.

a. Go to “downloads” at the first site mentioned and look at the file m65.pdb, which shows a micelle
containing 65 molecules of the surfactant. This picture is the ouput of a molecular simulation. Tell
RasMol to remove the thousands of water molecules surrounding the micelle (uncheck “hydrogen”
and “hetero atoms”), so you can see it.

b. At the second site mentioned, get the coordinates of the dipalmitoyl phosphatidylcholine) bilayer
and view it. Again remove the surrounding water. Rotate it to see the layer structure.



Part 11:

Diffusion, Dissipation,

Drive

Robert Hooke’s original drawing of cork cells (1665). [R. Hooke, Micrographia (Martyn and Allestry,
London, 1665)]
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Chapter 3

The molecular dance

Who will lead me into that still more hidden and dimmer region
where Thought weds Fact, where the mental operation of the
mathematician and the physical action of the molecules are seen
in their true relation? Does not the way pass through the very
den of the metaphysician, strewed with the remains of former
explorers? — James Clerk Maxwell, 1870

The previous chapter made it clear that living cells are full of fantastically ordered structures,
all the way down to the molecular scale. But Chapter 1 proposed that heat is disorganized molec-
ular motion, and tends to destroy order. Does that imply that cells work best at the coldest
temperatures? No, life processes stop at low temperature.

To work our way out of this paradox, and ultimately own the concept of free energy sketched
in Chapter 1, we must first understand more precisely the sense in which heat is a form of motion.
This chapter will begin to explain and justify that claim. We will see how the idea of random
molecular motion quantitatively explains the ideal gas law (Section 1.5.4), as well as many common
observations, from the evaporation of water to the speeding-up of chemical reactions when we add
heat.

These physical ideas have an immediate biological application: As soon as we appreciate the
nanoworld as a violent place, full of incessant thermal motion, we also realize just how miraculous
it is that the tiny cell nucleus can maintain a huge database—your genome—without serious loss of
information over many generations. Section 3.3 will see how physical reasoning led the founders of
molecular biology to infer the existence of a linear-chain molecule carrying the database, decades
before the actual discovery of DNA.

Here is a question to focus our thoughts:
Biological question: Why is the nanoworld so different from the macroworld?

Physical idea: Everything is (thermally) dancing.

(©2000 Philip C. Nelson
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3.1 The probabilistic facts of life

We want to explore the idea that heat is nothing but random motion of molecules. First, though,
we need a closer look at that slippery word, “random.” Selecting a person at random on the
street, you cannot predict that person’s IQ before measuring it. But on the other hand, you can be
virtually certain that her IQ is less than 300! In fact, whenever we say that a measured quantity
is “random,” we really implicitly have some prior knowledge of the limits its value may take, and
more specifically of the overall distribution that many measurements of that quantity will give, even
though we can say little about the result of any one measurement. This simple observation is the
starting point of statistical physics.

Scientists at the start of the twentieth century found it hard to swallow that sometimes physics
gives only the expected distribution of measurements, and cannot predict the actual measured
value of, say, a particle’s momentum. Actually, though, this is a blessing in disguise. Suppose we
idealize the air molecules in the room as tiny billiard balls. To specify the “state” of the system
at an instant of time, we would list the positions and velocity vectors of every one of these balls.
Eighteenth-century physicists believed that if they knew the initial state of a system perfectly, they
could in principle find its final state perfectly too. But it’s absurd—the initial state of the air in
this room consists of the positions and velocities of all 102> or so gas molecules. Nobody has that
much initial information, and nobody wants that much final information! Rather, we deal in average
quantities, such as “how much momentum, on average, do the molecules transfer to the floor in one
second?” That question relates to the pressure, which we can easily measure.

The beautiful discovery made by physicists in the late nineteenth century is that in situa-
tions where only probabilistic information is available and only probabilistic information is desired,
physics can sometimes make incredibly precise predictions. Physics won’t tell you what any one
molecule will do, nor will it tell you precisely when a molecule will hit the floor. But it can tell you
the precise probability distribution of gas molecule velocities in the room, as long as there are lots
of them. The following sections introduce some of the terminology we’ll need to discuss probability

distributions precisely.

3.1.1 Discrete distributions

Suppose some measurable variable x can take only certain discrete values 1, o, ... (see Figure 3.1).
Suppose we have measured x on N unrelated occasions, finding © = x; on Nj occasions, x = x4
on N> occasions, and so on. If we start all over with another N measurements we’ll get different
numbers N/, but for large enough N they should be about the same; then we say the probability
of observing x; is P(x;), where

N;/N — P(x;) for large N. (3.1)

Thus P(z;) is always a number between zero and one.

The probability that any given observation will yield either x5 or 15 (say) is just (N5 + Ni2)/N,
or P(x5)+ P(x12). Since the probability of observing some value of = is 100% (that is, 1), we must
have

> P(zi)=(Ny+Ny+--)/N=N/N=1. normalization condition (3.2)

Equation 3.2 is sometimes expressed in the words “P is properly normalized.”
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Figure 3.1: (Metaphor.) Examples of intermediate outcomes not allowed in a discrete probability distribution.
[Cartoon by Larry Gonick, from (Gonick & Smith, 1993).] [Copyrighted figure; permission pending.]

3.1.2 Continuous distributions

More often x can take on any value in a continuous interval a < z < b. In this case, we partition
the interval into bins of width dz. Again we imagine making many measurements and drawing a
histogram, finding that dN(xo) of the measurements yield a value for x somewhere between zy and

xo + dz. We then say that the probability of observing x in this interval is P(z() da, where
dN(z¢)/N — P(zo)dz for large N. (3.3)

Strictly speaking, P(x) is only defined for the discrete values of x defined by the bins. But if we
make enough measurements, we can take the bin widths dz to be as small as we like and still have
a lot of measurements in each bin, dN(z) > 1. If P(x) approaches a smooth limiting function as
we do this, then we say P(x) is the probability distribution (or probability density) for x. Once
again, P(x) must always be nonnegative.

Equation 3.3 implies that a continuous probability distribution has dimensions inverse to those
of . A discrete distribution, in contrast, is dimensionless (see Equation 3.1). The reason for this
difference is that the actual number of times we land in a small bin depends on the bin width dz.
In order to get a quantity P(x) that is independent of bin width, we needed to divide dN(xg)/N
by dz in Equation 3.3; this operation introduced dimensions.

What if the interval isn’t small? The probability of finding x is then just the sum of all
the bin probabilities making up that interval, or f;f da P(z). The analog of Equation 3.2 is the

normalization condition for a continuous distribution:

b
/ dz P(z) = 1. (3.4)
Dull Example: The uniform distribution is a constant from 0 to a:

P(z) = {(1/a) if0<z<a;

. (3.5)
0 , otherwise.
Interesting Example: The famous Gaussian distribution, or “bell curve,” or “normal distribution”

is

P(z) = Ae~(@=w0)*/207 (3.6)
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Figure 3.2: (Mathematical function.) Unnormalized Gaussian distribution centered at o = 1 with o = 1/4/2 and
A =1 (see Equation 3.6).

where A and ¢ are positive constants and x is some other constant.

Your Turn 3a
You can quickly see what a function looks like with your favorite graphing software. For example,

in Maple writing plot (exp(-(x-1)"2),x=-1..3); gives Figure 3.2. Try it, then play with the
constants A and o to see how the figure changes.

The constant A isn’t free; it’s fixed by the normalization condition. This is such an important
and useful derivation that we should see how it works in detail.

Example Find the value of A required to normalize the Gaussian distribution.

Solution: First we need that

/ N dye ¥ = /. (3.7)

— 00
You can think of this as merely a mathematical fact to be looked up in an integral
table (or see the derivation given in Section 6.2.2" on page 206). What’s more

important are a couple of easy steps from calculus. Equation 3.4 requires that we
choose the constant A so that

1= A/Oo dz e~ (z=0)*/20*

Change variables to y = (x —0)/(v/20), so dy = dz/v/20. Then Equation 3.7 gives
A=1/(cV2m).

In short, the Gaussian distribution is

1
P(z) = 2—6_(36_10)2/202. Gaussian distribution (3.8)
o

Looking at Figure 3.2, we see that it’s a bump function centered at xo (that is, maximum there).

The bump has a width controlled by . The larger o, the fatter the bump, since one gets to go
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farther away from xo before the factor e~ (®=20)*/20* heging to hurt. Remembering that P(z) is a
probability distribution, this observation means that for bigger o you’re likely to find measurements
with bigger deviations from the most-likely value zy. The prefactor of 1/0 in front of Equation 3.8
arises because a wider bump (larger o) needs to be lower to maintain a fixed area. Let’s make all

these ideas more precise, for any kind of distribution.

3.1.3 Mean and variance

The average (or mean or expectation value) of z for any distribution is written (z) and defined
by .

() = {ZZ x;P(x;) dlscr.ete (3.9)

[dzxP(x) , continuous.

For the uniform and Gaussian distributions, the mean is just the center point. That’s because these

distributions are symmetrical: There are exactly as many observations a distance d to the right of

the center as there are a distance d to the left of center. For a more complicated distribution this

needn’t be true; moreover, the mean may not be the same as the most probable value, which is

the place where P(z) is maximum.
More generally, even if we know the distribution of z we may instead want the mean value of

some other quantity f(x) depending on x. We can find (f) via

o) = {ZZ flx)P(x;) , discrete

fdxf(if)P(%) , continuous. (3.10)

If you go out and measure = just once you won’t necessarily get (x) right on the nose. There
is some spread, which we measure using the root-mean-square deviation (or RMS deviation, or
standard deviation):

RMS deviation = /((z — ())?). (3.11)

Example a. Show that (((f))) = (f) for any function f of x.

b. Show that if the RMS deviation equals zero, this implies that every measurement
of z really does give exactly (x).

Solution:

a. We just note that (f) is a constant (that is, a number), independent of 2. The
average of a constant is just that constant.

b. In the formula 0 = ((z — (2))?) = >, P(;)(x; — (z))?, the right hand side doesn’t
have any negative terms. The only way this sum could equal zero is for every term

to be zero separately, which in turn requires that P(z;) = 0 unless x; = (z).

Note that it’s crucial to square the quantity (x — (z)) when defining the RMS deviation; otherwise
we’d trivially get zero for the average value ((x — (z))). Then we take the square root just to get
something with the same dimensions as z. We'll refer to ((z — (z))?) as the variance of x (some
authors call it the second moment of P(x)).

Your Turn 3b
a. Show that variance(z) = (22) — ((x))2.

b. Show for the uniform distribution (Equation 3.5) that variance(z) = a?/12.
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Let us work out the variance of the Gaussian distribution, Equation 3.8. Changing variables as

in the Example on page 68, we need to compute
2 2 00
variance(z) = % /_OC dy er_yQ. (3.12)
To do this we need a trick, which we’ll use again later: Define a function I(b) by
1(b) :/ dye V"

Again changing variables gives I(b) = y/7/b. Now consider the derivative dI/db. On one hand it’s

1
dI/db=—3 ;T—g (3.13)

On the other hand,
dI/db = / dy %e—b?f =— / dyyPe " (3.14)

Setting b = 1, that last integral is the one we needed (see Equation 3.12)! Combining Equations 3.13,
3.14, and 3.12 gives variance(z) = % (—%|b:1) = % X 4 Thus the RMS deviation of the
Gaussian distribution just equals the parameter ¢ appearing in Equation 3.8.

3.1.4 Addition and multiplication rules

Addition rule Section 3.1.1 noted that for a discrete distribution, the probability that the next
measured value of x is either z; or z; equals P(z;) + P(z;), unless ¢ = j. The key thing is that
x can’t equal both x; and x;; we say the alternative values are exclusive. More generally, the
probability that a person is either taller than 2m or shorter than 1.9 m is obtained by addition,
whereas the probability to be either taller than 2 m or nearsighted cannot be obtained in this way.

For a continuous distribution, the probability that the next measured value of x is either between
a and b or between ¢ and d equals the sum, fab dz P(x) + fj dz P(x), provided the two intervals
don’t overlap. That’s because the two probabilities (to be between a and b or between ¢ and d) are

exclusive in this case.

Multiplication rule Now suppose we measure two independent quantities, for example, tossing
a coin and rolling a die. What is the probability that we get heads and roll a 67 To find out, just
list all 2 x 6 = 12 possibilities. Each is equally probable, so the chance of getting the specified one
is 1/12. This shows that the joint probability distribution for two independent events is the product
of the two simpler distributions. Let PJ-Oint(xi,yK) be the joint distribution where ¢ = 1 or 2 and
r1 =%“heads,” xo =“tails”; similarly yx = K, where K = 1,...,6 is the number on the die. Then

the multiplication rule says
Pioint (%4, Yk ) = Peoin (i) X Paie(Yr)- (3.15)

Actually Equation 3.15 is correct even for loaded dice (the Pyic(ys) aren’t all equal to §) or a
two-headed coin (Peoin(21) = 1, Peoin(22) = 0). On the other hand, for two connected events (for

example, the chance of rain versus the chance of hail) we don’t get such a simple relation.

Your Turn 3c
Show that if P.oin and Pyje are correctly normalized, then so will be Piging.
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Your Turn 3d
Suppose we roll two dice. What’s the probability that the numbers on the dice add up to 27 To

67 To 127 Think about how you used both the addition and the multiplication rule for this.

To try out all these concepts, here’s a more complicated example. Suppose you are shooting
arrows into a distant target. Wind currents give random shifts to the x component of your arrows’
arrival locations, and independent random shifts to the y component. Suppose that the probability

distribution P, (z) is a Gaussian with variance 0%, and the same is true for P,(y).

Example Find the probability, P(r)dr, that an arrow lands a distance between r and r + dr
from the bull’s-eye.

Solution: To answer we use both the rules discussed above. r is the length of the
displacement vector: r = |r| = /22 4+ y? + 22. First we find the joint distribution,
the probability that the z-component lies between x and z+dx and the y-component

lies between y and y + dy. The multiplication rule gives this as

Poy(z,y)dedy = Py(z)dr x P,(y)dy
= (27r02)_2/2 e~ (@ H7)/(20%) daxdy
= (2m0%) e /g2y, (3.16)

The two Gaussians combined into a single exponential involving only the distance
T

We're not done. Many different displacements r all have the same speed r; to find
the total probability that r has any of these values we must now use the addition
rule. Think about all the r vectors with length lying between r and r 4+ dr. They
form a thin ring of width dr. The joint probability distribution Py, (r) is the same for
all these r, since it depends only on the length of r. So to sum all the probabilities,
we multiply P, by the total area of the ring, which is its circumference times its
thickness: 2mrdr. We thus get

1
P(r)dr = (271_02) e 29"« onrdr., (3.17)

Figure 3.3 shows this distribution.

Notice two notational conventions used above (see also Appendix A): First, the symbol “="
above is a special form of the equal sign, which alerts us to the fact that r = |r| is a definition
(it defines 7). We pronounce it “is defined as,” or “equals by definition.” Second, the symbol dr
denotes the area of a little box in position space; it is not itself a vector. The integral of d’r over
a region of space equals that region’s area .

Your Turn 3e
Find the fraction of all the arrows you shoot that land outside a circle of some radius R, as a

function of Ry.
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Figure 3.3: (Mathematical function.) The probability distribution for the distance r from the origin, when both =

and y are independent distributions with variance 2.
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Figure 3.4: (Sketch.) The set of all vectors v of length u is a sphere. The set of all vectors with length between u

and u + du is a spherical shell.

Your Turn 3f
a. Repeat the above example for a three-component vector v, each of whose components is an

independent, random variable distributed as a Gaussian of variance o2. That is, let u denote the
length of v and find P(u)du. [Hint: Examine Figure 3.4.]
b. Graph your answer to (a) with a computer math package. Again try various values of o.

3.2 Decoding the ideal gas law

Let us try to interpret the ideal gas law (Equation 1.11 on page 23), and its universal constant kg,
in the light of the working hypothesis that heat is random motion. Once we make this hypothesis

precise, and confirm it, we’ll be in a position to understand many physical aspects of the nanoworld.
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Figure 3.5: (Schematic.) Origin of gas pressure. (a) A molecule traveling parallel to an edge with velocity vy
bounces elastically off a wall of its container. The effect of the collision is to reverse the direction of the molecule,
transferring momentum 2muv, to the wall. (b) A molecule traveling with arbitrary velocity v. If its next collision
is with a wall parallel to the yz-plane, the effect of the collision is to reverse the z-component of the molecule’s

momentum, again transferring momentum 2muv, to the wall.

3.2.1 Temperature reflects the average kinetic energy of thermal motion

When faced with a mysterious new formula, our first impulse should be to think about it in the
light of dimensional analysis.

Your Turn 3g
Examine the left side of the ideal gas law (Equation 1.11 on page 23), and show that the product

kT has the units of energy, consistent with the numerical value given in Equation 1.12.

So we have a law of Nature, and it contains a fundamental, universal constant with units of energy.
We still haven’t interpreted the meaning of that constant, but we will in a moment; knowing its
units will help us.

Let’s think some more about the box of gas introduced in Section 1.5.4 on page 23. If the
density is low enough (an ideal gas), the molecules don’t hit each other very often.! But certainly
each one does hit the walls of the box. We now ask whether that constant hitting of the walls can
explain the phenomenon of pressure. Suppose that a gas molecule is traveling parallel to one edge
of the box, say in the z direction, with speed v,, and the box is a cube of length L, so that its
volume is V = L3 (see Figure 3.5a).

Every time the molecule hits the wall, the molecule’s momentum changes from muv, to —muv,;
it delivers 2muw, to the wall. This happens every time the molecule makes a round trip, which takes
a time At = 2L/v,. If there are N molecules, all with this velocity, then the total rate at which
they deliver momentum to the wall is (2mwv,)(v,/2L)N. But you learned in first-year physics that
the rate of delivery of momentum is precisely the force on the wall of the box.

Your Turn 3h
Check the dimensions of the formula f = (2muv,)(v,/2L)N to make sure they are appropriate

for a force.

Actually every molecule has its own, individual velocity v,. Really, then, what we need is not N

times one molecule’s velocity-squared, but rather the sum over all molecules, or equivalently, N

1The precise way to say this is that we define an ideal gas to be one for which the time-averaged potential

energy of each molecule in its neighbors’ potential fields is neglibible compared to its kinetic energy.
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times the average velocity-squared. As in Equation 3.9, we use the shorthand notation (v,2) for
this quantity.

The force per unit area on the wall is called pressure, so we have just found that
p=m{v,>)N/V. (3.18)

FEureka. Our simple formula Equation 3.18, which just embodies the idea that gas consists of
molecules in motion, has already explained two key features of the experimentally observed ideal
gas law (Equation 1.11), namely the facts that the pressure is proportional to N and to 1/V.

Skeptics may say, “Wait a minute. In a real gas, the molecules aren’t all traveling along the x
direction!” It’s true. Still, it’s not hard to do a better job. Figure 3.5b shows the situation. Each
individual molecule has a velocity vector v. When it hits the wall at * = L, its component v,
changes sign, but v, and v, don’t. So, the momentum delivered to the wall is again 2muv,. Also,
the time between bounces off this particular wall is once again 2L /v,, even though in the meantime
the molecule may bounce off other walls as well, due to its motion along y and z. Repeating
the argument leading to Equation 3.18 in this more general situation, we find that it needs no
modifications.

Combining the ideal gas law with Equation 3.18 gives
m{v,?) = kgT. (3.19)

Notice that the gas molecules are flying around at random. So the average (v,) is zero: There are
just as many traveling left as there are traveling right, so their contributions to (v, ) cancel. But the
square of the velocity can have a nonzero average, (v,2). Just as in the discussion of Equation 3.11
above, both the left-movers and right-movers have positive values of v,2, so they don’t cancel but
rather add.

In fact, there’s nothing special about the x direction. The averages (v,?), (v,?), and (v,?) are
all equal. That means that their sum is three times as big as any individual term. But the sum
vz? 4 vy? 4+ v,2 is the total length of the velocity vector, so (v?) = 3(v,?). Thus we can rewrite
Equation 3.19 as

2 x tm(v?) = LkpT. (3.20)

We now rephrase Equation 3.20, using the fact that the kinetic energy of a particle is %mu2, to find
that:

The average kinetic energy of a molecule in an ideal gas is 3kgT, (3.21)

regardless of what kind of gas we have. Even in a mixture of gases, the molecules of each type must
separately obey Idea 3.21.

The analysis leading to Idea 3.21 was given by Rudolph Clausius in 1857; it supplies the deep
molecular meaning of the ideal gas law. Alternatively, we can regard Idea 3.21 as explaining the
concept of temperature itself, in the special case of an ideal gas.

Let’s work some numbers to get a feeling for what our results mean. A mole of air occupies
22 liters (that’s 0.022 m?) at atmospheric pressure and room temperature. What’s atmospheric
pressure? It’s enough to lift a column of water about 10 meters (you can’t sip water through a
straw taller than this). A 10 m column of water presses down with a force per area (pressure) equal
to the height times the mass density of water times the acceleration of gravity, or zpm wg. Thus
atmospheric pressure is

k k
p~10m x (103%) x (1092) ~ 10° —2- — 10° Pa. (3.22)
m S m s
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In the last equality, Pa stands for pascal, the SI unit of pressure. Substituting V = 0.022m3,
p~ 10°kgm !s72 and N = Nyl into the ideal gas law (Equation 1.11 on page 23) shows that

indeed it is approximately satisfied:
k
(10°=%55) x (0.022m*) & (6.0-10%) x (4.1-10721J).

We can go farther. Air consists mostly of nitrogen molecules. The molar mass of atomic nitrogen
is about 14 gmole ', so a mole of nitrogen molecules, Ny, has mass about 28 g. Thus the mass of
one nitrogen molecule is m = 0.028 kg/Nyole = 4.7 - 10726 kg.

Your Turn 3i
Using Idea 3.21, show that the typical velocity of air molecules in the room where you're sitting

is about y/(v2) ~ 500ms~t. Convert to miles/hour to see whether you should drive that fast
(maybe in the Space Shuttle).

So the air molecules in your room are pretty frisky. Can we get some independent confirmation
to see if this result is reasonable? Well, one thing we know about air is... there’s less of it on top
of Mt. Everest. That’s because gravity exerts a tiny pull on every air molecule. On the other hand,
the air density in your room is quite uniform from top to bottom. Apparently the typical kinetic
energy of air molecules, %kBTr, is so high that the difference in gravitational potential energy, AU,
from the top to the bottom of a room is negligible, while the difference from sea level to Mt. Everest
is not so negligible. Let’s make the very rough estimate that Everest is z = 10 km high, and that
the resulting AU is roughly equal to the mean kinetic energy:

AU = mg(10km) =~ Lm(v?). (3.23)

1
2

Your Turn 3j

Show that the typical velocity is then about u = 450ms~

L remarkably close to what we just

found in Your Turn 3i.

This new estimate is completely independent of the one we got from the ideal gas law, so the fact

that it gives the same typical u is evidence that we’re on the right track.

Your Turn 3k
a. Compare the average kinetic energy %kBTr of air molecules to the difference in gravitational

potential energy AU between the top and bottom of a room. Here z = 3m is the height of the
ceiling. Why doesn’t the air in the room fall to the floor? What could you do to make it fall?
b. Repeat (a) but this time for a dirt particle. Suppose that the particle weighs about as much
as a 50 um cube of water. Why does dirt fall to the floor?

In this section we have seen how the hypothesis of random molecular motion, with an average
kinetic energy proportional to the absolute temperature, explains the ideal gas law and a number of
other facts. Other questions, however, come to mind. For example, if heating a pan of water raises
the kinetic energy of the water molecules, why don’t they all suddenly fly away when the temperature
gets to some critical value, the one giving them enough energy to escape? To understand questions
like this one, we need keep in mind that the average kinetic energy is far from the whole story. We

also want to know about the full distribution of molecular velocities, not just its mean-square value.
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Figure 3.6: (Schematic.) An experimental apparatus to measure the distribution of molecular speeds using a
velocity filter consisting of two rotating slotted disks. To pass through the filter, a gas molecule must arrive at the
left disk when a slot is in the proper position, then also arrive at the right disk exactly when another slot arrives at
the proper position. Thus only molecules with one selected speed pass through to the detector; the selected speed
can be set by adjusting how fast the disks spin. [Copyrighted figure; permission pending.]

3.2.2 The complete distribution of molecular velocities is experimentally
measurable

The logic in the previous subsection was a bit informal, in keeping with the exploratory character
of the discussion. But we ended with a precise question: How many molecules are moving at
1000ms? How many at 10ms? The ideal gas law implies that (v2) changes in a very simple
way with temperature (Idea 3.21), but what about the complete distribution?

These are not just theoretical questions. One can measure directly the distribution of speeds
of gas molecules. Imagine taking a box full of gas (in practice one uses a vaporized metal) with
a pinhole which lets gas molecules emerge into a region of vacuum (Figure 3.6). The pinhole is
small enough that the escaping gas molecules do not disturb the state of the others inside the box.
The emerging molecules pass through an obstacle course, which only allows those with speed in
a particular range to pass. The successful molecules then land on a detector, which measures the
total number arriving per unit time.

Figure 3.7 shows the results of such an experiment. Even though individual molecules have
random velocities, clearly the distribution of velocities is predictable and smooth. The data also
show clearly that a given gas at different temperatures will have closely related velocity distributions;
two different data sets lie on the same curve after a simple rescaling of the molecular speed wu.
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Figure 3.7: (Experimental data with fit.) Speeds of atoms emerging from a box of thallium vapor, at two different
temperatures. Open circles: T = 944 K. Solid circles: T = 870K. The quantity @ on the horizontal axis equals
uy/m/4kpT; both distributions have the same most-probable value, @max = 1. Thus umax is larger for higher
temperatures, as implied by Idea 3.21. The vertical axis shows the rate at which atoms hit a detector after passing
through a filter like the one sketched in Figure 3.6 (times an arbitrary rescaling factor). Solid line: theoretical
prediction (see Problem 3.5). This curve fits the experimental data with no adjustable parameters. [Data from
(Miller & Kusch, 1955).]

3.2.3 The Boltzmann distribution

Let’s use the ideas of Section 3.2.1 to understand the experimental data in Figure 3.7. We are
exploring the idea that while each molecule’s velocity cannot be predicted, nevertheless there is
a definite prediction for the distribution of molecular velocities. One thing we know about that
probability distribution is that it must fall off at large velocities: Certainly there won’t be any
gas molecules in the room moving at a million meters per second! Moreover, the average speed
must increase as we make the gas hotter, since we’'ve argued that the average kinetic energy is
proportional to T' (see Idea 3.21 on page 74). Finally, the probability of finding a molecule moving
to the left at some velocity v, should be the same as that for finding it moving to the right at —wv,.

One probability distribution with these properties is the Gaussian (Equation 3.8), where the
spread o increases with temperature and the mean is zero. (If the mean were nonzero, there’d be a
net, directed, motion of the gas, that is, wind blowing.) Remarkably, this simple distribution really
does describe any ideal gas! More precisely, the probability P(v,.) of finding that a given molecule
at a given time has its z-component of velocity equal to v, is a Gaussian, like the form shown in
Figure 3.2, but centered on zero. Each molecule is incessantly changing its speed and direction.
What’s unchanging is not the velocity of any one molecule, but rather the distribution P(v,,).

We can replace the vague idea that the variance o2 of v, increases with temperature by something
more precise. Because the mean velocity equals zero, Your Turn 3b says that the variance of v, is

(v2). According to Equation 3.19, the mean kinetic energy must equal %kBT . So we must take
o? = kgT/m. (3.24)

Section 1.5.4 on page 23 gave the numerical value of kg7 at room temperature as kg7, ~ 4.1 X

10~2! J. That’s pretty small, but so is the mass m of one gas molecule. Thus the spread of velocities
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in a room, \/kpT;/m, is rather large (see Your Turns 3i-3j).

Now that we have the probability distribution for one component of the velocity, we can follow
the approach of Section 3.1.4 to get the three-dimensional distribution, P(v). Following your result
in Your Turn 3f on page 71 then gives the distribution of molecular speeds, a function similar to
the one shown in Figure 3.3.2

Your Turn 3l
Find the most probable value of the speed u. Find the mean speed (u). Looking at the graph

you drew in Your Turn 3f (or the related function in Figure 3.3), explain geometrically why these

are/aren’t the same.

Still assuming that the molecules move independently and are not subjected to any external
force, we can next find the probability that all N molecules in the room have specified velocities

vi,...,Vy, again using the multiplication rule:

P(Vl, o 7VN) x e—mvlz/(QkBT) N e—mvN2/(2kBT) _ e—%m(vlz"r"'VNz)/kBT- (325)

James Clerk Maxwell derived Equation 3.25, and showed how it explained many properties of
gases, around 1860. The proportionality sign reminds us that we haven’t bothered to write down
the appropriate normalization factor.

Equation 3.25 applies only to an ideal gas, free from any external influences. Chapter 6 will
generalize this formula. Though we're not ready to prove this generalization, we can at least form

some reasonable expectations:

e If we wanted to discuss the whole atmosphere, for example, we’d have to understand
why the distribution is spatially nonuniform—air gets thinner at higher altitudes.
But Equation 3.25 above gives us a hint. Apart from the normalization factor, the

distribution given by Equation 3.25 is just e~ #/ksT

, where E is the kinetic energy.
When altitude (potential energy) starts to become important, it’s reasonable to
guess that we should just replace E by the molecule’s total (kinetic plus potential)
energy. Indeed, we then find the air thinning out, with density proportional to the
exponential of minus the altitude (since the potential energy of a molecule is given
by mgz).

e Molecules in a sample of air hardly interact at all—air is nearly an ideal gas. But
in more crowded systems, such as liquid water, the molecules interact a lot. There
the molecules are not independent (like our coin+die of an earlier example), and we
can’t simply use the multiplication rule. But again we can form some reasonable
expectations. The statement that the molecules interact means that the potential

energy isn’t just the sum of independent terms U(zy) + -+ + U(xy), but rather

some kind of joint function U(zy,...,zx). Calling the corresponding total energy
E = E(x1,v1;...;2N,V0nN), let us substitute that into our provisional formula:
P(state) oc e F/keT Boltzmann distribution (3.26)

2The curve fitting the experimental data in Figure 3.7 is almost, but not quite, the one you found in Your
Turn 3fb. You’ll find the precise relation in Problem 3.5.
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We will refer to this formula as the Boltzmann distribution® after Ludwig Boltzmann, who found
it in the late 1860s.

We should pause to unpack the very condensed notation in Equation 3.26. To describe a state
of the system we must give the location r of each particle, as well as its speed v. The probability
to find particle “a” with its first coordinate lying between z; , and z;, + dz;, and so on, and
its first velocity lying between vy , and v 4 + dvi,, and so on, equals dzy, X -+ x dvy g X -+ X
P(z1,4y---,V1,a,--.). For K particles, P is a function of 6K variables and we have a total of 6K
differential factors in front. Equation 3.26 gives the probability distribution as a function of these
6K variables.

Equation 3.26 has some reasonable features: At very low temperatures, or 7' — 0, the expo-
nential is a very rapidly decreasing function of v: The system is overwhelmingly likely to be in the
lowest energy state available to it. (In a gas, this means that all of the molecules are lying on the
floor at zero velocity.) As we raise the temperature, thermal agitation begins; the molecules begin
to have a range of energies, which gets broader as 7" increases.

It’s almost unbelievable, but the very simple formula Equation 3.26 is exact. It’s not simplified;
youll never have to unlearn it and replace it by anything more complicated. (Suitably interpreted,
it holds without changes even in quantum mechanics.) Chapter 6 will derive it from very general

considerations.

3.2.4 Activation barriers control reaction rates

We are now in a better position to think about a question posed at the end of Section 3.2.1: If
heating a pan of water raises the kinetic energy of its molecules, then why doesn’t the water in the
pan evaporate suddenly, as soon as it reaches a critical temperature? For that matter, why does
evaporation cool the remaining water?

To think about this puzzle, imagine that it takes a certain amount of kinetic energy Eyaprier for
a water molecule to break free of its neighbors (since they attract each other). Any water molecule
near the surface with at least this much energy can leave the pan; we say that there is an activation
barrier to escape. Suppose we heat a covered pan of water, then turn off the heat and momentarily
remove the lid, allowing the most energetic molecules to escape. The effect of removing the lid is to
clip the Boltzmann probability distribution, as suggested by the solid line in Figure 3.8a. We now
replace the lid of the pan and thermally insulate it. Now the constant jostling of the remaining
molecules once again pushes some up to higher energies, regrowing the tail of the distribution as in
the dashed line of Figure 3.8a. We say that the remaining molecules have equilibrated. But the new
distribution is not quite the same as it was initially. Since we removed the most energetic molecules,
the average energy of those remaining is less than it was to begin with: Evaporation cooled the
remaining water. Moreover, rearranging the distribution takes time: Evaporation doesn’t happen
all at once. If we had taken the water to be hotter initially, though, its distribution of energies
would have been shifted to the right (Figure 3.8b), and more of the molecules would already be
ready to escape: Evaporation proceeds faster at higher temperature.

The idea of activation barriers can help make sense of our experience with chemical reactions,
too. When you flip a light switch, or click your computer’s mouse, there is a minimal energy, or
activation barrier, which your finger must supply. Tapping the switch too lightly may move it a

fraction of a millimeter, but doesn’t click it over to its “on” position. Now imagine drumming your

3Some authors use the synonym “canonical ensemble.”
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Figure 3.8: (Mathematical functions.) (a) The solid line represents the distribution of molecular speeds for a
sample of water, initially at 100°C, from which some of the most energetic molecules have suddenly been removed.
After we reseal the system, molecular collisions bring the distribution of molecular speeds back to the standard form
(dashed line). The new distribution has regenerated a high-energy tail, but the average kinetic energy did not change;
accordingly the peak has shifted slightly, from wmax t0 uj,,,. (b) The same system, with the same escape speed, but
this time starting out at a higher temperature. The fraction of the distribution removed is now greater than in (a),
and hence the temperature shift is larger too.

finger lightly on the switch, giving a series of random light taps with some distribution of energies.
Given enough time, eventually one tap will be above the activation barrier and the switch will flip.

Similarly, one can imagine that a molecule with a lot of stored energy, say hydrogen peroxide,
can only release that energy after a minimal initial kick pushes it over an activation barrier. The
molecule constantly gets kicks from the thermal motion of its neighbors. If those thermal kicks are
on average much smaller than the barrier, though, it will be a very long time before a big enough
kick occurs. Such a molecule is practically stable. We can speed up the reaction by heating the
system, just as with evaporation. For example, a candle is stable, but burns when we touch it with
a lighted match. The energy released by burning in turn keeps the candle hot long enough to burn
some more, and so on.

We can do better than these simple qualitative remarks. Our argument implies that the rate
of a reaction is proportional to the fraction of all molecules whose energy exceeds the threshold.
Consulting Figure 3.8, this means we want the area under the part of the original distribution
that got clipped by escaping over the barrier. This fraction gets small at low temperatures (see
Figure 3.8a). In general the area depends on the temperature with a factor of e~ Eoamier/kBT Yoy
already found such a result in a simpler situation in Your Turn 3e on page 71: Substituting ug for
the distance Ry in that problem, and kgT/m for o2, indeed gives the fraction over threshold as
e*mu02/(2kBT) .

The above argument is rather incomplete. For example, it assumes that a chemical reaction
consists of a single step, which certainly is not true for many reactions. But there are many

elementary reactions between simple molecules for which our conclusion is experimentally true:

The rates of simple chemical reactions depend on temperature with a factor of
e~ Bvarrier/ kBT, where Fparier 1S Some temperature-independent constant charac- (3.27)

terizing the reaction.

We will refer to Idea 3.27 as the Arrhenius rate law. Chapter 10 will discuss it in greater detail.
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Figure 3.9: (Schematic; sketch graph.) (a) When a fast billiard ball collides with a slow one, in general both move
away with a more equal division of their total kinetic energy than before. (b) An initial molecular speed distribution
(solid line) with one anomalously fast molecule (or a few, creating the bump in the graph) quickly reequilibrates to
a Boltzmann distribution at slightly higher temperature (dashed line). Compare Figure 3.8.

3.2.5 Relaxation to equilibrium

We are beginning to see the outlines of a big idea: When a gas, or other complicated statistical
system, is left to itself under constant external conditions for a long time, it arrives at a situation
where the probability distributions of its physical quantities don’t change over time. Such a situation
is called “thermal equilibrium.” We will define and explore equilibrium more precisely in Chapter 6,
but already something may be troubling you, as it is troubling Gilbert here:

Gilbert: Very good, you say the air doesn’t fall on the floor at room temperature because of thermal
motion. Why then doesn’t it slow down and eventually stop (and then fall on the floor), due to
friction?

Sullivan: Oh, no, that’s quite impossible because of the conservation of energy. Fach gas molecule
makes only elastic collisions with others, just like the billiard balls in first-year physics.

Gilbert: Oh? So then in that case what s friction? If I drop two balls off the Tower of Pisa,
the lighter one gets there later, due to friction. Everybody knows that mechanical energy isn’t
conserved; eventually it winds up as heat.

Sullivan: Uh, um, ....

As you can see, a little knowledge proves a dangerous thing for our two fictitious scientists.
Suppose that instead of dropping a ball we shoot one air molecule into the room with enormous
speed, say 100 times greater than (|v|) for the given temperature. (One can actually do this
experiment with a particle accelerator.) What happens?

Soon this molecule bangs into one of the ones that was in the room to begin with. There’s an
overwhelming likelihood that the latter molecule will have kinetic energy much smaller than the
injected one, and indeed probably not much more than the average. When they collide, the fast
one transfers a lot of its kinetic energy to the slow one. Even though the collision was elastic, the
fast one lost a lot of energy. Now we have two medium-fast molecules; each is closer to the average
than it was to begin with. Each one now cruises along till it bangs into another, and so on, until
they all blend into the general distribution (Figure 3.9).
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While the total energy in the system is unchanged at every step after each collision, the original
distribution (with one molecule way out of line with the others) will settle down to the equilibrium
distribution (Equation 3.26), by a process of sharing the energy in the original fast molecule with
all the others.* What has changed is not energy, but the ordering of that energy: The one dissident
in the crowd has faded into anonymity. Again: the directed motion of the original molecule has
gotten degraded to a tiny increase in the average random motion of its peers. But, average random
velocity is just temperature, according to Equation 3.26. In other words, mechanical energy has
been converted to thermal energy in the process of reaching equilibrium. “Friction” is the name for

this conversion.

3.3 Excursion: A lesson from heredity

Section 1.2 outlined a broad puzzle about life (the generation of order), and a correspondingly broad
outline of a resolution. Many of the points made there were elegantly summarized in a short but
enormously influential essay by the physicist Erwin Schrodinger in 1944. Schrédinger then went
on to discuss a vexing question from antiquity: the transmission of order from one organism to its
descendants. Schrodinger noted that this transmission was extremely accurate. Now that we have
some concrete ideas about probability and the dance of the molecules, we can better appreciate
why Schrodinger found that everyday observation to be so profound, and how careful thought about
the physical context underlying known biological facts led his contemporary Max Delbriick to an
accurate prediction of what the genetic carrier would be like, decades before the discovery of the
details of DNA’s structure and role in cells. Delbriick’s argument rested on simple ideas from

probability theory, as well as the idea of thermal motion.

3.3.1 Aristotle weighs in

Classical and medieval authors debated long and hard the material basis of the facts of heredity.
Many believed the only possible solution was that the egg contains somewhere inside a tiny but
complete chicken, which needed only to grow. In a prescient analysis Aristotle rejected this view,
pointing out for example that certain inherited traits can skip a generation entirely. Contrary to
Hippocrates, Aristotle argued,

“The male contributes the plan of development and the female the substrate....The
sperm contributes nothing to the material body of the embryo, but only communicates
its program of development...just as no part of the carpenter enters into the wood in

which he works.”

Aristotle missed the fact that the mother also contributes to the “plan of development,” but he
made crucial progress by insisting on the separate role of an information carrier in heredity. The

organism uses the carrier in two distinct ways:

e [t uses the software stored in the carrier to direct its own construction; and

e It duplicates the software, and the carrier on which it is stored, for transmission to the off-

spring.

4Suppose we instead take one molecule and slow it down to much smaller speed than its peers. This too is possible
experimentally. Now it instead tends to gain energy by collisions with average molecules, until once again it lies in

the Boltzmann distribution.
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Figure 3.10: (Sketch histogram.) Results of an imaginary experiment measuring the femur lengths of a purebred
population of sheep. Selectively breeding sheep from the atypical group shown (black bar) doesn’t lead to a generation

of bigger sheep, but instead to offspring with the same distribution as the one shown.

Today we make this distinction by referring to the collection of physical characteristics of the
organism (the output of the software) as the phenotype, while the program itself is the genotype.

It was Aristotle’s misfortune that medieval commentators fastened on his confused ideas about
physics, raising them to the level of dogma, while ignoring his correct biology. Even Aristotle,
however, could not have guessed that the genetic information carrier would turn out to be a single

molecule.

3.3.2 Identifying the physical carrier of genetic information

Nobody has ever seen a molecule with their unaided eye. We can nevertheless speak with confidence
about molecules, because the molecular hypothesis makes such a tightly interconnected web of falsi-
fiable predictions. A similarly indirect but tight web of evidence drew Schrédinger’s contemporaries
to their conclusions about the molecular basis of heredity.

To begin, thousands of years’ experience in agronomy and animal husbandry had shown that
any organism can be inbred to the point where it will breed true for many generations. This
does not mean that every individual in a purebred lineage will be exactly identical to every other
one—certainly there are individual variations. Rather, a purebred stock is one in which there
are no heritable variations among individuals. To make the distinction clear, suppose we take a
purebred population of sheep and make a histogram of, say, femur lengths. A familiar Gaussian-
type distribution emerges. Suppose now that we take an unusually big sheep, from the high end
of the distribution (see Figure 3.10). Its offspring will not be unusually big, but rather will lie on
exactly the same distribution as the parent population. Whatever the genetic carrier is, it gets
duplicated and transmitted with great accuracy. Indeed, in humans some characteristic features
can be traced through ten generations.

The significance of this remark may not be immediately obvious. After all, an audio compact
disk contains nearly a gigabyte of information, duplicated and transmitted with near-perfect fidelity

from the factory. But each sheep began with a single cell. A sperm head is only a micrometer or
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so across, yet it contains roughly the same massive amount of text as that compact disk, in a
package of around 10~ '3 times the volume! What sort of physical object could lie behind this feat
of miniaturization? Nineteenth century science and technology offered no direct answers to this
question. But a remarkable chain of observation and logic broke this impasse, starting with the
work of Gregor Mendel, a monk trained in physics and mathematics.

Mendel’s chosen model system was the flowering pea plant Pisum sativum. He chose to study
seven heritable features (flower position, seed color, seed shape, ripe pod shape, unripe pod color,
flower color, and stem length). Each occurred in two clearly identifiable, alternative forms. The
distinctness of these features, or “traits,” endured over many generations, leading Mendel to propose
that sufficiently simple traits are inherited in a discrete, yes/no manner.” Mendel imagined the

” each of which could be set to

genetic code as a collection of switches, which he called “factors,’
either of two (or more) settings. The various available options for a given factor are now called
alleles of that factor. Later work would show that other traits, which appear to be continuously
variable (for example hair color), are really the combined effect of so many different factors that
the discrete variations from individual factors can’t be distinguished.

Painstaking analysis of many pea plants across several generations led Mendel in 1865 to a set

of simple conclusions:

eThe cells making up most of an individual (somatic cells) each carry two copies of
each factor; we say they are diploid. The two copies of a given factor may be “set”
to the same allele (the individual is homozygous for that factor), or different ones
(the individual is heterozygous for that factor).

eGerm cells (sperm or pollen, and eggs) are exceptional: They contain only one copy
of each factor. Germ cells form from ordinary cells by a special form of cell division,
in which one copy of each factor gets chosen from the pair in the parent cell. Today
we call this division meiosis, and the selection of factors assortment.

eMeiosis chooses each factor randomly and independently of the others, an idea now

called the “principle of independent assortment.”

Thus each of the four kinds of offspring shown in each generation of Figure 3.11 is equally likely.
After the fertilized egg forms, it creates the organism by ordinary division (mitesis), in which both
copies of each factor get duplicated. A few of the descendant cells eventually undergo meiosis to
form another generation of germ cells, and the process repeats.

If the two copies of the factor corresponding to a given trait represent different alleles, it may
be that one allele overrides (or “dominates”) the other in determining the organism’s phenotype.
Nevertheless, both copies persist, with the hidden one ready to reappear in later generations in a
precisely predictable ratio (Figure 3.11). Verifying such quantitative predictions gave Mendel the
conviction that his guesses about the invisible processes of meiosis and mitosis were correct.

Mendel’s rules drew attention to the discrete character of inheritance; the irresistible image of
two alternative alleles as a switch stuck in one of two possible states is physically very appealing.
Moreover, Mendel’s work showed that by far most of the apparent variation between generations
is simply reassortment of factors, which are themselves extremely stable. Other types of heritable

variations do occur spontaneously, but these mutations are rare. Moreover, mutations, too, are

5Interestingly, Charles Darwin also did extensive breeding experiments, on snapdragons, obtained data similar to
Mendel’s, and yet failed to perceive Mendel’s laws. Mendel’s advantage was his mathematical background. Later
Darwin would express regret that he had not made enough of an effort to know “something of the great leading
principles of mathematics,” and wrote that persons “thus endowed seem to have an extra sense.”
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Figure 3.11: (Diagram.) (a) Purebred red and white flowers are cross-pollinated to yield offspring, each with one
chromosome containing the “red” allele and one with the “white” allele. If neither allele is dominant, the offspring
will all be pink. For example four-o’clocks (a flower) exhibit this “semidominance” behavior. (b) Interbreeding the
offspring of the previous generation, we recover pure white flowers in one out of four cases. Even in other species,
for which the red allele is dominant, one in four of the second-generation offspring will still be white. [Cartoon by
George Gamow, from (Gamow, 1961).] [Copyrighted figure; permission pending.]

discrete events, and once formed, a mutation spreads in the population by the same Mendelian rules
listed above. Thus factors are switches that can snap crisply into new positions, but not easily;
once changed by mutation, they don’t switch back readily.

The history of biology in this period is a beautiful counterpoint between classical genetics and
cell biology. Cell biology has a remarkable history of its own; for example many advances had
to await the discovery of staining techniques, without which the various components of cells were
invisible. By about the time of Mendel’s work, E. Haeckel had identified the nucleus of the cell
as the seat of its heritable characters. A recently fertilized egg visibly contained two equal-sized
“pronuclei,” which soon fused. In 1882, W. Flemming noted that the nucleus organized itself into
threadlike chromosomes just before division. Each chromosome was present in duplicate prior to
mitosis, as required by Mendel’s rules (see Figure 3.11), and just before division each appeared to
double, after which one copy of each was pulled into each daughter cell. Moreover, E. van Beneden
observed that the pronuclei of a fertilized worm egg each had two chromosomes, while the ordinary
cells had four. van Beneden’s result gave visible testimony to Mendel’s logical deduction about the
mixing of factors from both parents.

By this point, it would have been almost irresistible to conclude that the physical carriers of
Mendel’s genetic factors were precisely the chromosomes, had anyone been aware of Mendel. Un-
fortunately Mendel’s results, published in 1865, languished in obscurity, not to be rediscovered
until 1900 by H. de Vries, C. Correns, and E. von Tschermak. Immediately upon this rediscov-
ery W. Sutton and T. Boveri independently proposed that Mendel’s genetic factors were physical
objects—“genes” —physically located on the chromosomes. (Sutton was a graduate student at the
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time.) But what were chromosomes, anyway? It seemed impossible to make further progress on
this point with the existing cell-biological tools.

A surprising quirk of genetics broke the impasse. Though Mendel’s rules were approximately
correct, later work showed that not all traits assorted independently. Instead, W. Bateson and
Correns began to notice that certain pairs of traits seemed to be linked, a phenomenon already
predicted by Sutton. That is, such pairs of traits will almost always be inherited together: The
offspring gets either both, or neither. This complication must have seemed at first to be a blemish
on Mendel’s simple, beautiful rules. Eventually, however, the phenomenon of linkage opened up a
new window on the old question of the identity of genetic factors.

The embryologist T. H. Morgan studied the phenomenon of genetic linkage in a series of exper-
iments starting around 1909. Morgan’s first insight was that in order to generate and analyze huge
sets of genealogical data, big enough to find subtle statistical patterns, he would need to choose a
very rapidly multiplying organism for his model system. Certainly bacteria multiply rapidly, but
they were hard to manipulate individually and lacked readily identifiable hereditary traits. In a
fateful decision, Morgan’s compromise choice was the fruit fly Drosophila melanogaster.

One of Morgan’s first discoveries was that some heritable traits in fruit flies (for example, white
eyes) were linked to the fly’s sex. Since sex was already known to be related to a gross, obvious
chromosomal feature (females have two X chromosomes while males have just one), the linkage of
a mutable factor to sex lent direct support to Sutton’s and Boveri’s idea that chromosomes were
the physical carriers of Mendel’s factors.

But now an even more subtle level of structure in the genetic data was beginning to appear. Two
linked traits almost always assorted together, but would occasionally separate. For example, certain
body-color and eye-color factors separate in only about 9% of offspring. The rare failure of linkage
reminded Morgan that F. Janssens had recently observed chromosome pairs wrapping around each
other prior to meiosis, and had proposed that this interaction could involve the breakage and
exchange of chromosome pieces. Morgan suggested that this crossing-over process could explain
his observation of incomplete genetic linkage (Figure 3.12). If the carrier object were threadlike,
as the chromosomes appeared to be under the microscope, then the genetic factors might be in
a fixed sequence, or linear arrangement, along it, like a pattern of knots in a long rope. Some
unknown mechanism could bring two corresponding chromosomes together and align them so that
each factor was physically next to its partner, then choose a random point at which to break and
exchange the two strands. It seemed reasonable to suppose that the chance of two factors on the
same chromosome being separated by a physical break should increase, the more distant their fixed
positions were. After all, when you cut a deck of cards the chance of two given cards getting
separated is greater, the farther apart they were to begin with in the deck.

Morgan and his undergraduate research student A. Sturtevant set themselves the task of ana-
lyzing these exceptions. They reasoned that if the hypothesis of linear sequence were true, then
for each set of linked traits it should be possible to list those traits along a line in such a way that
the probability of two traits’ getting separated in an offspring was related to their distance on the
line. Examining the available data, Sturtevant found that not only was this the case, but moreover
each linked set of traits admitted just one such linear arrangement fitting the data (Figure 3.13).
Two years later the dataset had expanded to include 24 different traits, which fell into exactly four
unlinked groups—the same number as the number of visible chromosome pairs (Figure 3.13)! Now
one could hardly doubt that chromosomes were the physical objects carrying genetic factors. The

part of a chromosome carrying one factor, the basic unit of heredity, was christened the “gene.”
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Figure 3.12: (Diagram.) Meiosis with crossing-over. (a) Before meiosis, the cell carries two homologous (similar)
copies of a chromosome, carrying genes A, B on one copy and potentially different alleles a, b on the other. (b) Still
prior to meiosis, each chromosome gets duplicated; the copies are called “chromatids.” (c) During prophase I of
meiosis, the homologous chromatid pairs are brought close together, in register. “Recombination” may then occur:
(d) Two of the four paired chromatids get cut at corresponding locations. (e) The broken ends “cross over,” that
is they rejoin with the respective cut ends in the opposite chromatid. (f) The cell finishes with two unchanged
chromatids, and two “recombinants,” chromatids carrying new combinations of alleles. The four chromatids then

separate into four germ cells by a four-way cell division. [Copyrighted figure; permission pending.]
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Figure 3.13: (Diagram.) Partial map of the fruit fly genome as deduced by the 1940’s from purely genetic
experiments. The map is a graphical summary of a large body of statistical information on the degree to which
various mutant traits are inherited together. Traits shown on different lines assort independently. Traits appearing
near each other on the same line are more tightly coupled than those listed as far apart. [Cartoon by George Gamow,
from (Gamow, 1961) |[Copyrighted figure; permission pending.]
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Figure 3.14: (Optical photomicrograph; schematic.) (a) A polytene chromosome of the fruitfly Drosophila. Each
chromosome consists of 1000-2000 identical copies of the cell’s DNA, all laid parallel and in register; it is about
4 pm thick. Each visible band is a stretch of DNA about 100000 basepairs long. [Copyrighted figure; permission
pending.|(b) Koltzoff’s view of the structure of a polytene chromosome (bottom) as a bundle of straightened filaments,
each of diameter d. The normal chromosome seen during mitosis (top) consists of just one of these filaments, tightly

coiled.

Thus by a tour de force of statistical inference, Morgan and Sturtevant (together with C. Bridges

and H. Muller) partially mapped the genome of the fly, concluding that

e The physical carriers of genetic information are indeed the chromosomes, and
e Whatever the chromosomes may be physically, they are chains, one-dimensional
“charm bracelets” of sub-objects—the genes—in a fixed sequence. Both the indi-

vidual genes and their sequence are inherited.’

By 1920 Muller could assert confidently that genes were “bound together in a line, in the order
of their linkage, by material, solid connections.” Like Mendel before them, Morgan’s group had
applied quantitative, statistical analysis to heredity to obtain insight into the mechanism, and the
invisible structural elements, underlying it.

There is a coda to this detective story. One might want to examine the chromosomes directly,
in order to see the genes. Attempts to do this were unsuccessful: Genes are too small to see with
ordinary, visible light. Nevertheless, by an almost unbelievable stroke of serendipity, it turned out
that salivary-gland cells of Drosophila have enormous chromosomes, with details easily visible in

¢

the light microscope. N. Koltzoff interpreted these “polytene chromosomes,” arguing that they are
really clusters of over a thousand copies of the fly’s usual chromosome, all laid side by side in register
to form a wide, optically resolvable object (Figure 3.14). After treatment with an appropriate stain,
each polytene chromosome shows a characteristic pattern of dark bands. T. Painter managed to
discern differences in these patterns among different individuals, and to show that these were
inherited and in some cases correlated with observable mutant features. That is, at least some
different versions of a genome actually look different. Moreover, the observed linear sequence
of bands associated to known traits matched the sequence of the corresponding genes deduced
by genetic mapping. The observed bands are not individual genes (these are still too small to
see under the light microscope). Nevertheless, there could be no doubt that genes were physical
objects located on chromosomes. Genetic factors, originally a logical construct, had become things,

the genes.

6Later work by Barbara McClintock on maize would show that even the order of the genes along the chromosome
is not always fixed: Some genes are “transposable elements,” that is, they can jump. But this jumping is not caused
by simple thermal motion; we now know that it is assisted by special-purpose molecular machines, which cut and
splice the otherwise stable DNA molecule.

Y
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Section 3.3.2" on page 95 mentions the role of double crossing-over.

3.3.3 Schrodinger’s summary: Genetic information is structural

For some time, it seemed as though the techniques of classical genetics and cell biology, powerful
though they were, could shed no further light on the nature of the chromosomal charm bracelet.
Even the physical size of a gene remained open for dispute. But by the mid-twentieth century, new
experimental techniques and theoretical ideas from physics were opening new windows on cells.
Schrodinger’s brief summary of the situation in 1944 drew attention to a few of the emerging facts.

To Schrodinger, the biggest question about genes concerned the nearly perfect fidelity of their
information storage in spite of their minute size. To see how serious this problem is, we first need to
know just how small a gene is. One crude way to estimate this size is to guess how many genes there
are, and note that they must all fit into a sperm head. Muller gave a somewhat better estimate
in 1935 by noting that a fruit fly chromosome condenses during mitosis into roughly a cylinder of
length 2 um and diameter 0.25 um (see Figure 3.14b). The total volume of the genetic material in a
chromosome is thus no larger than 2 yum x 7(0.25 um/2)2. When the same chromosome is stretched
out in the polytene form mentioned above, however, its length is more like 200 um. Suppose that
a single thread of the genetic charm bracelet, stretched out straight, has a diameter d. Then its
volume equals 200 um x 7(d/2)?. Equating these two expressions for the volume yields the estimate
d < 0.025 um for the diameter of the genetic information carrier. While we now know that a strand
of DNA is really less than a tenth this wide, still Muller’s upper bound on d showed that the genetic
carrier is an object of molecular scale. Even the tiny pits encoding the information on an audio
compact disk are thousands of times larger than this, just as the disk itself occupies a far larger
volume than a sperm cell.

To see what Schrédinger found so shocking about this conclusion, we must again remember that
molecules are in constant, random thermal motion (Section 3.2). The words on this page may be
stable for many years, but if we could write them in letters only a few nanometers high then random
motions of the ink molecules constituting them would quickly obliterate them. Random thermal
motion becomes more and more destructive of order on shorter length scales, a point to which we
will return in Chapter 4. How can genes be so tiny and yet so stable?

Muller and others argued that the only known stable arrangements of just a few atoms are single
molecules. Quantum physics was just beginning to explain this phenomenal stability, as the nature
of the chemical bond became understood. (As one of the architects of quantum theory, Schrédinger
himself had laid the foundations for this understanding.) A molecule derives its enormous stability
from the fact that a large activation barrier must be momentarily overcome in order to break
the bonds between its constituent atoms. More precisely, Section 1.5.3 pointed out that a typical
chemical bond energy is Fonq ~ 2.4 - 10719 J, about sixty times bigger than the typical thermal
energy Fihermal- Muller argued that this large activation barrier to conversion was the reason why
spontaneous thermally induced mutations are so rare, following the ideas of Section 3.2.4.7

The hypothesis that the chromosome is a single molecule may appear satisfying, even obvious,
today. But in order to be convinced that it is really true, we must require that a model generate

some quantitative, falsifiable predictions. Fortunately, Muller had a powerful new tool in hand:

"Today we know that eukaryotes enhance their genome stability still further with special-purpose molecular

machines for the detection and repair of damaged DNA.



90 CHAPTER 3 THE MOLECULAR DANCE [[STUDENT VERSION, DECEMBER 8, 2002]]

% Mutalion.

45 | ! ! A
~ o Gammasiranten des Ra. AL
__ « Réntgenstrahien, 50KV, _y /1~
)2
10 é’ 1
5 &
H
/
p
0 1000 2000 3000 4000 5000 6000

— Josis in .

Figure 3.15: (Experimental data.) Some of Timoféeff’s original data on X-ray mutagenesis. Cultures of fruit flies

were exposed either to gamma rays (solid circles) or to X-rays (crosses). In each case the total radiation dose is given

in “” units, with 1 r corresponding to 2 - 102 ion pairs created per cm? of tissue. The vertical axis is the fraction

of cultures developing a particular mutant fly (in this case one with abnormal eye color). Both kinds of radiation

proved equally effective when their doses were measured in “r” units. [From (Timoféeff-Ressovsky et al., 1935).]

In 1927 he had found that exposure to X-rays could induce mutations in fruit flies. This X-ray
mutagenesis occured at a much greater rate than natural, or spontaneous, mutation. Muller
enthusiastically urged the application of modern physics ideas to analyze genes, even going so far
as to call for a new science of “gene physics.”

Working in Berlin with the geneticist Nicolai Timoféeff, Muller learned how to make precise
quantitative studies of the frequency of mutations at different radiation doses. Remarkably, they and
others found that in many instances the rate at which a specific mutation occurred rose linearly with
the total X-ray dose given to the sample. It made no difference whether the dose was administered
gradually, or all at once. This simple linear law persisted over a wide range of doses (Figure 3.15).
Thus doubling the dose simply doubled the number of mutants in a given culture. Prior exposure
to radiation had no effect whatever on those individuals not mutated (or killed outright), neither
weakening nor toughening them to further exposure.

Timoféeff went on to find an even more remarkable regularity in his data: All kinds of radiation
proved equivalent for inducing mutations. More precisely, the radiation from X-ray tubes at various
voltages, and even gamma rays from nuclear radioactivity, all generated mutation at the same
rate per dose, provided that the dose was expressed by quoting the number of electrically charged
molecules (or ions) per volume produced by the exposure (Figure 3.15).8

At this point a young physicist named Max Delbriick entered the scene. Delbriick had arrived
in the physics world just a few years too late to participate in the feverish discovery days of
quantum mechanics. His 1929 thesis nevertheless gave him a thorough understanding of the recently
discovered theory of the chemical bond, an understanding that experimentalists like Muller and
Timoféeff needed. Updated slightly, Delbriick’s analysis of the two facts above ran as follows.

8The “r,” or “roentgen,” units used in Figure 3.15 are now considered obsolete. The SI unit of radiation dose is

1

the gray (equal to coul - kg™" and abbreviated Gy); one roentgen equals approximately 0.009 Gy.
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Figure 3.16: (Schematic.) Max Delbriick’s simplified model for X-ray induced mutagenesis. Incoming X-rays
(diagonal arrows) occasionally interact with tissue to create free radicals (stars) with number density c. depending
on the X-ray intensity, the wavelength of the X-rays, and the duration of exposure. The chance that the gene of
interest lies within a box of volume v centered on one of the radicals, and so has a chance of being altered, is the
fraction of all space occupied by the boxes, or cyv.

When X-rays pass through any sort of matter, living or not, they knock electrons out of a few of
the molecules they pass. These electrons in turn rip apart other molecules, breaking chemical bonds
and creating highly reactive fragments. Some of these fragments are charged; they are ions. Others
are highly unstable; these are generically called “free radicals.” The density ¢;on of ions created per
volume is a convenient, and physically measurable, index of total radiation dose.

The reactive molecular fragments generated by the radiation can in turn encounter and damage
other nearby molecules. We assume that the density ¢, of these damage-inducing fragments is
some constant times the measured ionization: ¢, = Kc¢jon. The hypothesis that the gene is a single
molecule implies that the breakage of a single chemical bond in it could induce a permanent change
in its structure, and so cause a heritable mutation. Since free radicals are themselves unstable
molecular fragments, a single encounter with one of them can induce a mutation. Suppose that a
free radical can wander through a volume v before reacting with something, and that a particular
gene (for example, the one for eye color) has a chance Py of suffering a particular mutation if it is
located in this volume (and zero chance otherwise). Then the total chance that a particular egg or

sperm cell will undergo the chosen mutation is (see Figure 3.16):
probability of mutation = Pyc.v = (PLEKv) X Cion- (3.28)

Delbriick did not know the actual numerical values of any of the constants Py, K, and v appearing

in this formula. Nevertheless, the argument showed that:

The hypothesis that the gene is a single molecule suggests that a single molecular
encounter can break it, and hence that the probability of mutation equals a (3.29)

constant times the dose measured in ionizations per volume,

as found in Timoféeff’s experiments.

Equation 3.28 tells a remarkable story. On the left-hand side we have a biological quantity, which
we measure by irradiating a lot of flies and seeing how many have offspring with, for example, white
eyes. On the right side we have a purely physical quantity ¢;o,. The formula says that the biological
and the physical quantities are linked in a simple way by the hypothesis that the gene is a molecule.
Data like those in Figure 3.15 confirmed this prediction.
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The idea that genes were big molecules was now on a strong footing. Combining this idea
with the linear arrangement of genes found from Sturtevant’s linkage mapping (Section 3.3.2) led
Delbriick to his main conclusion:

The physical object carrying genetic factors must be a single long-chain
molecule, or polymer. The genetic information is carried in the exact iden-
tities (and sequence) of the links in this chain. This information is long-lived (3.30)
because the chemical bonds holding the molecule together require a large acti-

vation energy to break.

To appreciate the boldness of this proposal, we need to remember that the very idea of a
long-chain molecule was quite young and still controversial at the time. Despite the enormous
development of organic chemistry in the nineteenth century, the idea that long chains of atoms could
retain their structural integrity still seemed like science fiction. Eventually, careful experiments by
H. Staudinger around 1922 showed how to synthesize polymer solutions from well-understood small
precursor molecules by standard chemical techniques. Staudinger coined the word macromolecule
to describe the objects he had discovered. These synthesized polymers turned out to mimic their
natural analogs: For example, suspensions of synthetic latex behave much like natural rubber-tree
sap.

In a sense, Delbriick had again followed the physicist’s strategy of thinking about a simple model
system. A humble sugar molecule stores some energy through its configuration of chemical bonds.
In the language of Section 1.2, this energy is of high quality, or low disorder, and in isolation the
sugar molecule can retain this energy practically forever. The individual units, or monomers, of
the genetic polymer also store some chemical energy. But far more importantly, they store the
entire software needed to direct the construction of the redwood tree from atmospheric CO2, water
with dissolved nitrates, and a source of high-quality energy. Section 1.2.2 on page 10 argued that
the construction itself is an act of free-energy transduction, as is the duplication of the software.

The idea of an enormous molecule with permanent structural arrangements of its constituent
atoms was certainly not new. A diamond is an example of such a huge molecule. But nobody (yet)
uses diamonds to store and transmit information. That’s because the arrangement of atoms in a
diamond, while permanent, is boring. We could summarize it by drawing a handful of atoms, then
adding the words “et cetera.” A diamond is a periodic structure. Schrédinger’s point was that huge
molecules need not be so dull: We can equally well imagine a nonperiodic string of monomers, just
like the words in this book.

Today we know that Nature uses polymers for an enormous variety of tasks. Humans, too,
eventually caught on to the versatility of polymers, which now enter technology everywhere from
hair conditioner to bulletproof vests. Though we will add little to Schrodinger’s remarks on the
information-storage potential of polymers, the following chapters will return to them over and over
as we explore how they carry out the many tasks assigned to them in cells.

Schrodinger’s summary of the state of knowledge focused the world’s attention on the deepest,
most pressing questions: If the gene is a molecule, then which of the many big molecules in the
nucleus is it? If mitosis involves duplication of this molecule, then how does such duplication work?
Many young scientists heard the call of these questions, including the geneticist James Watson. By
this time further advances in biochemistry had pinpointed DNA as the genetic information carrier:
It was the only molecule that, when purified, was capable of permanently transforming cells and their
progeny. But how did it work? Watson joined the physicist Francis Crick to attack this problem,
using the relatively young physical technique of X-ray diffraction. Integrating recent physics results
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(the X-ray scattering work of Rosalind Franklin and Maurice Wilkins) with biochemical facts (the
base-composition rules observed by Erwin Chargaff), they deduced their now-famous double helix
model for the structure of DNA in 1953. The molecular biology revolution then began in earnest.

The big picture

Returning to the Focus Question, this chapter has explored the idea that random thermal motion
dominates the molecular world. We found that this idea explains quantitatively some of the behavior
of low-density gases. Gas theory may seem remote from the living systems we wish to study, but
in fact it turned out to be a good playing-field to develop some themes that transcend this setting.
Thus

eSection 3.1 developed many concepts from probability that will be needed later.

eSections 3.2.3— 3.2.5 motivated three crucial ideas using ideal gases, namely the Boltz-
mann distribution, the Arrhenius rate law, and the origin of friction, all of which
will turn out to be general.

eSection 3.3 also showed how the concept of activation barrier, on which the Arrhenius
law rests, led to the correct hypothesis that a long-chain molecule was the carrier of

genetic information.

Chapters 7 and 8 will develop the general concept of entropic forces, again starting with ideas from
gas theory. Even when we cannot neglect the interactions between particles, for example when
studying electrostatic interactions in solution, Chapter 7 will show that sometimes the noninteract-

ing framework of ideal-gas theory can still be used.

Key formulas

1. Probability: The mean value of any quantity f is (f) = [ dzf(z)P(z) (Equation 3.9). The
variance is the mean-square deviation, variance(f) = (f — (f))?).
Addition rule: The probability to get either of two mutually exclusive outcomes is the sum
of the individual probabilities.
Multiplication rule: The probability to get particular outcomes in each of two independent
random strings is the product of the individual probabilities (Equation 3.15).
The Gaussian distribution is P(z) = \/21— e~ (@=20)*/20% (Equation 3.8). The root-mean-

yiyes
square deviation, Az, of this distribution equals o.

2. Thermal energy: The average kinetic energy of an ideal gas molecule at temperature 7' is
3kgT (Equation 3.21).

3. Maxwell: In a free, ideal gas the probability distribution for a molecule to have x-component
of velocity between v, and v, + dv, is a constant times e—m(ve)?/2ksT dv,. The total
distribution for all three components is then the product, namely another constant times

—mv2/2kBT dS

e v. The Maxwell distribution generalizes this statement for the case of many

particles (Equation 3.25).

4. Boltzmann: In an ideal gas on which forces act, the probability for one molecule to have
given position and momentum is a constant times e~ ¥/*87 d3vd®x, where the total energy
E of the molecule (kinetic plus potential) depends on position and velocity. In the special



94 CHAPTER 3 THE MOLECULAR DANCE [[STUDENT VERSION, DECEMBER 8, 2002]]

case where the potential energy is a constant, this formula reduces to the Maxwell distri-
bution. More generally, for many interacting molecules in equilibrium the probability for
molecule number 1 to have velocity v; and position X1, and so on, equals a constant times
e  E/ksT @3y, dBv,y ... dBPx1d3%, . .. (Equation 3.26), where now FE is the total energy for all

the molecules.

5. Rates: The rates of many simple chemical reactions depend on temperature mainly via the

rapidly varying Arrhenius exponential factor, e~ Fparsier/ksT (Equation 3.27).

Further reading

Semipopular:

Probability: (Gonick & Smith, 1993)

Genetics: (Gonick & Wheelis, 1991)

Schrodinger’s and Gamow’s reviews: (Schrodinger, 1967), (Gamow, 1961)
Polymers: (deGennes & Badoz, 1996)

Intermediate:

Probability: (Ambegaokar, 1996)

Molecular theory of heat: (Feynman et al., 1963a, §39.4)
History of genetics: (Judson, 1995)

Technical:

X-ray mutagenesis experiment: (Timoféeff-Ressovsky et al., 1935)
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TQ Track 2

3.3.2° Sturtevant’s genetic map (Figure 3.13) also has a more subtle, and remarkable, property.
Choosing any three traits A, B, and C' appearing in the map in that order on the same linkage
group, the probability P4c that A and C will be separated in a single meiosis is less than or equal
to the sum Psp + Ppc of the corresponding probabilities of separation of AB and BC. There was
initially some confusion on this point. Requiring that Pac be equal to Pap + Ppc led W. Castle to
propose a three-dimensional arrangement of the fly genes. Muller later pointed out that requiring
strict equality amounted to neglecting the possibility of double crossing-over. Revising his model to
incorporate this effect, and including later data, Castle soon found that the data actually required

that the genes be linearly arranged, as Morgan and Sturtevant had assumed all along!
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Problems

3.1 White-collar crime

a. You are a city inspector. You go undercover to a bakery and buy 30 loaves of bread marked
500 g. Back at the lab you weigh them and find their masses to be 493, 503, 486, 489, 501, 498,
507, 504, 493, 487, 495, 498, 494, 490, 494, 490, 497, 503, 498, 495, 503, 496, 492, 492, 495, 498,
490, 490, 497, and 482 g. You go back to the bakery and issue a warning. Why?

b. Later you return to the bakery (this time they know you). They sell you 30 more loaves of bread.
You take them home, weigh them, and find their masses to be 504, 503, 503, 503, 501, 500, 500,
501, 505, 501, 501, 500, 508, 503, 503, 500, 503, 501, 500, 502, 502, 501, 503, 501, 501, 502, 503, 501,
502, and 500 g. You're satisfied, since all the loaves weigh at least 500 g. But your boss reads your
report and tells you to go back and close the shop down. What did she notice that you missed?

3.2 Relative concentration versus altitude

Earth’s atmosphere has roughly four molecules of nitrogen for every oxygen molecule at sea level;
more precisely the ratio is 78:21. Assuming a constant temperature at all altitudes (not really
very accurate), what is the ratio at an altitude of 10 km? Explain why your result is qualitatively
reasonable. [Hint: This problem concerns the number density of oxygen molecules as a function
of height. The density is related in a simple way to the probability that a given oxygen molecule
will be found at a particular height. You know how to calculate such probabilities.]

[Remark:  Your result is also applicable to the sorting of macromolecules by sedimentation to

equilibrium (see Problem 5.2).]

3.3 Stop the dance
A suspension of virus particles is flash-frozen and chilled to a temperature of nearly absolute zero.
When the suspension is gently thawed it is found to be still virulent. What conclusion do we draw

about the nature of hereditary information?

3.4 Photons

Section 3.3.3 reviewed Timoféeff’s empirical result that the rate of induced mutations is proportional
to the radiation dose. Not only X-rays can induce mutations; even ultraviolet light will work (that’s
why you wear sunblock). To get a feeling for what is so shocking about Timoféeff’s result, notice
that it implies there’s no “safe,” or threshold, dose level. The amount of damage (probability
of damaging a gene) is directly proportional to the dose (total amount of radiation exposure).
Extrapolating to the smallest possible dose, this means that even a single photon of UV light has
the ability to cause permanent, heritable, genetic damage (albeit with some very low probability).
“Photons” are the packets of light alluded to in Section 1.5.3.

a. Somebody tells you that a single ultraviolet photon carries an energy equivalent of ten electron-
volts (eV, see Appendix B). You suspect that the damage mechanism is that a photon delivers
that energy into a volume the size of the cell nucleus and heats it up; then the increased thermal
motion knocks the chromosomes apart in some way. Is this a reasonable proposal? Why or why
not? [Hint: Use Equation 1.2, and the definition of calorie found just below it, to calculate the
temperature change.]

b. Turning the result around, suppose that that photon’s energy is delivered to a small volume L3
and heats it up. We might suspect that if it heats up the region to boiling, that would disrupt any

message contained in that volume. How small must L be in order for this amount of energy to heat
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Figure 3.17: (Schematic.) Gas escaping from a pinhole of area A in whe wall of a box. The number density of gas
molecules is ¢ inside the box and zero outside. A detector counts the rate at which molecules land on a sensitive region
of area A,. The six arrows in the box depict schematically six molecules, all with one particular speed u = |v|. Of
these, only two will emerge from the box in time dt, and of those two, only one will arrive at the detector a distance

d away.

that volume up to boiling (from 30°C to 100°C)? What could we conclude about the size of a gene
if this proposal were correct?

3.5 ﬂEﬁusian
Figure 3.6 shows how to check the Boltzmann distribution of molecular speeds experimentally.
Interpreting these data, however, requires some analysis.

Figure 3.17 shows a box full of gas with a tiny pinhole of area A, which slowly lets gas molecules
escape into a region of vacuum. You can assume that the gas molecules have a nearly equilibrium
distribution inside the box; the disturbance caused by the pinhole is small. The gas molecules have
a known mass m. The number density of gas in the box is ¢. The emerging gas molecules pass
through a velocity selector, which admits only those with speed in a particular range, from u to
u + du. A detector measures the total number of molecules arriving per unit time. It is located a
distance d from the pinhole, on a line perpendicular to the hole, and its sensitive region is of area
A,

a. The detector catches only those molecules emitted in certain directions. If we imagine a sphere
of radius d centered on the pinhole, then the detector covers only a fraction « of the full sphere.
Find a.

Thus the fraction of all gas molecules whose v makes them candidates for detection is P(v)d3v,
where v points perpendicular to the pinhole and has magnitude wu, and d3v = 4rau?du. Of these,
the ones that actually emerge from the box in time d¢ will be those initially located within a cylinder
of area A and length udt (see the dashed cylinder in the figure).

b. Find the total number of gas molecules per unit time arriving at the detector.

c. Some authors report their results in terms of the transit time 7 = d/u instead of u. Rephrase
your answer to (b) in terms of 7 and dr, not u and du.

[Note: In practice, the selected velocity range du depends on the width of the slots in Figure 3.6,
and on the value of u selected. For thin slots, du is roughly a constant times uw. Thus the solid
curve drawn in Figure 3.7 consists of your answer to (b), multiplied by another factor of u, and

normalized; the experimental points reflect the detector response, similarly normalized.]



Chapter 4

Random walks, friction, and

diffusion

It behoves us to remember that in physics it has taken great
scientists to discover simple things. They are very great names
indeed which we couple with the explanation of the path of a
stone, the droop of a chain, the tints of a bubble, the shadows
in a cup. — D’Arcy Thompson, 1917

Section 3.2.5 argued that the origin of friction was the conversion of organized motion to disor-
dered motion by collisions with a surrounding, disordered medium. In this picture, the First Law
of thermodynamics is just a restatement of the conservation of energy. To justify such a unifying
conclusion, we’ll continue to look for nontrivial, testable, quantitative predictions from the model.

This process is not just an exercise in retracing others’ historical footsteps. Once we understand
the origin of friction, a wide variety of other dissipative processes—those that irreversibly turn

order into disorder—will make sense, too:

e The diffusion of ink molecules in water erases order, for example any pattern initially present
(Section 4.4.2).

e The conduction of heat erases the initial separation into hot and cold regions (Section 4.6.4).
e Friction erases order in the initial directed motion of an object (Section 4.1.4).

e Electrical resistance runs down your flashlight batteries, making heat (Section 4.6.4).

In every case just listed, organized kinetic or potential energy gets degraded into mass, average,
disorganized motion, by collisions with a large, random environment. The paradigm we will study
for all of these processes will be the physics of the random walk (Section 4.1.2).

None of the dissipative processes listed above matters much for the Newtonian questions of
celestial mechanics. But all will turn out to be of supreme importance in understanding the physical
world of cells. The difference is that in cells, the key actors are single molecules or perhaps structures

of at most a few thousand molecules. In this nanoworld, the tiny energy kgT; is not so tiny; the

(©2000 Philip C. Nelson
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randomizing kicks of neighboring molecules can quickly degrade any concerted motion. Thus for

example,

e Diffusion turns out to be the dominant form of material transport on sub-micron scales (Sec-
tion 4.4.1).

e The mathematics of random walks is also the appropriate language to understand the con-

formations of many biological macromolecules (Section 4.3.1).

e Diffusion ideas will give us a quantitative account of the permeability of bilayer membranes
(Section 4.6.1) and the electrical potentials across them (Section 4.6.3), two topics of great

importance in cell physiology.

The Focus Question for this chapter is:
Biological question: If everything is so random in the nanoworld of cells, how can we say anything
predictive about what’s going on there?
Physical idea: The collective activity of many randomly moving actors can be effectively predictable,

even if the individual motions are not.

4.1 Brownian motion

4.1.1 Just a little more history

Even up to the end of the nineteenth century, influential scientists were criticizing, even ridiculing,
the hypothesis that matter consisted of discrete, unchangeable, real particles. The idea seemed to
them philosophically repugnant. Many physicists, however, had by this time long concluded that the
atomic hypothesis was indispensable for explaining the ideal gas law and a host of other phenomena.
Nevertheless, doubts and controversies swirled. For one thing, the ideal gas law doesn’t actually
tell us how big molecules are. We can take 2 g of molecular hydrogen (one mole) and measure its
pressure, volume, and temperature, but all we get from the gas law is the product kgNpyole, N0t
the separate values of kg and Nple; thus we don’t actually find how many molecules were in that

mole. Similarly, in Section 3.2 on page 72, the decrease of atmospheric density on Mt. Everest told

us that mg-10km =~ %mvz, but we can’t use this to find the mass m of a single molecule—m drops
out.

If only it were possible to see molecules and their motion! But this dream seemed hopeless. The
many improved estimates of Avogadro’s number deduced in the century since Franklin all pointed
to an impossibly small size for molecules, far below what could ever be seen with a microscope.
But there was one ray of hope.

In 1828, a botanist named Robert Brown had noticed that pollen grains suspended in water do
a peculiar incessant dance, visible with his microscope. At roughly 1 gum in diameter, pollen grains
seem tiny to us. But they’re enormous on the scale of atoms, and easily big enough to see under
the microscopes of Brown’s time (the wavelength of visible light is around half a micrometer). We
will generically call such objects colloidal particles. Brown naturally assumed that what he was
observing was some life process, but being a careful observer, he proceeded to check this assumption.

What he found was that:

eThe motion of the pollen never stopped, even after the grains were kept for a long time
in a sealed container. If the motion were a life process, the grains would run out of

food eventually and stop moving. They didn’t.
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eTotally lifeless particles do exactly the same thing. Brown tried using soot, “deposited
in such Quantities on all Bodies, especially in London,” and other materials, even-
tually getting to the most exotic material available in his day: ground-up bits of the
Sphinx. The motion was always the same for similar-size particles in water at the

same temperature.

Brown reluctantly concluded that his phenomenon had nothing to do with life.

By the 1860s several people had proposed that the dance Brown observed was caused by the
constant collisions between the pollen grains and the molecules of water agitated by their thermal
motion. Experiments by several scientists confirmed that this Brownian motion was indeed more
vigorous at higher temperature, as expected from the relation (average kinetic energy)= %kBT
(Idea 3.21). (Other experiments had ruled out other, more prosaic, explanations for the motion,
such as convection currents.) It looked as though Brownian motion could be the long-awaited
missing link between the macroscopic world of bicycle pumps (the ideal gas law) and the nanoworld
(individual molecules). Missing from these proposals, however, was any precise quantitative test.

Indeed, the molecular-motion explanation of Brownian motion seems on the face of it absurd,

as others were quick to point out. The critique hinged on two points:

1. If molecules are tiny, then how can a molecular collision with a comparatively enor-
mous pollen grain make the grain move appreciably? Indeed, the grain takes steps
that are visible in light microscopy, and so are enormous relative to the size of a
molecule.

2. Section 3.2 argued that molecules are moving at high speeds, around 103 ms™'. If
water molecules are about a nanometer in size, and closely packed, then each one
moves less than a nanometer before colliding with a neighbor. The collision rate is
then at least (103ms™1)/(107%m), or about 10'? collisions times per second. Our

1

eyes can resolve events at rates no faster than 30s™. How could we see these

hypothetical dance steps?

This is where matters stood when a graduate student was finishing his thesis in 1905. The
student was Albert Einstein. The thesis kept getting delayed because Einstein had other things on
his mind that year. But everything turned out all right in the end. One of Einstein’s distractions

was Brownian motion.

4.1.2 Random walks lead to diffusive behavior

Einstein’s beautiful resolution to the two paradoxes just mentioned was that the two problems cancel
each other. To understand his logic, imagine a very large checkerboard on the sidewalk below a
skyscraper. Once per second you toss a coin. Each time you get heads, you move the checker one
step to the east; for tails, one step to the west. You have a friend looking down from the top of the
building. She cannot resolve the individual squares on the checkerboard; they are too distant for
that. Nevertheless, once in a while you will flip 100 heads in a row, thus producing a step clearly
visible from afar. Certainly such events are rare; your friend can check up on your game only every
hour or so and still not miss them.

In just the same way, Einstein said, although we cannot see the small, rapid jerks of the pollen

grain due to individual molecular collisions, still we can and will see the rare large displacements.’

1 T2 \What follows is a simplified version of Einstein’s argument. Track-2 readers will have little difficulty
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Figure 4.1: (Metaphor.) George Gamow’s conception of the random (or “drunkard’s”) walk. [Cartoon by George
Gamow, from (Gamow, 1961).] [Copyrighted figure; permission pending.]

The fact that rare large displacements exist is sometimes expressed by the statement that a
random walk has structure on all length scales, not just on the scale of a single step. Moreover,
studying only the rare large displacements will not only confirm that the picture is correct but will
also tell us something quantitative about the invisible molecular motion (in particular, the value
of the Boltzmann constant). The motion of pollen grains may not seem to be very significant for
biology, but Section 4.4.1 will argue that thermal motion becomes more and more important as we
look at smaller objects—and biological macromolecules are much smaller than pollen grains.

It’s easy to adapt this logic to more realistic motions, in two or three dimensions. For two
dimensions, just flip two coins each second, a penny and a nickel. Use the penny to move the
checker east/west as before. Use the nickel to move the checker north/south. The path traced by
the checker is then a two-dimensional random walk (Figures 4.1 and 4.2); each step is a diagonal
across a square of the checkerboard. We can similarly extend our procedure to three dimensions.

But to keep the formulas simple, the rest of this section will only discuss the one-dimensional case.

Suppose our friend looks away for 10000s (about three hours). When she looks back, it’s quite
unlikely that our checker will be exactly where it was originally. For that to happen, we would have
to have taken exactly 5000 steps right and 5000 steps left. Just how improbable is this outcome?
For a walk of two steps, there are two possible outcomes that end where we started (HT and TH),
out of a total of 22 = 4 possibilities; thus the probability to return to the starting point is 2/22 or
0.5. For a walk of four steps, there are six ways to end at the starting point, so P = 6/2* = 0.375.
For a walk of 10000 steps, we again need to find Ny, the number of different outcomes that land

us at the starting point, then divide by N = 210000,

Example Finish the calculation.

Solution: Of the N possible outcomes, we can describe the ones with exactly 5000

following his original paper (Einstein, 1956) after reading Chapter 6 of this book.
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Figure 4.2: (Mathematical functions; experimental data.)(a) Computer simulation of a two-dimensional random
walk with 300 steps. Each step lies on a diagonal as discussed in the text. (b) The same with 7500 steps, each 1/5 the
size of the steps in (a). The walk has been sampled every 25 steps, giving a mean step size similar to that in (a). The
figure has both fine detail and an overall structure: We say there is structure on all length scales. (c) Jean Perrin’s
actual experimental data (1908). Perrin periodically observed the location of a single particle, then plotted these
locations joined by straight lines, a procedure similar to the periodic sampling used to generate the mathematical
graph (b). The field of view is about 75 um. [Simulations kindly supplied by P. Biancaniello; experimental data
from (Perrin, 1948).]

heads as follows: To describe a particular sequence of coin tosses, we make a list of
which tosses came out “heads.” This gives us a list (ng,...,ns5000) of 5000 different
integers, each less than 10000. We want to know how many such distinct lists there
are.

We can take ny to be any number between 1 and 10000, ns to be any of the 9999
remaining choices, and so on, for a total of N = 10000 x 9999 x - - - x 5001 lists. Let
us rewrite this quantity as (10000!)/(5000!), where the exclamation point denotes
the factorial function. But any two lists differing by exchange (or permutation) of
the n;’s are not really different, so we must divide our answer by the total number
of possible permutations, which is 5000 x 4999 x - -- x 1. Altogether, then, we have

10 000!

=" 4.1
5000! x 5000! (4.1)

0

distinct lists.
Dividing by the total number of possible outcomes gives the probability of landing
exactly where you started as P = Ny/N = 0.008. It’s less than a 1% chance.

The probability distribution found in the above Example is called the binomial distribution. Some

10 000

5000 ), pronounced “ten thousand choose five thousand.”

authors abbreviate Equation 4.1 as (

Your Turn 4a
You can’t do the above calculation on a calculator. You could do it with a computer-algebra

package, but now is a good time to learn a handy tool: Stirling’s formula gives an approximation

for the factorial N! of a large number N as
InN!~NInN — N + 3 In(27N). (4.2)

Work out for yourself the result for P just quoted, using this formula.

The Example on page 101 shows that it’s quite unlikely that you will end up exactly where you
started. But you’re even less likely to end up 10000 steps to the left of your starting point, a
movement requiring that you flip 10000 consecutive tails, with P ~ 5 - 1071031 Instead, you're
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Figure 4.3: (Experimental data.) Behavior of the binomial distribution. (a) Four coins were tossed, and the
fraction x that came up heads was recorded. The histogram shows the result for a sample of 57 such trials. Since
this is a discrete distribution, the bars have been normalized so that the sum of their heights equals one. (b) Another
sample of 57 tosses of 4 coins. (c) This time 36 coins were tossed, again 57 times. The resulting distribution is much
narrower than (a,b); we can say with greater certainty that “about half” our coin tosses will come up heads if the
total number of tosses is large. The bars are not as tall as in (a,b) because the same number of tosses (57) is now
being divided between a larger number of bins (37 rather than 5). [Data kindly supplied by R. Nelson.]

likely to end up somewhere in the middle. But where?

One way to answer the question would be to proceed as in the Example on page 101, finding
the probability of arriving at various locations. Another way would be to list explicitly all the pos-
sible outcomes for a 10 000-toss sequence, then make a histogram of the corresponding frequencies
(Figure 4.3). But there is a better way.

Suppose each step is of length L. Thus the displacement of step j is k;L, where k; is equally
likely to be £1. Call the position after j steps x;; the initial position is xy = 0 (see Figure 4.4a).
Then x; = k1L, and similarly the position after j steps is x; = x;_1 + k; L.

We can’t say anything about x; because each walk is random. We can, however, make definite
statements about the average of x; over many different trials: For example, Figure 4.4b shows
that (z3) = 0. The diagram makes it clear why we got this result: In the average over all possible
outcomes, those with net displacement to the left will cancel the contributions of their equally likely
analogs with net displacement to the right.

Thus the average displacement of a random walk is zero. But this doesn’t mean we won’t go
anywhere! The Example on page 101 showed that the probability of ending right where we started
is small, not large, for large N. To get a meaningful result, recall the discussion in Section 3.2.1:
For an ideal gas, (v,) = 0 but (v,2) # 0. Following that hint, let’s compute (xx?) in our problem.
Figure 4.4 shows such a computation, yielding (x3%) = 3L2.

Your Turn 4b.
Repeat this calculation for a walk of four steps, just to make sure you understand how it works.

Admittedly, the math gets tedious. Instead of exhaustively listing all possible outcomes, though,
we can note that

((en)?) = {(an-1 + knL)?) = {(wn-1)?) + 2L{wn—1kn) + L*((kn)?). (4.3)

In the last expression, the final term just equals L2, because (£1)? = 1. For the middle term, note
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Figure 4.4: (Diagram.) (a) Anatomy of a random walk. Three steps, labeled j = 1,2,3, are shown. (b) Complete
list of the eight distinct 3-step walks, with step length L = 1 cm. Each of these outcomes is equally probable in our
simplest model.

that we can group all 2V possible walks into pairs (see the last column of Figure 4.4). Each pair
consists of two equally probable walks with the same zx_1, differing only in their last step, so each
pair contributes zero to the average of xny_1ky. Think about how this step implicitly makes use
of the multiplication rule for probabilities (see page 70), and the assumption that every step was
statistically independent of the previous ones.

Thus, Equation 4.3 says that a walk of N steps has mean-square displacement bigger by L? than
a walk of N — 1 steps, which in turn is L? bigger than a walk of N — 2 steps, and so on. Carrying
this logic to its end, we find

((zn)?) = NL% (4.4)

We can now apply our result to our original problem of moving a checker once per second. If we
wait a total time ¢, the checker makes N = t/At random steps, where At = 1s. Define the diffusion
constant of the process as D = L?/2At. Then:?

a. The mean-square displacement in a one-dimensional random walk increases
linearly in time: ((xx)?) = 2Dt, where . (4.5)
b. the constant D equals L?/2At.

The first part of Idea 4.5 is called the one-dimensional diffusion law. In our example, the time
between steps is At = 15, so if the squares on the checkerboard are 2 cm wide, we get D = 2cm?s™ .
Figure 4.5 illustrates that the averaging symbol in Idea 4.5a must be taken seriously—any individual
walk will not conform to the diffusion law, even approximately.

Idea 4.5a makes our expectations about random walks precise. For example, we can see excur-
sions of any size X, even if X is much longer than the elementary step length L, as long as we are
prepared to wait a time on the order of X?2/2D.

2The definition of D in Idea 4.5b contains a factor of 1/2. We can define D any way we like, as long as we're
consistent; the definition we chose results in a compensating factor of 2 in the diffusion law, Idea 4.5a. This convention
will be convenient when we derive the diffusion equation in Section 4.4.2.
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Figure 4.5: (Mathematical functions.) (a) Squared deviation (z;)? for a single, one-dimensional random walk of
700 steps. Each step is one unit long. The solid line shows j itself; the graph shows that (xj)2 is not at all the same
as j. (b) As (a), but this time the dots represent the average {(z;)2) over thirty such walks. Again the solid line
shows j. This time ((z;)2) does resemble the idealized diffusion law (Equation 4.4).

Returning to the physics of Brownian motion, our result means that even if we cannot see
the elementary steps in our microscope, we can nevertheless confirm Idea 4.5a and measure D
experimentally: Simply note the initial position of a colloidal particle, wait a time ¢, note the final
position, and calculate 22/2t. Repeat the observation many times; the average of x2/2t gives D.
The content of Idea 4.5a is that the value of D thus found will not depend on the elapsed time t.

Once we measure D, Idea 4.5b lets us relate it to the microscopic, unobservable parameters
L and At. Unfortunately, we cannot solve one equation for two unknowns: Just measuring D is
not enough to find specific values for either one of these parameters. We need a second relation
relating L and At to some observation, so that we can solve two equations for the two unknowns.
Section 4.1.4 will find the required additional relation.

We can extend all these ideas to two or more dimensions (Figure 4.2). For a walk on a two-
dimensional checkerboard with squares of side L, we still define D = L?/2At. Now, however, each
step is a diagonal, and so has length Lv/2. Also, the position ry is a vector, with two components
xy and yy. Thus ((ry)?) = ((xn)?) + {(yn)?) = 4Dt is twice as great as before, since each term
on the right separately obeys Idea 4.5a. Similarly, in three dimensions we find

((rn)?) = 6Dt. diffusion in three dimensions (4.6)

It may seem confusing to keep track of all these different cases. But the important features about
the diffusion law are simple: In any number of dimensions, mean-square displacement increases
linearly with time, so the constant of proportionality D has dimensions L*T™!. Remember this,

and many other formulas will be easy to remember.

4.1.3 The diffusion law is model-independent

Our mathematical treatment of the random walk made some drastic simplifying assumptions. One
may well worry that our simple result, Idea 4.5, may not survive in a more realistic model. This
subsection will show that on the contrary, the diffusion law is universal—it’s independent of the

model, as long as we have some distribution of random, independent steps.
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For simplicity we’ll continue to work in one dimension. (Besides being mathematically simpler
than three dimensions, the 1d case will be of great interest in Section 10.4.4.) Suppose that our
checker makes steps of various lengths. We are given a set of numbers Py, the probabilities of taking
steps of length kL, where k is an integer. The length k; of step j can be positive or negative, for
forward or backward steps. We assume that the relative probabilities of the various step sizes are

all the same for each step (that is, cach value of j). Let u be the average value of k;:
= kP (4.7)
k

w is a form of average drift motion superimposed on the random walk. The analysis of the preceding
subsection corresponds to the special case Py = %7 with all the other P, = 0. In this case u = 0.

The mean position of the walker is now:
(xn) ={xn—1) + L{kn) = (xn_1) + uL = NuL. (4.8)

To get the last equality, we noticed that a walk of IV steps can be built one step at a time; after
each step the mean displacement grows by uL.

The mean displacement is not the whole story: We know from our earlier experience that
diffusion concerns the fluctuations about the mean. Accordingly, let us now compute the variance
(or mean-square deviation, Equation 3.11) of the actual position about its mean. Repeating the

analysis leading to Equation 4.3 gives that

((zy — (zn))?) = ((xn—1 + knL — NuL)?)

(((@y—1 —uw(N =1)L) + (knL — uL)) )

(n-1 —u(N =1)L)» +2((xy_1 — u(N —1)L)(kxL — uL)) + L*{(kn — u)?).
(4.9)

variance(z y)

Just as before, we now recall that kL, the length of the N*" step, was assumed to be a random
variable, statistically independent of all the previous steps. Thus the middle term of the last formula
becomes 2L{xy_1 — u(N — 1)L)(kn — u), which is zero by the definition of u (Equation 4.7). Thus

Equation 4.9 says that the variance of z increases by a fixed amount on every step, or

variance(ry) = ((zy_1 — (xn_1))?) + L*{(kxy — (kn))?)

variance(zy_1) + L? x variance(k).

After N steps the variance is then NL? x variance(k). Supposing the steps to come every At, so
that N = ¢/At, then gives
variance(zy) = 2Dt. (4.10)

2L—A2t x variance(k). In the special case where u = 0 (no drift), Equation 4.10
just reduces to our earlier result, Idea 4.5a!
Thus the diffusion law (Idea 4.5a) is model-independent. Only the detailed formula for the

diffusion constant (Idea 4.5b) depends on the microscopic details of the model.? Such universality,

In this formula, D =

whenever we find it, gives a result great power and wide applicability.

3 T2 Section 9.2.2" on page 340 will show that similarly, the structure of the three-dimensional diffusion law

(Equation 4.6) does not change if we replace our simple model (diagonal steps on a cubic lattice) by something more
realistic (steps in any direction).
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4.1.4 Friction is quantitatively related to diffusion

Diffusion is essentially a question of random fluctuations: knowing where a particle is now, we seek
the spread in its expected position at a later time ¢t. Section 3.2.5 argued qualitatively that the
same random collisions responsible for this spread also give rise to friction. So we should be able to
relate the microscopic quantities L and At to friction, another experimentally measurable quantity.
As usual, we’ll make some simplifications to get to the point quickly. For example, we’ll again
consider an imaginary world where everything moves only in one dimension.

To study friction, we want to consider a particle pulled by a constant external force f. For
example, f could be the force mg of gravity, or the artificial gravity inside a centrifuge. We want to
know the average motion of each particle as it falls in the direction of the force. In first-year physics
you probably learned that a falling body eventually comes to a “terminal velocity” determined by
friction. Let’s investigate the origin of friction, in the case of a small body suspended in fluid.

In the same spirit as Section 4.1.1, we’ll suppose that the collisions occur exactly once per At
(though really there is a distribution of times between collisions). In between kicks, the particle

dv f

is free of random influences, so it is subject to Newton’s Law of motion, G7 =

accordingly changes with time as v(t) = vo + ft/m, where vy is the starting value just after a kick

- its velocity
and m is the mass of the particle. The resulting uniformly accelerated motion of the particle is
then

Az = oAt + L L (A2 (4.11)

Following Section 4.1.1, assume that each collision obliterates all memory of the previous step.
Thus, after each step, vy is randomly pointing left or right, so its average value, (vg), equals zero.
Taking the average of Equation 4.11 thus gives (Ax) = %(At)z. In other words the particle, while
buffeted about by random collisions, nevertheless acquires a net drift velocity equal to (Ax)/At,

or

Vdrift = f/c; (412)

where
¢ =2m/AL. (4.13)

Equation 4.12 shows that, under the assumptions made, a particle under a constant force indeed
comes to a terminal velocity proportional to the force. The viscous friction coefficient (, like the
diffusion constant, is experimentally measurable—we just look through a microscope and see how
fast a particle settles under the influence of gravity, for example.*

Actually, in practice it’s often not necessary to measure ¢ directly: The viscous friction coefficient

for a spherical object is related to its size by a simple empirical relation, the Stokes formula:

¢ = 6mna. Stokes formula (4.14)

In this expression, a is the radius of the particle and 7 is the “viscosity” of the fluid. Chapter 5
will discuss viscosity in greater detail; for now we only need to know that the viscosity of water at
room temperature is about 1073 kgm s, It’s generally easier to measure the size of a colloidal
particle (by looking at it), then use Equation 4.14, than it is to measure the particle’s weight f and
use Equation 4.12 to get (.

4Many authors instead speak in terms of the “mobility,” which equals 1/¢.
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Once we measure ¢ experimentally, Equation 4.13 then connects it to a microscopic quantity,
the collision time At. We can then substitute this value back into Idea 4.5b to find the effective
step size L, using the measured D.

Recovering the familiar friction law (Equation 4.12) strengthens the idea that friction originates
in randomizing collisions of a body with the thermally disorganized surrounding fluid. Our result
goes well beyond the motion of Robert Brown’s pollen grains: Any macromolecule, small dissolved
solute molecule, or even the molecules of water itself are subject to Equations 4.6 and 4.12. Each
type of particle, in each type of solvent, has its own characteristic values of D and (.

Unfortunately, however, our theory has not made a falsifiable, quantitative prediction yet. It
lets us compute the microscopic parameters L and At of the random walk’s steps, but these are
unobservable! To test of the idea that diffusion and friction are merely two faces of thermal motion,
we must take one further step.

Einstein noticed that there’s a third relation involving the two unknown microscopic parameters
L and At. To get it, we simply note that (L/At)? = (vg)?. Our discussion of the ideal gas law
(Idea 3.21 and the discussion preceding it) concluded that the average value of this quantity is just
ksT/m. Combined with Equations 4.5b and 4.13, this relation overdetermines L and At: The three
relations in these two unknowns can only hold if D and ( themselves satisfy a particular relation.
This relation between experimentally measurable quantities is the falsifiable prediction we were
seeking. To find it, consider the product {D.

Your Turn 4c
Put all the pieces together: Continuing to work in one dimension, use Equations 4.5b and 4.13

to express (D in terms of m, L, and At. Then use the definition vy = L/At, and Idea 3.21 on
page 74, to show that

(D = kpT. Einstein relation (4.15)

Equation 4.15 is Einstein’s 1905 result.® It states that the fluctuations in a particle’s position are
linked to the dissipation, or frictional drag, it feels. The connection is quantitative and universal:
it’s always given by the same quantity kg7 appearing in the ideal gas law, no matter what sort
of particle we study. For example, the right-hand side of Equation 4.15 does not depend on the
mass m of the particle. Smaller particles will feel less drag (smaller ¢) but will diffuse more readily
(bigger D) in such a way that all particles obey Equation 4.15.

Previously we had regarded D and ( as two independent quantities, obtained empirically from
two very different sorts of experiments. The Einstein relation says that on the contrary, they
are strictly related to each other, a testable prediction of the hypothesis that heat is disordered
molecular motion. For example, whereas both ( and D can have extremely complicated dependence
on the temperature, Equation 4.15 says their product depends on T in a very simple way. We can
check whether various kinds of particles, of various sizes, at various temperatures, all give exactly
the same value of kg. They do; you'll see one example in Problem 4.5.

Einstein also checked whether the experiment he was proposing was actually doable. He reasoned
that in order to see a measurable displacement of a single 1 um colloidal particle, we’d have to wait

until it had moved several micrometers. If the waiting time for such a motion were impracticably

5This relation was also derived and published in the same year by W. Sutherland, and obtained independently at
around the same time by M. Smoluchowski. Smoluchowski waited to do the experiments first before publishing the
theory, and so got scooped by Einstein and Sutherland.
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long, then the experiment itself would be impractical. Using existing estimates of kg, Einstein
estimated that a 1 um sphere in water would take about a minute to wander a mean-square distance
of 5 um, a convenient waiting time. Einstein concluded that colloidal particles occupy a window
of experimental opportunity: They are large enough to resolve optically, yet not so large as to
render their Brownian motion unobservably sluggish. Very soon after his prediction, Jean Perrin
and others did the experiments and confirmed the predictions. As Einstein put it later, “Suddenly
all doubts vanished about the foundations of Boltzmann’s theory [of heat].”

Section 4.1.4" on page 132 mentions several finer points about random walks.

4.2 Excursion: What Einstein did and did not do

The popular image of Einstein, as the solitary genius weaving the fabric of theoretical physics in
total isolation, distorts both Einstein’s role and the nature of science. Science is a team sport.

It is true that in 1905 Einstein was working not in a university but in an obscure patent office.
Nevertheless, he was tightly connected to the intellectual currents of his day and was as up-to-date
as anyone on the key experiments. As we have seen, he was not the first to suggest that the origin
of Brownian motion was thermal agitation. What did he do that was so great?

First of all, Einstein had exquisite taste in realizing what problems were important. At a time
when others were pottering with acoustics and such, Einstein realized that the pressing questions
of the day were the reality of molecules, the structure of Maxwell’s theory of light, the apparent
breakdown of statistical physics in the radiation of hot bodies, and radioactivity. His three articles
from 1905 practically form a syllabus for all of twentieth-century physics.

Einstein’s interests were also interdisciplinary. Most scientists at that time could hardly compre-
hend that these problems even belonged to the same field of inquiry, and certainly no one guessed
that they would all interlock as they did in Einstein’s hands.

Third, Einstein grasped that the way to take the molecular theory out of its disreputable state
was to find new, testable, quantitative predictions. Thus Section 4.1.4 discussed how the quantita-
tive study of Brownian motion gives a numerical value for the constant kg. We saw in Section 3.2
that the ideal gas law, together with estimates of Avogadro’s number, also gave a numerical value for
kg, namely, pV/NT. The molecular theory of heat says that these two independent determinations
of kg should give the same value. And they did.

Nor did Einstein stop here. His doctoral thesis gave yet another independent determination of
Nmole (and hence kg), again making use of Equation 4.15. Over the next few years, he published
four more independent determinations of Ny,q.! What was the point of all this apparent repetition?
Einstein was making a point: If molecules are real, then they have a real, finite size, which manifests
itself in many different ways. If they were not real, it would be an absurd coincidence that all these
independent measurements pointed to the same size scale.

These theoretical results had technological implications. Einstein’s thesis work, on the viscosity
of suspensions, remains his most heavily cited work today. At the same time, Einstein was also
sharpening his tools for a bigger project: Showing that matter consisted of discrete particles pre-
pared his mind to show that light does as well (see Section 1.5.3 on page 22). It is no accident that
the Brownian motion work immediately preceded the light-quantum paper.

T» |Section 4.2 on page 132 views some of Einstein’s other early work in the above light.
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-— 2] —

n+1

Figure 4.6: (Schematic.) A fragment of a three-dimensional random walk, simplified so that every joint can make
any of eight possible bends. In the configuration shown, the step from joint n to joint n + 1 is the vector sum of one
step to the right, one step down, and one step into the page.

4.3 Other random walks

4.3.1 The conformation of polymers

Up to this point, we have been thinking of Figure 4.2 as a time-lapse photo of the motion of a point
particle. Here is another application of exactly the same mathematics to a totally different physical
problem, with biological relevance: the conformation of a polymer, for example DNA.

Section 3.3.3 on page 89 described Max Delbriick’s idea that the physical carrier of genetic
information is a single long-chain molecule. To describe the exact state of a polymer, we’d need an
enormous number of geometrical parameters, for example, the angles of every chemical bond. It’s
hopeless to predict this state, since the polymer is constantly being knocked about by the thermal
motion of the surrounding fluid. But here again, we may turn frustration into opportunity. Are
there some overall, average properties of the whole polymer’s shape that we could try to predict?

Let us imagine that the polymer can be regarded as a string of N units. Each unit is joined
to the next by a perfectly flexible joint, like a string of paperclips.® In thermal equilibrium, the
joints will all be at random angles. An instantaneous snapshot of the polymer will be different at
each instant of time, but there will be a family resemblance in a series of such snapshots: Each
one will be a random walk. Following the approach of Section 4.1.2, let us simplify the problem
by supposing that each joint of the chain sits at one of the eight corners of a cube centered on
the previous joint (Figure 4.6). Taking the length of the cube’s sides to be 2L, then the length of
one link is v/3L. We can now apply our results from Section 4.1.2. For instance, the polymer is
extremely unlikely to be stretched out straight, just as in our imaginary checker game we’re unlikely
to take every step to the right. Instead the polymer is likely to be a blob, or random coil.

From Equation 4.4 on page 104 we find that the root-mean-square distance between the ends
of the random coil is \/{rn2) = \/(zn2) + (yn2) + (z2n2) = VBL2N = LV/3N. This is an experi-
mentally testable prediction. The molar mass of the polymer equals the number of units, N, times

6In a real polymer the joints will not be perfectly flexible. Chapter 9 will show that even in this case the freely
jointed chain model has some validity, as long as we understand that each of the “units” just mentioned may actually
consist of many monomers.
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Figure 4.7: (Experimental data with fits.) (a) Log-log plot of the diffusion constant D of polymethyl methacrylate
in acetone, as a function of the polymer’s molar mass M. The solid line corresponds to the function D oc M —0-57,
For comparison, the dashed line shows the best fit with scaling exponent fixed to —1/2, which is the prediction of
the simplified analysis in this chapter. (b) The sedimentation time scale of the same polymer, to be discussed in
Chapter 5. The solid line corresponds to the function s oc m%4%. For comparison, the dashed line shows the best fit
with scaling exponent fixed to —1/2. [Data from (Meyerhoff & Schultz, 1952).]

the molar mass of each unit, so we predict that

If we synthesize polymers made from various numbers of the same units, then
oo . (4.16)
the colil size increases proportionally as the square root of the molar mass.

Figure 4.7a shows the results of an experiment in which eight batches of polymer, each with a
different chain length, were synthesized. The diffusion constants of dilute solutions of these polymers
were measured. According to the Stokes formula (Equation 4.14 on page 107), D will be a constant
divided by the radius of the polymer blob; Idea 4.16 then leads us to expect that D should be

/2 roughly as seen in the experimental data.”

proportional to M~

Figure 4.7 also illustrates an important graphical tool. If we wish to show that D is a constant
times M ~1/2, we could try graphing the data and superimposing the curves D = AM ~!/2 for various
values of the constant A, and seeing whether any of them fit. A far more transparent approach is to
plot instead (log D) versus (log M). Now the different predicted curves (log D) = (log A) — & (log M)
are all straight lines of slope — % We can thus test our hypothesis by laying a ruler along the observed
data points, seeing whether they lie on any straight line, and, if so, finding the slope of that line.

One consequence of Idea 4.16 is that random-coil polymers are loose structures. To see this note
that, if each unit of a polymer takes up a fixed volume v, then packing N units tightly together
would yield a ball of radius (3Nwv/4m)'/3. For large enough polymers (N large enough), this size
will be smaller than the random-coil size, since N/2 increases more rapidly than N1/3.

We made a number of expedient assumptions to arrive at Idea 4.16. Most importantly, we
assumed that every polymer unit is equally likely to occupy all the spaces adjacent to its neighbor
(the eight corners of the cube in the idealization of Figure 4.6). One way this assumption could fail
is if the monomers are strongly attracted to each other; in that case the polymer will not assume a

random-walk conformation, but rather will pack itself tightly into a ball. Examples of this behavior

7See Section 5.1.2 and Problem 5.8 for more about random-coil sizes.
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include globular protein!seeprotein such as serum albumin. We can crudely classify polymers as
“compact” or “extended” by comparing the volume occupied by the polymer to the minimal volume
if all its monomers were tightly packed together. Most large proteins and nonbiological polymers

then fall unambiguously into one or the other category; see Table 4.1.

Table 4.1: Properties of various polymers. The table shows the measured radius of gyration for a few natural and
artificial polymers, along with the radius of the ball the polymer would occupy if it were tightly packed, estimated

from the molar mass and approximate density. [From (Tanford, 1961)]

Polymer Molar mass, g/mole Rg, nm, Packed-ball radius, nm Type

Serum albumin 6.6 - 10* 3 2 compact
Catalase 2.25-10° 4 3 compact
Bushy stunt virus 1.1-107 12 11 compact
Myosin 4.93-10° 47 4 extended
Polystyrene 3.2-10° 49 8 extended
DNA, in vitro 4-108 117 7 extended

Even if a polymer does not collapse into a packed coil, its monomers are not really free to
sit anywhere: Two monomers cannot occupy the same point of space! Our treatment ignored
this “self-avoidance” phenomenon. Remarkably, introducing the physics of self-avoidance simply
ends up changing the scaling exponent in Idea 4.16 from 1/2 to another, calculable, value. The
actual value of this exponent depends on temperature and solvent conditions. For a walk in three
dimensions, in “good solvent” the corrected value is about 0.58. The experiment shown in Figure 4.7
is an example of this situation, and indeed its exponent is seen to be slightly larger than the simple
model’s prediction of 1/2. Whatever the precise value of this exponent, the main point is that
simple scaling relations emerge from the complexity of polymer motions.

Figure 4.8 shows a particularly direct test of a scaling law for a polymer conformation. B. Maier
and J. Rédler formed a positively charged surface, then let it attract single strands of DNA, which
is negatively charged. They then took successive snapshots of the DNA’s changing conformation
(the DNA contained a fluorescent dye to make it visible). The DNA may cross over itself, but
each time it does so there is a cost in binding energy, as the negatively charged upper strand does
not contact the positive surface at the point of crossing, and instead is forced to contact another
negative strand. Thus we may expect the coil size to follow a scaling relation appropriate to a
two-dimensional, self-avoiding, two-dimensional, random walk. Problem 7.9 will show that the
predicted scaling exponent for such a walk is 3/4.

Once bound to the plate, the strands began to wander (Figure 4.8b). Measuring the fluorescence
intensity as a function of position and averaging over many video frames allowed Maier and Rédler
to compute the polymer chain’s “radius of gyration” Rq, which is related to the chain’s mean-
square end-to-end distance. The data in Figure 4.8d show that Rg oc M%7, close to the 3/4 power
law predicted by theory.

1o |Section 4.3.1" on page 133 mentions some finer points about the conformation of random-coil

polymers.

4.3.2 Vista: Random walks on Wall Street

Stock markets are interacting systems of innumerable, independent biological subunits—the in-

vestors. Each investor is governed by a personal mixture of prior experience, emotion, and incom-
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Figure 4.8: (Schematic; experimental data; photomicrograph.) Experimental test of the self-avoiding random-walk
model of polymer conformation, in two dimensions. (a) Experimental setup. A negatively charged DNA molecule
sticks to a positively charged surface. The DNA has been labeled with a fluorescent dye to make it visible in a
light microscope. (b) The entire molecule performs a random walk in time. The plot shows its center of mass on
successive observations (compare Figure 4.2b,c on page 102).(c) Successive snapshots of the molecule taken at 2s
intervals. Each one shows a different random conformation. The fine structure of the conformation is not visible, due
to the limited resolving power of an optical microscope, but the mean-square distance of the molecule from its center
of mass can still be calculated. (d) Log-log plot of the size of a random coil of length N basepairs versus N. For each
N, the coil size has been averaged over 30 independent snapshots like the ones in (¢) (see Figure 4.5). The average
size increases proportionally to NO-79£0.04  ¢lose to the theoretically predicted N3/4 behavior (see Problem 7.9).
[Digital image kindly supplied by B. Maier; see also (Maier & Rédler, 1999).]

plete knowledge. Each bases his decisions on the aggregate of the other investors’ decisions, as
well as the totally unpredictable events in the daily news. How could we possibly say anything
predictive about such a tremendously complex system?

Indeed, we cannot predict an individual investor’s behavior. But remarkably, the very fact that
investors are so well informed about each others’ aggregate behavior does lead to a certain statistical
regularity in their behavior: It turns out that over the long term, stock prices execute a random
walk with drift. The “thermal motion” driving this walk includes the whims of individual investors,
along with the natural disasters, collapses of large firms, and other unpredictable news items. The
overall drift in the walk comes from the fact that in the long run, investing money in firms does
make a profit.

Why is the walk random? Suppose that a technical analyst finds that there was a reliable
year-end rally, that is, every year stock prices rise in late December, then fall in early January.
The problem is that once such a regularity becomes known to market participants, many people
will naturally choose to sell during this period, driving prices down and eliminating the effect in

the future. More generally, the past history of stock-price movements, which is public information,
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Figure 4.9: (Experimental data.) Ubiquity of random walks. The distribution of monthly returns for a 100-security
portfolio, January 1945-June 1970. [Data from (Malkiel, 1996).]

contains no useful information that will enable an investor consistently to beat other investors.

If this idea is correct, then some of our results from random-walk theory should show up in
financial data. Figure 4.9 shows the distribution of step sizes taken by the market value of a stock
portfolio. The value was sampled at one-month intervals, over 306 consecutive periods. The graph
indeed bears a strong resemblance to Figure 4.3. In fact, Section 4.6.5 below will argue that the
distribution of step sizes in a random walk should be a Gaussian, approximately as seen in the

figure.

4.4 More about diffusion

4.4.1 Diffusion rules the subcellular world

Cells are full of localized structures; “factory” sites must transport their products to distant “cus-
tomers.” For example, mitochondria synthesize ATP, which then gets used throughout the cell. We
may speculate that thermal motion, which we have found is a big effect in the nanoworld, somehow
causes molecular transport. It’s time to put this speculation on a firmer footing.

Suppose we look at one colloidal particle—perhaps a visible pollen grain—every 1/30 second, the
rate at which an ordinary video camera takes pictures. An enormous number of collisions happen
in this time, and they lead to some net displacement. Each such displacement is independent of the
preceding ones, just like the successive tosses of a coin, because the surrounding fluid is in random
motion. It’s true that the steps won’t be all the same length, but we saw in Section 4.1.3 that
correcting this oversimplification complicates the math but doesn’t change the physics.

With enough patience, one can watch a single particle for, say, one minute, note its displacement
squared, then repeat the process enough times to get the mean. If we start over, this time using
two-minute runs, the diffusion law says that we should get a value of ((zy)?) twice as great as
before, and we do. The actual value of the diffusion constant D needed to fit the observations the

diffusion law (Idea 4.6) will depend on the size of the particle and the nature of the surrounding
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fluid.

Moreover, what works for a pollen grain holds equally for the individual molecules in a fluid.
They too will wander from their positions at any initial instant. We don’t need to see individual
molecules to confirm this experimentally. Simply release a large number N of ink molecules at
one point, for example, with a micropipette. Each begins an independent random walk through
the surrounding water. We can come back at time ¢ and examine the solution optically using a
photometer. The solution’s color gives the number density ¢(r) of ink molecules, which in turn
allows us to calculate the mean-square displacement (r(t)%) as N~! [ d3rr?c(r). By watching the
ink spread, we not only can verify that diffusion obeys the law Idea 4.6, but also can find the
value of the diffusion constant D. For small molecules, in water, at room temperature, one finds

D ~ 1072 m?%s™!. A more useful form of this number, and one worth memorizing, is D ~ 1 um?/ms.

Example Pretend that the interior of a bacterium could be adequately modeled as a sphere
of water of radius 1 um, and a cell of your body as a similar sphere of radius 10 um.
About how long does it take for a sudden supply of sugar molecules at, say, the
center of the bacterium to spread uniformly throughout the cell? What about for a
cell in your body?

Solution: Rearranging Equation 4.6 slightly and substituting D = 1 um?/ms, we
find that the time is around (1pm)2?/(6D) ~ 0.2ms for the bacterium. It takes a
hundred times longer for sugar to spread through the bigger cell.

The estimage just made points out an engineering design problem that larger, more complex
cells need to address: Although diffusion is very rapid on the micrometer scale, it very quickly
becomes inadequate as a means of transporting material on long scales. As an extreme example,
you have some single cells, the neurons that stretch from your spinal cord to your toes, that are
about a meter long! If the specialized proteins needed at the terminus of these nerves had to arrive
there from the cell body by diffusion, you’d be in trouble. Indeed, many animal and plant cells
(not just neurons) have developed an infrastructure of “plumbing,” “highways,” and “trucks,” all
to carry out such transport (see Section 2.2.4). But on the subcellular, 1 um level, diffusion is fast,
automatic, and free. And indeed, bacteria don’t have all that transport infrastructure; they don’t

need it.

4.4.2 Diffusion obeys a simple equation

Although the motion of a colloidal particle is totally unpredictable, Section 4.1.2 showed that a
certain average property of many random walks obeys a simple law (Equation 4.5a on page 104).
But the mean-square displacement is just one of many properties of the full probability distribution
P(z,t) of particle displacements after a given time ¢ has passed. Can we find any simple rule
governing the full distribution?

We could try to use the binomial-coefficient method to answer this question (see the Example
on page 101). Instead, however, this section will derive an approximation, valid when there are
very many steps between each observation. (Section 4.6.5" on page 134 explores the validity of
this approximation.) The approximation is simpler and more flexible than the binomial coefficient
approach, and will lead us to some important intuition about dissipation in general.

It’s possible experimentally to observe the initial position of a colloidal particle, watch it wan-
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Figure 4.10: (Schematic.) Simultaneous diffusion of many particles in three dimensions. For simplicity we consider
a distribution uniform in y and z but nonuniform in z, and subdivide space into imaginary bins centered at z — L,
z, x + L,... The planes labeled “a,” “b” represent the (imaginary) boundaries between these bins. X, Y, and Z

denote the overall size of the system.

der, log its position at various times ¢;, then repeat the experiment and compute the probability
distribution P(z,t)dz using its definition (Equation 3.3 on page 67). But we have already seen in
Section 4.4.1 that an alternative approach is much easier in practice. If we simply release a trillion
random walkers in some initial distribution P(x,0), then monitor their density, we’ll find the later
distribution P(x,t), automatically averaged for us over those trillion independent random walks,
all in one step.

Imagine, then, that we begin with a three-dimensional distribution that is everywhere uniform in
the y, z directions but nonuniform in z (Figure 4.10). We again simplify the problem by supposing
that, on every time step At, every suspended particle moves a distance L either to the right or to
the left, at random (see Section 4.1.2). Thus about half of a given bin’s population hops to the left,
and half to the right. And more will hop from the slot centered on x — L to the one centered on x
than will hop in the other direction, simply because there were more at x — L to begin with.

Let N(z) be the total number of particles in the slot centered at x, and Y, Z the widths of the
box in the y, z directions. The net number of particles crossing the bin boundary “a” from left to
right is then the difference between N evaluated at two nearby points, or %(N (x—L)—N (9:)), we
count the particles crossing the other way with a minus sign.

We now come to a crucial step: The bins have been imaginary all along, so we can, if we choose,
imagine them to be very narrow. But the difference between a function, like N(x), at two nearby

points is L times the derivative of N:

AN (@)

N(x—L)— N(z) — —L g

(4.17)

The point of this step is that we can now simplify our formulas by eliminating L altogether, as
follows.
The number density of particles, ¢(z), is just the number N(z) in a slot, divided by the volume

LY Z of the slot. Clearly, the future development of the density won’t depend on how big the box
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is (that is, on X, Y, or Z); the important thing is not really the number crossing the boundary
“a,” but rather the number per unit area of “a.” This is such a useful notion that the average rate
of crossing a surface per unit area has a special name, the flux, denoted by the letter j. Thus, flux
has dimensions T 'L~2.

We can restate the result of the two preceding paragraphs in terms of the number density
¢ = N/(LY Z), finding that
1 L? dc

d
L ——LYZ =——— X —.
Sl ( dz c(m)) At 2 " dr

. 1 y 1
TTYZx At 2
Also, we have already given a name to the combination L?/2At, namely, the diffusion constant D

(see Equation 4.5b). Thus, we have

d
j= —Dd—;. Fick’s law (4.18)

j is the net flux of particles moving from left to right. If there are more on the left than on the
right, then c is decreasing, its derivative is negative, so the right-hand side is positive. That makes
sense intuitively: A net drift to the right ensues, tending to even out the distribution, or make
it more uniform. If there’s structure (or order) in the original distribution, Fick’s law says that
diffusion will tend to erase it. The diffusion constant D enters the formula, because more-rapidly
diffusing particles will erase their order faster.

What “drives” the flux? It’s not that the particles in the crowded region push against each other,
driving each other out. Indeed, we assumed that each particle is moving totally independently of
the others; we’ve neglected any possible interactions among the particles, which is appropriate if
they’re greatly outnumbered by the surrounding solution molecules. The only thing causing the net
flow is simply that if there are more particles in one slot than in the neighboring one, and if each
particle is equally likely to hop in either direction, then more will hop out of the slot with the higher
initial population. Mere probability seems to be “pushing” the particles. This simple observation is
the conceptual rock upon which we will build the notion of entropic forces in later chapters.

Fick’s law is still not as useful as we’d like, though. We began this subsection with a very
practical question: If all the particles are initially concentrated at a point, so that the concentration
¢(r,0) is sharply peaked at one point, what will we measure for ¢(r,t) at a later time ¢7 We’d like
an equation we could solve, but all Equation 4.18 does is tell us j given c¢. That is, we’ve found one
equation in two unknowns, namely, ¢ and j. But to find a solution, we need one equation in one
unknown, or equivalently a second independent equation in ¢ and j.

Looking again at Figure 4.10, we see that the average number N (z) changes in one time step
for two reasons: Particles can cross the imaginary wall “a,” and they can cross “b.” Recalling that

j refers to the net flux from left to right, we find the net change

SN = (Y2~ 5) - Y Zja + B)).

Once again, we may take the bins to be narrow, whereupon the right-hand side of this formula
_ 4

1., a result known as

becomes (—L) times a derivative. Dividing by LY Z then gives that % =
the continuity equation. That’s the second equation we were seeking. We can now combine it with

Fick’s law to eliminate j altogether. Simply take the derivative of Equation 4.18 and substitute to
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find:®
d d?
d—(; = DdT:E' diffusion equation (4.19)
In more advanced texts, you will see the diffusion equation written as % = Dg—;g. The curly

symbols are just a stylized way of writing the letter “d,” and they refer to derivatives, as always.
The 0 notation simply emphasizes that there is more than one variable in play, and the derivatives
are to be taken by wiggling one variable while holding the others fixed. This book will use the more

familiar “d” notation.

T» |Section 4.4.2 on page 133 casts the diffusion equation in vector notation.

4.4.3 Precise statistical prediction of random processes

Something magical seems to have happened. Section 4.4.1 started with the hypothesis of random
molecular motion. But the diffusion equation (Equation 4.19) is deterministic; that is, given the
initial profile of concentration ¢(z,0), we can solve the equation and predict the future profile ¢(z,t).

Did we get something from nothing? Almost—but it’s not magic. Section 4.4.2 started from the
assumption that the number of random-walking particles, and in particular the number in any one
slice, was huge. Thus we have a large collection of independent random events, each of which can
take either of two equally probable options, just like a sequence of coin flips. Figure 4.3 illustrates
how in this limit the fraction taking one of the two options will be very nearly equal to 1/2, as
assumed in the derivation of Equation 4.19.

Equivalently, we can consider a smaller number of particles, but imagine repeating an observation
on them many times and finding the average of the flux over the many trials. Our derivation can be
seen as giving this average flux, (j(z)), in terms of the average concentration, c¢(z) = (N (x))/(LY Z).
The resulting equation for ¢(z) (the diffusion equation) is deterministic. Similarly, a deterministic
formula for the squared displacement (the diffusion law, Equation 4.5 on page 104) emerged from
averaging many individual random walks (see Figure 4.5).

When we don’t deal with the ideal world of infinitely repeated observations, we should expect
some deviation of actual results from their predicted average values. Thus for example the peak
in the coin-flipping histogram in Figure 4.3c is narrow, but not infinitely narrow. This deviation
from the average is called statistical fluctuation. For a more interesting example, we’ll see that
the diffusion equation predicts that a uniformly mixed solution of ink in water won’t spontaneously
assemble itself into a series of stripes. Certainly this could happen spontaneously, as a statistical
deviation from the behavior predicted by the diffusion equation. But for the huge number of
molecules in a drop of ink spontaneous unmixing is so unlikely that we can forget about the
possibility. (Section 6.4 on page 182 will give a quantitative estimate.) Nevertheless, in a box
containing just ten ink molecules, there’s a reasonable chance of finding all of them on the left-hand
side, a big nonuniformity of density. The chance is 270, or ~ 0.1%. In such a situation, the average
behavior predicted by the diffusion equation won’t be very useful in predicting what we’d see: The
statistical fluctuations will be significant, and the system’s evolution really will appear random, not
deterministic.

So we need to take fluctuations seriously in the nanoworld of single molecules. Still, there are
many cases in which we study large enough collections of molecules for the average behavior to be

a good guide to what we’ll actually see.

8Some authors call Equation 4.19 “Fick’s second law.”
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c de/dt < 0

a

Figure 4.11: (Mathematical functions.) (a) A uniform (well-mixed) solution has constant concentration c(z) of
solute. The graph of a constant function c(z) is a horizontal line, and so has de/dz = 0 and d2¢/dz? = 0. (b) The
graph of a linear function, c¢(x) = ax + b, is a straight line and so has d?c/d2? = 0. If the slope, dc/dz, is not zero,
then this function represents a uniform concentration gradient. The dashed lines denote two fixed locations; see the
text. (c) A lump of dissolved solute centered on z = 0. The curvature, d?c/dz?2, is now negative near the bump, zero
at the points labeled *, and positive beyond those points. The ensuing flux of particles will be directed outward. This
flux will deplete the concentration in the region between the points labeled with stars, while increasing it elsewhere,
for example at the point labeled A. These fluxes change the distribution from the solid curve at one instant of time
to the dashed curve at a later instant.

Section 4.4.3 on page 133 mentions a conceptual parallel to quantum mechanics.

4.5 Functions, derivatives, and snakes under the rug

4.5.1 Functions describe the details of quantitative relationships

Before solving the diffusion equation, it’s important to get an intuitive feeling for what the symbols
are saying. Even if you already have the technical skills to handle equations of this sort, take some
time to see how Equation 4.19 summarizes everyday experience in one terse package.

The simplest possible situation, Figure 4.11a, is a suspension of particles that already has
uniform density at time ¢ = 0. Because ¢(x) is a constant, Fick’s law says there’s zero net flux.
The diffusion equation says that ¢ doesn’t change: A uniform distribution stays that way. In the
language of this book, we can say that it stays uniform because any nonuniformity would increase
its order, and order doesn’t increase spontaneously.

The next simplest situation, Figure 4.11b, is a uniform concentration gradient. The first deriva-
tive de/dx is the slope of the curve shown, which is a constant. Fick’s law then says there’s a
constant flux j to the right. The second derivative d%c/dz? is the curvature of the graph, which is
zero for the straight line shown. Thus, the diffusion equation says that once again ¢ is unchanging
in time: Diffusion maintains the profile shown. This conclusion may be surprising at first, but it
makes sense: Every second, the net number of particles entering the region bounded by dashed
lines in Figure 4.11b from the left is just equal to the net number leaving to the right, so ¢ doesn’t
change.

Figure 4.11c shows a more interesting situation: a bump in the initial concentration at 0. For

example, at the moment when a synaptic vesicle fuses, it suddenly releases a large concentration
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Figure 4.12: (Mathematical functions.)(a) Diffusion in space and time. The vertical axis gives the concentration
(arbitrary units) after a localized lump of solute begins to spread. Notice that time is drawn as increasing as we
move diagonally downward in the page (arrow). Section 4.6.5 derives the function graphed here. The heavy line is
the concentration profile at one particular time, t = 1.6. (b) A hypothetical traveling wave. Chapter 12 will find this
sort of behavior in the context of nerve impulses. The heavy line is the concentration as seen by an observer fixed
at x = 0.7.

of neurotransmitter at one point, creating such a bump distribution in three dimensions. Looking
at the slope of the curve, we see that the flux will be everywhere away from 0, indeed tending to
erase the bump. More precisely, the curvature of this graph is concave-down in between the two
starred points. Here the diffusion equation says that de¢/dt will be negative: The height of the bump
goes down. But outside the two starred points, the curvature is concave-up: de/dt will be positive,
and the concentration grows. This conclusion also makes sense: Particles leaving the bump must
go somewhere, enhancing the concentration away from the bump. The starred points, where the
curvature changes sign, are called inflection points of the graph of concentration. We’ll soon see
that they move apart in time, thereby leading to a wider, lower bump.

Suppose you stand at the point z = A and watch. Initially the concentration is low, because
you're outside the bump. Then it starts to increase, because you're outside the inflection point.
Later, as the inflection point moves past you, the concentration again decreases: You’'ve seen a wave
of diffusing particles pass by. Ultimately the bump is so small that the concentration is uniform:

Diffusion erases the bump and the order it represents.

4.5.2 A function of two variables can be visualized as a landscape

Implicit in all the discussion so far has been the idea that ¢ is a function of two variables, space x
and time ¢. All the pictures in Figure 4.11 have been snapshots, graphs of ¢(z,¢1) at some fixed
time ¢ = ¢;. But the stationary observer just mentioned has a different point of view: She would
graph the time development by ¢(A,t) holding = A fixed. We can visualize both points of view
at the same time by drawing a picture of the whole function as a surface in space (Figure 4.12). In
these figures, points in the horizontal plane correspond to all points in space and time; the height
of the surface above this plane represents the concentration at that point and that time. The two
derivatives g—; and % are then both interpreted as slopes, corresponding to the two directions you
could walk away from any point. Sometimes it’s useful to be ultra-explicit and indicate both what’s

being varied and what’s held fixed. Thus for example % ‘ , denotes the derivative holding ¢ fixed.
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To get the sort of graphs shown in Figure 4.11, we slice the surface-graph along a line of constant
time; to get the graph made by our stationary observer we instead slice along a line of constant x
(heavy lines in the figures).

Figure 4.12a shows the sort of behavior we’ll find for the solution to the diffusion equation.

Your Turn 4d
Examine Figure 4.12a and convince yourself visually that indeed a stationary observer, for ex-

ample located at x = —0.7, sees a transient increase in concentration.

In contrast, Figure 4.12b depicts a behavior very different from what you just found in Your Turn 4d.
This snake-under-the-rug surface shows a localized bump in concentration, initially centered on
2 = 0, which moves steadily to the left (larger z) as time proceeds, without changing its shape.
This function describes a traveling wave.

The ability to look at a graph and see at a glance what sort of physical behavior it describes is

a key skill, so please don’t proceed until you're comfortable with these ideas.

4.6 Biological applications of diffusion

Up to now, we have admired the diffusion equation but not solved it. This book is not about
the elaborate mathematical techniques used to solve differential equations. But it’s well worth our

while to examine some of the simplest solutions and extract their intuitive content.

4.6.1 The permeability of artificial membranes is diffusive

Imagine a long, thin glass tube (or “capillary tube”) of length L, full of water. One end sits in
a bath of pure water, the other in a solution of ink in water with concentration c¢y. Eventually
the containers at both ends will come to equilibrium with the same ink concentration, somewhere
between 0 and c¢y. But equilibrium will take a long time to achieve if the two containers are both
large. Prior to equilibrium, the system will instead come to a nearly steady, or quasi-steady state.
That is, all variables describing the system will be nearly unchanging in time: The concentration
stays fixed at ¢(0) = ¢o at one end of the tube and ¢(L) = 0 at the other, and will take various
intermediate values c¢(x) in between.

To find the quasi-steady state, we look for a solution to the diffusion equation with de¢/dt = 0.
According to Equation 4.19 on page 118, this means d?c/dz? = 0. Thus the graph of c(x) is a
straight line (see Figure 4.11b), or ¢(x) = ¢o(1—x/L). A constant flux j; = Deco/L of ink molecules
then diffuses through the tube. (The subscript “s” reminds us that this is a flux of solute, not of
water.) If the concentrations on each side are both nonzero, the same argument gives the flux in
the +x direction as js = —D(Ac)/L, where Ac = ¢, — ¢ is the concentration difference.

The sketch in Figure 2.30 on page 57 shows cell membranes as having channels even narrower
than the membrane thickness. Accordingly, let’s try to apply the preceding picture of diffusion
through a long, thin channel to membrane transport. Thus we expect that the flux through the
membrane will be of the form

Jjs = —Ps Ac. (4.20)

Here the permeation constant of solute, Ps, is a number depending on both the membrane and
the molecule whose permeation we're studying. In simple cases, the value of P; roughly reflects the
width of the pore, the thickness of the membrane (length of the pore), and the diffusion constant

for the solute molecules.
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Your Turn 4e
a. Show that the units of Py are the same as those of velocity.

b. Using this simplified model of the cell membrane, show that Ps is given by D/L times the

fraction « of the membrane area covered by pores.

Example Think of a cell as a spherical bag of radius R = 10 um, bounded by a membrane that
passes alcohol with permeation constant Py = 20 ums™t. Question: If initially the
alcohol concentration is ¢o,y outside the cell and ¢, (0) inside, how does the interior
concentration ¢, change with time?

Solution: — The outside world is so immense, and the permeation rate so slow,
that the concentration outside is essentially always the same. The concentration
inside is related to the number N(¢) of molecules inside by ¢, () = N(t)/V, where
V = 47 R3/3 is the volume of the cell. According to Equation 4.20, the outward flux
through the membrane is then js = —Ps(cout — cin(t)) = —Ps X Ac(t). Note that js
can be negative: Alcohol will move inward if there’s more outside than inside.

Let A = 47 R? be the area of the cell. From the definition of flux (Section 4.4.2), N
changes at the rate dN/dt = —Ajs. Remembering that ¢, = N/V, we find that the

concentration jump Ac obeys the equation

d(Ac) (APS

w -\ ) Ac. relaxation of a concentration jump (4.21)

But this is an easy differential equation: Tts solution is Ac(t) = Ac(0)e /7, where
7 =V/(APs) is the decay constant for the concentration difference. Putting in the
given numbers shows that 7 ~ 0.2s. Finally, to answer the question we need ¢y,

which we write in terms of the given quantities as ¢y (t) = cout — (cout — cin(O))e_t/T.

We say that an initial concentration jump relaxes exponentially to its equilibrium value. In one
second, the concentration difference drops to about e™® = 0.7% of its initial value. A smaller cell
would have a bigger surface-to-volume ratio, so it would eliminate the concentration difference even
faster.

The rather literal model for permeability via membrane pores, as sketched above, is certainly
oversimplified. Other processes also contribute to permeation. For example, a molecule can dissolve
in the membrane material from one side, diffuse to the other side, then leave the membrane. Even
artificial membranes, with no pores at all, will pass some solutes in this way. Here too, a Fick-type
law, Equation 4.20, will hold; after all, some sort of random walk is still carrying molecules across
the membrane.

Since artificial bilayers are quite reproducible in the laboratory, we should be able to test the
dissolve—diffuse—undissolve mechanism of permeation by checking some simple quantitative de-
duction from the model. Figure 4.13 shows the result of such an experiment by A. Finkelstein and
coauthors, who measured the permeation constants for sixteen small molecules. To understand
these data, first imagine a simpler situation, a container with a layer of oil floating on a layer of
water. If we introduce some sugar, stir well, and wait, eventually we will find that almost, but not
all, of the sugar is in the water. The ratio of the concentration of sugar in the water to that in the
oil is called the partition coefficient B; it characterizes the degree to which sugar molecules prefer

one environment to another. We will investigate the reasons for this preference in Chapter 7; for
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Figure 4.13: (Experimental data with fit.) Log-log plot of the permeability Ps of artificial bilayer membranes
(made of egg phosphatidylcholine) to various small molecules, ranging from urea (far left point) to hexanoic acid (far

right point). The horizontal axis gives the product BD of the diffusion constant D of each solute in oil (hexadecane)

2

times its partition coefficient B in oil versus water. Ps is in cms™!, D in cm?s™1, and B is dimensionless. The solid

line has slope one, indicating a strict proportionality Ps oc BD. [Data from (Finkelstein, 1987).]

now we only note that this ratio is some measurable constant.

We will see in Chapter 8 that a bilayer membrane is essentially a layer of oil (sandwiched between
two layers of head groups). Thus, a membrane separating two watery compartments with sugar
concentrations ¢; and co will itself have sugar concentration Be; on one side and Bcey on the other,
and hence a drop of Ac = B(c¢; — ¢2) across the membrane. Adapting Your Turn 4e shows that
the resulting flux of sugar gives the membrane a permeability Ps = BD/L. Thus even if we don’t

know the value of L, we can still assert that

The permeability of a pure bilayer membrane is roughly BD times a constant
independent of the solute, where B is the partition coefficient of solute and D (4.22)

its diffusion constant in oil.

The data in Figure 4.13 support this simple conclusion, over a remarkably wide range (six orders
of magnitude) of BD.

Typical real values are Py ~ 10 3ums™! for glucose diffusing across an artificial lipid bilayer
membrane, or three to five orders of magnitude less than this (that is, 0.001 to 0.00001 times as
great) for charged ions like C1~ or Na™, respectively.

The bilayer membranes surrounding living cells have much larger values of Pg than the ones
found above. We will see in Chapter 11 that indeed the transport of small molecules across cell
membranes is far more complicated than simple diffusion would suggest. Nevertheless, passive

diffusion is one important ingredient in the full membrane-transport picture.

4.6.2 Diffusion sets a fundamental limit on bacterial metabolism

Let’s idealize a single bacterium as a sphere of radius R. Suppose that the bacterium is suspended

in a lake, and that it needs oxygen to survive (it’s arobic). The oxygen is all around it, dissolved
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in the water, with a concentration ¢y. But the oxygen nearby gets depleted, as the bacterium uses
it up.

The lake is huge, so the bacterium won’t affect its overall oxygen level; instead the envronment
near the bacterium will come to a quasi-steady state, in which the oxygen concentration ¢ doesn’t
depend on time. In this state the oxygen concentration c¢(r) will depend on the distance r from
the center of the bacterium. Very far away, we know c¢(00) = ¢p. We'll assume that every oxygen
molecule that reaches the bacterium’s surface gets immediately gobbled up. Hence at the surface

¢(R) = 0. From Fick’s law there then must be a flux j of oxygen molecules inward.

Example Find the full concentration profile ¢(r) and the maximum number of oxygen
molecules per time that the bacterium can consume.

Solution: Imagine drawing a series of concentric spherical shells around the bac-
terium with radii rq, 79,.... Oxygen is moving across each shell on its way to the
center. Because we’re in a quasi-steady state, oxygen does not pile up anywhere:
The number of molecules per time crossing each shell equals the number per time
crossing the next shell. This condition means that j(r) times the surface area of the
shell must be a constant, independent of r. Call this constant /. So now we know
j(r) in terms of I (but we don’t know I yet).

Next, Fick’s law says j = D%, ﬁ.
e(ry=A—- %ﬁ, where A is some constant. We can fix both I and A by imposing
¢(x) = ¢p and ¢(R) = 0, finding A = ¢y and I = 47D Rcy. Along the way, we also
find that the concentration profile itself is ¢(r) = co(1 — (R/7)).

but we also know j = Solving for ¢(r) gives

Remarkably, we have just computed the mazximum rate at which oxygen molecules can be consumed
by any bacterium whatsoever! We didn’t need to use any biochemistry at all, just the fact that
living organisms are subject to constraints from the physical world. Notice that the oxygen uptake
I increases with increasing bacterial size, but only as the first power of R. We might expect the
oxygen consumption, however, to increase roughly with an organism’s volume. Together, these
statements imply an upper limit to the size of a bacterium: If R gets too large, the bacterium
would literally suffocate.

Your Turn 4f
a. Evaluate the above expression for I, using the illustrative values R = 1lum and ¢y =~

0.2 mole/m3.

b. A convenient measure of an organism’s overall metabolic activity is its rate of Oy consumption

divided by its mass. Find the maximum possible metabolic activity of a bacterium of arbitrary
radius R, again using ¢y ~ 0.2 mole m—3.
¢. The actual metabolic activity of a bacterium is about 0.02mole kg *s™'. What limit do you

then get on the size R of a bacterium? Compare to the size of real bacteria. Can you think of

some way for a bacterium to evade this limit?

Section 4.6.2" on page 134 mentions the concept of allometric exponents.

4.6.3 The Nernst relation sets the scale of membrane potentials

Many of the molecules floating in water carry net electric charge, unlike the alcohol studied in

the Example on page 122. For example, when ordinary salt dissolves, the individual sodium and
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Figure 4.14: (Sketch.) Origin of the Nernst relation. An electric field pointing downward drives positively charged
ions down. The system comes to equilibrium with a downward concentration gradient of positive ions and an upward

gradient of negative ions. The flux through the surface element shown (dashed square) equals the number density ¢

times vqrift-

chlorine atoms separate, but the chlorine atom grabs one extra electron from sodium, becoming a
negatively charged chloride ion, C17, and leaving the sodium as a positive ion, Na™. Any electric
field £ present in the solution will then exert forces on the individual ions, dragging them just as
gravity drags colloidal particles to the bottom of a test tube.

Suppose first that we have a uniform-density solution of charged particles, each of charge g,
in a region with electric field £. For example, we could place two parallel plates just outside the
solution’s container, a distance d apart, and connect them to a battery that maintains constant
potential difference AV across them. We know from first-year physics that then & = AV/d, and
each charged particle feels a force ¢&, so it drifts with the net speed we found in Equation 4.12:
varitt = ¢€ /¢, where ( is the viscous friction coefficient.

Imagine a small net of area A stretched out perpendicular to the electric field (that is, parallel
to the plates); see Figure 4.14. To find the flux of ions induced by the field, we ask how many ions
get caught in the net each second. The average ion drifts a distance vq,ifdt in time d¢, so in this
time all the ions contained in a slab of volume Avq,ifdt get caught in the net. The number of ions
caught equals this volume times the concentration c¢. The flux j is then the number crossing per
area per time, or cvgrifr. Check to make sure this formula has the proper units. Substituting the
drift velocity gives j = ¢€c¢/(, the electrophoretic flux of ions.

Now suppose that the density of ions is not uniform. For this case, we add the driven (elec-
trophoretic) flux just found to the probabilistic (Fick’s law) flux, Equation 4.18, obtaining

q€(x)c(x) de

We next rewrite the viscous friction coefficient in terms of D using the Einstein relation (Equa-
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tion 4.15 on page 108), to get?

j= D(—% + %50). Nernst—Planck formula (4.23)
B

The Nernst—Planck formula helps us to answer a fundamental question: What electric field
would be needed to get zero net flux, canceling out the diffusive tendency to erase nonuniformity?
To answer the question, we set j = 0 in Equation 4.23. In a planar geometry, where everything is
constant in the y, z directions, we get the flux matching condition:

1de q

The left side of this formula can be written as ’f—x(ln c).

To use Equation 4.24, we now integrate both sides over the region between the plates in Fig-
ure 4.14. The left side is fod dx % Inc = Inciop — Incpot, the difference in Inc from one plate to the
other. To understand the right side, we first note that ¢& is the force acting on a charged particle,
so that ¢€dx is the work expended moving it a distance dz. The integral of this quantity is the
total work needed to move a charge all the way from the — plate to the + plate. But the work
per charge, EAx, is called the potential difference AV between the plates. Thus the condition for

equilibrium, obtained from Equation 4.24, becomes

A(lne) =Inciep — I cpor = —qAVeq/kpT. Nernst relation (4.25)

The subscript on AV, reminds us that this is the voltage needed to maintain a concentration jump
in equilibrium. (Chapter 11 will consider nonequilibrium situations, where the actual potential
difference differs from AV.q, driving a net flux of ions.)

The Nernst relation is not exact. We have neglected the force on each ion from its neighboring
ions, that is, the interactions between ions. At very low concentration ¢, this mutual interaction is
indeed small relative to the attraction of the charged plates, but at higher concentration, corrections
will be needed.

Equation 4.25 predicts that positive charges will pile up at x = 0 in Figure 4.14: They're
attracted to the negative plate. We have so far been ignoring the corresponding negative charges
(for example the chloride ions in salt), but the same formula applies to them as well. Because they
carry negative charge (¢ < 0), Equation 4.25 says they pile up at @ = d: They're attracted to the
positive plate.

Substituting some real numbers into Equation 4.25 yields a suggestive result. Consider a singly
charged ion like Na™, for which ¢ = e. Suppose we have a moderately big concentration jump,
Chot/Ctop = 10. Using the fact that kely — Lot (see Appendix B), we find AV =58 mV. What’s

e 40
suggestive about this result is that many living cells, particularly nerve and muscle cells, really

do maintain a potential difference across their membranes of a few tens of millivolts! We haven’t
proven that these potentials are equilibrium Nernst potentials, and indeed Chapter 11 will show
that they’re not. But the observation does show that simple dimensional arguments successfully

predict the scale of membrane potentials with almost no hard work at all.

9 TQ In the three-dimensional language introduced in Section 4.4.2' on page 133, the Nernst—Planck formula

becomes j = D (7V0+ (q/kBT)£c> . The gradient V¢ points in the direction of most steeply increasing concentration.
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Something interesting happened on the way from Equation 4.23 to Equation 4.25: When we
consider equilibrium only, the value of D drops out. That’s reasonable: D controls how fast things
move in response to a field; its units involve time. But equilibrium is an eternal state; it can’t depend
on time. In fact, exponentiating the Nernst relation gives that c(z) is a constant times e—1V(@)/keT
But this result is an old friend: It says that the spatial distribution of ions follows Boltzmann’s law
(Equation 3.26 on page 78). A charge ¢ in an electric field has electrostatic potential energy ¢V (z)
at x; its probability to be there is proportional to the exponential of minus its energy, measured
in units of the thermal energy k7. Thus, a positive charge doesn’t like to be in a region of large

positive potential, and vice versa for negative charges. Our formulas are mutually consistent.'®

4.6.4 The electrical resistance of a solution reflects frictional dissipation

Suppose we actually place the metal plates in Figure 4.14 inside the container of salt water, so
that they become electrodes. Then the ions in solution won’t pile up: The positive ones get
electrons from the — electrode, while the negative ones hand their excess electrons over to the +
electrode. The resulting neutral atoms leave the solution; for example, they can electroplate onto
the attracting electrode or bubble away as gas.!'! Then, instead of establishing equilibrium, our
system continuously conducts electricity, at a rate controlled by the steady-state ion fluxes.

The potential drop across our cell is AV = £d, where d is the separation of the plates. According
to the Nernst—Planck formula (Equation 4.23), this time with uniform ¢, the electric field is € =
1;:313_;
to the total electric current I, note that each ion deposits charge ¢ when it lands on a plate; thus,

j. Recall that j is the number of ions passing per area per time. To convert this expression

I = qAj, where A is the plate area. Putting it together, we find

kgT d
AV = (m Z) 1. (4.26)
But this is a familiar looking equation: It’s Ohm’s law, AV = I R. Equation 4.26 gives the electrical
resistance R of the cell as the constant of proportionality between voltage and current. To use this
formula, we must remember that each type of ion contributes to the total current; for ordinary salt,
we’d need to add separately the contributions from Na™ with ¢ = ¢ and Cl~ with ¢ = —e, or in
other words, double the right-hand side of the formula.

The resistance depends on the solution, but also on the geometry of the cell. It’s customary
to eliminate the geometry dependence by defining the electrical conductivity of the solution as
k = d/(RA). Then our result is that x = Dg?c/kpT. It makes sense—saltier water conducts
better.

Actually, any conserved quantity carried by random walkers will have a diffusive, and hence
dissipative, transport law. We’ve studied the number of particles, and the closely related quantity
electric charge. But particles also carry energy, another conserved quantity. So it shouldn’t surprise
us that there’s also a flux of thermal energy whenever this energy is not uniform to begin with, that
is, when the temperature is nonuniform. And indeed, the law of heat conduction reads just like
another Fick-type law: The flux jq of thermal energy is a constant (the “thermal conductivity”)

10 T2 [Einstein’s original derivation of his relation inverted the logic here. Instead of starting with Equation 4.15

and rediscovering the Boltzmann distribution, as we just did, he began with Boltzmann and arrived at Equation 4.15.

11 T2 This is not what actually happens with a solution of ordinary salt, since sodium metal and chlorine gas are

so strongly reactive with water. Nevertheless, the discussion below is valid for the alternating-current conductivity
of NaCl.
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times minus the gradient of temperature.'? Section 5.2.1’ on page 166 will give another important

example.

T» |Section 4.6.4 on page 134 mentions other points about electrical conduction.

4.6.5 Diffusion from a point gives a spreading, Gaussian profile

Let’s return to one dimension, and to the question of time-dependent diffusion processes. Sec-
tion 4.4.2 on page 115 posed the question of finding the full distribution function of particle posi-
tions after an initial density profile ¢(x,0) has spread out for time ¢. Certainly if we release many
particles all at one place, we expect the resulting distribution to get broader with time. We might
therefore guess that the solution we seek is a Gaussian; perhaps c(z,t) L Be#"/(2A1) where A
and B are some constants. This profile has the desired property that its variance o2 = At indeed
grows with time. But substituting it into the diffusion equation, we find that it is not a solution,
regardless of what we choose for A and B.

Before abandoning our guess, notice that it has a more basic defect: It’s not properly normalized
(see Section 3.1.1 on page 66). The integral [~ da c(z, ) is the total number of particles and cannot
change in time. The proposed solution doesn’t have that property.

Your Turn 4g
a. Show that. Then show that the profile c(x,t) = &\/‘;te_wrﬁ/‘mt does always maintain the same
normalization. Find the constant, assuming N particles are present. [Hint: Use the change of
variables trick from the Example on page 68.]

b. Substitute your expression from (a) into the one-dimensional diffusion equation, take the
derivatives, and show that with this correction we do get a solution.

c. Verify that (z?) = 2Dt for this distribution: It obeys the fundamental diffusion law (Equa-

tion 4.5 on page 104).

The solution you just found is the function shown in Figure 4.12. You can now find the inflection
points, where the concentration switches from increasing to decreasing, and verify that they move
outward in time, as described in Section 4.5.2 and Figure 4.11 on page 119.

The result of Your Turn 4g pertains to one-dimensional walks, but we can promote it to three
dimensions. Let r = (z,y,z). Because each diffusing particle moves independently in all three
dimensions, we can use the multiplication rule for probabilities: The concentration c¢(r) is the

product of three factors of the above form. Thus

N —r2/4Dt_

e(r,t) = me fundamental pulse solution (4.27)
™

In this formula the symbol r? refers to the length-squared of the vector r, that is, 22 + y? + 22.
Equation 4.27 has been normalized to make N the total number of particles released at t = 0.
Applying your result from Your Turn 4g(c) to z, y, and z separately and adding the results recovers
the three-dimensional diffusion law, Equation 4.6.

We get another important application of Equation 4.27 when we recall the discussion of polymers.
Section 4.3.1 argued that, while a polymer in solution is constantly changing its shape, still its mean-
square end-to-end length is a constant times its length. We can now sharpen that statement to say

that the distribution of end-to-end vectors r will be Gaussian.

12Various versions of this law are sometimes called “Newton’s law of cooling,” or “Fourier’s law of conduction.”
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Section 4.6.5" on page 134 points out that an approximation used in Section 4.4.2 limits the
accuracy of our result in the far tail of the distribution.

The big picture

Returning to the Focus Question, this chapter has shown how large numbers of random, independent
actors can collectively behave in a predictable way. For example, we found that the purely random
Brownian motion of a single molecule gives rise to a rule of diffusive spreading for collections of
molecules (Equation 4.5a) that is simple, deterministic, and repeatable. Remarkably, we also found
that precisely the same math gives useful results about the sizes of polymer coils, at first sight a
completely unrelated problem.

We already found a number of biological applications of diffusion and its other side, dissipation.

Later chapters will carry this theme even farther:

e Frictional effects dominate the mechanical world of bacteria and cilia, dictating the strategies
they have chosen to do their jobs (Chapter 5).

e Our discussion in Section 4.6.4 about the conduction of electricity in solution will be needed

when we discuss nerve impulses (Chapter 12).

e Variants of the random walk help explain the operation of some of walking motors mentioned
in Chapter 2 (see Chapter 10).

e Variants of the diffusion equation also control the rates of enzyme-mediated reactions (Chap-

ter 10), and even the progress of nerve impulses (Chapter 12).

More bluntly, we cannot be satisfied with understanding thermal equilibrium (for example, the
Boltzmann distribution found in Chapter 3), because equilibrium is death. Chapter 1 emphasized
that life prospers on Earth only by virtue of an incoming stream of high-quality energy, which keeps
us far from thermal equilibrium. The present chapter has provided a framework for understanding

the dissipation of order in such situations; later chapters will apply this framework.

Key formulas

e Binomial: The number of ways to choose k objects out of a jar full of n distinct objects is
n!/kl(n — k)! (Equation 4.1).

e Stirling: The formula: InN! ~ NInN — N + %1n(277N ) allows us to approximate N! for
large values of N (Equation 4.2).

e Random walk: The average location after random-walking N steps of length L in one
dimension is (zy) = 0. The mean-square distance from the starting point is (xx2) = NL?, or
2Dt, where D = L?/2At if we take a step every At (Equation 4.5). Similarly, when taking
diagonal steps on a two-dimensional grid gives ((xx)?) = 4Dt (Equation 4.6). D is given
by the same formula as before; this time L is the edge of one square of the grid. (In three
dimensions the 4 becomes a 6.)

e Finstein: An imposed force f on a particle in suspension, if small enough, results in a slow
net drift with velocity vayge = f/¢ (Equation 4.12). Drag and diffusion are related by the
Einstein relation, (D = kT (Equation 4.15). This relation is not limited to our simplified
model.
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e Stokes: For a macroscopic (many nanometers) sphere of radius ¢ moving slowly through a
fluid, the drag coefficient is ¢ = 6wna (Equation 4.14), where 7 is the fluid viscosity.
[In contrast, at high speed the drag force on a fixed object in a flow is of the form —Buv? for

some constant B characterizing the object and the fluid (see Problem 1.7).]

e Fick and diffusion: The flux of particles along x is the net number of particles passing

from negative to positive x, per area per time. The flux created by a concentration gradient

is j = —Ddc¢/dx (Equation 4.18), where ¢(x) is the number density (concentration) of
particles. (In three dimensions j = —DVc.) The rate of change of ¢(,t) is then §¢ = D%

(Equation 4.19).

e Membrane permeability: ~The flux of solute through a membrane is js = —Ps Ac (Equa-
tion 4.20), where P; is the permeation constant and Ac is the jump in concentration across
the membrane.

e Relaxation: The concentration difference of a permeable solute between the inside and
outside of a spherical bag decreases in time, following the equation —% = (%) Ac
(Equation 4.21).

e Nernst—Planck: When diffusion is accompanied by an electric field, we must modify Fick’s
law to find the electrophoretic flux: j = D(—g—fa + kB%&:) (Equation 4.23).

e Nernst: If an electrical potential difference AV is imposed across a region of fluid, then each
dissolved ion species with charge ¢ comes to equilibrium (no net flux) with a concentration
change across the region fixed by AV = —%A(lnc) or Vo —Vp = —%10&0(02/61)

(Equation 4.25).

e Ohm: The flux of electric current created by an electric field £ is proportional to £, leading
to Ohm’s law. The resistance of a conductor of length d and cross-section A is R = d/(Ak),
where k is the conductivity of the material. In our simple model, each ion species contributes
Dq?c/kgT to r (Equation 4.26).

e Diffusion from an initial sharp point:  Suppose N molecules all begin at the same loca-
tion in 3-dimensional space at time zero. Later we find the concentration to be c¢(r,t) =

ﬁe_”z/(‘lm) (Equation 4.27).

Further reading

Semipopular:
Historical: (Pais, 1982, §5)
Finance: (Malkiel, 1996)

Intermediate:

General: (Berg, 1993; Tinoco Jr. et al., 2001)

Polymers: (Grosberg & Khokhlov, 1997)

Better derivations of the Einstein relation: (Benedek & Villars, 2000a), §2.5A-C, (Feynman et al.,
1963a, §41)

Technical:
Einstein’s original discussion: (Einstein, 1956)
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Polymers: (Tanford, 1961)
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TQ Track 2

4.1.4" Some fine points:
1. Sections 4.1.2 and 4.1.4 made a number of idealizations, and so Equations 4.5 and 4.13 are not
generally very accurate. Nevertheless, it turns out that the Einstein relation, Equation 4.15, is
both general and accurate. This must mean that it actually rests on a more general, though more
abstract, argument than the one given here. Indeed Einstein gave such an argument in his original
1905 paper (Einstein, 1956).

For example, introducing a realistic distribution of times between collisions does not change our
main results, Equations 4.12 and 4.15. See (Feynman et al., 1963a, §43) for the analysis of this
more detailed model. In it, Equation 4.13 for the viscous friction coefficient ¢ expressed in terms

of microscopic quatintities becomes instead ¢ = m/7, where 7 is the mean time between collisions.

2. The assumption that each collision wipes out all memory of the previous step is also not always
valid. A bullet fired into water does not lose all memory of its initial motion after the first molecular
collision! Strictly speaking, the derivation given here applies to the case where the particle of interest
starts out with momentum comparable to that transferred in each collision, that is, not too far from
equilibrium. We must also require that the momentum imparted by the external force in each step
not be bigger than that transferred in molecular collisions, or in other words that the applied force
is not too large. Chapter 5 will explore how great the applied force may be before “low Reynolds-
number” formulas like Equation 4.12 become invalid, concluding that the results of this chapter are
indeed applicable in the world of the cell. Even in this world, though, our analysis can certainly be
made more rigorous: Again see (Feynman et al., 1963a, §43).

3. Cautious readers may worry that we have applied a result obtained for the case of low-density
gases (Idea 3.21, that the mean-square velocity is ((v;)?) = kgT/m), to a dense liquid, namely
water. But our working hypothesis, the Boltzmann distribution (Equation 3.26 on page 78) assigns
probabilities on the basis of the total system energy. This energy contains a complicated potential
energy term, plus a simple kinetic energy term, so the probability distribution factors into the
product of a complicated function of the positions, times a simple function of the velocities. But
we don’t care about the positional correlations. Hence we may simply integrate the complicated
factor over d3z; ---d3zy, leaving behind a constant times the same simple probability distribution
function of velocities (Equation 3.25 on page 78) as the one for an ideal gas. Taking the mean-square
velocity then leads again to Idea 3.21.

Thus in particular, the average kinetic energy of a colloidal particle is the same as that of the
water molecules, just as argued in Section 3.2.1 for the different kinds of gas molecule in a mixture.

We implicitly used this equality in arriving at Equation 4.15.

4. The Einstein relation, Equation 4.15, was the first of many similar relations between fluctuations
and dissipation. In other contexts such relations are generically called “fluctuation—dissipation

theorems” or “Kubo relations.”

4.2 The same theme permeates the rest of Einstein’s work in this period:

1. Einstein did not originate the idea that energy levels are quantized; Max Planck did, in his ap-
proach to thermal radiation. Einstein pointed out that applying this idea directly to light explained
another, seemingly unrelated phenomenon, the photoelectric effect. Moreover, if the light-quantum
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idea was right, then both Planck’s thermal radiation and the photoelectric experiments should in-
dependently determine a number, which we now call the Planck constant. Einstein showed that
both experiments gave the same numerical value of this constant.

2. Einstein did not invent the equations for electrodynamics; Maxwell did. Nor was Einstein the first
to point out their curious invariances; H. Lorentz did. Einstein did draw attention to a consequence
of this invariance: the existence of a fundamental limiting velocity, the speed of light ¢. Once again,
the idea seemed crazy. But Einstein showed that doggedly following it to its logical endpoint led
to a new, quantitative, experimentally testable prediction in an apparently very distant field of
research. In his very first relativity paper, also published in 1905, he observed that if the mass m of

a body could change, the transformation would necessarily liberate a definite amount energy equal
to AE = (Am)c?.

3. Einstein said some deep things about the geometry of space and time, but D. Hilbert was saying
many similar things at about the same time. Only Einstein, however, realized that measuring an
apple’s fall yields the numerical value of a physical parameter (Newton’s constant), which also con-
trols the fall of a photon. His theory thus made quantitative predictions about both the bending of
light by the Sun and the gravitational blue-shift of a falling photon. The quantitative experimental

confirmation of the light-bending prediction catapulted Einstein to international fame.

4.3.1

1. We saw that typically the scaling exponent for a polymer in solvent is not exactly 1/2. One
special condition, called “theta solvent” actually does give a scaling exponent of 1/2; the same
as the result of our naive analysis. Theta conditions roughly correspond to the case where the
monomers attract each other just as much as they attract solvent molecules. In some cases theta
conditions can be reached simply by adjusting the temperature.

2. The precise definition of the radius of gyration Rg is the root-mean-square distance of the
individual monomers from the polymer’s center of mass. For long polymer chains it is related to
the end-to-end distance by the relation (Rg)? = §((rn)?).

3. Another test for polymer coil size is via light scattering; see (Tanford, 1961).
4.4.2" What if we don’t have everything uniform in the y and z directions? The net flux of particles is

really a vector, like velocity; our j was just the x component of this vector. Likewise, the derivative
de/dx is just the & component of a vector, the gradient, denoted V¢ (and pronounced “grad ¢”).

In this language, the general form of Fick’s law is then j = —DV¢, and the diffusion equation reads
Jdc 9
— =DV-c
ot ¢

4.4.3 One can hardly overstate the conceptual importance of the idea that a probability distribution
may have deterministic evolution, even if the events it describes are themselves random. The
same idea (with different details) underlies quantum mechanics. There is a popular conception
that quantum theory says “everything is uncertain; nothing can be predicted.” But Schrodinger’s
equation is deterministic. Its solution, the wavefunction, when squared yields the probability of
certain observations being made in any given trial, just as ¢(z,t) reflects the probability of finding
a particle near x at time t.
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4.6.2 Actually, a wide range of organisms have basal metabolic rates scaling with a power of
body size that is less than three. All that matters for the structure of our argument is that this

“allometric scaling exponent” is bigger than 1.

4.6.4

1. Section 3.2.5 on page 81 mentioned that frictional drag must generate heat. Indeed it’s well
known that electrical resistance creates heat, for example, in your toaster. Using the First Law,
we can calculate the heat: Each ion passed between the plates falls down a potential hill, losing
potential energy ¢ x AV. The total number of ions per time making the trip is I/q, so the power
(energy per time) expended by the external battery is AV x I. Using Ohm’s law gives the familiar
formula: power = I’R.

2. The conduction of electricity through a copper wire is also a diffusive transport process, and also
obeys Ohm’s law. But the charge carriers are electrons, not ions, and the nature of the collisions is
quite different from salt solution. In fact, the electrons could pass perfectly freely through a perfect
single crystal of copper; they only bounce off imperfections (or thermally induced distortions) in
the lattice. Figuring out this story required the invention of quantum theory. Luckily your body

doesn’t contain any copper wires; the picture developed above is adequate for our purposes.

4.6.5

1. Gilbert says: Something is bothering me about Equation 4.27. For simplicity let’s work in just
one dimension. Recall the setup (Section 4.1.2): At time ¢ = 0, I release some random-walkers at
the origin, 2 = 0. A short time ¢ later the walkers have taken N steps of length L, where N = t/At.
Then none of the walkers can be found farther away than xy.x = *NL = ¢tL/At. And yet, the
solution Equation 4.27 says that the density c¢(z,t) of walkers is nonzero for any x, no matter how
large! Did we make some error or approximation when solving the diffusion equation?

Sullivan:  No, Your Turn 4g showed that it was an exact solution. But let’s look more closely
at the derivation of the diffusion equation itself—maybe what we've got is an exact solution to an
approximate equation. Indeed it’s suspicious that we don’t see the step size L, nor the time step
At anywhere in Equation 4.19.

Gilbert: Now that you mention it, I see that Equation 4.17 replaced the discrete difference of the
populations N in adjacent bins by a derivative, remarking that this was legitimate in the limit of
small L.

Sullivan: That’s right. But we took this limit holding D fived, where D = L?/(2At). So we're also
taking At — 0 as well. At any fixed time ¢, then, we're taking a limit where the number of steps is
becoming infinite. So the diffusion equation is an approximate, limiting representation of a discrete
random walk. In this limit, the maximum distance Zy,x = 2Dt/ L really does become infinite, as
implied by Equation 4.27.

Gilbert: Should we trust this approximation?

Let’s help Gilbert out by comparing the exact, discrete probabilities for a walk of N steps to
Equation 4.27, and seeing how fast they converge with increasing N. We seek the probability that
a random walker will end up at a position z after a fixed amount of time t. We want to explore
walks of various step sizes, while holding fixed the macroscopically observable quantity D.

Suppose that N is even. An N-step random walk can end up at one of the points (—=N), (—N +
2),..., N. Extending the Example on page 101 shows that the probability to take (N + j)/2 steps
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Figure 4.15: (Mathematical functions.) The discrete binomial distribution for N steps (bars), versus the corre-
sponding solution to the diffusion equation (curve). In each case the random walk under consideration had 2Dt = 1
in the arbitrary units used to express ; thus the curve is given by (27)~1/ 2¢=2%/2 The discrete distribution has
been rescaled so that the area under the bars equals one, for easier comparison to the curves. (a) N = 4. (b) N = 14.

to the right (and hence (N — j)/2 steps left), ending up j steps from the origin, is

N!
N )

(4.28)

Such a walk ends up at position = jL. We set the step size L by requiring a fixed, given D:
Noting that At = t/N and D = L?/2At gives that L = \/W Thus, if we plot a bar of width
2L and height P;/(2L), centered on x = jL, then the area of the bar represents the probability
that a walker will end up at x. Repeating for all even integers j between —N and + NN gives a bar
chart to be compared to Equation 4.27. Figure 4.15 shows that the approximate solution is quite
accurate even for small values of N .

Strictly speaking, Gilbert is right to note that the true probability must be zero beyond xp,ax,
whereas the approximate solution (Equation 4.27) instead equals (47 Ndi f fust)_l/ 2o~ (@max)?/(4D1)
But the ratio of this error to the peak value of P, (4w Ndif fust)='/?, is e /2, which is already
less than 1% when N = 10.

Similar remarks apply to polymers: The Gaussian model of a polymer mentioned at the end of
Section 4.6.5 gives an excellent account of many polymer properties. We do need to be cautious,
however, about using it to study any property that depends sensitively on the part of the distribution
representing highly extended molecular conformations.

Your Turn 4h
Instead of graphing the explicit formula, use Stirling’s approximation (see the Example on

page 101) to find the limiting behavior of the logarithm of Equation 4.28 when N — oo, holding
x,t, and D fixed. Express your answer as a probability distribution P(x,¢)dz, and compare to
the diffusion solution.

2. Once we’ve found one solution to the diffusion equation, we can manufacture others. For ex-

ample, if ¢1(x,t) is one solution, then so is cao(x,t) = dcy/dt, as we see by differentiating both
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Figure 4.16: (Mathematical functions.) Diffusion from an initial concentration step. Time increases as we move
diagonally downward. The sharp step gradually smooths out, starting from its edges.

sides of the diffusion equation. Similarly, the antiderivative co(z,t) = [ T da’ ¢y (2',t) yields a so-
lution. The latter procedure, applied to the fundamental pulse solution in Your Turn 4g, gives a
new solution describing the gradual smoothing-out of a sharp concentration step; see Figure 4.16.
Mathematicians give the function % foz dz’ e=(@)” the name Erf(z), the error function.
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Problems

4.1 Bad luck

a. You go to a casino with a dishonest coin, which you have filed down in such a way that it comes
up heads 51% of the time. You find a credulous rube willing to bet $1 on tails for 1000 consecutive
throws. He merely insists in advance that if after 1000 throws you're exactly even, then he’ll take
your shirt. You figure that you’ll win about $20 from this sucker, but instead you lose your shirt.
How could this happen? You come back every weekend with the same proposition, and, indeed,
usually you do win. How often on average do you lose your shirt?

b. You release a billion protein molecules at position £ = 0 in the middle of a narrow capillary test

1. An electric field pulls the molecules to the

tube. The molecules’ diffusion constant is 1076 cm? s~
right (larger o) with a drift velocity of 1 ums™. Nevertheless, after 80s you see that a few protein
molecules are actually to the left of where you released them. How could this happen? What is the
ending concentration exactly at « = 0? [Note: This is a one-dimensional problem, so you should
express your answer in terms of the concentration integrated over the cross-sectional area of the

tube, a quantity with dimensions ]L_l.]

c. | I [Explain why (a) and (b) are essentially, but not exactly, the same mathematical situation.

4.2 Binomial distribution

The genome of the HIV-1 virus, like any genome, is a string of “letters” (base pairs) in an “alphabet”
containing only four letters. The message for HIV is rather short, just n = 10* letters in all. Since
any of the letters can mutate to any of the three other choices, there’s a total of 30000 possible
distinct one-letter mutations.

In 1995, A. Perelson and D. Ho estimated that every day about 10'° new virus particles are
formed in an asymptomatic HIV patient. They further estimated that about 1% of these virus
particles proceed to infect new white blood cells. It was already known that the error rate in
duplicating the HIV genome was about one error for every 3 - 10* “letters” copied. Thus the
number of newly infected white cells receiving a copy of the viral genome with one mutation is
roughly

10'% x 0.01 x (10*/(3-10%)) ~ 3 - 107

per day. This number is much larger than the total 30000 possible 1-letter mutations, so every
possible mutation will be generated several times per day.

a. How many distinct two-base mutations are there?

b. You can work out the probability P, that a given viral particle has two bases copied inaccurately
from the previous generation using the sum and product rules of probability. Let P = 1/(3-10%) be
the probability that any given base is copied incorrectly. Then the probability of exactly two errors
is P2, times the probability that the remaining 9998 letters don’t get copied inaccurately, times the
number of distinct ways to choose which two letters get copied inaccurately. Find Ps.

c. Find the expected number of two-letter mutant viruses infecting new white cells per day and
compare to your answer to (a).

d. Repeat (a—c) for three independent mutations.

e. Suppose an antiviral drug attacks some part of HIV, but that the virus can evade the drug’s
effects by making one particular, single-base mutation. According to the information above, the
virus will very quickly stumble upon the right mutation—the drug isn’t effective for very long.
Why do you suppose current HIV therapy involves a combination of three different antiviral drugs

administered simultaneously?
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Table 4.2: Sizes and diffusion constants of some molecules in water at 20°C.

Molecule Molar mass, g/mole Radius, nm D x 10 m?s7!
Water 18 0.15 2.0
Oxygen 32 0.2 1.0

Urea 60 0.4 1.1
Glucose 180 0.5 0.7
Ribonuclease 13683 1.8 0.1
(-lactoglobulin 35000 2.7 0.08
Hemoglobin 68 000 3.1 0.07
Collagen 345000 31 0.007

4.3 Limitations of passive transport

Most eukaryotic cells are about 10 um in diameter, but a few cells in your body are about meter
long. These are the neurons running from you spinal cord to your feet. They have a normal-sized
cell body, with various bits sticking out, notably the “axon.”

Neurotransmitters are small molecules synthesized in the cell body, but needed at the tip of the
axon. One way to get them to their destination is just to let them diffuse there. Model the axon
as a tube 1 m long and 1 um in diameter. At one end of the axon, the concentration of a small
molecule is maintained at one millimolar (that is, (1073 mole)/(1072 m?3)). Some process removes
all the molecules arriving at the other end.

a. Estimate how many molecules per second arrive at the end.

b. Real neurons package neurotransmitter molecules in packets containing about 10000 molecules.
To send a signal to the muscle, a motor neuron must release about 300 of these packets. Using the
model outlined above, estimate how often the neuron could send a signal if diffusion were the only

means of transport.

4.4 Diffusion versus size
Table 4.2 lists the diffusion constants D and radii a of some biologically interesting molecules in
water. Consider the last four entries. Interpret these data in light of the diffusion law. [Hint: Plot

D versus 1/a, and remember Equation 4.14.]

4.5 Perrin’s experiment

Here are some experimental data on Brownian motion taken by Jean Perrin (Figure 4.17). Perrin
took colloidal particles of gutta-percha (natural rubber), with radius 0.37 um. He watched their
projections into the xy plane, so the two-dimensional random walk should describe their motions.
Following a suggestion of his colleague P. Langevin, he observed the location of a particle, waited
30s, then observed again and plotted the net displacement in that time interval. He collected 500
data points in this way and calculated the root-mean-square displacement to be d = 7.84 um. The
circles drawn on the figure have radii d/4,2d/4,3d/4, .. ..

a. Find the expected coefficient of friction for a sphere of radius 0.37 um, using the Stokes formula
(Equation 4.14). Then work out the predicted value of d using the Einstein relation (Equation 4.15)

and compare to the measured value.

b. | Tp How many dots do you expect to find in each of the rings? How do your expectations

compare with the actual numbers?
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Figure 4.17: (Experimental data.) See Problem 4.5. [From (Perrin, 1948).]

4.6 Permeability versus thickness
Look at Figure 4.13 again. Estimate the thickness of the bilayer membrane used in Finkelstein’s

experiments.

4.7 Vascular design
Blood carries oxygen to your body’s tissues. For this problem you may neglect the role of the red
cells: Just suppose that the oxygen is dissolved in the blood, and diffuses out through the capillary
wall because of a concentration difference.

Consider a capillary of length L and radius r, and describe its oxygen transport by a permeation
constant P.
a. If the blood did not flow, the interior oxygen concentration would approach that of the exterior as
an exponential, similarly to the Example on page 122. Show that the corresponding time constant
would be 7 = rq/2P.
b. Actually the blood does flow. For efficient transport, the time that the flowing blood remains in
the capillary should be at least ~ 7; otherwise the blood would carry its incoming oxygen right back
out of the tissue after entering the capillary. Using this constraint, get a formula for the maximum
speed of blood flow in the capillary. You can take the oxygen concentration outside the capillary to

1

be zero. Evaluate your formula numerically, using L ~ 0.1cm, rg = 4 um, P = 3ums™". Compare

to the actual speed v ~ 400 ums™t.

4.8 Spreading burst

Your Turn 4d on page 121 claimed that, in one-dimensional diffusion, an observer sitting at a fixed
point sees a transient pulse of concentration pass by. Make this statement more precise, as follows:
Write the explicit solution of the diffusion equation for release of a million particles from a point
source in three dimensions. Then show that the concentration measured by an observer at fixed
distance r from the initial release point peaks at a certain time.

a. Find that time, in terms of r and D.

b. Show that the value of concentration at that time is a constant times 73, and evaluate the

constant numerically.
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4.9 Rotational random walk

A particle in fluid will wander: Its center does a random walk. But the same particle will also
rotate randomly, leading to diffusion in its orientation. Rotational diffusion affects the precision
with which a microorganism can swim in a straight line. We can estimate this effect as follows.

a. You look up in a book that a sphere of radius R can be twisted in a viscous fluid by applying
a torque 7 = (;w, where w is the speed in radians/s and {, = 8mn - (7?) is the rotational friction
coefficient. Unfortunately the dog has chewed your copy of the book and you can’t read the last
factor. What is it?

b. But you didn’t want to know about friction—you wanted to know about diffusion. After time ¢,
a sphere will reorient with its axis at an angle 6 to its original direction. Not surprisingly, rotational
diffusion obeys (%) = 4D,t where D, is a rotational diffusion constant. (This formula is valid as
long as ¢ is short enough that this quantity is small). Find the dimensions of D,.

Write a diffusion equation for (62), the mean-square angular drift in time t. (You can simplify
by supposing that the microorganism wanders in one plane, so there’s only one angle needed to
specify its direction.) Your formula will contain an “angular diffusion constant” D,; what are its
dimensions?

c. Get a numerical value for D, for a bacterium, modeled as a sphere of radius 1 um in water at
room temperature.
d. If this bacterium is swimming, about how long will it take to wander significantly (say 30°) off

its original direction?

4.10 Spontaneous versus driven permeation

The chapter discussed the permeation constant Py of a membrane to solute. But membranes also
let water pass. The permeation constant Py, of a membrane to water may be measured as follows.
Heavy water HTO is prepared with tritium in place of one of the hydrogens; it’s chemically identical
to water but radioactive. We take a membrane patch of area A. Initially one side is pure HTO,
the other pure HoO. After a short time dt, we measure some radioactivity on the other side,
corresponding to a net passage of (3.8 moles 'm~2)) x Adt radioactive water molecules.

a. Rephrase this result as a Fick-type formula for the diffusive flux of water molecules. Find the
constant Py, appearing in that formula. [Hint: Your answer will contain the number density of

water molecules in liquid water, about 55 mole L.]

Next suppose that we have ordinary water, HoO, on both sides, but we push the fluid across the
membrane with a pressure difference Ap. The pressure results in a flow of water, which we can
express as a volume flux j, (see Section 1.4.4 on page 19). The volume flux will be proportional to
the mechanical driving force: j, = —L, Ap. The constant Ly is called the membrane’s “filtration
coefficient.”

b. There should be a simple relation between L, and Pu,0. Guess it, remembering to check your
guess with dimensional analysis. Using your guess, estimate L, given your answer to (a). Express
your answer both in SI units and in the traditional units cms tatm™!) (see Appendix A). What

will be the net volume flux of water if Ap = 1atm?



Chapter 5

Life in the slow lane: the low

Reynolds-number world

Nobody is silly enough to think that an elephant will only fall
under gravity if its genes tell it to do so, but the same underlying
error can easily be made in less obvious circumstances. So [we
must] distinguish between how much behavior, and what part,
has a genetic origin, and how much comes solely because an
organism lives in the physical universe and is therefore bound by

physical laws. — lan Stewart, Life’s Other Secret

Before our final assault on the citadel of statistical physics in Chapter 6, this chapter will show
how the ideas we have already developed give some simple but powerful conclusions about cellular,
subcellular, and physiological processes, as well as helping us understand some important laboratory
techniques. One key example will be the propulsion of bacteria by their flagella (see Figure 2.3 on
page 32b).

Section 4.4.1 described how diffusion dominates transport of molecules in the nanoworld. Diffu-
sion is a “dissipative” process: It tends to erase ordered arrangements of molecules. Similarly, this
chapter will outline how viscous friction dominates mechanics in the nanoworld. Friction, too, is
dissipative: It tends to erase ordered motion, converting it to thermal energy. The physical concept
of symmetry will help us to understand and unify the sometimes surprising ramifications of this
statement.

The Focus Question for this chapter is:
Biological question: Why do bacteria swim differently from fish?
Physical idea: The equations of motion appropriate to the nanoworld behave differently under time

reversal from those of the macroworld.

(©2000 Philip C. Nelson
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5.1 Friction in fluids

First let’s see how the friction formula vang = f/¢ (Equation 4.12 on page 107) tells us how to
sort particles by their weight or electric charge, an eminently practical laboratory technique. Then
we’ll look at some odd but suggestive phenomena in viscous liquids like honey. Section 5.2 will
argue that in the nanoworld, water itself acts as a very viscous liquid, so that these phenomena are

actually representative of the physical world of cells.

5.1.1 Sedimentation separates particles by density

If we suspend a mixture of several particle types in water, for example several proteins, then gravity
pulls on each particle with a force mg proportional to its mass. (If we prefer we can put our mixture
in a centrifuge, where the centrifugal “force” mg’ is again proportional to the particle mass, though
¢’ can be much greater than ordinary gravity.)

The net force propelling the particle downward is less than mg, since in order for it to go down,
an equal volume of water must move up. Gravity pulls on the water, too, with a force (Vpm)g,
where pp, is the mass density of water and V' the volume of the particle. Thus, when the particle
moves downward a distance z, displacing an equal volume of water up a distance z, the total change
in gravitational potential energy is U(x) = —mgz + V pmga. The net force driving sedimentation is
then the derivative f = —dU/dz = (m — V pu)g, which we’ll abbreviate as mperg. All we have done
so far is to derive Archimedes’ principle: The net weight of an object under water gets reduced by
a buoyant force equal to the weight of the water displaced by the object.

What happens after we let a suspension settle for a very long time? Won’t all the particles
just fall to the bottom? Pebbles would, but colloidal particles smaller than a certain size won'’t,
for the same reason that the air in the room around you doesn’t: Thermal agitation creates an
equilibrium distribution with some particles constantly off the bottom. To make this precise, let x
be the distance from the floor of a test tube filled to a height h with a suspension. In equilibrium
the profile of particle density c(z) has stopped changing, so we can apply the argument that led
to the Nernst relation (Equation 4.25 on page 126), replacing the electrostatic force by the net

gravitational force = myuetg. Thus the density of particles in equilibrium is

—Mpetgz/ksT

c(x) xe sedimentation equlibrium, Earth’s gravity (5.1)

Here are some typical numbers. Myoglobin is a globular protein, with molar mass m =~
17000 gmole . The buoyant correction typically reduces m to mpe; ~ 0.25m Defining the scale
height as z. = kpT,/(Mmnetg) ~ 15m, we thus expect c(z) oc e=?/%=. Thus in a 4cm test tube,

e 0-04m/15m 1 99.7% as great as at the

in equilibrium, the concentration at the top equals ¢(0)
bottom. In other words, the suspension never settles out. In that case we call it an equilibrium
colloidal suspension or just colloid. Macromolecules like DNA or soluble proteins form colloidal
suspensions in water; another example is Robert Brown’s pollen grains in water. On the other
hand, if mye is big (for example, sand grains), then the density at the top will be essentially zero:
The suspension settles out. How big is “big?” Looking at Equation 5.1 shows that the gravitational
potential energy difference, myetgh, between the top and bottom must be bigger than the thermal
energy for settling to occur.

r Your Turn ba _
Here is another example. Suppose that the container is a carton of milk, with h = 25cm.

Homogenized milk is essentially a suspension of fat droplets in water, tiny spheres of diameter



5. ]. . FRICTION IN FLUIDS [[STUDENT VERSION, DECEMBER 8, 2002]] 143

roughly a micrometer. The Handbook of Chemistry and Physics lists the mass density of butterfat
as pm.fat = 0.91gcm™3 (the density of water is about 1gcm™3). Find ¢(h)/c(0) in equilibrium.
Is homogenized milk an equilibrium colloidal suspension?

Returning to myoglobin, it may seem as though sedimentation is not a very useful tool for
protein analysis. But the scale height depends not only on properties of the protein and solvent,
but also on the acceleration of gravity, g. Artificially increasing g with a centrifuge can reduce z.
to a manageably small value; indeed, laboratory centrifuges can attain values of ¢’ up to around
10% ms—2, making protein separation feasible.

To make these remarks precise, first note that when a particle gets whirled about at angular
frequency w, a first-year physics formula gives its centripetal acceleration as rw?, where r is the
distance from the center.

Your Turn 5b
Suppose you didn’t remember this formula. Show how to guess it by dimensional analysis,

knowing that angular frequency is measured in radians/s.

Suppose that the sample is in a tube lying in the plane of rotation, so that its long axis points
radially. The centripetal acceleration points inward, toward the axis of rotation, so there must be
an inward-pointing force, f = —muetrw? causing it. This force can only come from the frictional
drag of the surrounding fluid as the particle drifts slowly outward. Thus, the drift velocity is given
by mnetrw? /¢ (see Equation 4.12 on page 107). Repeating the argument that led to the Nernst
relation (Section 4.6.3 on page 124) now gives the drift flux as cvaqygs = ¢f /¢ = ¢fD/kgT, where
¢(r) is the number density. In equilibrium, this drift flux is canceled by a diffusive flux, given by

Fick’s law. We thus find, analogously to the Nernst—Planck formula, that in equilibrium

de  rw?mpet )

j=0=D(=g + =

To solve this differential equation, divide by ¢(r) and integrate:

mnethTQ/(QkBT)

c = const X e sedimentation equilibrium, centrifuge (5.2)

5.1.2 The rate of sedimentation depends on solvent viscosity

Our discussion so far has said nothing about the rate at which the concentration ¢(x) arrives at
its equilibrium profile. This rate depends on the drift velocity varigt, which equals myuetg/¢ (by
Equation 4.12). The drift velocity isn’t an intrinsic property of the particle, since it depends on the
strength of gravity, g. To get a quantity that we can tabulate for various particle types (in given
solvents), we instead define the sedimentation time scale

s = Udrift/g = mnet/<' (53)

Measuring s and looking in a table thus gives a rough-and-ready particle identification. The quantity
s is sometimes expressed in units of svedbergs; a svedberg by definition equals 10713 s.

What determines the sedimentation time scale s? Surely sedimentation will be slower in a
“thick” liquid like honey than in a “thin” one like water. That is, we expect the viscous friction
coefficient, (, for a single particle in a fluid to depend not only on the size of the particle, but also
on some intrinsic property of the fluid, called the “viscosity.” In fact, Section 4.1.4 already quoted

an expression for ¢, the Stokes formula ( = 67na for an isolated, spherical particle of radius a.
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Your Turn 5c
a. Work out the dimensions of n from the Stokes formula. Show that they can be regarded as

those of pressure times time, and that hence the SI unit for viscosity is Pa - s.

b. Your Turn 5a raised a paradox: Our equilibrium formula suggested that milk should separate,
and yet we don’t normally observe this happening. Use the Stokes formula to estimate how fast
this should happen in homogenized milk. Then compare the situation in raw milk, whose fat

droplets are over 5 um in diameter, and comment.

It’s worth memorizing the value of n for water at room temperature:' n,, ~ 10 2kgm s~ ! =
1073 Pa-s.

We can use the above remarks to look once again at the sizes of polymer coils. Combining
Equation 5.3 with the Stokes formula and the scaling law for random coils (Idea 4.16 on page 111)
gives that s = (m — Vpy,)/(6mna). If we assume that the polymer displaces a volume of water
proportional to the number of monomers, and that its coil size is a constant times m?, then we find
s oc m=P. Our simple picture of random walks gave us p = 1/2, and indeed Figure 4.7b on page
111 shows that this scaling is roughly observed. (More precisely, Figure 4.7a gave p = 0.57, while
Figure 4.7b shows an exponent of 0.44, quite close to 1 — p.)

5.1.3 It’s hard to mix a viscous liquid

Section 5.2 will argue that in the nanoworld of cells, ordinary water behaves as a very viscous liquid.
Since most people have made only limited observations in this world, though, it’s worthwhile first
to notice some of the spooky phenomena that happen there.

Pour a few centimeters of clear corn syrup into a clear cylindrical beaker or wide cup. Set aside
some of the syrup and mix it with a small amount of ink to serve as a marker. Put a stirring
rod in the beaker, then inject a small blob of marked syrup somewhere below the surface, far from
both the rod and the walls of the beaker. (A syringe with a long needle helps with this step, but
a medicine dropper will do; remove it gently to avoid disturbing the blob.) Now try moving the
stirring rod slowly. One particularly revealing experiment is to hold the rod against the wall of the
beaker, slowly run it around the wall once clockwise, then slowly reverse your first motion, running
it counterclockwise to its original position.

Among the phenomena you’ll note are that:

e It’s very hard to mix the marked blob into the bulk.
e The marked blob actually seems to take evasive action when the stirring rod approaches.

e In the clockwise-counterclockwise experiment, the blob will smear out in the first step. But if
you're careful in the second step to retrace the first step exactly, you'll see the blob magically
reassemble itself into nearly its original position and shape! That’s not what happens when

you stir cream into your coffee.

Figure 5.1 shows the result of a more controlled experiment. A viscous liquid sits between two
concentric cylinders. One cylinder is rotated through several full turns, smearing out the marker
blob shown (Figure 5.1b). Upon rotation through an equal and opposite angle, the blob reassembles
itself (Figure 5.1c).

LSome authors express this result in units of poise (abbreviation P), defined as erg -s/cm3 = 0.1 Pa -s; thus 7y is

about one centipoise. Some values of 7 for other biologically relevant fluids appear in Table 5.1 on page 147.
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Figure 5.1: (Photographs.) An experiment showing the peculiar character of low Reynolds-number flow. (a) A
small blob of colored glycerine is injected into clear glycerine in the space between two concentric cylinders. (b) The
inner cylinder is turned through four full revolutions, apparently mixing the blob into a thin smear. (c) Upon turning
the inner cylinder back exactly four revolutions, the blob reassembles, only slightly blurred by diffusion. The finger
belongs to Sir Geoffrey Taylor.[Copyrighted figure; permission pending.|[From (Shapiro, 1972).]
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Figure 5.2: (Schematics.) Shearing motion of a fluid in laminar flow, in two geometries. (a) Cylindrical (ice-cream
maker) geometry, viewed from above. The central cylinder rotates while the outer one is held fixed. (b) Planar
(sliding plates) geometry. The top plate is pushed to the right while the bottom one is held fixed.

What’s going on? Have we stumbled onto some violation of the Second Law? Not necessarily.
If you just leave the marked blob alone, it does diffuse away, but extremely slowly. That’s because
the viscosity 7 is large, and the Einstein and Stokes relations give D = kT /¢ = kgT/(6mna)
(Equations 4.15 and 4.14). Moreover, diffusion initially only changes the density of ink near the
edges of the blob (see Figure 4.16 on page 136), so a compact blob cannot change much in a short
time. One could imagine that stirring causes an organized motion, in which successive layers of
fluid simply slide over each other and stop as soon as the stirring rod stops (Figure 5.2). Such a
stately fluid motion is called laminar flow. Then the motion of the stirring rod, or of the container
walls, would just stretch out the blob, leaving it still many billions of molecules thick. The ink
molecules are spread out, but still not random, because diffusion hasn’t yet had enough time to
randomize them fully. When we slide the walls back to their original configuration, the fluid layers
could then each slide right back and reassemble the blob. In short, we could explain the reassembly

of the blob by arguing that it never “mixed” at all, despite appearances. It’s hard to mix a viscous
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liquid.

The preceding scenario sounds good for corn syrup. But it doesn’t address one key question:
Why doesn’t water behave this way? When you stir cream into your coffee, it immediately swirls
into a complex, turbulent pattern. Nor does the fluid motion stop when you stop stirring; the
coffee’s momentum continues to carry it along. In just a few seconds, an initial blob of cream gets
stretched to a thin ribbon only a few molecules thick; diffusion can then quickly and irreversibly
obliterate the ribbon. Stirring in the opposite direction won’t reassemble the blob. It’s easy to mix

a nonviscous liquid.

5.2 Low Reynolds number

To summarize, the last two paragraphs of the previous subsection served to refocus our attention,
away from the striking observed distinction between mixing and nonmixing flows and onto a more
subtle underlying distinction, between turbulent and laminar flows. To make progress, we need
some physical criterion that explains why corn syrup (and other fluids like glycerine and crude oil)
will undergo laminar flow, while water (and other fluids like air and alcohol) commonly exhibit
turbulent flow. The surprise will be that the criterion depends not only on the nature of the fluid,
but also on the scale of the process under consideration. In the nanoworld, water will prove to be
effectively much thicker than the corn syrup in your experiment, and hence essentially all flows in

this world are laminar.

5.2.1 A critical force demarcates the physical regime dominated by fric-
tion

Because viscosity certainly has something to do with the distinction between mixing and nonmixing
flows, let’s look a bit more closely at what it means. The planar geometry sketched in Figure 5.2b
is simpler than that of a spherical ball, so we use it for our formal definition of viscosity. Imagine
two flat parallel plates separated by a layer of fluid of thickness d. We hold one plate fixed while
sliding the other sideways (the z direction in Figure 5.2b) at speed vg. This motion is called shear.
Then the dragged plate feels a resisting frictional force directed opposite to vg; the stationary plate
feels an equal and opposite force (called an “entraining force”) parallel to vg.

The force f will be proportional to the area A of each plate. It will increase with increasing
speed vy, but decrease as we increase the plate separation. Empirically, for small enough vy many

fluids indeed show the simplest possible force rule consistent with these expectations:

f=—-nuA/d. viscous force in a Newtonian fluid, planar geometry (5.4)

The constant of proportionality 7 is the fluid’s viscosity. Equation 5.4 separates out all the situation-
dependent factors (area, gap, speed), exposing 1 as the one factor intrinsic to the type of fluid. The
minus sign reminds us that the drag force opposes the imposed motion. (You can verify that the
units work out in Equation 5.4, using your result in Your Turn 5c(a) on page 143.)

Any fluid obeying the simple rule Equation 5.4 is called a Newtonian fluid after the ubiqui-
tous Isaac Newton. Most Newtonian fluids are in addition isotropic (the same in every direction;
anisotropic fluids will not be discussed in this book). Such a fluid is completely characterized by

its viscosity and its mass density pp,.
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Table 5.1: Density, viscosity and viscous critical force for some common fluids at 25°C.

Fluid pm (kgm™2) 1 (Pa-s)  fuir (N)
Air 1 2.-107° 4-10710
Water 1000 0.0009  8-10719
Olive oil 900 0.080  4-107°¢
Glycerine 1300 1 0.0008

Corn syrup 1000 5 0.03

We are pursuing the suggestion that simple, laminar flow ensues when 7 is “large,” whereas
we get complex, turbulent flow when it’s “small.” But the question immediately arises: Large
compared to what? The viscosity is not dimensionless, so there’s no absolute meaning to saying
that it’s large (see Section 1.4.1 on page 15). Nor can we form any dimensionless quantity by
combining viscosity (dimensions ML 'T™!) with mass density (dimensions ML ™). No fluid can
be deemed “viscous” in an absolute sense. But we can form a characteristic quantity with the

dimensions of force:

ferit = 17/ pm.- viscous critical force (5.5)

The motion of any fluid will have two physically distinct regimes, depending on whether we

apply forces bigger or smaller than that fluid’s critical force. Equivalently, we can say that:

a. There’s no dimensionless measure of viscosity, and hence no intrinsic dis-

tinction between “thick” and “thin” fluids, but. . .

b. Still there is a situation-dependent characterization of when a fluid’s mo- (56)
tion will be viscous, namely when the dimensionless ratio f/ feit is small.

For a given applied force f we can get a large ratio f/feit by choosing a fluid with a large mass
density or small viscosity. Then inertial effects (proportional to mass) will dominate over frictional
effects (proportional to viscosity), and we expect turbulent flow (the fluid keeps moving after we
stop applying force). In the opposite case, friction will quickly damp out inertial effects and we
expect laminar flow.

Summarizing the discussion so far, the previous subsection began with the distinction between
mixing and nonmixing flows. This subsection first rephrased the issue as the distinction between
turbulent and laminar flow, then finally as a distinction between flows dominated by inertia or
viscous friction, respectively. We found a criterion for making this distinction in a given situation
using dimensional analysis.

Let’s examine some rough numbers for familiar fluids. Table 5.1 shows that if we pull a marble
in corn syrup with a force less than 0.01 N, then we may expect the motion to be dominated by
friction. Inertial effects will be negligible, and indeed in the corn-syrup experiment there’s no
swirling after we stop pushing the stirring rod. In water, on the other hand, even a millinewton
push puts us well into the regime dominated by inertia, not friction; indeed turbulent motion then
ensues.

What’s striking about the table is that it predicts that water will appear just as viscous to a

tiny creature exerting forces less than a nanonewton as glycerine does to us! Indeed, we’ll see in
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Chapter 10 that the typical scale of forces inside cells is more like a thousand times smaller, the
piconewton range. Friction rules the world of the cell.

It’s not size per se that counts, but rather force. To understand why, recall the flows of a
Newtonian fluid are completely determined by its mass density and viscosity, and convince yourself
that there is no combination of these two quantities with the dimensions of length. We say that a
Newtonian fluid “has no intrinsic length scale,” or is “scale invariant.” Thus even though we haven’t
worked out the full equations of fluid motion, we already know that they won’t give qualitatively
different physics on scales larger and smaller than some critical length scale, because dimensional
analysis has just told us that there can be no such scale! A large object—even a battleship—will
move in the friction-dominated regime, if we push on it with less than a nanonewton of force.
Similarly, macroscopic experiments, like the one shown in Figure 5.3 on page 149, can tell us
something relevant to a microscopic organism.

@Sectiom 5.2.1" on page 166 sharpens the idea of friction as dissipation, by reinterpreting viscosity
as a form of diffusion.

5.2.2 The Reynolds number quantifies the relative importance of friction

and inertia

Dimensional analysis is powerful, but it can move in mysterious ways. The previous subsection pro-
posed the logic that (i) Two numbers, p,, and 7, characterize a simple (that is, isotropic Newtonian)
fluid; (%) From these quantities we can form another, feit, with dimensions of force; (7ii) Something
interesting must happen at around this range of externally applied force. Such arguments generally
strike students as dangerously sloppy. Indeed, when faced with an unfamiliar situation a physical
scientist begins with dimensional arguments to raise certain expectations, but then proceeds to
justify those expectations with more detailed analysis. In this subsection we begin this process,
deriving a more precise criterion for laminar flow. Even here, though, we will not bother with small
numerical factors like 27 and so on; all we want is a rough guide to the physics.

Let’s begin with an experiment. Figure 5.3 shows a beautiful example of laminar flow past an
obstruction, a sphere of radius a. Far away, each fluid element is in uniform motion at some velocity
v. We’d like to know whether the motion of the fluid elements is mainly dominated by inertial
effects, or by friction.

Consider a small lump of fluid of size ¢, which comes down the pipe on a collision course with
the sphere (Figure 5.4). In order to sidestep it, the fluid element must accelerate: The velocity
must change direction during the encounter time At ~ a/v. The magnitude of the change in v is
comparable to that of v itself, so the rate of change of velocity (that is, the acceleration dv/dt) has
magnitude ~ v/(a/v) = v?/a. The mass m of the fluid element is the density p,, times the volume.

Newton’s Law of motion says that our fluid element obeys
ftot = fext + [firict = mass X acceleration. (5.7)

Here foxt denotes the external force from the surrounding fluid’s pressure, while fric¢ is the net
force on the fluid element from viscous friction. Using the previous paragraph, the right-hand side

of Newton’s Law (the “inertial term”) is
inertial term = mass x acceleration ~ (£3p,)v?/a. (5.8)

We wish to compare the magnitude of this inertial term to that of frict. If one of these terms is

much larger than the other, then we can drop the smaller term in Newton’s Law.
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Figure 5.3: (Photograph.) Low Reynolds-number fluid flow past a sphere. The fluid flows from left to right at
R = 0.1. The flow lines have been visualized by illuminating tiny suspended metal flakes with a sheet of light
coming from the top. (The black area below the sphere is just its shadow.) Note that the figure is symmetrical; the
time-reversed flow from right to left would look exactly the same. Note also the orderly, laminar character of the
flow. If the sphere were a single-cell organism, a food particle located in its path would simply get carried around it
without ever encountering the cell at all. [From (van Dyke, 1982).] [Copyrighted figure; permission pending.]

Figure 5.4: (Schematic.) Motion of a small fluid element, of size ¢, as it impinges on an obstruction of radius a
(see Figure 5.3).

To estimate the frictional force, we first generalize Equation 5.4 to the case where the velocity
of the fluid is not a uniform gradient (as it was in Figure 5.2b). To do so, replace the finite velocity
difference vg/d by the derivative, dv/dz. When a fluid element slides past its neighbor, then, they

exert forces per unit area on each other equal to

dv
dx’

L =9

2 (5.9)

In the situation sketched in Figure 5.4, the surface area A of one face of the fluid element? is ~ ¢2.
The net frictional force fgicy on the fluid element is the force exerted on it by the one above it,
minus the force it exerts on one below it. We can estimate this difference as £ times the derivative
df/dx, or fiie ~ nt3 gié’
distances comparable to the obstruction’s size a; accordingly we estimate d?v/dx? ~ v/a?. Putting

. To estimate the derivative, again note that v changes appreciably over

2We are still dropping numerical factors to get an estimate; really the area is 6¢2. Also, Equation 5.9 sometimes
needs a correction in cases with nonplanar geometry (see Problem 5.9); thus for our example it only gives an estimate
of the viscous force.
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everything together, we find
friction term = fice ~ nl3v/a. (5.10)

We are ready to compare Equations 5.8 and 5.10. Dividing these two expressions yields a

characteristic dimensionless quantity:>

R = vapm/n. the Reynolds number (5.11)

When R is small, friction dominates. Stirring produces the least possible response, namely laminar
flow, and the flow stops immediately after the external force fext stops. (Engineers often use the
synonym “creeping flow” for low Reynolds-number flow.) When R is big, inertial effect dominate,
friction is negligible, the coffee keeps swirling after you stop stirring, and the flow is turbulent.

As a first application of Equation 5.11, consider the flow of fluid down a pipe of radius a. In
a series of careful experiments in the 1880s, O. Reynolds found that generally the transition to
turbulent flow occurs around R ~ 1000. Reynolds varied all the variables describing the situation
(pipe size, flow rate, fluid density and viscosity) and found that the onset of turbulence always
depended on just one combination of the parameters, namely the one given in Equation 5.11.

Let’s connect Reynolds’ result to the concept of critical force discussed in the previous subsection:

Example Suppose that the Reynolds number is small, R <« 1. Compare the external force
needed to anchor the obstruction in place to the viscous critical force.

Solution: At low Reynolds number the inertial term is negligible, so fex; is essen-
tially equal to the frictional force (Equation 5.10). To estimate this force, take the
fluid element size ¢ to be that of the obstruction itself; then

friee _ma’v 1 vapmw _ -

ferit a® 1%/pmw n

So indeed the force applied to the fluid is much smaller than f..i when R is small.

Your Turn 5d
Suppose that the Reynolds number is big, R > 1. Compare the external force needed to anchor

the obstruction in place to the viscous critical force.

As always, we need to make some estimates. A 30 m whale, swimming in water at 10ms™!, has
R ~300000000. But a 1um bacterium, swimming at 30 ums~', has R ~ 0.00003! Section 5.3.1
will show that the very meaning of the word “swim” will be quite different for these two organisms.

T» |Section 5.2.2 on page 167 outlines more precisely the sense in which fluids have no characteristic

length scale.

5.2.3 The time reversal properties of a dynamical law signal its dissipa-
tive character

Now that we have a criterion for laminar flow, we can be a bit more explicit in our understanding

of the mixing/umixing puzzle (Section 5.1.3).

3Notice that the size £ of our fluid element dropped out of this expression, as it should: Our fluid element was

arbitrarily defined.
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Unmixing The full equations of fluid mechanics are rather complicated, but it’s not hard to guess
the minimal response of a fluid to the shearing force applied in Figure 5.2b. Since everything is
uniform in the y, z directions, we can think of the fluid layer as a stack of thin parallel sheets, each of
thickness dz, and apply Equation 5.9 to each layer separately. Denoting the relative velocity of two
neighboring sheets by dv., each sheet pulls its neighbor with a force per area of f/A = —ndvg—i,x).
In particular, the sheet of fluid immediately next to a solid wall must move with the same speed
as the wall (the no-slip boundary condition), since otherwise v would have an infinite derivative at
that point, and the required viscous force would be infinite too.

Since every sheet of fluid moves uniformly (does not accelerate), Newton’s Law of motion says
the forces on each slab must balance. Thus each must exert on its neighbor above the same force
exerted on it by its neighbor below, or d”j—im) must be a constant, independent of z. A function
with constant derivative must be a linear function. Since v must go from vy on the top plate to
zero on the bottom plate, we find v, (z) = (z/d)vp.

Thus a volume element of water initially at (z¢, zg) moves in time ¢ to (xq, zo + (xo/d)vot). This
motion is what stretches out an initially spherical blob of ink (Figure 5.2b). If we reverse the force
pulling the top plate for an equal time ¢, though, we find that every fluid element returns to exactly
its original starting point. The blob reassembles; if it had originally been stretched so far as to
appear mixed, it now appears to “unmix” (Figure 5.1).

Suppose now that we don’t insist on steady motion, and instead apply a time-dependent force
f(t) to the top plate. Now the forces on each slab needn’t balance; the net force instead equals
the mass of fluid in the slab times its acceleration, by Newton’s Law of motion. As long as the
force is well below the viscous critical force, though, this correction will be negligible and all the
same conclusions as before apply: Once the top plate has returned to its initial position, each fluid
element has also returned. It’s a bit like laying a deck of cards on the table and pushing the top
card sideways, then back.

It’s not even necessary to apply the exact time-reversed force in order to return to the starting
configuration. Regardless of whether the return stroke is hard and short, or gentle and long, as
soon as the top plate returns to its original position, so have all the fluid elements (apart from a

small amount of true, diffusive mixing).

Time reversal The “unmixing” phenomenon points up a key qualitative feature of low Reynolds-
number fluid flow. To understand this feature, let’s contrast such flows with the more familiar world
of Newtonian mechanics.

If we throw a rock up in the air, it goes up and then down in the familiar way: z(t) = vot — %gtz.
Now imagine a related process, in which the position z.(t) is related to the original one by “time
reversal”; that is, z,(t) = z(—t) = —vot — %th. The time-reversed process is also a legitimate
solution of Newton’s laws, albeit with a different initial velocity from the original process. Indeed
we can see directly that Newton’s Law has this property, just by inspecting it: Writing the force as
the derivative of a potential energy gives —% = mf;T%’. This equation contains two time derivatives,
and so is unchanged under the substitution t — —t.

A second example may reinforce the point. Suppose you're stopped at a traffic light when
someone rear-ends you. Thus starting at time ¢ = 0, the position z(t) of your head suddenly
accelerates forward. The force needed to make this happen comes from your headrest; it’s also
directed forward, according to f = m?i%”. Now imagine another process, in which your head moves

along the time-reversed trajectory z,(t) = x(—t). Physically, x, describes a process where your
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car is initially rolling backwards, then hits a wall behind you and stops. Once again your head’s
acceleration points forward, as its velocity jumps from negative to zero. Once again your headrest

pushes forward on your head. In other words,

In Newtonian physics the time-reversed process is a solution to the equations (5.12)
of motion with the same sign of force as the original motion. '

In contrast, the viscous friction rule is not time-reversal invariant: The time-reversed trajectory
doesn’t solve the equation of motion with the same sign of the force. Certainly a pebble in molasses
never falls upward, regardless what starting velocity we choose! Instead, to get the time-reversed
motion we must apply a force that is time reversed and opposite in direction to the original. To
see this in the mathematics, let’s reconsider the equation of motion we found for diffusion with
drift, vase, = f/¢ (Equation 4.12), and rephrase it using Z(t), the position of the particle at time ¢
averaged over many collision times. (Z(t) shows us the net drift but not the much faster thermal
jiggling motion.) In this language our equation of motion reads

i_i _ @ (5.13)
The solution Z(t) to Equation 5.13 could be uniform motion (if the force f(t) is constant), or
accelerated motion (otherwise). But think about the time-reversed motion, Z,(t) = z(—t). We can
find its time derivative using the chain rule from calculus; it won’t be a solution of Equation 5.13
unless we replace f(t) by —f(—t).

The failure of time-reversal invariance is simply a signal that something irreversible is happening
in frictional motion. Phrased this way, the conclusion is not surprising: We already knew that
friction is the one-way dissipation, or degradation, of ordered motion into disordered motion. Our
simple model for friction in Section 4.1.4 explicitly introduced this idea, via the assumption of
randomizing collisions.

Here is another example of the same analysis. Section 4.6 gave some solutions to the diffusion
equation (Equation 4.19 on page 118). Taking any solution ¢; (x, t), we can consider its time-reversed
version ca(x,t) = ci(x, —t), or its space-reflected version cs(x,t) = c1(—x,t). Take a moment to
visualize ¢y and c3 for the example shown in Figure 4.12a.

Your Turn 5e
Substitute ¢z and c3 into the diffusion equation and see whether they also are solutions. [Hint:

Use the chain rule to express derivatives of ¢y or ¢ in terms of those of ¢;.] Then explain in

words why the answer you got is right.

The distinction between fluids and solids also hinges upon their time-reversal behavior. Suppose
we put an elastic solid, like rubber, between the plates in Figure 5.2b. Then the force resisting
deformation follows a Hooke relation, f = —k(Az). The spring constant & in this relation depends
on the geometry of the sample, but for many materials we can write it as k = GA/d, where the

shear modulus G is a property only of the material.* Thus

% =- <%> G. (5.14)

The quantity f/A is called the shear stress, while (Az)/d is the shear strain. A fluid, in contrast,
has f/A =nv/d (Equation 5.4).

4Compare Equation 5.4, which was organized so that 7 is also a property of the material, not the sample geometry.
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Figure 5.5: (Schematic.) Three swimmers. (a) The flapper makes reciprocal motion. (b) The twirler cranks a stiff
helical rod. (c) The spinner swings a stiff, straight rod.

In short, for solids the stress is proportional to the strain (Az)/d, while for fluids it’s proportional
, % (%) = 4. A simple elastic solid doesn’t care about the rate; you can shift the

plates and then hold them stationary, and an elastic solid will continue resisting forever. Fluids, in

to the strain rate

contrast, have no memory of their initial configuration; they only notice how fast you're changing
that configuration.

The difference is one of symmetry: In each case if we reverse the applied distortion spatially,
the opposing force also reverses. But for fluids, if we time-reverse the distortion Az(t) then the
force reverses direction, whereas for solids it doesn’t. The equation of motion for distortion of an
elastic solid is time-reversal invariant, a signal that there’s no dissipation.

Section 5.2.3" on page 167 describes an extension of the above ideas to materials with both

viscous and elastic behavior.

5.3 Biological applications

Section 5.2.3 brought us close to the idea of entropy, promised in Chapter 1. Entropy will measure
precisely what is increasing irreversibly in a dissipative process like diffusion. Before we finally
define it in Chapter 6, the next section will give some immediate consequences of these ideas, in

the world of swimming bacteria.

5.3.1 Swimming and pumping

We saw in Section 5.2.1 on page 146 that in the low Reynolds-number world, applying a force to
fluid generates a motion that can be cancelled completely by applying minus the time-reversed force.
These results may be amusing to us, but they are matters of life and death to microorganisms.

An organism suspended in water may find it advantageous to swim about. It can only do so by
changing the shape of its body in some periodic way. It’s not as simple as it may seem. Suppose
you flap a paddle, then bring it back to its original position by the same path (Figure 5.5a). You
then look around and discover that you have made no net progress, just as every fluid element
returned to its original position in the unstirring experiment (Figure 5.2). A more detailed example
can help make this clearer.

Consider an imaginary microorganism, trying to swim by pushing a part of its body (“paddles”)
relative to the rest (“body”) (see Figure 5.6). To simplify the math, we’ll suppose that the creature
can only move in one direction, and the relative motion of paddles and body also lies in the same

direction. The surrounding fluid is at rest. We know that in low Reynolds-number motion, moving
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Figure 5.6: (Schematic.) A hypothetical microscopic swimmer trying to make progress by cycling between forward
and backward strokes of its paddles. On the first stroke the paddles move backward relative to the body at relative
speed v, propelling the body through the fluid at speed u. On the second stroke the paddles move forward at relative
speed v’, propelling the body backward at speed u’. Then the cycle repeats. The progress made on the first stroke
is all lost on the second stroke; reciprocal motion like this cannot give net progress in low Reynolds-number fluid

mechanics.

the body through the fluid requires a force determined by a viscous friction coefficient (y. Moving
the paddles through the fluid requires a force determined by a different constant (.

Initially the body’s center is located at & = 0. Then it pushes its paddles backward (toward
negative x) relative to its body at a relative speed v for a time ¢. Next it pushes the paddles forward
at a different relative speed v’ to return them to their original location. The cycle repeats. Your
friend suggests that by making the “recovery” stroke slower the “power” stroke (that is, taking

v’ <), the creature can make net progress, just as in a rowboat.

Example a. The actual speed at which the paddles move through the water depends both on
the given v and on the speed u of the body, which you don’t know yet. Find u for
the first half of the cycle.

b. How far and in what direction does the body move in the first stroke?

c. Repeat (a,b) for the second (return) stroke.

d. Your friend proposes to choose v and v’ to optimize this process. How do you
advise him?

Solution:

a. The velocity of the paddles relative to the surrounding fluid is the relative velocity,

—uv, plus u. Balancing the resulting drag force on the paddles against the drag force

&1
Co+<¢1 v

b. Az = tu, forward, where u is the quantity found in (a).

on the body gives u =

c.u = 7(0&41 v, Az’ = t'u/. We must take t'v’ = tu if we want the paddles to
return to their original positions on the body. Thus Az’ = (tv/v")u’ = —Ax.

d. It won’t work. The answers to (b) and (c) always cancel, regardless of what we
take for v and v’. For example, if the “recovery” stroke is half as fast as the “power”

stroke, the corresponding net motion is also half as fast. But such a recovery stroke
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Figure 5.7: (Schematic.) The ciliary cycle. The effective stroke (left) alternates with the recovery stroke (right).

The motion is not reciprocal, so it can make net progress in sweeping fluid past the surface.

must last twice as long as the power stroke in order to prepare the creature for

another cycle!

So a strictly reciprocating motion won’t work for swimming in the low-Reynolds world. What
other options does a microorganism have? The required motion must be periodic, so that it can
be repeated. It just can’t be of the reciprocal (out-and-back) type described above. Here are two

examples.

Ciliary propulsion Many cells use cilia, whiplike appendages 5-10 um long and 200 nm in diam-
eter, to generate net thrust. Motile cells (like Paramecium) use cilia to move, while others use them
to pump fluid (like the cells lining our air passages) or sweep food to themselves (see Figure 2.12
on page 40).

Each cilium contains internal filaments and motors which can slide the filaments across each
other, creating an overall bend in the cilium. The motion in Figure 5.7 is typical. Indeed this
motion is periodic but not reciprocal. To see how it generates propulsion, we need one intuitive
result from low-Reynolds fluid mechanics, whose mathematical proof is however beyond the scope
of this book: The wviscous friction coefficient ¢ for motion of a rod parallel to its axis is smaller
than the one (| for perpendicular motion. The exact factor depends on the length of the rod; this
book will use the illustrative value 2/3.

In other words, a rod dragged along its axis at velocity v feels a resisting force proportional to
—v, that is, also directed along the axis. A rod dragged perpendicular to its axis feels a resisting
force also proportional to —v, that is, directed perpendicular to the axis, but with a somewhat
larger constant of proportionality.

Figure 5.7 shows a cilium initially lying parallel to the cell surface, pointing to the left. During
the power stroke (left panel) the entire cilium moves perpendicular to its axis, whereas during the
recovery stroke (right panel) most of it is moving nearly parallel to its axis. Thus the motion of the
fluid created by the power stroke gets only partly undone by the backflow created by the recovery
stroke. The difference between these flows is the net pumping of one cycle.

Bacterial flagella What if the speed v is neither parallel nor perpendicular to the axis, but in
between? In this case Figure 5.8 shows that the resulting drag force will also be somewhere in
between the parallel and normal directions, but not along v. Instead the force points closer to the

normal than does the velocity; the larger (1 “wins” over the smaller (. The bacterium E. coli
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Figure 5.8: (Schematic.) A thin rod is dragged at low Reynolds number with velocity v. The force f needed to
drag the rod is the resultant of two forces f| and f; coming from the components of v parallel to, and perpendicular
to, the rod’s axis. Even if v| and v are the same length, as shown, the resulting components of f will not be equal;

thus f will not point parallel to v.

bases its propulsion on this fact.

Unlike cilia, E. coli’s flagella do not flex; they are rigid, helical objects, like twisted coathangers,
so they cannot solve the propulsion problem by the means shown in Figure 5.7. Since they are
only 20 nm thick, it’s not easy to visualize their three-dimensional motion under the microscope.
Initially some people claimed that the bacterium waves them about, but we know this can’t work:
It’s a reciprocal motion. Others proposed that a wave of bending travels down the flagellum, but
there hardly seemed to be room for any of the required machinery inside such a thin object. In
1973, H. Berg and R. Anderson argued that instead the bacterium cranked the flagellum at its base
in a rigid rotary motion (like the twirler in Figure 5.5b). This was a heretical idea. At that time
no true rotary engine had ever been seen in any living creature (we will, however, meet another
example in Chapter 11). Nor was it easy to imagine how to prove such a theory—it’s hard to judge
the three-dimensional character of a motion seen under the microscope.

M. Silverman and M. Simon found an elegant solution to the experimental problem. They used
a mutant E. coli strain that lacks most of its flagellum, having instead only a stump (called the
“hook”). They anchored the cells to a glass coverslip by their hooks. The flagellar motor, unable
to spin the anchored flagellar hook, instead spun the whole bodies of the bacteria, a process easily
visible in the microscope! Today we know that the flagellar motor is a marvel of nanotechnology, a
rotary engine just 45 nm wide (Figure 5.9).

Rotary motion certainly meets our criterion of being periodic but not reciprocal. And we are
familiar with other spinning helical objects that develop thrust along their axis, namely submarine
and boat propellers. But the details are quite different in the low-Reynolds case. Figure 5.10 shows
a schematic of the situation. A rigid helical object (representing the flagellum) is cranked about
its axis (by the flagellar motor). Two short segments of the helix have been singled out for study.
The net force df exerted on one short segment by its two neighbors must balance the viscous drag
force on that segment. Thus for the helix to undergo the desired rotational motion, df must be the
vector shown in Figure 5.8. Adding up all the contributions from every rod segment, we see that
the components in the zy plane all cancel (think about the corresponding segments on the far side
of the helix, whose velocity vectors point upward). But df also has a small component directed

along the —z direction, and the df,’s do not cancel. Rather, a net leftward force must be supplied
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Figure 5.9: (Schematic; photomicrograph.) (a) The bacterial flagellar motor, showing elements analogous to those
of a macroscopic rotary motor. The inner part of the motor assembly develops a torque relative to the outer part,
which is anchored to the polymer network (the “peptidoglycan layer”), turning the flagellum. The peptidoglycan
layer provides the rigid framework for the cell wall; it is located in the periplasmic space between the cell’s two
membranes. (b) Composite electron micrograph of the actual structure of the motor assembly. Top to bottom,
about 75 nm. [Digital image kindly supplied by D. Derosier; see (Derosier, 1998).] [Copyrighted figure; permission
pending.]

Figure 5.10: (Schematic.) Principle of flagllar propulsion in bacteria. A thin, rigid, helical rod is cranked about its
helix axis at angular speed w. For better visualization a phantom cylinder has been sketched, with the rod lying on
its surface. Two short segments of the rod have been singled out for study, both lying on the near side of the helix
and separated by one turn. The rod is attached (black circle) to a disk and the disk is rotated, cranking the helix
about its axis. The two short segments then move downward, in the plane of the page. Thus df lies in the plane of
the page, but tipped slightly to the left as shown (see Figure 5.8). Thus a net force with a negative z-component is
required to keep the helix spinning in place.

to spin the flagellum in place (in addition to a torque about the axis).

Suppose the flagellum is not anchored, but instead is attached to a bacterium at its rightmost
end. Then there is nothing to supply a net leftward force; cranking the flagellum will therefore
pull the bacterium to the right. This is the propulsion mechanism we sought. Interestingly, mutant

bacteria have been found with straight flagella. They spin and spin, but never go anywhere.

T»|Section 5.3.1' on page 168 discusses the ratio of parallel and perpendicular friction constants

in greater detail.



158CHAPTER 5. LIFE IN THE SLOW LANE: THE LOW REYNOLDS-NUMBER WORLD [[Stubext versiox, Deceseer 8, 2002]]

5.3.2 To stir or not to stir?

It’s surprisingly difficult to get anything to eat when you’re tiny. We get a hint of why when we
examine the experimental photograph, Figure 5.3 on page 149. At low Reynolds number the flow
lines just part majestically as they come to the surface of the sphere; any food molecules carried in
the fluid follow the flow lines and never arrive at the surface.

Things are not as bad as they seem. The macroscopic experiment shown in Figure 5.3 doesn’t
show the effects of diffusion, which can carry molecules to their receptors on a cell’s surface. But
diffusion will bring food even to a lazy, motionless cell! Similarly, diffusion will carry waste away,
even if the cell is too lazy to move away from its waste. So why bother swimming?

Similar remarks apply to stirring. It was once believed that a major job of cilia was to sweep fresh
fluid to the cell, enhancing its intake compared to passively waiting. To evaluate such arguments,
imagine the cilium as moving at some characteristic speed v and swinging through a length d.
These determine a time scale t = d/v, the time in which the cilium can replace its surrounding fluid
with fresh, outside fluid. On the other hand, movement of molecules a distance d will occur just by
diffusion in a characteristic time d?/D, according to the diffusion law (Equation 4.5 on page 104).
Stirring will only be worthwhile (more effective than diffusion) if d/v < d?/D, that is, if

v > D/d. (5.15)

(Some authors call the dimensionless ratio vd/D the “Peclet number.”) Taking a cilium to be about
d = 1 pum long, the criterion for stirring to be worthwhile is then that v > 1000 ums~!. This is also
the criterion for swimming to enhance food intake significantly.

But bacteria do not swim anywhere near this fast. Stirring and swimming don’t help enhance
food intake for bacteria. (The story is different for larger creatures, even protozoa, where the
Reynolds number is still small but d and v are both bigger.) There is experimental support for
this conclusion. Mutant bacteria with defective flagellar systems manage about as well as their

wild-type cousins when food is plentiful.

5.3.3 Foraging, attack, and escape

Foraging The previous subsection may have left you wondering why wild-type bacteria do swim.
The answer is that life in the mean, real world can be more challenging than life in a nice warm flask
of broth. While bacteria don’t need to swim around systematically scooping up available food, still
it may be necessary for a cell to find a food supply. The word “find” implies a degree of volition,
and mind-boggling as it may seem, supposedly primitive organisms like E. coli can indeed perform
the computations needed to hunt for food.

The strategy is elegant. FE. coli swims in a burst of more or less straight-line motion, pauses,
and then takes off in a new, randomly chosen direction. While swimming, the cell continuously
samples its environment. If the concentration of food is increasing, the bacterium extends its run.
If the food concentration is decreasing, the cell terminates the run and starts off in a new direction
sooner than it would have done in an improving environment. Thus the cell executes a form of
biased random walk, with a net drift toward higher food concentrations.

But there’s no point in making a run so short that the environment won’t be appreciably different
at the end. Because diffusion constantly tries to equalize the concentration of food (and everything
else), then, it’s necessary for the bacterium to outrun diffusion if swimming is to be of any use in

navigating food gradients. We have already found the criterion, Equation 5.15. Now, however, we
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take v ~ 30 ums~! to be the known swimming speed and d to be the length of the run, not the
length of the cell. Then we find that to navigate up food gradients a bacterium must swim at least
30 pm, or 30 body lengths, before changing direction. And...that’s what they really do.

Attack and escape Take another look at Figure 5.3 on page 149. Clearly a solid object, gliding
through a liquid at low Reynolds number, disturbs the fluid out to a distance comparable to its own
diameter. This can be a liability if your livelihood depends on stealth, for example if you need to
grab your dinner before it escapes. Moreover, swimming up to a tasty morsel will actually tend to
push it away, just like your colored blob in the experiment of Section 5.1.3 on page 144. That’s why
many medium-small creatures, not so deeply into the low-Reynolds regime as the bacteria studied
above, put on a burst of speed to push themselves momentarily up to high Reynolds for the kill.
Thus the tiny crustacean Cyclops makes its strike by accelerating at up to 12ms~2, briefly hitting
Reynolds numbers as high as 500.

In the same spirit, escaping from an attacker will tend just to drag it along with you at low
Reynolds number! Here again, a burst of speed can make all the difference. The sessile protozoan
Vorticella, when threatened, contracts its stalk from 0.2-0.33 mm down to less than half that length
at speeds up to 80 mm s, the most rapid shortening of any contractile element in any animal. This

impressive performance garners the name “spasmoneme” for the stalk.

5.3.4 Vascular networks

Bacteria can rely on diffusion to feed them, but large organisms need an elaborate infrastructure
of delivery and waste-disposal systems. Virtually every macroscopic creature thus has one or more
vascular networks carrying blood, sap, air, lymph, and so on. Typically these networks have a
hierarchical, branching, structure: The human aorta splits into the iliac arteries, and so on, down
to the capillary beds that actually nourish tissue. To get a feeling for some of the physical constraints
governing such networks, let’s take a moment to work out one of the simplest fluid-flow problems:
the steady, laminar flow of a simple Newtonian fluid through a straight, cylindrical pipe of radius
R (Figure 5.11a). In this situation the fluid does not accelerate at all, so we can neglect the inertial
term in Newton’s Law even if the Reynolds number is not very small.

We must push a fluid to make it travel down a pipe, in order to overcome viscous friction. The
frictional loss occurs throughout the pipe, not just at the walls. Just as in Figure 5.2 on page
145, where each layer of fluid slips on its neighbor, so in the cylindrical geometry the shear will
distribute itself across the whole cross-section of the pipe. Imagine the fluid as a nested set of
cylindrical shells. The shell at distance r from the center moves forward at a speed v(r), which we
must find. The unknown function v(r) interpolates between the stationary walls (with v(R) = 0)
and the center (with unknown fluid velocity v(0)).

To find v(r) we balance the forces acting on the shell lying between r and r + dr. The cross-
sectional area of this shell is 27 dr, so the applied pressure p contributes a force df; = 2nrpdr
directed along the pipe axis. A viscous force dfs from the slower-moving fluid at larger r pulls
backward on the shell, while the faster-moving fluid at smaller r drags it forward with a third force,
dfs. For a pipe of length L the viscous force rule (Equation 5.9 on page 149) gives

dfs — —n(2mL)d3—(:) and  dfy = n(2n(r + dr)L)w.
Notice that fo is a negative quantity, while f3 is positive. Force balance is then the statement that

Afy +dfs + dfs = 0.
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Figure 5.11: (Sketches.) (a) In laminar pipe flow, the inner fluid moves faster than the outer fluid, which must be
motionless at the pipe wall (the no-slip boundary condition). We imagine concentric cylindrical layers of fluid sliding
over each other. (b) The torsional drag on a spinning rod in viscous fluid. This time the inner fluid rotates faster
than the outer fluid, which must be at rest far away from the rod. Again we imagine concentric cylindrical layers of
fluid sliding over each other, since the angular velocity w(r) is not constant but rather decreases with r.

Since dr is very small we can evaluate dv/dr at the point (r+dr) using a Taylor series, dropping
terms with more than one power of dr:
do(r +dr)  do(r) d?v

dr - dr +d”ﬁ+”'

Thus adding dfs to dfs gives 2wnL( 42 ot dr2) Adding df; and requiring the sum to be zero gives

rp dv d?v
— 4+ —+r——=0.
+ dr + "
This is a differential equation for the unknown function v(r). You can check that its general solution
is v(r) = A+ Blnr — r2p/4Ln, where A and B are constants. We had better choose B = 0, since
the velocity cannot be infinite at the center of the pipe. And we need to take A = R?p/4Ln in order
to get the fluid to be stationary at the stationary walls. This gives our solution, the flow profile for

laminar flow in a cylindrical pipe:

(R =r)p
v(r) = iy (5.16)

Your Turn 5f.
After going through the math to check the solution (Equation 5.16), explain in words why every

factor (except the 4) “had” to be there.

Now we can see how well the pipe transports fluid. The velocity v can be thought of as the fluzx
of volume jy, or the volume per area per time transported by the pipe. The total flow rate @, with
the dimension of volume per time, is then the volume flux j, = v from Equation 5.16, integrated

over the cross-sectional area of the pipe:

TR*

1
SLy” (5.17)

Q= / 2rrdro(r) =



5 . 3 . BIOLOGICAL APPLICATIONS [[STUDENT VERSION, DECEMBER 8, 2002]] 161

Equation 5.17 is the Hagen—Poiseuille relation for laminar pipe flow. Its applicability extends
beyond the low-Reynolds regime studied in most of this chapter: As mentioned earlier, the fluid
doesn’t accelerate at all in laminar pipe flow. Thus we can use Equation 5.17 as long as the Reynolds
number is less than a thousand or so. This regime includes all but the largest veins and arteries in
the human body (or the entire circulatory system of a mouse).

The general form of Equation 5.17 can be expressed as @ = p/Z, where the hydrodynamic re-
sistance Z = 8nL/mR*. The choice of the word “resistance” is no accident. The HagenPoiseuille
relation says that the rate of transport of some conserved quantity (volume) is proportional to a
driving force (pressure drop), just as Ohm’s law says that the rate of transport of charge is propor-
tional to a driving force (potential drop). In each case the constant is called “resistance.” In the
context of low Reynolds-number fluid flow, transport rules of the form @ = p/Z are quite common
and are collectively called Darcy’s law. (At high Reynolds number turbulence complicates matters,
and no such simple rule holds.) Another example is the passage of fluid across a membrane (see
Problem 4.10). In this context we write Z = 1/(AL,) for the resistance, where A is the mem-
brane area and L, is called the “filtration coefficient” (some authors use the synonym “hydraulic
permeability”).

A surprising feature of the Hagen—Poiseuille relation is the very rapid decrease of resistance as
the pipe radius R increases. Two pipes in parallel will transport twice as much fluid at a given
pressure as will one. But a single pipe with twice the area will transport four times as much, because
7R* = (1/7)(7R?)?, and mR? has doubled. This exquisite sensitivity is what lets our blood vessels

regulate flow with only small dilations or contractions:

Example Find the change in radius needed to increase the hydrodynamic resistance of a blood
vessel by 30%, other things being equal. (Idealize the situation as laminar flow of a
Newtonian fluid.)

Solution: We want p/Q to increase to 1.3 times its previous value. Equation 5.17
says that this happens when (R')™*/R™* = 1.3, or R'/R = (1.3)7'/* ~ 0.94. Thus
the vessel need only change its radius by about 6%.

5.3.5 Viscous drag at the DNA replication fork

To finish the chapter, let us descend from physiology to the realm of molecular biology, which will
occupy much of the rest of this book.

A major theme of the chapters to come will be that DNA is not just a database of disembodied
information, but a physical object immersed in the riotous thermal environment of the nanoworld.
This is not a new observation. As soon as Watson and Crick announced their double-helix model of
DNA structure, others asked: How do the two strands separate for replication, when they’re wound
around each other? One solution is shown in Figure 5.12. The figure shows a Y-shaped junction
where the original strand (top) is being disassembled into two single strands. Since the two single
strands cannot pass through each other, the original must continually rotate (arrow).

The problem with the mechanism sketched in the figure is that the upper strand extends for a
great distance (DNA is long). If one end of this strand rotates, then it would seem that the whole
thing must also rotate. Some people worried that the frictional drag resisting this rotation would
be enormous. Following C. Levinthal and H. Crane, we can estimate this drag and show that on

the contrary it’s negligible.
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Figure 5.12: (Schematic.) Replication of DNA requires that the original double helix (top) be unwound into its
two strands. Molecular machines called DNA polymerase sit on the single strands synthesizing new, complementary
strands. The process requires the original strand to spin about its axis, as shown. Another molecular machine called
DNA helicase (not shown) sits at the opening point and walks along the DNA, unwinding the helix as it goes along.
[After (Alberts et al., 2002).]

Consider cranking a long, thin, straight rod in water (Figure 5.11b). This model is not as
drastic an oversimplification as it may at first seem. DNA in solution is not really straight, but
when cranked it can rotate in place, like a tool for unclogging drains; our estimate will be roughly
applicable for such motions. Also, the cell’s cytoplasm is not just water, but for small objects
(like the 2nm thick DNA double helix) it’s not a bad approximation to use water’s viscosity (see
Appendix B).

The resistance to rotary motion should be expressed as a torque. The torque 7 will be propor-
tional to the viscosity and to the cranking rate, just as in Equation 5.4 on page 146. It will also
be proportional to the rod’s length L, since there will be a uniform drag on each segment. The
cranking rate is expressed as an angular velocity w, with dimensions T~!. (We know w once we've
measured the rate of replication, since every helical turn contains about 10.5 basepairs.) In short,
we must have 7 oc wnL. Before we can evaluate this expression, however, we need an estimate for
the constant of proportionality.

Certainly the drag will also depend on the rod’s diameter, 2R. From the first-year physics
formula 7 = r x f we find that torque has the same dimensions as energy. Dimensional analysis
then shows that the constant of proportionality we need has dimensions L?. The only parameter in
the problem with the dimensions of length is R (recall that water itself has no intrinsic length scale,

Section 5.2.1). Thus the constant of proportionality we seek must be R? times some dimensionless
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number C, or:

7=—C x wnR*L. (5.18)

Problem 5.9 shows that this result is indeed correct, and that C' = 47, but we don’t need the precise
value for what follows.

The rate at which we must do work to crank the rod is the product of the resisting torque times
the rotation rate: —7w = Cw?nR2L. Since the rod rotates through 27 radians for each helical turn,

we can instead quote the mechanical work needed per helical turn, as
Wit = —277 = 20C' - wnR2L. (5.19)

An enzyme called DNA polymerase syntheszes new DNA in E. coli at a rate of about 1000 basepairs

. _ radian 1000 b.p.s ¢ _ -1
per second, orw = 27Trevoluton X 105 b.p./revolution 600s™".

(27)(47) (6005 1) (1073 Pas)(1nm)2L ~ (4.7- 107" Jm~1)L.
A second enzyme, called DNA helicase, does the actual cranking. Helicase walks along the DNA

Equation 5.19 then gives Wit ~

in front of the polymerase, unzipping the double helix as it goes along. The energy required to do
this comes from the universal energy-supply molecule ATP. Appendix B lists the useful energy in a
single molecule of ATP as = 20kgT}, = 8.2-1072° J. Let us suppose that one ATP suffices to crank
the DNA by one full turn. Then the energy lost to viscous friction will be negligible as long as L is
much smaller than (8.2-1072°J)/(4.7-10717 Jm™1), or about two millimeters, a very long distance
in the nanoworld. Levinthal and Crane correctly concluded that rotational drag is not an obstacle
to replication.

Today we know that another class of enzymes, the “topoisomerases,” remove the excess twisting
generated by the helicase in the course of replication. The above estimate should thus be applied
only to the region from the replication fork to the first topoisomerase, and hence viscous rotary
drag is even less significant than the previous paragraphs makes it seem. In any case, a physical
argument let Levinthal and Crane dismiss an objection to Watson and Crick’s model for DNA, long

before any of the details of the cellular machinery responsible for replication were known.

5.4 Excursion: The character of physical Laws

We are starting to amass a large collection of statements called “laws.” (This chapter alone has
mentioned Newton’s Law of motion, the Second Law of thermodynamics, and Ohm’s and Fick’s
laws.) Generally these terms were born like any other new word in the language—someone noticed
a certain degree of generality to the statement, coined the name, a few others followed, and the
term stuck. Physicists, however, tend to be a bit less promiscuous in attaching the term “physical
Law” to an assertion. While we cannot just rename terms hallowed by tradition, this book attempts
to make the distinction by capitalizing the word Law on those statements that seem to meet the
physicist’s criteria, elegantly summarized by Richard Feynman in 1964.

Summarizing Feynman’s summary, physical Laws seem to share some common characteristics.
Certainly there is an element of subjectivity in the canonization of a Law, but in the end there is

generally more consensus than dispute on any given case.

eCertainly we must insist on a wvery great degree of generality, an applicability to an
extremely broad class of phenomena. Thus, many electrical conductors do not obey

“Ohm’s law,” even approximately, whereas any two objects in the Universe really
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do seem to attract each other with a gravitational force described (approximately!)
by Newton’s Law of gravitation.

eThough they are general, physical Laws need not be, and generally cannot be, exact.
Thus as people discovered more and deeper layers of physical reality, Newton’s Law of
motion had to be replaced by a quantum-mechanical version; his Law of gravitation
was superseded by Einstein’s, and so on. The older, approximate laws remain valid
and useful in the very large domain where they were originally discovered, however.

ePhysical Laws all seem to be intrinsically mathematical in their expression. This char-
acteristic may give them an air of mystery, but it is also the key to their great
simplicity. There is very little room in the terse formula “f = ma” to hide any
sleight-of-hand, little room to bend a simple formula to accommodate a new, dis-
crepant experiment. When a physical theory starts to acquire too many complicating
features, added to rescue it from various new observations, physicists begin to suspect
that the theory was false to begin with.

eYet out of the simplicity of a Law there always emerge subtle, unexpected, and true
conclusions revealed by mathematical analysis. Word-stories are often invented later
to make these conclusions seem natural, but generally the clearest, most direct route

to get them in the first place is mathematical.

An appreciation of these ideas may not make you a more productive scientist. But many people
have drawn inspiration, even sustenance, from their wonder at the fact that Nature should have

any such unifying threads at all.

The big picture

Returning to the Focus Question, the key difference between the nanoworld and our everyday life
is that viscous dissipation completely dominates inertial effects. A related result is that objects in
the nanoworld are essentially unable to store any significant, nonrandom kinetic energy—they don’t
coast after they stop actively pushing themselves (see Problem 5.4). These results are reminiscent
of the observation in Chapter 4 that diffusive transport, another dissipative process, is fast on small
length scales; indeed, we saw in Section 5.3.2 that diffusion beats stirring in the submicron world.

We saw how to express the distinction between dissipative and nondissipative processes in a
very concise form by describing the invariance properties of the appropriate equations of motion:
frictionless Newtonian physics is time-reversal invariant, whereas the friction-dominated world of
low Reynolds number is not (Section 5.2.3).

Hiding in the background of all this discussion has been the question of why mechanical energy
tends to dissipate. Chapter 1 alluded to the answer—the Second Law of thermodynamics. Our task

in the next chapter is to make the Second Law, and its cardinal concept of entropy, more precise.

Key formulas

e Viscosity: Suppose a wall is perpendicular to the x direction. The force per area in the z
direction exerted by a fluid on a wall is —ndv,/dz (Equation 5.9). The kinematic viscosity
is defined as v = n/pm (Equation 5.20), where py, is the fluid mass density, and has the units
of a diffusion constant.
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Reynolds: The viscous critical force for a fluid is feris = 7%/pm where py, is the mass density
of the fluid and 7 its viscosity (Equation 5.5). The Reynolds number for a fluid flowing at
velocity v and negotiating obstacles of size a is R = vapn,/n (Equation 5.11). Laminar flow

switches to turbulent flow when R exceeds about 1000.

Rotary drag: For a macroscopic (many nanometers) cylinder of radius a and length L,
spinning on its axis in a fluid at low Reynolds number, the drag torque is 7 = 47wna’L

(Equation 5.18 and Problem 5.9), where 7 is the fluid viscosity.

Hagen—Poiseuille:  The volume flux through a pipe of radius R and length L, in laminar
flow, is @Q = %p, where p is the pressure drop (Equation 5.17). The velocity profile is
“parabolic,” that is, it’s a constant times R? — r2, where r is the distance from the center of

the pipe.

Further reading

Semipopular:
Fluid flows: (van Dyke, 1982)
The idea of physical Law: (Feynman, 1965)

Intermediate:

Much of this chapter was drawn from E. Purcell’s classic lecture (Purcell, 1977), and H. Berg’s
book (Berg, 1993) (particularly Chapter 6); see also (Berg, 2000).
Fluids: (Feynman et al., 1963b, §§40-41); (Vogel, 1994), chapters 5 and 15

Technical:

Bacterial flagellar propulsion: (Berg & Anderson, 1973; Silverman & Simon, 1974)
Other bacterial strategies: (Berg & Purcell, 1977)

Low-Reynolds fluid mechanics: (Happel & Brenner, 1983)

Vascular flows: (Fung, 1997)

DNA replication: (Alberts et al., 2002)
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TQ Track 2

5.2.1

1. Section 4.1.4" on page 132, point (2), pointed out that our simple theory of frictional drag would
break down when the force applied to a particle was too great. We have now found a precise
criterion: The inertial (memory) effects neglected in Section 4.1.4 will indeed be significant for

forces greater than fe,it.

2. The phenomenon of viscosity actually reflects yet another diffusion process. When we have small
indestructible particles, so that the number of particles is conserved, we found that random thermal
motion leads to a diffusive transport of particle number via Fick’s law, Equation 4.18 on page 117.
Section 4.6.4 on page 127 extended this idea, showing that when particles carry electric charge,
another conserved quantity, their thermal motion again leads to a diffusive transport of charge
(Ohm’s law). Finally, since particles carry energy, yet another conserved quantity, Section 4.6.4
argued for a third Fick-type transport rule, called thermal conduction. Each transport rule had its
own diffusion constant, giving rise to the electrical and thermal conductivity of materials.

One more conserved quantity from first-year physics is the momentum p. Random thermal
motion should also give a Fick-type transport rule for each component of p.

Figure 5.2b shows two flat plates, each parallel to the yz-plane, separated by d in the x direction.
Let p, denote the component along the z direction of momentum per unit volume. If the top plate
is dragged at v, in the +2z direction while the bottom is held stationary, we get a nonuniform
density of p,, namely py, - v,(z), where p,, denotes the mass density of fluid. We expect that this
nonuniformity should give rise to a flux of p, whose component in the = direction is given by a
formula analogous to Fick’s law (Equation 4.18 on page 117):

d m©vz
(Jp.)z = —I/M. planar geometry (5.20)

dx

The constant v appearing above is a new diffusion constant, called the kinematic viscosity. Check
its units.

But the rate of loss of momentum is just a force; similarly the flux of momentum is a force per
unit area. Hence the flux of momentum (Equation 5.20) leaving the top plate exerts a resisting drag
force opposing v,; when this momentum arrives at the bottom plate, it exerts an entraining force
along v,. We have thus found the molecular origin of viscous drag. Indeed it’s appropriate to name
v a kind of “viscosity,” since it’s related simply to 7: Comparing Equation 5.4 to Equation 5.20
shows that v = n/pp,.

3. We now have two empirical definitions of viscosity, namely the Stokes formula (Equation 4.14 on
page 107) and our parallel-plates formula (Equation 5.4). They look similar, but there’s a certain
amount of work to prove that they are equivalent. One must write down the equations of motion
for a fluid, containing the parameter 7, solve them in both the parallel-plate and moving-sphere
geometries, and compute the forces in each case. The math can be found in (Landau & Lifshitz,
1987) or (Batchelor, 1967), for example. But the form of the Stokes formula just follows from
dimensional analysis. Once we know we’re in the low-force regime, we also know that the mass
density p,, cannot enter into the drag force (since inertial effects are insignificant). For an isolated

sphere the only length scale in the problem is its radius a, so the only way to get the proper



5 4 . TRACK 2 [[STUDENT VERSION, DECEMBER 8, 2002]] 167

dimensions for a viscous friction coefficient is to multiply the viscosity by a to the first power.
That’s what the Stokes formula says, apart from the dimensionlass prefactor 6.

522

1. The physical discussion in Section 5.2.2 may have given the impression that the Reynolds-number
criterion is not very precise—7R itself looks like the ratio of two rough estimates! A more mathemat-
ical treatment begins with the equation of incompressible, viscous fluid motion, the “Navier—Stokes
equation.” The Navier—Stokes equation is essentially a precise form of Newton’s Law, as we used
it in Equation 5.7. Expressing the fluid’s velocity field u(r) in terms of the dimensionless ratio
u = u/v, and the position r in terms of T = r/a, one finds that u(r) obeys a dimensionless equa-
tion. In this equation the parameters py,, 7, v, and a enter in only one place, via the dimensionless
combination R (Equation 5.11). Two different flow problems of the same geometrical type, with the
same value of R, will therefore be exactly the same when expressed in dimensionless form, even if
the separate values of the four parameters may differ widely! (See for example (Landau & Lifshitz,
1987, §19).) This “hydrodynamic scaling invariance” of fluid mechanics is what lets engineers test

submarine designs by building scaled-down models and putting them in bathtubs.

2. Section 5.2.2 quietly shifted from a discussion of flow around an obstruction to Reynolds’ results
on pipe flow. It’s important to remember that the critical Reynolds number in any given situation is
always roughly one, but that this estimate is only accurate to within a couple of orders of magnitude.
The actual value in any specified situation depends on the geometry, ranging from about 3 (for exit
from a circular hole) to 1000 (for pipe flow, where R is computed using the pipe radius), or even

more.

5.2.3

1. Section 5.2.3 claimed that the equation of motion for a purely elastic solid has no dissipation.
Indeed a tuning fork vibrates a long time before its energy is gone. Mathematically, if we shake the
top plate in Figure 5.2b back and forth, Az(t) = L cos(wt), then Equation 5.14 on page 152 says
that for an elastic solid the rate at which we must do work is fv = (GA)(L cos(wt)/d)(wL sin(wt)),
which is negative just as often as it’s positive: All the work we put in on one half-cycle gets
returned to us on the next one. In a fluid, however, multiplying the viscous force by v gives
fv = (nA)(Lwsin(wt)/d)(wL sin(wt)), which is always positive. We're always doing work, which
gets converted irreversibly to thermal energy.

2. There’s no reason why a substance can’t display both elastic and viscous response. For example,
when we shear a polymer solution there’s a transient period when its individual polymer chains
are starting to stretch. During this period if the applied force is released, the stretched chains can
partially restore the original shape of a blob. Such a substance is called viscoelastic. Its restoring
force is in general a complicated function of the frequency w, not simply a constant (as in a solid)
nor linear in w (as in a Newtonian fluid). The viscoelastic properties of human blood, for example,
are important in physiology (Thurston, 1972).

3. As mentioned in the beginning of Section 5.2.3, it’s not necessary to apply the exact time-
reversed force in order to return to the starting configuration. That’s because the left side of
Equation 5.13 is more special than simply changing sign under time-reversal: Specifically, it’s of
first-order in time derivatives. More generally, the viscous force rule (Equation 5.4 on page 146)

also has this property. Applying a time-dependent force to a particle in fluid then gives a total
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displacement Ax(t) = ¢! fot f(t')dt’. Suppose we apply some force f(t), moving the particle and
all the surrounding fluid. We could bring the particle, and every other fluid element in the sample,
back to their original positions by any force whose integral is equal and opposite to the original
one. It doesn’t matter if the return stroke is hard and short, or gentle and long, as long as we stay

in the low Reynolds-number regime.

5.3.1" The ratio of parallel to perpendicular drag is not a universal number, but instead depends
on the length of the rod relative to its diameter (the “aspect ratio”). The illustrative value 2/3
quoted above is for an ellipsoidal rod 20 times as long as its diameter. In the limit of an infinitely
long rod the ratio slowly falls to 1/2. The calculations can be found in (Happel & Brenner, 1983,

§65-11).
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Problems

5.1 Friction versus dissipation

Gilbert says: You say that friction and dissipation are two manifestations of the same thing.
And so high viscosity must be a very dissipative situation. Then why do I get beautifully ordered,
laminar motion only in the high viscosity case? Why does my ink blob miraculously reassemble
itself only in this case?

Sullivan: Um, uh. ..
Help Sullivan out.

5.2 Density profile

Finish the derivation of particle density in an equilibrium colloidal suspension (begun in Sec-
tion 5.1.1) by finding the constant prefactor in Equation 5.1. That is, find a formula for the
equilibrium number density ¢(x) of particles with net weight myu.tg as a function of the height x.

The total number of particles is N and the test tube cross-section is A.

5.3 Archibald method

Sedimentation is a key analytical tool in the lab for the study of big molecules. Consider a particle
of mass m and volume V in a fluid of mass density py, and viscosity 7.

a. Suppose a test tube is spun in the plane of a wheel, pointing along one of the “spokes.” The
artificial gravity field in the centrifuge is not uniform, but instead is stronger at one end of the tube
than the other. Hence the sedimentation rate will not be uniform either. Suppose one end lies a
distance r; from the center, and the other end at ro = r1 + . The centrifuge is spun at angular
frequency w. Adapt the formula vg,ire = gs (Equation 5.3 on page 143) to find an analogous formula

for the drift speed in terms of s in the centrifuge case.

Eventually sedimentation will stop and an equilibrium profile will emerge. It may take quite a
long time for the whole test tube to reach its equilibrium distribution. In that case Equation 5.2 on
page 143 is not the most convenient way to measure the mass parameter myq; (and hence the real
mass m). The “Archibald method” uses the fact that the ends of the test tube equilibrate rapidly,
as follows.

b. There can be no flux of material through the ends of the tube. Thus the Fick-law flux must
cancel the flux you found in (a). Write down two equations expressing this statement at the two
ends of the tube.

c. Derive the following expression for the mass parameter in terms of the concentration and its

gradient at one end of the tube:

d
Mpet = (stuff) - d—; ,

T
and a similar formula for the other end, where (stuff) is some factors that you are to find. The
concentration and its gradient can be measured photometrically in the lab, allowing a measurement

of myet long before the whole test tube has come to equilibrium.

5.4 Coasting at low Reynolds

The chapter asserted that tiny objects stop essentially at once when we stop pushing them. Let’s
see.

a. Consider a bacterium, idealized as a sphere of radius 1 um, propelling itself at 1 ums™t. At

time zero the bacterium suddenly stops swimming and coasts to a stop, following Newton’s Law of
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motion with the Stokes drag force. How far does it travel before it stops? Comment.
b. Our discussion of Brownian motion assumed that each random step was independent of the
previous one; thus for example we neglected the possibility of a residual drift speed left over from

the previous step. In the light of (a), would you say that this assumption is justified for a bacterium?

5.5 Blood flow
Your heart pumps blood into your aorta. The maximum flow rate into the aorta is about 500 cm?s~1.
Assume the aorta has diameter 2.5 cm, the flow is laminar (not very accurate), and that blood is
a Newtonian fluid with viscosity roughly equal to that of water.

a. Find the pressure drop per unit length along the aorta. Express your answer in SI units. Compare
the pressure drop along a 10 cm section of aorta to atmospheric pressure (10° Pa).
b. How much power does the heart expend just pushing blood along a 10cm section of aorta?
Compare to your basal metablism rate, about 100 W, and comment.
c. The fluid velocity in laminar pipe flow is zero at the walls of the pipe and maximum at the center.
Sketch the velocity as a function of distance r from the center. Find the velocity at the center.

[Hint: The total volume flow rate, which you are given, equals [ v(r)27rdr.]

5.6 Kinematic viscosity

a. Though v has the same dimensions L> /T as any other diffusion constant, its physical meaning
is quite different from that of D, and its numerical value for water is quite different from the value
D for self-diffusion of water molecules. Find the value of v from 7 and compare to D.

b. Still, these values are related. Show, by combining Einstein’s relation and the Stokes drag
formula, that taking the radius a of a water molecule to be about 0.2nm leads to a satisfactory

order-of-magnitude prediction of v from D, a, and the mass density of water.

5.7 ﬂ]\fo going back

Section 5.2.3 argued that the motion of a gently sheared, flat layer would retrace its history if we
reverse the applied force. When the force is large, so that we cannot ignore the inertial term in
Newton’s Law of motion, where exactly does the argument fail?

5.8 | 12 |Intrinsic viscosity of a polymer in solution

Section 4.3.2 argued that a long polymer chain in solution would be found in a random-walk

conformation at any instant of time.?

This claim is not so easy to verify directly, so instead in
this problem we approach the question indirectly, by examining the viscosity of a polymer solution.
(Actually this is an important issue in its own right for biofluid dynamics.)

Figure 5.2 on page 145 shows two parallel plates separated by distance d, with the space filled
with water of viscosity 7. If one plate is slid sideways at speed v, then both plates feel viscous force
nv/d per unit area. Suppose now that a fraction ¢ of the volume between plates is filled with solid
objects, taking up space previously taken by water. We'll suppose ¢ is very small. Then at speed
v the shear strain rate in the remaining fluid must be greater than before, and so the viscous force
will be greater too.

a. To estimate the shear strain rate, imagine that all the rigid objects are lying in a solid layer of
thickness ¢d attached to the bottom plane, effectively reducing the gap between the plates. Then
what is the viscous force per area?

b. We can express the result by saying the suspension has an effective viscosity 7’ bigger than 7.

5This problem concerns a polymer under “theta condtions” (see Section 4.3.1’ on page 133).
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Figure 5.13: (Experimental data.) Log-log plot of the intrinsic viscosity [n]e for polymers with different values
for the molar mass M. The different curves shown represent different combinations of polymer type, solvent type,
and temperature, all corresponding to “theta solvent” conditions. Open circles: polyisobutylene in benzene at 24°C.
Solid circles: polystyrene in cyclohexane at 34°C. The two solid lines each have logarithmic slope 1/2, corresponding
to a 1/2 power law. [Data from (Flory, 1953).]

Write an expression® for the relative change (7’ — ) /7.

c. We want to explore the proposition that a polymer N segments long behaves like a sphere with
radius aLN? for some power ~. « is a constant of proportionality, whose exact value we won’t
need. What do we expect v to be? What then is the volume fraction ¢ of a suspension of ¢ such
spheres per volume? Express your answer in terms of the total mass M of a polymer, the mass m
per monomer, the concentration of polymer ¢, and a.

d. Discuss the experimental data in Figure 5.13 in the light of your analysis. Each set of points
joined by a line represents measurements taken on a family of polymers with varying numbers N
of identical monomers, with each monomer having the same mass m. The total mass M = Nm
of each polymer is on the z-axis. The quantity [n]e on the vertical axis is called the polymer’s
“Intrinsic viscosity”; it is defined as (7" — 1)/(1pm,p), Where py, ;, is the mass of dissolved polymer
per volume of solvent. [Hint: Recall py, , is small. Write everything in terms of the fixed segment
length L and mass m, and the variable total mass M.

e. What combination of L and m could we measure from the data? (Don’t actually calculate it—it

involves « to0o.)

5.9 | T2 |Friction as diffusion

Section 5.2.1" on page 166 claimed that viscous friction can be interpreted as the diffusive transport

of momentum. The argument was that in the planar geometry, when the flux of momentum given
by Equation 5.20 leaves the top plate it exerts a resisting drag force; when it arrives at the bottom
plate it exerts an entraining force. So far the argument is quite correct.

Actually, however, viscous friction is more complicated than ordinary diffusion, because mo-

6The expression you’ll get is not quite complete, due to some effects we left out, but its scaling is right when ¢ is
small. Einstein obtained the full formula in his doctoral dissertation, published it in 1906, then fixed a computational
error in 1911.
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mentum is a vector quantity whereas concentration is a scalar. For example, Section 5.2.2 noted
that the viscous force law (Equation 5.9 on page 149) needs to be modified for situations other than
planar geometry. The required modification really matters if we want to get the correct answer for
the spinning-rod problem (Figure 5.11b on page 160).

We consider a long cylinder of radius R with its axis along the z direction and centered at
x =y = 0. Some substance surrounds the cylinder. First suppose that this substance is solid ice.
When we crank the cylinder, everything rotates as a rigid object with some angular frequency w.
The velocity field is then v(r) = (—wy, +wx,0). Certainly nothing is rubbing against anything, and

there should be no dissipative friction—the frictional transport of momentum had better be zero.

And yet if we examine the point ro = (19,0, 2) we find a nonzero gradient ddL;’ = w. Evidently
I

our formula for the flux of momentum in planar geometry (Equation 5.20 on page 166) needs some
modification for the non-planar case.

We want a modified form of Equation 5.20 that applies to cylindrically symmetric flows and
vanishes when the flow is rigid rotation. Letting r = |[r|| = \/22 + 42, we can write a cylindrically
symmetric flow as

v(r) = (~yg(r),zg(r),0).

The case of rigid rotation corresponds to the choice g(r) = w. You are about to find g(r) for a
different case, the flow set up by a rotating cylinder. We can think of this flow field as a set of
nested cylinders, each with a different angular velocity g(r).

Near any point, say rg, let u(r) = (—yg(ro),zg(ro))) be the rigidly rotating vector field that
agrees with v(r) at ro. We then replace Equation 5.20 by

dvy

(i, = x0) = =1 (5

_ duy
dz

) . cylindrical geometry (5.21)
ro

o

In this formula n = vpy,, the ordinary viscosity. Equation 5.21 is the proposed modification of

the momentum-transport rule. It says that we compute % and subtract off the corresponding
ro

quantity with u, in order to ensure that rigid rotation incurs no frictional resistance.

a. Each cylindrical shell of fluid exerts a torque on the next one, and feels a torque from the
previous one. These torques must balance. Show that therefore the tangential force per area across

the surface at fixed r is LLQ, where 7 is the external torque on the central cylinder and L is the

27
cylinder’s length.
b. Set your result from (a) equal to Equation 5.21 and solve for the function g(r).

c. Find 7/L as a constant times w. Hence find the constant C' in Equation 5.18 on page 163.

5.10 EPause and tumble

In between straight-line runs, E. coli pauses. If it just turned off its flagellar motors during the
pauses, eventually the bacterium would find itself pointing in a new, randomly chosen direction,
due to rotational Brownian motion. How long must the pause last for this to happen? [Hint: see
Problem 4.9 on page 140.] Compare to the actual measured pause time of 0.14s. Do you think the
bacterium shuts down its flagellar motors during the pauses? Explain your reasoning.



Chapter 6

Entropy, temperature, and free

energy

The axiomatic method has many advantages, which are similar

to the advantages of theft over honest work. — Bertrand Russell

It’s time to come to grips with the still rather woolly ideas proposed in Chapter 1, and turn
them into precise equations. We can do it, starting from the statistical ideas developed in our study
of the ideal gas law and Brownian motion.

Chapter 4 argued that friction in a fluid is the loss of memory of an object’s initial, ordered
motion. The object’s organized kinetic energy passes into the disorganized kinetic energy of the
surrounding fluid. The world loses some order as the object merges into the surrounding distribution
of velocities. The object doesn’t stop moving, nor does its velocity stop changing (it changes with
every molecular collision). What stops changing is the probability distribution of the particle’s many
velocities over time.

Actually, friction is just one of several dissipative processes relevant to living cells that we’ve
encountered: All obey similar Fick-type laws and all tend to erase order. We need to bring them all
into a common framework, the “Second Law” of thermodynamics introduced in Section 1.2.1. As
the name implies, the Second Law has a universality that goes far beyond the concrete situations
we’ve studied so far; it’s a powerful way of organizing our understanding of many different things.

To make the formulas as simple as possible we’ll continue to study ideal gases for a while. This
may seem like a detour, but the lessons we draw will be applicable to all sorts of systems. For
example, the Mass Action rule governing many chemical reactions will turn out to be based on the
same physics underlying the ideal gas (Chapter 8). Moreover, Chapter 7 will show that the ideal
gas law itself is literally applicable to a situation of direct biological significance, namely osmotic
pressure.

The goal of this chapter is to state the Second Law, and with it the crucial concept of free
energy. The discussion here is far from the whole story. Even so, this chapter will be bristling with
formulas. So it’s especially important to work through this chapter instead of just reading it.

The Focus Question for this chapter is:

(©2000 Philip C. Nelson
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Biological question: If energy is always conserved, how can some devices be more efficient than
others?

Physical idea: Order controls when energy can do useful work, and it’s not conserved.

6.1 How to measure disorder

Chapter 1 was a little vague about the precise meaning of “disorder.” We need to refine our ideas
before they become sharp tools.

Flip a coin a thousand times. You get a random sequence HTTTHTTHTHHHTHH.. .. We will say
that this sequence contains lots of disorder, in the following sense: It’s impossible to summarize a
random sequence. If you want to store it on your computer, you need 1000 bits of hard disk space.
You can’t compress it; every bit is independent of every other.

Now let’s consider the weather, rain/shine. You can take a thousand days of weather and
write it as a bit stream RSSSRSSSSRRRSRR....But this stream is less disordered than the coin-flip
sequence. That’s because today’s weather is more likely to be like yesterday’s than different. We
could change our coding and let “0”=same as yesterday, “1”=different from yesterday. Then our
bitstream is 10011000100110. .., and it’s not perfectly unpredictable: It has more 0’s than 1’s. We
could compress it by instead reporting the length of each run of similar weather.

Here is another point of view: You could make money betting even odds on the weather every
day, because you have some a priori knowledge about this sequence. You won’t make money
betting even odds on a coin flip, because you have no such prior knowledge. The extra knowledge
you have about the weather means that any actual string of weather reports is less disordered than
a corresponding string of coin flips. Again: The disorder in a sequence reflects its predictability.
High predictability is low disorder.

We still need to propose a quantitative measure of disorder. In particular we’d like our measure
to have the property that the amount of disorder in two uncorrelated streams is just the sum of that
in each stream separately. It’s crucial to have the word “uncorrelated” in the preceding sentence.
If you flip a penny a thousand times, and flip a dime a thousand times, those are two uncorrelated
streams. If you watch the news and read the newspaper, those are two correlated streams; one can
be used to predict partially the other, so the total disorder is less than the sum of those for the two
streams.

Suppose we have a very long stream of events (for example, coin flips), and each event is drawn
randomly, independently, and with equal probability from a list of M possibilities (e.g. M = 2 for
a coin; or 6 for rolling a die). We divide our long stream into “messages” consisting of N events.
We are going to explore the proposal that a good measure for the amount of disorder per message
is I = Nlog, M, or equivalently KN In M, where K = 1/In2.

It’s tempting to glaze over at the sight of that logarithm, regarding it as just a button on your
calculator. But there’s a simple and much better way to see what the formula means: Taking the
case M = 2 (coin flip) shows that, in this special case, I is just the number of tosses. More generally
we can regard I as the number of binary digits, or bits, needed to transmit the message. That is,
I is the number of digits needed to express the message as a big binary number.

Our proposal has the trivial property that 2N coin tosses give a message with twice as much
disorder as N tosses. What’s more, suppose we toss a coin and roll a die N times. Then M =
2x6=12and I = KNIn12 = KN(In2 +1n6), by the property of logarithms. That makes sense:

We could have reorganized each message as N coin flips followed by N rolls, and we wanted our
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measure of disorder to be additive. This is why the logarithm function enters our formula. Letting
Q2 = M" be the total number of all possible N-event messages and K = 1/1In2, we can rewrite the
proposed formula as

I=KnQ. (6.1)

We also want to measure disorder in other kinds of event streams. Suppose we have a message
N letters long in an alphabet with M letters (let’s say M = 33, Russian), and we know in advance
that the letter frequency isn’t uniform: There are Ny letters “A,” N, letters “B,” and so on. That
is, the composition of our stream of symbols is specfied, though its sequence is not. The frequency
of each letter is then P; = N;/N, and the P; aren’t necessarily all equal to 1/33.

The total number of all possible messages is then

N!

Q=
NNy - Npy!

(6.2)

To justify this formula we extend the logic of the Example on page 101: There are N factorial
(written N!) ways to take N objects and arrange them into a sequence. But swapping any of the
A’s among themselves doesn’t change the message, so N! overcounts the possible messages: we
need to divide by N;i! to eliminate this redundancy. Arguing similarly for the other letters in the
message gives Equation 6.2. (It’s always best to test theory with experiment, so try it with two
apples, a peach and a pear (M =3, N =4).)

If all we know about the message are the letter frequencies, then any of the n possible messages

is equally likely. Let us apply the proposed disorder formula (Equation 6.1) to the entire message:

M
I=K [mN! — ZlnNi!] }
i=1
We can simplify this expression if the message is very long, using Stirling’s Formula (Equation 4.2
on page 102). For very large N, we only need to keep the terms in Stirling’s formula that are
proportional to N, namely In N! = Nln N — N. Thus the amount of disorder per letter is I/N =
~KY, B or

M
I/N = —KZ P;InP;. Shannon’s formula (6.3)
j=1

Naturally not every string of letters makes sense in real Russian, even if it has the correct letter
frequencies. If we have the extra knowledge that the string consists of real text, then we could take
N to be the number of words in the message, M to be the number of words listed in the dictionary,
P; the frequencies of usage of each word, and again use Equation 6.3 to get a revised (and smaller)
estimate of the amount of disorder of a message in this more restricted class. That is, real text is
more predictable, and so carries even less disorder per letter, than random strings with the letter
frequencies of real text.

Shannon’s formula has some sensible features. First notice that I is always positive, since
the logarithm of a number smaller than 1 is always negative. If every letter is equally probable,
P, = 1/M, then Equation 6.3 just reproduces our original proposal, I = KN In M. If, on the other
hand, we know that every letter is an “A,” then P; = 1, all the other P, =0 and we find I =0: A
string of all “A’s” is perfectly predictable and has zero disorder. Since Equation 6.3 makes sense

and came from Equation 6.1, we’ll accept the latter as a good measure of disorder.
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Shannon’s formula also has the reasonable property that the disorder of a random message is
maximum when every letter is equally probable. Let’s prove this important fact. We must maximize
I over the P;, subject to the constraint that they must all add up to 1 (the normalization condition,
Equation 3.2 on page 66). To implement this constraint, we replace Py by 1_Z¢Ai2 P; and maximize

over all the remaining P;s:

“I/(NK) = [Pl 1nP1} + {iﬂlnﬂ} = [(1 ipi) 1n<1 ip)] + [iﬂlnﬂ].

Set the derivative with respect to P; equal to zero, using the fact that <L (zInz) = (Inz) + 1:

0= (%(—N—IK> - [-m(pia) —1} + {1npj+1}

Exponentiating this formula gives

M
Pi=1-> P.
=2

But the right hand side is always equal to P, so all the P; are the same. Thus the disorder is
maximal when every letter is equally probable, and then it’s just given by Equation 6.1.
Section 6.1 on page 205 shows how to obtain the last result using the method of Lagrange

multipliers.

6.2 Entropy

6.2.1 The Statistical Postulate

What has any of this got to do with physics or biology? It’s time to start thinking not of abstract
strings of data, but of the string formed by repeatedly examining the detailed state (or microstate)
of a physical system. For example, in an ideal gas, the microstate consists of the position and speed
of every molecule in the system. Such a measurement is impossible in practice. But imagining what
we’d get if we could do it will lead us to the entropy, which can be defined macroscopically.

We'll define the disorder of the physical system as the disorder per observation of the stream of
successively measured microstates.

Suppose we have a box of volume V', about which we know absolutely nothing except that it is
isolated and contains N ideal gas molecules with total energy E. “Isolated” means that the box
is thermally insulated and closed; no heat, light, or particles enter or leave it, and it does no work
on its surroundings. Thus the box will always have N molecules and energy E. What can we say
about the precise states of the molecules in the box, for example their individual velocities? Of
course the answer is, “not much”: The microstate changes at a dizzying rate (with every molecular
collision). We can’t say a priori that any one microstate is more probable than any other.

Accordingly, this chapter will begin to explore the simple idea that after an isolated system has
had a chance to come to equilibrium, the actual sequence of microstates we’d measure (if we could
measure microstates) would be effectively a random sequence, with each allowed microstate being
equally probable. Restating this in the language of Section 6.1 gives the Statistical Postulate:

When an isolated system is left alone long enough, it evolves to thermal equilib-
rium. Equilibrium is not one microstate, but rather that probability distribu- (6.4)
tion of microstates having the greatest possible disorder allowed by the physical

constraints on the system.
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The constraints just mentioned include the facts that the total energy is fixed and the system is
confined to a box of fixed size.

To say it a third time, equilibrium corresponds to the probability distribution expressing great-
est ignorance of the microstate, given the constraints. Even if initially we had some additional
knowledge that the system was in a special class of states (for example, that all molecules were in
the left half of a box of gas), eventually the complex molecular motions wipe out this knowledge
(the gas expands to fill the box). We then know nothing about the system except what is enforced
by the physical constraints.

In some very special systems it’s possible to prove Idea 6.4 mathematically instead of taking it
as a postulate. We won’t attempt this. Indeed, it’s not even always true. For example, the Moon
in its orbit around the Earth is constantly changing its velocity, but in a predictable way. There’s
no need for any probability distribution, and no disorder. Nevertheless our postulate does seem
the most reasonable proposal for a very large, complex system. It’s also easy to use; as always,
we will look for experimentally testable consequences, finding that it applies to a wide range of
phenomena relevant for life processes. The key to its success is that even when we want to study
a single molecule (a small system with relatively few moving parts), in a cell that molecule will
inevitably be surrounded by a thermal environment, consisting of a huge number of other molecules
in thermal motion.

The Pyramids at Giza are not in thermal equilibrium: Their gravitational potential energy could
be reduced considerably, with a corresponding increase in kinetic energy and hence disorder, if they
were to disintegrate into low piles of gravel. This hasn’t happened yet. So the phrase “long enough”
in our Postulate must be treated respectfully. There may even be intermediate time scales where
some variables are in thermal equilibrium (for example, the temperature throughout a pyramid is
uniform), while others are not (it hasn’t yet flowed into a low pile of sand).

Actually the Pyramids aren’t even at uniform temperature: Every day the surface heats up,
but the core remains at constant temperature. Still, every cubic millimeter is of quite uniform
temperature. So the question of whether we may apply equilibrium arguments to a system depends
both on time and on size scales. To see how long a given length scale takes to equilibrate, we use
the appropriate diffusion equation—in this case the law of thermal conduction.

@Section 6.2.1" on page 205 discusses the foundations of the Statistical Postulate in slightly more
detail.

6.2.2 Entropy is a constant times the maximal value of disorder

Let us continue to study an isolated statistical system. (Later we’ll get a more general formulation
that can be applied to everyday systems, which are not isolated.) We’ll denote the number of
allowed states of N molecules with energy F by Q(E, N, ...), where the dots represent any other
fixed constraints, such as the system’s volume. According to the Statistical Postulate, in equilibrium
a sequence of observations of the system’s microstate will show that each one is equally probable;
thus Equation 6.1 gives the system’s disorder in equilibrium as I(E, N,...) = KInQ(E, N,...) bits.
As usual, K =1/In2.

Now certainly €2 is very big for a mole of gas at room temperature. It’s huge because molecules
are so numerous. We can work with less mind-boggling quantities if we multiply the disorder per
observation by a tiny constant, like the thermal energy of a single molecule. More precisely, the

traditional choice for the constant is kg /K, which yields a measure of disorder called the entropy,
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denoted S:

= %3[ =kplnQ. (6.5)

Before saying another word about these abstractions, let’s pause to evaluate the entropy explic-

itly, for a system we know intimately.

Example Find the entropy for an ideal gas.
Solution: We want to count all states allowed by the conservation of energy. We

express the energy in terms of the momentum of each particle:

M m 9 1 & 9 1 > 2
Here (p;); is the component of particle i’s momentum along the J axis. This
formula resembles the Pythagorean formula: In fact, if N =1 then it says precisely
that v/2mF is the distance of the point p from the origin, or in other words that
the allowed momentum vectors lie on the surface of an ordinary (two-dimensional)
sphere (recall Figure 3.4 on page 72).

When there are lots of molecules, the locus of allowed values of {(p;),} is the
surface of a sphere of radius r = v2mFE in 3N-dimensional space. The number
of states available for NV molecules in volume V' at fixed E is then proportional to
the surface area of this hyper-sphere. Certainly that area must be proportional to
the radius raised to the power 3N — 1 (think about the case of an ordinary sphere,

3N=1)_ Since N is much larger than one, we can

N =1, whose area is 4mr? = 4mr
replace 3N — 1 by just 3N.

To specify the microstate we must give not only the momenta but also the locations
of each particle. Since each may be located anywhere in the box, this means that
the number of available states also contains a factor of VY. So € is a constant times

(2mE)N/2VN and S = Nkg In[(E)3/?V]+const.

The complete version of the last result is called the Sakur—Tetrode formula:

S =kl 2m3N/2 3N/2 N L _anl
=kpln {(m) (2mE) v m(Zﬂfi) 5| (6.6)
This is a complex formula, but we can understand it by considering each of the factors in turn.
The first factor in round parentheses is the area of a sphere of radius 1, in 3N dimensions. It can
be regarded as a fact from geometry, to be looked up in a book (or see Section 6.2.2" on page 206
below). Certainly it equals 2w when 3N = 2, and that’s the right answer: The circumference of a
unit circle in the plane really is 2w. The next two factors are just what we found in the Example
above. The factor of (N!)™! reflects the fact that gas molecules are indistinguishable; if we exchange
ri, p1 with xo, po, we get a different list of r;’s and p;’s, but not a physically different state of the
system. h is the Planck constant, a constant of Nature with the dimensions MIL*T . Its origin
lies in quantum mechanics, but for our purposes it’s enough to note that some constant with these
dimensions is needed to make the dimensions in Equation 6.6 work out properly. The actual value
of I won’t enter any of our physical predictions.

Equation 6.6 looks scary, but many of the factors enter in non-essential ways. For instance,
the first “2” in the numerator gets totally overwhelmed by the other factors when IV is big, so we

can drop it, or equivalently put in an extra factor of 1/2, as was done at the end of Equation 6.6.
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Figure 6.1: (Schematic.) Two systems thermally insulated from the world, but only partially insulated from each
other. The hatching denotes thermal insulation, with one small break on the common wall. The boxes don’t exchange
particles, only energy. The two sides may contain different kinds of molecules.

Other factors like (m/2m7%h?)3N /2 just add a constant to the entropy per molecule, and won’t affect
derivatives like dS/dE. (Later on however, when studying the chemical potential in Chapter 8, we
will need to look at these factors again.)

T |Section 6.2.2" on page 206 makes several more comments about the Sakur-Tetrode formula,

and derives the formula for the area of a higher-dimensional sphere.

6.3 Temperature

6.3.1 Heat flows to maximize disorder

Having constructed the rather abstract notion of entropy, it’s time to see some concrete conse-
quences of the Statistical Postulate. We begin with the humblest of everyday phenomena, the flow
of thermal energy from a hot object to a cool one.

Thus, instead of studying one isolated box of gas, we now imagine attaching two such boxes,
called “A” and “B,” in such a way that they’re still isolated from the world but can slowly exchange
energy with each other (Figure 6.1). We could put two insulated boxes in contact and make a small
hole in the insulation between them, leaving a wall that transmits energy but does not let particles
cross. (You can imagine this wall as a drumhead, which can vibrate when a molecule hits it.) The
two sides contain Na and Np molecules, respectively, and the total energy Fi.; is fixed. Let’s
explore how the boxes share this energy.

To specify the total state of the combined system, choose any state of “A” and any state of
“B,” with energies obeying Fio,w = Ea + Ep. The interaction between the systems is assumed to
be so weak that the presence of “B” doesn’t significantly affect the states of “A,” and vice versa.
Now Ea can go up as long as Fp goes down to compensate. So Ep isn’t free. After the boxes have
been in contact a long time, we then shut the thermal door between them, isolating them, and let
each come separately to equilibrium. According to Equation 6.5, the total entropy of the combined
system is then the sum of the two subsystems’ entropies: Siot(Ea) = Sa(Ea)+ Se(Etot — Ea). We
can make this formula more explicit, since we have a formula for the entropy of an ideal gas, and

we know that energy is conserved. The Example on page 178 gives

Stot (Ea) = kp [NA(% In Fa +1n VA) + NB(% In(Eiot — Fa) +1n VB)] + const. (6.7)
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Equation 6.7 appears to involve logarithms of dimensional quantities, which aren’t defined (see
Section 1.4.1). Actually, formulas like this one are abbreviations: The term In Ex can be thought
of as short for In (E A/ (1 J)) The choice of unit is immaterial; different choices just change the value
of the constant in Equation 6.7, which wasn’t specified anyway.

We can now ask, “What is the most likely value of Fo?” At first it may seem that the Statistical
Postulate says that all values are equally probable. But wait. The Postulate says that, just before
we shut the door between the subsystems, all microstates of the joint system are equally probable.
But there are many microstates of the joint system with any given value of Ea, and the number
depends on Ey itself. In fact, exponentiating the entropy gives this number (see Equation 6.5). So
drawing a microstate of the joint system at random, we are most likely to come up with one whose
E corresponds to the maximum of the total entropy. To find this maximum, set the derivative of

Equation 6.7 to zero:

 dEy 2 Ex  Ep

In other words, the systems are most likely to divide their thermal energy in such a way that each

o No N
0= Lot _ SkB( A B). (6.8)

has the same average energy per molecule: Ep /Ny = Eg/Ng.

This is a very familiar conclusion. Section 3.2.1 argued that in an ideal gas, the average energy
per molecule is %kBT (Idea 3.21 on page 74). So we have just concluded that two bozes of gas in
thermal equilibrium are most likely to divide their energy in a way that equalizes their temperature.
Successfully recovering this well-known fact of everyday life gives us some confidence that the
Statistical Postulate is on the right track.

How likely is “most likely?” To simplify the math, suppose Ny = Ng, so that equal temperature
corresponds to Ex = Fp = %Etot. Figure 6.2 shows the entropy maximum, and the probability
distribution P(E}a) to find “A” with a given energy after we shut the door. The graph makes it
clear that even for just a few thousand molecules on each side, the system is quite likely to be
found very close to its equal-temperature point, because the peak in the probability distribution
function is very narrow. That is, the observed statistical fluctuations about the most probable
energy distribution will be small (see Section 4.4.3 on page 118). For a macroscopic system, where
N ~ Np ~ 10?3, the two subsystems will be overwhelmingly likely to share their energy in a way

corresponding to nearly exactly equal temperatures.

6.3.2 Temperature is a statistical property of a system in equilibrium

The fact that two systems in thermal contact come to the same temperature is not limited to ideal
gases! Indeed, the early thermodynamicists found this property of heat to be so significant that
they named it the Zeroth Law of thermodynamics. Suppose we put any two macroscopic objects
into thermal contact. Their entropy functions won’t be the simple one we found for an ideal gas.
We do know, however, that the total entropy Sios will have a big, sharp, maximum at one value
of Ex, since it’s the sum of a very rapidly increasing function of E (namely Sa(Fa)) plus a very
rapidly decreasing function! (namely Sg(FEio; — Fa)), as shown in Figure 6.2. The maximum occurs
when dSie;/dEA = 0.

The previous paragraph suggests that we define temperature abstractly as the quantity that

comes to equal values when two subsystems exchanging energy come to equilibrium. To implement

IThis argument also assumes that both of these functions are concave-down, or d2S/dE? < 0. This is certainly
true in our ideal gas example, and according to Equation 6.9 below it expresses the fact that putting more energy
into a (normal) system raises its temperature.
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Figure 6.2: (Mathematical functions.) The disorder (entropy) of the joint system is maximal when the two
subsystems share the total energy according to Equation 6.8. (a) Entropy of subsystem “A” (rising curve) and “B”
(descending curve), as a function of Ep/Etot. Each chamber has N = 10 molecules. A constant has been added
and the entropy is expressed in units of kp; thus the actual functions plotted are a constant plus ln(EA)3N/2 and
In(Egot —FEp)3Y /2 respectively. The dashed line shows the sum of these curves (total system entropy plus a constant);
it’s maximal when the subsystems share the energy equally. (b) Probability distribution corresponding to the dashed
curve in (a) (low, wide curve), and similar distributions with N = 300 and 7000 molecules on each side. Compare

the related behavior seen in Figure 4.3.

this idea, let the quantity 7" for any system be defined by

ds\ ™!
T= <@> . fundamental definition of temperature (6.9)

Your Turn 6a
a. Verify that the dimensions work in this formula.

b. For the special case of an ideal gas, use the Sakur—Tetrode formula to verify that the temper-
ature really is (3kp/2) times the average kinetic energy, as required by Idea 3.21.
c. Show that quite generally the condition for maximum entropy in the situation sketched in
Figure 6.1 is

Ty =Ts. (6.10)

Your Turn 6b
Show that if we duplicate a system (consider two disconnected, isolated boxes, each with N

molecules and each with total energy E), then the entropy doubles but T, defined by applying
Equation 6.9 to the combined system, stays the same. That is, find the change in Siot when we
add a small amount dF of additional energy to the combined system. It may seem that one needs
to know how dF got divided between the two boxes; show that on the contrary it doesn’t matter.

[Hint: Use a Taylor series expansion to express S(E + dFE) in terms of S(E) plus a correction.]

We summarize what you just found by saying that S is an extensive quantity, while 7" is intensive.
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More precisely, the temperature of an isolated macroscopic system can be defined once it has
come to equilibrium; it is then a function of how much energy the system has, namely Equation 6.9.
When two isolated macroscopic systems are brought into thermal contact, heat will flow until a
new equilibrium is reached. In the new equilibrium there is no net flux of thermal energy, and each
subsystem has the same value of T, at least up to small fluctuations. (They won’t have the same
energy—a coin held up against the Eiffel Tower has a lot less thermal energy than the tower, but
the same temperature.) As mentioned at the end of Section 6.3.1, the fluctuations will be negligible
for macroscopic systems. Our result bears a striking resemblance to something we learned long
ago: We saw in Section 4.4.2 on page 115 how a difference in particle densities can drive a flux of
particles, via Fick’s law (Equation 4.18).

Subdividing the freezing and boiling points of water into 100 steps, and agreeing to call freezing
“zero,” gives the Celsius scale. Using the same step size, but starting at absolute zero, gives the
Kelvin (or “absolute”) scale. The freezing point of water lies 273 degrees above absolute zero, which
we write as 273 K. We will often evaluate our results at the illustrative value T, = 295 K, which we
will call “room temperature.”

Temperature is a subtle, new idea, not directly derived from anything you learned in classical
mechanics. In fact a sufficiently simple system, like the Moon orbiting Earth, has no useful concept
of T'; its motion is predictable, so we don’t need a statistical description. In a complex system, in
contrast, the entropy S, and hence T, involve all possible microstates that are allowed, based on
the very incomplete information we have. Temperature is a simple, qualitatively new property of a
complex system not obviously contained in the microscopic laws of collisions. Such properties are
called “emergent” (see Section 3.3.3).

Section 6.3.2' on page 207 gives some more details about temperature and entropy.

6.4 The Second Law

6.4.1 Entropy increases spontaneously when a constraint is removed

We have seen how the Zeroth Law is rooted in the fact that when we remove an internal constraint
on a statistical physical system, the disorder, or entropy, of the final equilibrium will be larger than
that of the initial one. A system with extra order initially (less entropy; energy separated in such a
way that T # Tg) will lose that order (increase in entropy) until the temperatures match (entropy
is maximal).

Actually, even before people knew how big molecules were, before people were even quite sure
that molecules were real at all, they could still measure temperature and energy, and they had
already concluded that a system in thermal equilibrium had a fundamental property S implicitly
defined by Equation 6.9. It all sounds very mysterious when you present it from the historical point
of view; people were confused for a long time about the meaning of this quantity, until Ludwig
Boltzmann explained that it reflects the disorder of a macroscopic system in equilibrium, when all
we have is limited, aggregate, knowledge of the state.

In particular, by the mid-nineteenth century a lot of experience with steam engines had led
Clausius and Kelvin to a conclusion so remarkable that it came to be known as the Second Law of
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Figure 6.3: (Schematic.) Expansion of gas into vacuum.

thermodynamics:?

Whenever we release an internal constraint on an isolated macroscopic system
in equilibrium, it eventually comes to a new equilibrium whose entropy is at (6.11)
least as great as before.

After enough time has passed to reestablish equilibrium, the system will be spending as much
time in the newly available states as in the old ones: Disorder will have increased. Entropy is not
conserved.

Notice that “isolated” means in particular that the system’s surroundings don’t do any mechan-

ical work on it, nor does it do any work on them. Here’s an example.

Example Suppose we have an insulated tank of gas with a partition down the middle, N
molecules on the left side, and none on the right (Figure 6.3). Each side has volume
V. At some time a clockwork mechanism suddenly opens the partition and the gas
rearranges. What happens to the entropy?

Solution: Because the gas doesn’t push on any moving part, the gas does no work;
since the tank is insulated, no thermal energy enters or leaves either. Hence the
gas molecules lose no kinetic energy. So in Equation 6.6 nothing changes except the
factor V', and the change of entropy is

AS = kg [n2V)N —In(V)V] = NkgIn2, (6.12)

which is always positive.

The corresponding increase in disorder after the gas expands, A, is (K/kg)AS, where K = 1/(In2).
Substitution gives AI = N bits. That makes sense: Before the change we knew which side each
molecule was on, whereas afterward we have lost that knowledge. To specify the state to the
previous degree of accuracy, we’d need to specify an additional N binary digits. Chapter 1 already
made a similar argument, in the discussion leading up to the maximum osmotic work (Equation 1.7
on page 12).

Would this change ever spontaneously happen in reverse? Would we ever look again and find
all N molecules on the left side? Well, in principle yes, but in practice no: We would have to wait
an impossibly long time for such an unlikely accident.® Entropy increased spontaneously when we

2The “First Law” was just the conservation of energy, including the thermal part (Section 1.1.2).
3How unlikely is it? A mole occupies 22 L at atmospheric pressure and room temperature. If V = 1L, then the
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Figure 6.4: (Schematics.) Compression of gas by a spring. The direction of increasing § is to the left. (a) Thermally
isolated system. (b) Subsystem in contact with a heat reservoir, at temperature 7. The slab on the bottom of (b)
conducts heat, whereas the walls around the box in both panels (hatched) are thermally insulating. In each case the

chamber on the right (with the spring) contains no gas; only the spring opposes gas pressure from the left side.

suddenly released a constraint, arriving at a new equilibrium state. We forfeited some order when
we allowed an uncontrolled expansion, and in practice it won’t ever come back on its own. To get
it back, we’d have to compress the gas with a piston. That requires us to do mechanical work on
the system, heating it up. To return the gas to its original state, we’d then have to cool it (remove

some thermal energy). In other words:

The cost of recreating order is that we must degrade some organized energy (6.13)
into thermal form,
another conclusion foreshadowed in Chapter 1 (see Section 1.2.2 on page 10).

Thus the entropy goes up as a system comes to equilibrium. If we fail to harness the escaping
gas, its initial order is just lost, as in our parable of the rock falling into the mud (Section 1.1.1):
We just forfeited knowledge about the system. But now suppose we do harness an expanding gas.
We therefore modify the situation in Figure 6.3, this time forcing the gas to do work as it expands.

Again we consider an isolated system, but this time with a sliding piston (Figure 6.4a). The left
side of the cylinder contains N gas molecules, initially at temperature T. The right side is empty
except for a steel spring. Suppose initially we clamp the piston to a certain position z = L and let
it come to equilibrium. When the piston is at L, the spring exerts a force f directed to the left.

Example Continue the analysis of Figure 6.4a:

a. Now we unclamp the piston, let it slide freely to a nearby position L — §, clamp
it there, and again let the system come to equilibrium. Here ¢ is much smaller than
L. Find the difference between the entropy of the new state and that of the old one.
b. Suppose we unclamp the piston and let it go where it likes. Its position will then
wander thermally, but it’s most likely to be found in a certain position L.q. Find
this position.

Solution:

a. Suppose for concreteness that ¢ is small and positive, as drawn in Figure 6.4a.
The gas molecules initially have total kinetic energy Fyi, = %kBT. The total sys-

NmoteV/221L
chance that any observation will see all the gas on one side is (%V/V) mese ~ 108200000000 000000 000000
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tem energy Fiot equals the sum of FEyj,, plus the potential energy stored in the
spring, Egpring. (By definition, in an ideal gas the molecules’ potential energy can
be neglected; see Section 3.2.1 on page 73). The system is isolated, so Eios doesn’t
change. Thus the potential energy f¢ lost by the spring increases the kinetic energy
FEiin of the gas molecules, increasing the temperature and entropy of the gas slightly.
At the same time, the loss of volume AV = —A¢ decreases the entropy.

We wish to compute the change in the gas’s entropy (Equation 6.6). Using that
AlnV = (AV)/V, and similarly for Aln Ey;,, gives a net change of

3 N ABu+ Nav,

AS/kn = A BG? + V) = = a
kin

Replace Eyi, /N in the first term by %kBT. Next use AFEy, = fd and A—VV = —% to
find AS/kp = (3 5:2L 26, or

23kpT/2
1 NkgT
AS=—|(f- .
S T(f T )6

b. The Statistical Postulate says every microstate is equally probable. Just as in
Section 6.3.1, though, there will be far more microstates with L close to the value
Lq maximizing the entropy than for any other value oof L (recall Figure 6.2). To
find Leq, set AS = 0 in the preceding formula, obtaining that f = NkgT/Lcq, or
Leq = NEkgT/f.

Dividing the force by the area of the piston yields the pressure in equilibrium, p = f/A =
NkgT/(AL) = NkgT/V. We have just recovered the ideal gas law once again, this time as a
consequence of the Second Law: If N is large, then our isolated system will be overwhelmingly
likely to have its piston in the location maximizing the entropy. We can characterize this state
as the one in which the spring is compressed to the point where it exerts a mechanical force just

balancing the ideal-gas pressure.

6.4.2 Three remarks

Before proceeding to use the Statistical Postulate (Idea 6.4), some remarks and caveats are in order:
1. The one-way increase in entropy implies a fundamental irreversibility to physical processes. Where
did the irreversibility come from? Each molecular collision could equally well have happened in
reverse. The origin of the irreversibility is not in the microscopic equations of collisions, but rather
in the choice of a highly specialized initial state. The instant after the partition is opened, suddenly
a huge number of new allowed states open up, and the previously allowed states are suddenly a
tiny minority of those now allowed. There is no analogous work-free way to suddenly forbid those
new states. For example, in Figure 6.3, we’d have to push the gas molecules to get them back into
the left side once we let them out. (In principle we could just wait for them all to be there by a
spontaneous statistical fluctuation, but we already saw that this would be a very long wait.)
Maxwell himself tried to imagine a tiny ‘demon’ who could open the door when he saw a molecule
coming from the right, but shut it when he saw one coming from the left. It doesn’t work; upon

closer inspection one always finds that any physically realizable demon of this type requires an
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external energy supply (and a heat sink) after all.

2. The formula for the entropy of an ideal gas, Equation 6.6, applies equally to a dilute solution of
N molecules of solute in some other solvent. Thus for instance Equation 6.12 gives the entropy of
mixing when equal volumes of pure water and dilute sugar solution mix. Chapter 7 will pick this

theme up again and apply it to osmotic flow.

3. The Statistical Postulate, claims that the entropy of an isolated, macroscopic system must not
decrease. Nothing of the sort can be said about individual molecules, which are neither isolated
(they exchange energy with their neighbors), nor macroscopic. Indeed, individual molecules can
certainly fluctuate into special states. For example, we already know that any given air molecule
in the room will often have energy three times as great as its mean value, since the exponential
factor in the Maxwell velocity distribution (Equation 3.25 on page 78) is not very small when
E=3. %kBTr.

Section 6.4.2" on page 208 touches on the question of why entropy should increase.

6.5 Open systems

Point (3) in Section 6.4.2 will prove very important for us. At first it may seem like a discouraging
remark: If individual molecules don’t necessarily tend always toward greater disorder, and we want
to study individual molecules, then what was the point of formulating the Second Law? This section
will begin to answer this question by finding a form of the Second Law that is useful when dealing
with a small system, which we’ll call “a,” in thermal contact with a big one, called “B.” We’ll call
such a system open to emphasize the distinction from closed, or isolated systems. For the moment
we continue to suppose that the small system is macroscopic. Section 6.6 will then generalize
our result to handle the case of microscopic, even single-molecule, subsystems. (Chapter 8 will
generalize still further, to consider systems free to exchange molecules, as well as energy, with each
other.)

6.5.1 The free energy of a subsystem reflects the competition between
entropy and energy

Fixed-volume case Let’s return to our gas+piston system (see Figure 6.4b). We'll refer to the
subsystem including the gas and the spring as “a.” As shown in the figure, “a” can undergo interal
motions, but its total volume as seen from outside does not change. In contrast to the Example
on page 184, this time we’ll assume that “a” is not thermally isolated, but rather rests on a huge
block of steel at temperature T' (Figure 6.4b). The block of steel (system “B”) is so big that
its temperature is practically unaffected by whatever happens in our small system: We say it’s a
thermal reservoir. The combined system, a + B, is still isolated from the rest of the world.

Thus, after we release the piston and let the system come back to equilibrium, the temperature
of the gas in the cylinder will not rise, as it did in the Example on page 184, but will instead stay
fixed at T', by the Zeroth Law. Even though all the potential energy lost by the spring went to raise
the kinetic energy of the gas molecules temporarily, in the end this energy was lost to the reservoir.
Thus Ey;, remains fixed at %N kT, whereas the total energy E, = Fyin + Fgpring goes down when
the spring expands.
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Reviewing the algebra in the Example on page 184, we then see that the change in entropy for
system “a” is just AS, = —% 6. Requiring that this expression be positive would imply that
the piston always moves to the right—but that’s absurd. If the spring exerts more force per area
than the gas pressure, the piston will surely move left, reducing the entropy of subsystem “A.”
Something seems to be wrong.

Actually, we already met a similar problem in Section 1.2.2 on page 10, in the context of
reverse osmosis. The point is that we have so far looked only at the subsystem’s entropy, whereas
the quantity that must increase is the whole world’s entropy. We can get the entropy change
of system “B” from its temperature and Equation 6.9: T(ASg) = AEg = —AE,. Thus the
quantity that must be positive in any spontaneous change of state is not T(AS,) but instead
T(AStot) = —AE, + T(AS,). Rephrasing this result, we find that the Second Law has a simple

generalization to deal with systems that are not isolated:

If we bring a small system “a” into thermal contact with a big system “B” in
equilibrium at temperature T, then “B” will stay in equilibrium at the same (6.14)
temperature (“a” is too small to affect it), but “a” will come to a new equilib- '

rium, which minimizes the quantity F, = E, —T'S,.

Thus the piston finds its equilibrium position, and so is no longer in a position to do mechanical
work for us, when its free energy is minimum. The minimum is the point where F, is stationary
under small changes of L, or in other words when AF, = 0.

The quantity F, appearing in Idea 6.14 is called the Helmholtz free energy of subsystem “a.”
Idea 6.14 explains the name “free” energy: When F, is minimum, then “a” is in equilibrium and
won’t change any more. Even though the mean energy (E,) isn’t zero, nevertheless “a” won’t do
any more useful work for us. At this point the system isn’t driving to any state of lower F,, and
can’t be harnessed to do anything useful for us along the way.

So a system whose free energy is not at its minimum is poised to do mechanical or other useful
work. This compact principle is just a precise form of what was anticipated in Chapter 1, which
argued that the useful energy is the total energy reduced by some measure of disorder. Indeed,
Idea 6.14 establishes Equation 1.4 and Idea 1.5 on page 7.

Your Turn 6¢
Apply Idea 6.14 to the system in Figure 6.4b, find the equilibrium location of the piston, and

explain why that’s the right answer.

The virtue of the free energy is that it focuses all our attention on the subsystem of interest to us.
The surrounding system “B” enters only in a generic, anonymous way, through one number, its

temperature T'.

Fixed-pressure case Another way in which “a” can interact with its surroundings is by expand-
ing its volume at the expense of “B.” We can incorporate this possibility while still formulating the
Second Law solely in terms of “a.”

Imagine, then, that the two subsystems have volumes V, and Vg, constrained by a fixed total
volume: V, + Vg = V;ot. First we again define temperature by Equation 6.9, specifying now that
the derivative is to be taken at fixed volume. Next we define pressure in analogy to Equation 6.9:

A closed system has

ds
= T —_ .1
p v, (6.15)
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where the notation means that the derivative is to be taken holding F fixed. (Throughout this
chapter N is also fixed.)

Your Turn 6d
The factor of 7' may look peculiar, but it makes sense: Show that the dimensions of Equation 6.15

work, and that it does give the pressure of an ideal gas, using the Sakur—Tetrode formula (Equa-
tion 6.6).

Suppose that system “B” has pressure p, which doesn’t change much as “a” grows or shrinks
because “B” is so much bigger. Then by an argument like the one above we can rephrase the Second
Law to read: If we bring a small system “a” into thermal and mechanical contact with a big system
“B”, then “B” will stay in equilibrium at its original temperature T and pressure p, but “a” will

come to a new equilibrium, which minimizes

G.=E,+pV,y,—T8S,. Gibbs free energy (6.16)

Just as T measures the availability of energy from “B,” so we can think of p as measuring the
unwillingness of “B” to give up some volume to “a.”

The quantity E, + pV, is called the enthalpy of “a.” We can readily interpret its second term.
If a change of “a” causes it to grow at the expense of “B,” then “a” must do some mechanical work,
p(AV,), to push aside the bigger system and make room for the change. This work partially offsets
any favorable (negative) AFE,.

Chemists often study reactions where one reactant enters or leaves a gas phase, with a big AV,
so the distinction between F' and G is a significant one. In the chapters to follow, however, we
won’t worry about this distinction; we’ll use the abbreviated term “free energy” without specifying
which one is meant. (Similarly we won’t distinguish carefully between energy and enthalpy.) The
reactions of interest to us occur in water solution, where the volume does not change much when
the reaction takes one step (see Problem 8.4), and so the difference between F' and G is practically
a constant, which drops out of before-and-after comparisons. Chapter 8 will use the traditional

symbol AG to denote the change in free energy when a chemical reaction takes one step.

6.5.2 Entropic forces can be expressed as derivatives of the free energy

Another way in which a system can be open is if an external mechanical force acts on it. For example,
suppose we eliminate the spring from Figure 6.4b, replacing it by a rod sticking out of the thermal
insulation, which we push with force foy;. Then the free energy of subsystem “a” is just a constant
(including F\iy,) minus T'S,. Dropping the constants gives F, = —NkgTInV = —NkgT In(LA).
The condition for equilibrium cannot simply be dF,/dL = 0, since this is satisfied only at
L = co. But it’s easy to find the right condition, just by rearranging the result you just found in
Your Turn 6¢. Our system will have the same equilibrium as the one in Figure 6.4b; it doesn’t

matter whether the applied force is internal or external. Thus we find that in equilibrium,

dF, . .
fa=— T entropic force as a derivative of F (6.17)
In this formula f, = — fext is the force exerted by subsystem “a” on the external world, in the

direction of increasing L. We already knew that the subsystem tends to lower its free energy;
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Equation 6.17 makes precise how hard it’s willing to push. Equation 6.17 has intentionally been
writen to emphasize its similarity to the corresponding formula from ordinary mechanics, f =
—dU/dL.

We can now also find the work which our subsystem can do against a load. We see that the
subsystem will spontaneously expand, even if this requires opposing an external load, as long as
the opposing force is less than the value in Equation 6.17. To get the maximum possible work, we
should continuously adjust the load force to be always just slightly less than the maximum force

the system can exert. Integrating Equation 6.17 over L gives a sharpened form of Idea 6.14:

If a subsystem is in a state of greater than minimum free energy, it can do work

6.18
on an external load. The maximum possible work we can extract is F, — F}, min. ( )

Gilbert says: By the way, where did the work come from? The internal energy of the gas molecules
didn’t change, because T didn’t change.

Sullivan:  That’s right: The cylinder has drawn thermal energy from the reservoir (system “B”)
and converted it into mechanical work.

Gilbert: Doesn’t that violate the Second Law?

Sullivan:  No, our system sacrificed some order by letting the gas expand. After the expansion
we don’t know as precisely as before where the gas molecules are located. Something—order—did
get used up, exactly as foreshadowed in Chapter 1 (see Section 1.2.2). The concept of free energy
makes this intuition precise.

In a nutshell:

The cost of upgrading energy from thermal to mechanical form is that we must (6.19)
give up order. '

This is just the obverse of the slogan given in Idea 6.13 above.

6.5.3 Free energy transduction is most efficient when it proceeds in
small, controlled steps

Idea 6.18 tells us about the maximum work we can get from a small subsystem in contact with a
thermal reservoir. To extract this maximum work, we must continuously adjust the load force to
be just slightly less than the force the system can exert. This is generally not practical. We should
explore what will happen if we maintain a load that is somewhere between zero (free expansion,
Figure 6.3) and the maximum. Also, most familiar engines repeat a cycle over and over. Let’s

construct such an engine in our minds, and see how it fits into the framework of our ideas.

Let subsystem “a” be a cylinder of gas with a piston of area A at one end, held down
Example by weights w; and wy to maintain initial pressure p; = (wy + wy)/A (Figure 6.5).
For simplicity suppose there’s no air outside; also, take the weight of the piston
itself to be zero. The cylinder is in thermal contact with a reservoir “B” at fixed
temperature 7. Suddenly remove weight wo from the piston (slide it off sideways
so this doesn’t require any work). The piston pops up from its initial height L;
to its final height L, measured from the bottom, and the pressure goes down to
pr = wi/A. Find the change in the free energy of the gas, AF,, and compare it to
the mechanical work done lifting weight w.

Solution: The final temperature is the same as the initial, so the total kinetic energy

Eyin = %N kT of the gas doesn’t change during this process. The pressure in
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Figure 6.5: (Schematic.) Extracting mechanical work by lifting a weight. After we remove weight ws, the cylinder
rises, lifting weight wi. A large thermal reservoir (subsystem B) maintains the cylinder at a fixed temperature T'.

system “B” (the outside world) was assumed to be zero. So all that changes in the

free energy is —7T'S,. Using the Example on page 178, we find the change to be

AF, = —NkgTIn E

L

In the final state peLy = NkpT/A, by the ideal gas law, where pr = wy/A. Let
X = (Lt — Li)/L¢, so X lies between 0 and 1. Then the mechanical work done
raising weight #1 is wy(Lf — L;) = NkgTX, whereas the free energy changes by
|AF| = =NkgTIn(1 — X). But X < —In(1 — X) when X lies between 0 and 1, so

the work is less than the free energy change.

One could do something useful with the mechanical work done lifting wy by sliding it off the piston,
letting it fall back to its original height L;, and harnessing the released mechanical energy to grind
coffee or whatever. As predicted by Idea 6.18, we can never get more useful mechanical work out
of the subsystem than |AF,|.

What could we do to optimize the efficiency of the process, that is, to get out all of the excess
free energy as work? The ratio of work done to |AF,| equals ﬁ—x) This expression is maximum
for very small X, that is, for small wy. In other words, we get the best efficiency when we release
the constraint in tiny, controlled increments—a “quasistatic” process.

We could get back to the original state by moving our gas cylinder into contact with a different
thermal reservoir at a lower temperature 7”. The gas cools and shrinks until the piston is back at
position L;. Now we slide the weights back onto it, switch it back to the original, hotter, reservoir
(at T'), and we're ready to repeat the whole process ad infinitum.

We have just invented a cyclic heat engine. Every cycle converts some thermal energy into
mechanical form. Every cycle also saps some of the world’s order, transferring thermal energy
from the hotter reservoir to the colder one, and tending ultimately to equalize them. Figure 6.6

summarizes these words.
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heat (at lower temperature)

expanded compressed

—

mechanical work heat (at higher temperature)

Figure 6.6: (Diagram.) Operating cycle of a heat engine.

That’s amusing, but. .. biological motors are not cylinders of ideal gas. Nor are they driven by
temperature gradients. Your body doesn’t have a firebox at one end and a cooling tower at the
other, like the electric company’s generating plant. So Chapter 10 will turn away from heat engines
to motors run by chemical energy. Our effort has not been wasted, though. The valuable lesson we

learned in this subsection is based on the Second Law, and so is quite general:

Free energy transduction is least efficient when it proceeds by the uncontrolled
release of a big constraint. It’s most efficient when it proceeds by the incremen- (6.20)

tal, controlled release of many small constraints.

Your Turn be
Why do you suppose your body is full of molecular-size motors, taking tiny steps? Why do

you think the electric company only succeeds in capturing a third of the energy content in coal,

wasting the rest as heat?

6.5.4 The biosphere as a thermal engine

The abstract definition of temperature (Equation 6.9) gives us a way to clarify the “quality of
energy” concept alluded to in Chapter 1. Consider again an isolated system with two subsystems
(Figure 6.1). Suppose a large, nearly equilibrium system “A” transfers energy AFE to system “B,”
which need not be in equilibrium. Then “A” lowers its entropy by ASy = —AFE/Tx. According to
the First Law, this transaction raises the energy of “B” by AFE. The Second Law says that it must
also raise the entropy of “B” by at least |[AS4|, because ASx + ASg > 0.

To give “B” the greatest possible energy per unit of entropy increase, we need AE/ASg to
be large. We just argued that this quantity cannot exceed AE/|ASa|. Since the last expression
equals Ty, our requirement implies that T must be large: High quality energy comes from a
high-temperature body.

More precisely, it’s not the temperature but the fractional temperature difference straddled
by a heat engine that determines its maximum possible efficiency. We can see this point in the
context of the process analyzed in the Example on page 189 and the following text. Our strategy
for extracting work from this system assumed that the first reservoir was hotter than the second,

or T > T'. Let’s see why exactly this was necessary.
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The engine did work W on its power stroke (the left-pointing arrow in Figure 6.6). It doesn’t
change at all in one complete cycle. But it released a quantity of thermal energy @ into the cooler
reservoir during the contraction step, increasing the entropy of the outside world by at least Q/T".
Some of this entropy increase is compensated in the next step, where we raise the temperature
back up to 7T": In this process an amount of thermal energy equal to @ + W flows out of the hotter
reservoir, reducing the entropy of the outside world by (Q+W)/T. The net change in world entropy
is then

ASior = Q(% o %) - % (6.21)

Since this quantity must be positive, we see that we can get useful work out (that is, W > 0) only
if T < T. In other words, The temperature difference is what drives the motor.

A perfect heat engine would convert all the input thermal energy to work, exhausting no heat.
At first this may seem impossible: Setting () = 0 in Equation 6.21 seems to give a decrease in the
world’s entropy! A closer look, however, shows us another option. If the second reservoir is close to
absolute zero temperature, 7" ~ 0, then we can get near-perfect efficiency, Q = 0, without violating
the Second Law. More generally, a big temperature difference, T/T’, permits high efficiency.

We can now apply the intuition gleaned from heat engines to the biosphere. The Sun’s surface
consists of a lot of hydrogen atoms in near-equilibrium at about 5600 K. It’s not perfect equilibrium
because the Sun is leaking energy into space, but the rate of leakage, inconceivably large as it is, is
still small compared to the total. Thus we may think of the Sun as a nearly closed thermal system,
connected to the rest of the Universe by a narrow channel, like system “A” in Figure 6.1 on page
179.

A single chloroplast in a cell can be regarded as occupying a tiny fraction of the Sun’s output
channel and joining it to a second system “B” (the rest of the plant in which it’s embedded),
which is at room temperature. The discussion above suggests that the chloroplast can be regarded
as a machine that can extract useful energy from the incident sunlight using the large difference
between 5600 K and 295 K. Instead of doing mechanical work, however, the chloroplast creates the
high-energy molecule ATP (Chapter 2) from lower-energy precursor molecules. The details of how
the chloroplast captures energy involve quantum mechanics, and so are beyond the scope of this
book. But the basic thermodynamic argument does show us the possibility of its doing so.

6.6 Microscopic systems

Much of our analysis so far has been in the familiar context of macroscopic systems. Such systems
have the comforting property that their statistical character is hidden: statistical fluctuations are
small (see Figure 6.2), so their gross behavior appears to be deterministic. We invoked this idea
each time we said that a certain configuration was “overwhelmingly more probable” than any other,
for example in our discussion of the Zeroth Law (recall Figure 6.2 on page 181).

But as mentioned earlier, we also want to understand the behavior of single molecules. This
task is not as hopeless as it may seem: We are becoming familiar with situations, where individual
actors are behaving randomly and yet a clear pattern emerges statistically. We just need to replace
the idea of a definite state by the idea of a definite probability distribution of states.
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Figure 6.7: (Schematic.) A small subsystem “a” is in thermal contact with a large system “B.” Subsystem “a
may be microscopic, but “B” is macroscopic. The total system a+B is thermally isolated from the rest of the world.

6.6.1 The Boltzmann distribution follows from the Statistical Postulate

The key insight needed to get a simple result is that any single molecule of interest (for example
a molecular motor in a cell) is in contact with a macroscopic thermal reservoir (the rest of your
body). Thus we want to study the generic situation shown in Figure 6.7. The figure shows a tiny
subsystem in contact with a large reservoir at temperature 7. Although the statistical fluctuations
in the energies of “a” and “B” are equal and opposite, they're negligible for “B” but significant for
“a.” We would like to find the probability distribution for the various allowed states of “a.”

The number of states available to “B” depends on its energy via Qp(Ep) = e53(Fn)/kn
(Equation 6.5). The energy Eg, in turn, depends on the state of “a” by energy conservation:
Eg = Eiot — E,. Thus the number of joint microstates where “a” is in a particular state and “B”
is in any allowed state depends on F,: It equals Qp(FEior — E).

The Statistical Postulate says that all allowed microstates of the joint system have the same
probability; call it Py. The addition rule for probabilities then implies that the probability for “a”
to be in a particular state, regardless of what “B” is doing, equals Qp(Eio — F.)Pp, or in other
words is a constant times e ~8(Froe=Ea)/ksT We can simplify this result by noting that E, is much

[39eebl

smaller than Fit (because “a” is small), and expanding:

dSs
dEp

The dots refer to higher powers of the tiny quantity E,, which we may neglect. Using the fun-

SB(EB) = SB(Etot - Ea) = SB(Etot) - Ea (622)

[Pk

demental definition of temperature (Equation 6.9) now gives the probability to observe “a” in a
particular state as e58(Frot)/kBe=(Ea/T)/kB By or:

The probability for the small system to be in a state with energy FE, is a normal-

—E./ksT

ization constant times e , where T is the temperature of the surrounding (6.23)

big system and kg is the Boltzmann constant.

We have just found the Boltzmann distribution, establishing the proposal made in Chapter 3 (see
Section 3.2.3 on page 76).

What makes Idea 6.23 so powerful is that it hardly depends at all on the character of the
surrounding big system: The properties of system “B” enter via only one number, namely its
temperature 7. We can think of T as the “availability of energy from “B”: When it’s big, system
“,

a” is more likely to be in one of its higher-energy states, since then e=#=/#8T decreases slowly as

F, increases.



194 CHAPTER 6. ENTROPY, TEMPERATURE, AND FREE ENERGY [[stuoext vensiox, Javvary 17, 2003]

Two-state systems Here’s an immediate example. Suppose the small system has only two
allowed states, and that their energies differ by an amount AEF = E5 — Ey. The probabilities to be
in these states must obey both P; + P, = 1 and

Pl e—E1 /k)BT A
F = m =e E/kBT, Simple 2-state System. (624)
2 e
Solving, we find
1 1
P Py (6.25)

T 14 e AE/keT T 14 oAE/kRT"
That makes sense: When the upper state #2 is far away in energy, so that AF is large, the system
is hardly ever excited: It’s almost always in the lower state #1. How far is “far?” It depends on
the temperature. At high enough temperature, AE will be negligible, and P; ~ P ~ 1/2. As the
temperature falls below AE/kg, however, the distribution (Equation 6.25) quickly changes to favor
state #1.

Here is a more involved example:

Your Turn 6f
Suppose “a” is a small ball tied elastically to some point, and free to move in one dimension

only. The ball’s microstate is described by its position = and velocity v. Its total energy is
E,(2,v) = &(mv? + ka?), where k is a spring constant.

a. From the Boltzmann distribution, find the average energy (E,) as a function of temperature.
[Hint: Use Equation 3.7 on page 68 and Equation 3.14 on page 70.]

b. Now try it for a ball free to move in three dimensions.

Your result has a name: the equipartition of energy. The name reminds us that energy is being
equally partitioned between all the places it could go. Both kinetic and potential forms of energy

participate.

T» |Section 6.6.1' on page 208 makes some connections to quantum mechanics.

6.6.2 Kinetic interpretation of the Boltzmann distribution

Imagine yourself having just stampeded a herd of buffalo to a cliff. There they are, grunting,
jostling, crowded. But there’s a small rise before the cliff (Figure 6.8). This barrier corrals the
buffalo, though from time to time one falls over the cliff.

If the cliff is ten meters high, then certainly no buffalo will ever make the trip in the reverse
direction. If it’s only half a meter high, then they’ll occasionally hop back up, though not as easily
as they hop down. In this case we’ll eventually find an equilibrium distribution of buffalo, some up
but most down. Let’s make this precise.

Let AF;_.5 be the change in gravitational potential energy between the two stable states;
abbreviate it as AE. The key observation is that equilibrium is not a static state, but rather a
situation where the backward flow equals, and so cancels, the forward flow.? To calculate the flow
rates, notice that there’s an activation barrier E* for falling over the cliff. This is the gravitational
potential energy change needed to pick a buffalo up over the barrier. The corresponding energy
E* + AE in the reverse direction reflects the total height of both the small rise and the cliff itself.

As for buffalo, so for molecules. Here we have the advantage of knowing how rates depend on

barriers, from Section 3.2.4 on page 79. We imagine a population of molecules, each of which can

4Compare our discussion of the Nernst relation (Section 4.6.3 on page 124) or sedimentation equilibrium (Sec-
tion 5.1 on page 142).
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state #1

Figure 6.8: (Metaphor.) Where the buffalo hop. [Cartoon by Larry Gonick.]

spontaneously flip (or isomerize) between two configurations. We'll call the states #1 and #2 and
denote the situation by the shorthand
2 k; 1. (6.26)
k_
The symbols k; and k- in this formula are called the forward and backward rate constants,
respectively; we define them as follows.

Initially there are Ny molecules in the higher-energy state #2 and N; in the lower-energy state
#1. In a short interval of time dt¢, the probability that any given molecule in state #2 will flip
to #1 is proportional to d¢; call this probability ki dt. Section 3.2.4 argued that the probability
per time k4 is a constant C' times e’Ei/kBT., so the average number of conversions per unit time
is Noky = CNQQ_EI/kBT. The constant C' roughly reflects how often each molecule collides with a
neighbor.

Similarly, the average rate of conversion in the opposite direction is N1k- = C’Nle’(EI+AE)/kBT.
Setting the two rates equal (no net conversion) then gives that the equilibrium populations are
related by

Ny oq/Nyoq = e~ AE/ kBT (6.27)

which is just what we found for P,/P; in the previous s